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ABSTRACT 

APPLICATIONS OF MACHINE LEARNING IN MEDICAL 

PROGNOSIS USING ELECTRONIC MEDICAL RECORDS 

by 

Farnaz H. Foomani 

The University of Wisconsin-Milwaukee, 2022 

Under the Supervision of Professor Zeyun Yu and Professor Sandeep 

Gopalakrishnan 

 

 

Approximately 84 % of hospitals are adopting electronic medical records (EMR) In the 

United States. EMR is a vital resource to help clinicians diagnose the onset or predict the future 

condition of a specific disease. With machine learning advances, many research projects attempt 

to extract medically relevant and actionable data from massive EMR databases using machine 

learning algorithms. However, collecting patients' prognosis factors from Electronic EMR is 

challenging due to privacy, sensitivity, and confidentiality. In this study, we developed medical 

generative adversarial networks (GANs) to generate synthetic EMR prognosis factors using 

minimal information collected during routine care in specialized healthcare facilities. The 

generated prognosis variables used in developing predictive models for (1) chronic wound 

healing in patients diagnosed with Venous Leg Ulcers (VLUs) and (2) antibiotic resistance in 

patients diagnosed with Skin and soft tissue infections (SSTIs). Our proposed medical GANs, 

EMR-TCWGAN and DermaGAN, can produce both continuous and categorical features from 

EMR. We utilized conditional training strategies to enhance training and generate classified data 
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regarding healing vs. non-healing in EMR-TCWGAN and susceptibility vs. resistance in 

DermGAN. The ability of the proposed GAN models to generate realistic EMR data was 

evaluated by TSTR (test on the synthetic, train on the real), discriminative accuracy, and 

visualization. We analyzed the synthetic data augmentation technique's practicality in improving 

the wound healing prognostic model and antibiotic resistance classifier. We achieved the area 

under the curve (AUC) of 0.875 in the wound healing prognosis model and an average AUC of 

0.830 in the antibiotic resistance classifier by using the synthetic samples generated by GANs in 

the training process. These results suggest that GANs can be considered a data augmentation 

method to generate realistic EMR data.    
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Chapter 1  

Introduction 

1.1 AI and Machine Learning in Healthcare 

Artificial intelligence (AI) and its well-known branch, Machine Learning (ML), are 

attracting researchers in different fields such as economics and finance [1], marketing [2], risk 

management [3], power systems [4], medicine, and health [5, 6] to the area of computer science. 

AI in medicine has two main disciplines: virtual and physical AI. The virtual branch incorporates 

informatics approaches using deep learning and electronic medical records to control health 

management systems and assist physicians in diagnosis and treatment recommendations. The 

physical area includes robotics that can serve the elderly and disabled patients or surgeons in the 

operation rooms [7]. In the past decade, ML techniques have been extensively used for disease 

diagnoses, such as kidney disease [8], skin cancer [9], breast cancer [10], heart disease [11], 

retinal layer segmentation, diagnosis of Alzheimer's disease [12], prostate cancer [13], and 

chronic wound healing prediction [14, 15]. Moreover, the Prediction of treatment efficiency 

using ML techniques has been discussed in oral cancer [16], epileptic seizure [17], 

neurodegenerative diseases [18], and depression [19].  

Conventional ML algorithms such as logistic regression, support vector machines, decision 

trees, and random forests are highly dependent on feature representations, where predictive 

variables are extracted from medical data carefully before feeding to the model for training. This 

process is required an intensive human effort for feature engineering. Deep Learning (DL) 
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techniques address this problem, using an end-to-end learning architecture to take raw patient 

data as an input and map it to outcomes using many layers of nonlinear processing units. This 

method reduces human involvement in high-level feature engineering. On the other hand, 

humans still need to develop effective DL model architectures and fine-tune optimal model 

parameters. The field's continuous challenge is reducing the human intervention required to 

construct these architectures [20]. 

1.2 Wound Prognosis Models 

More than 6 million people in the United States are suffering from various types of chronic 

wounds such as Venous Leg Ulcer (VLU), Arterial Ulcer (AU), Diabetic Foot Ulcer (DFU), and 

Pressure Ulcer (PU). About 0.15% to 0.3% of people are suffering from active VLU worldwide, 

and annually more than $25 billion is spent on wound management and Medicare cost [8]. 

Although there is no consensus about wound healing time, a wound is considered chronic if it 

has not healed in 4-12 weeks or has shown less than 20 % reduction in its area after a maximum 

of four weeks of treatment [21].  An accurate estimate of healing time could assist clinicians in 

making better decisions about therapies and interventions.  

Patients with four weeks of prognostic information provided to a clinic are more likely to 

heal than patients without predictive records. Shanu K. Kurd et al. [22] suggested that the 

essential factor associated with a healed wound is a change in wound size after four weeks of 

care. Skene et al. [23] stated smaller initial ulcer area, shorter duration of ulceration, younger 

age, and no deep vein involvement as the most significant healing predictors of VLU. Franks et 

al. [24] reported ulcer size and duration, general mobility, and limb joint mobility as the critical 

predictors of leg ulceration healing. Vesna Karanikolic et al. [25] declared that factors associated 
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with delayed VLU healing are infection, number of ulcers, and larger ulcer surface area. Ankle-

brachial pressure index and lipodermatosclerosis are essential positive factors for the healing of 

VLU. Factors that do not appear to have significant roles in healing are age, sex, obesity, 

condition of the surface, the deep venous system, and chronic diseases. Wound size and duration 

are the most critical factors in developing a predictive model for VLU. In addition to these two 

factors, ulcer grade and wound number are important characteristics for developing the model 

[26]. The most significant predictors for delayed healing of neuropathic diabetic foot ulcer 

(DFU), as reported by Margolis et al. [27], are patients' wound size, duration, and ethnicity. 

Significant predictors mentioned by the same authors for VLU include wound area, wound 

duration, ankle-brachial index, ethnicity, limb ulcer, history of stripping or venous ligation, 

inability to walk (1 block), wound margin, lipodermatosclerosis, fibrin-covered wound, and 

history of surgical wound debridement [28]. Khachemoune et al. [29] asserted that wound size 

and duration, lipodermatosclerosis, and history of failed prior split-thickness skin grafts are the 

main factors impacting healing chronic VLUs and is treated with Cryopreserved Epidermal 

Cultures (CEC). Ulcer duration and area are the most significant factors influencing  the healing 

of VLUs; where patient sex, age, race, skin condition, and infection have no prognostic 

significance [30]. In summary, the most common significant wound healing predictors are 

wound size (length, surface area), depth, grade, duration, distance, color, and numbers; ankle-

brachial index; ethnicity; lipodermatosclerosis; and previous wound treatment history. The most 

common non-significant wound healing predictors are the patient's age and sex, body mass index 

(obesity), the deep venous system, and infection. 

In this thesis, we aim to predict if a wound heals within 12 weeks from receiving the first 

treatment in patients with venous leg ulcers.  We develop a prognosis deep learning model based 
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on patients’ demographic and clinical characteristics collected from their Electronic Medical 

records (EMRs). 

1.3 Prediction of Antibiotic Resistance  

Skin and soft-tissue infections (SSTIs) remain the most frequently observed infections in 

ambulatory and hospital settings and involve microbial invasion of the skin’s layers and soft 

tissues [31]. The number of SSTI episodes with a culture-confirmed pathogen has increased 

dramatically in the United States in recent decades [32]. This infection constitutes around 30% of 

all infections in 2019 in India [33]. Depending on their strain characteristic, the bacteria causing 

SSTIs are classified as Gram-Negative Bacilli (GNB)  or Gram-Positive Cocci (GPC). SSTIs 

range from mild infections such as pyoderma to severe life-threatening infections involving 

necrotizing fasciitis and extensive cellulitis. The distinction between severe SSTIs that need 

immediate intervention from mild infections is still challenging [31]. Patients’ comorbidities 

such as diabetes mellitus and ischemia can advance a mild infection and result in treatment 

failure [34]. 

Most mild infections can be treated empirically by antibiotic prescriptions [35]. However, 

the evolution of antibiotic resistance is surging in SSTIs with the advent of new antibiotics. 

Mayo Clinic reports that more than 2 million infections from antibiotic-resistant bacteria occur 

annually in the United States, resulting in 35,000 deaths. Misuse of antibiotics promotes 

antibiotic resistance, leading to serious illnesses, longer recovery, longer hospital stays, and 

excessive medical expenses [36]. Hence, antimicrobial resistance surveillance is essential to 

estimate antibiotic resistance and monitor the results of medical interventions [37]. Conventional 

detection methods of bacterial resistance are standardized and widely used. In 2019, 
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Ramakrishna et al. conducted antimicrobial susceptibility testing using the Kirby Bauer disk 

diffusion method and E-strip method on 3570 samples suspected of SSTI in India to provide a 

predictable bacterial profile of the wound infections for clinicians [38]. However, the results may 

take more than 48hrs to be prepared, leading to overuse or misuse of antibiotics [39]. The Indian 

Council of Medical Research (ICMR) has been researching antimicrobial resistance through the 

Antimicrobial Resistance Research & Surveillance Network (AMRSN) annually. Their study 

aims to track resistance trends and understand resistance mechanisms in pathogens using 

molecular characterization techniques and whole-genome sequencing (WGS) [40].  In the United 

States, the Multidrug-Resistant Organism Repository and Surveillance Network (MRSN) is a 

unique entity that serves as the primary surveillance organization for antibiotic-resistant bacteria 

across the Army, Navy, and Air Force. MRSN focuses on the most common pathogens 

associated with antibiotic resistance, including methicillin-resistant Staphylococcus aureus 

(MRSA), Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, 

Enterobacter spp. and Escherichia coli [41]. Moreover, National Antimicrobial Resistance 

Monitoring System (NARMS) tracks changes in the antimicrobial susceptibility of these 

common pathogens and provides information about emerging bacterial resistance [42].  

The antibiotic susceptibility and sensitivity tests are time-consuming and costly. Hence, we 

developed ML models to predict antimicrobial resistance using antibiotic susceptibility testing 

(ABST) data (as ground truth labels) collected from patients diagnosed with SSTIs over one 

year. The networks learn from patients' clinical and demographic information such as age, 

gender, diagnoses, and bacterial pathogens involved with the skin infections collected from 

EMRs.  
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1.4 Electronic Medical Record (EMR) 

In the United States, approximately 84 % of hospitals adopt electronic medical records 

(EMR). EMR is a vital resource to help clinicians diagnose the onset or predict the future 

condition of a specific disease [43]. With machine learning advances, many research projects 

attempt to extract medically relevant and actionable data from massive EMR databases using 

machine learning algorithms [44].  

EMR of a patient includes structured information such as coded diagnoses, interventions, 

and treatments and unstructured data such as text documents from physicians and nurses that 

usually contain precious clinical data about the specific visit [45]. ML techniques can analyze 

structured data. By representing patient EMRs as longitudinal matrices with one dimension 

corresponding to the features and the other dimension corresponding to the time, ML models can 

be developed to analyze the medical data [20]. For instance, in [46], Sahni et al. have proposed a 

prognosis model based on the random forest to predict 1-year death risk using factors such as 

metabolic panel, demographic information, and ICD codes from the EMR data available at the 

end of hospitalization in multi-condition Patients. Yeh et al. have introduced Xception 

architecture, a CNN-based neural network to predict lung cancer within one year from diagnosis 

and medication codes obtained from the EMRs [47]. In [48], deep learning was deployed to 

predict knee osteoarthritis within a year using the previous three years of demographic 

characteristics and diagnosis codes from EMR.   

Analyzing unstructured information mainly involves natural language processing (NLP). 

For example, in [49], Kaur et al. have developed NLP algorithms that automatically extract 

patients who meet Asthma Predictive Index (API) criteria from the EMR. Sung et al. have 
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introduced an NLP algorithm to help clinicians determine eligibility for intravenous 

thrombolysis in patients with stroke from clinical notes [50]. 

Despite the improvements that EMR has brought to the healthcare system, its adaptation 

among healthcare professionals is still controversial due to privacy and security concerns. 

Although EMRs were established in the 1970s, only 41% of U.S. hospitals had implemented a 

basic EMR system by 2005 due to privacy concerns. To resolve this tension, researchers 

proposed de-identification techniques such as k-anonymity, l-diversity, and t-closeness to 

generate anonymized data. However, there is still a risk of re-identification attacks in these 

procedures [51-53]. An alternative technique for overcoming these obstacles is to generate 

synthetic data that looks realistic. There is no direct mapping between real and synthetic data in 

these techniques; therefore, synthetic data, unlike de-identified data, is immune from re-

identification cyber-attacks. Suppose synthetic data can have properties that are similar to real 

data. In that case, it can help researchers and companies access data by minimizing the privacy 

challenges of collecting EMR data [54].  

Machine learning researchers have increasingly focused on developing generative models 

that can automatically extract underlying knowledge of data and synthesize new samples with 

characteristics similar to the original record.  Generative adversarial networks (GANs) have 

recently demonstrated an impressive capacity to generate synthetic data with realistic features. 

This thesis has also overcome the challenges against EMR data collection by producing synthetic 

EMR using GANs. In the next section, we will talk about GANs in detail. 
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1.5 Generative Adversarial Networks in Medicine 

GANs received much attention recently because of their ability to produce high-quality 

synthetic images. In GANs, two neural networks are deployed; the first network is a generator 

that trains to create realistic instances from the latent space, which can mislead the second 

network (discriminator) into identifying them as the original data. GANs have been successfully 

employed in producing high-quality synthetic images in an adversarial manner that may be 

indistinguishable from original images. Maayan et al. generated synthetic computed tomography 

(CT) images of liver lesions using the GAN model and showed that it improved liver lesion 

classification performance [55]. Christopher et al. introduced synthetic data to the training set of 

brain segmentation tasks using the GAN model and showed a 1-5% improvement in 

segmentation results [56].  Changhee et al. generated Magnetic brain Resonance (MR) images 

with the GAN model, which defeated an expert physician in the visual Turing Test [57]. Using 

GAN, Jyoti et al. generated Positron Emission Tomography (PET) images for three different 

Alzheimer's stages. They showed that these synthesized images are close to the real brain PET 

images through qualitative and quantitative evaluations [58]. Shin et al. generated synthetic MR 

images with brain tumors using the GAN network and showed that these images improved the 

segmentation performance and helped patients’ record preservation [59]. Ren et al. generated 

synthetic gastric X-ray images using their proposed loss function-based conditional progressive, 

growing generative adversarial network (LC-PGGAN) [60].  

1.6 Contributions and Goals 

The contributions and goals of the wound prognosis model are as follows: 
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I. We demonstrate that the development of deep learning techniques can predict the healing 

process of venous leg ulcers with high accuracy based on patients’ demographic and 

clinical characteristics. The purpose is to predict if a VLU heals within 12 weeks after 

receiving the first treatment.  

II. We show that Generative Adversarial Networks are not limited to generating image 

datasets. Our EMR-CWGAN can successfully generate synthetic wound prognostic 

factors with characteristics similar to the original dataset. 

The contributions and goals of the antibiotic resistance classifier are as follows: 

I. We develop antibiotic resistance classifiers to classify the susceptibility or resistance of 

well-known bacteria to twelve different antibiotics in patients diagnosed with skin and 

soft tissue infections. 

II. We investigate each pathogen's effect and predictive power in the Prediction of antibiotic 

resistance. 

III. We develop a DermaGAN network to generate synthetic SSTI samples with 

characteristics similar to the original dataset. 

IV. We deploy the generated samples as an augmented dataset to improve the antibiotic 

resistance classification accuracy. 

The rest of this thesis is organized as follows: in chapter 2, we will discuss the machine 

learning algorithms used in this thesis and also the performance metrics used to evaluate their 

performance. Chapter 3 will explain the wound healing prognosis EMR data, the evaluation 

metrics, our proposed time-series medical GAN model, the deep prognosis model to predict 

wound healing of patients with VLU, and the experimental results. Chapter 4 will introduce the 

SSTI EMR data, the evaluation metrics, our proposed DermaGAN, the resistance classifier to 
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predict antibiotic resistance in patients diagnosed with SSTI, and the experimental results. 

Finally, this thesis is included in Chapter 5 and discusses the future directions. 
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Chapter 2  

Conventional and Deep Machine Learning Algorithms 

2.1 Introduction 

Conventional models such as Random Forest, Logistic Regression, Support Vector 

Machines, etc., cannot simulate the complexity of decision-making in the human neuronal 

system [13]. Deep models (essentially a three-layer neural network, Convolutional Neural 

Networks, Long Short Term Memories, etc.) are inspired by the multi-level cognition of the 

human brain. Deep learning algorithms have proven to model the nonlinearity and complexity of 

human thinking. Deep neural network models have the potential for automatic feature extraction 

and can abstract high-level representations from low-level information [61]. 

This thesis performs both conventional and deep algorithms in medical prognosis 

applications. This chapter summarizes the generative adversarial networks, their application in 

generating electronic medical records, conventional ML models, deep learning algorithms, and 

performance metrics used in this study.  

2.2 Machine Learning Algorithms 

2.2.1 Feed Forward Neural Networks 

Feed Forward Neural Networks (FNN), or in other words, Multi-Layer Perceptrons (MLP), 

is an artificial neural network model that maps input data to a set of suitable outputs through 

multiple nonlinear or linear functions. MLP is a supervised learning technique in which, during 

training, the weights are updated by the backpropagation algorithm and by propagating the errors 
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backward from the output layer to the input layer. The performance of MLP is highly dependent 

on hyperparameters: number of neurons, number of hidden layers, learning rate, and momentum 

[62]. MLP has been widely used in medical applications such as heart disease diagnosis [63], 

thyroid disease diagnosis [64], breast cancer classification [65], and chronic kidney disease 

prediction [66].  

2.2.2 Convolutional Neural Networks 

ConvNets or CNNs can process data in multiple arrays, such as speech, text, image, and 

video. ConvNets are constructed in various stages. The first stage is the convolutional layer, in 

which a set of weights called a filter bank is convolved with the input vector.  This locally 

weighted sum is then passed through a nonlinearity such as a ReLU called activation function. 

Two or three stages of convolution, activation functions, and pooling layers are stacked, 

followed by fully-connected layers. Backpropagating gradients through a ConvNet is done to 

train all the weights in all the filter banks. This hierarchy structure will allow the higher-level 

features (details) to be obtained by composing a lower-level one. The convolutional and pooling 

layers in ConvNets are inspired by the cells in visual neuroscience [67]. There have been 

numerous applications of convolutional networks in medicine, such as medical image 

segmentation [68-70], wound image classification [71, 72], breast cancer classification and 

diagnosis [73-75], and medical image denoising and enhancement [76, 77]. 

2.2.3 Generative Adversarial Networks 

Ian J. Goodfellow introduced GANs in 2014 [78]. The main idea is to simultaneously train 

two networks, generator "G" and discriminator "D". The generator learns the distribution of the 

data and outputs a sample that looks like real data. On the other hand, the discriminator, a binary 

classifier, needs to classify the sample as real or fake. In this minimax two-player game, G maps 
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an input noise, 𝑝𝑧To data space, D learns to maximize the probability of accurate classification 

of real and fake samples: log𝐷(𝑥). G trains to minimize the difference between the discriminator 

output and real labels to produce more realistic samples: log⁡(1 − 𝐷(𝐺(𝑧)). Formally, the game 

between G and D is represented by the following equation in which 𝑝𝑑𝑎𝑡𝑎 is data distribution, 

and 𝑝𝑧(𝑧) is a random Gaussian distribution: 

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log[𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝑥)]            (1)  

Later, Arjovsky et al. [79] later introduced WGAN, in which the Jensen-Shannon (JS) 

divergence was replaced with Wasserstein divergence. WGAN can overcome the challenges of 

maintaining balance in training the generator and discriminator,  dependency of the network's 

architecture, mode drop (failure in generating all the underlying distribution of the original data), 

and mode collapse (generation of the same output from different inputs). The Wasserstein GAN 

value function is as follows: 

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

Ε⁡[𝐷(𝑥)]
𝑥⁡~⁡𝑃𝑟

− Ε⁡[𝐷(𝑥̃)]𝑥̃~𝑃𝑔             (2) 

Where 𝐷 is the set of 1-Lipschitz functions, 𝑃𝑟 is real data distribution and 𝑃𝑔⁡is the 

distribution of fake samples defined by 𝑥̃ = 𝐺(𝑧),⁡⁡⁡𝑧⁡~𝑃𝑧.  Under an optimal critic, minimizing 

the value function with respect to the generator parameters minimizes W(𝑃𝑟, 𝑃𝑔). The WGAN 

value function creates a critic function with a better gradient with respect to its input than its 

GAN version. This feature will make generator optimization easier. Arjovsky et al. also proposed 

weight clipping of the critic to lie within a specific range [-c,c] [79]. 
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In [80], Gulrajani et al. Introduced an alternative to clipping weights that penalizes the 

norm of the gradient of the critic with respect to its input. This method stabilizes the training of 

various GAN architectures with almost no hyperparameter tuning.  

Recently, a few studies have been performed on medical records to produce synthetic 

structured and categorical data. MedGAN was introduced by Choi et al. [81] in 2017 to generate 

high-dimensional discrete variables by incorporating an autoencoder in generative adversarial 

networks. Diagnosis, medication, and procedure codes in EMR data were expressed as a vector, 

where the 𝑖𝑡ℎ array indicates the number of occurrences of the 𝑖𝑡ℎ variable in a patient (counts). 

Moreover, a binary vector representation of the EMR data was performed, in which the 𝑖𝑡ℎ 

dimension can be represented by 0 or 1, indicating the absence or presence of the  𝑖𝑡ℎ variable in 

a patient's record. In MedGAN, autoencoders learn from the count and binary discrete input 

vectors to map them to a lower-dimensional space and reconstruct the original input in the output 

by mapping them back to the original dimension. The generator needs to learn this low 

dimensional representation of the original data; therefore, the same decoder was used to 

reconstruct the original dimension after the generator. Later, in 2018, Baowaly et al. [54] 

integrated the idea of the Wasserstein GAN with gradient penalty and boundary-seeking GAN to 

generate more realistic synthetic patient records by introducing medWGAN and medBGAN. 

They performed the K–S similarity test and reported a 3% improvement in the generated data's 

quality using medBGAN compared to the medGAN. Zhang et al. [51] said EMR-WGAN and 

EMR-CWGAN in which the autoencoder was removed due to the model bias. Moreover, they 

introduced a conditional training strategy and incorporated the concept of labels as part of the 

generator and discriminator.  
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2.2.4 Random Forests 

Random forest, developed by Leo Breiman, is an ensemble learner that generates 

multiple classifiers and aggregates their results. RF classifier is a set of decision trees created 

from a randomly selected training set. Each tree in RF will vote for its input, and then the output 

is determined by the majority voting of trees [82]. In RFs, each tree is grown using a subset of 

training samples, and some variables not used to grow the corresponding trees are known as out-

of-bag (OOB) samples. One of the properties of OOBs is the estimation of variable importance, 

which quantifies the degree of contribution of a given variable in providing classification 

accuracy [83]. This is done by measuring the misclassification rate when the OOB examples for 

a variable,  𝑥𝑖, are randomly permuted and passed through the corresponding tree to vote for 𝑥𝑖. 

If the classification accuracy decreases significantly, it suggests a substantial contribution of 

variable 𝑥𝑖 in the classification result. On the other hand, if it doesn’t affect the predictive 

performance, then 𝑥𝑖 is considered unimportant [82, 84]. 

2.2.5 Logistic Regression 

Logistic regression is an efficient technique to predict outcomes and analyze the unique 

contribution of a group of independent variables to a binary outcome. Logistic regression Detects 

the effect of independent variables with the following equation [85]:  

𝑙𝑛
𝑌̂

1−𝑌̂
= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑖𝑋𝑖      (3) 

The equation transforms the linear regression equation to the natural log of the odds of 

being in one outcome category (Ŷ) over the other (1 –Ŷ). This equation calculates a linear 

combination of independent variables that can increase the likelihood of predicting the outcome 
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through iterative cycles.  This process is known as the maximum likelihood estimation. The 

model structure ensures that logistic regression produces an accurate model [85]. 

2.2.6 Gradient Boosted Trees 

Gradient boosted decision tree (GBDT) is an ML technique widely used due to its high 

accuracy and fast training in medicine. GBDT uses decision trees as a base learner. One decision 

tree is optimized at each iteration to minimize an aggregated loss function calculated from the 

previous decision trees [86]. If F(x) is the classification function that maps an input set of x to y, 

this function is optimized in a way to minimize a given loss function (L) as follows: 

𝐹∗ = 𝑎𝑟𝑔𝑚𝑖𝑛∑𝐿(𝑦, 𝐹(𝑥))⁡          (4) 

Gradient boosting considers the estimated classification function as a sum of each 

function optimized by a decision tree, where T is the number of the decision trees [86]: 

𝐹(𝑥) = ⁡∑𝑓𝑡(𝑥)

𝑇

𝑡=1

⁡⁡⁡⁡⁡⁡⁡(5)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

2.3 Performance Metrics 

In this section, we provide a brief overview of metrics used in this study to investigate the 

performance of the classifiers. 

2.3.1 Sensitivity and Specificity 

Sensitivity and Specificity measure the validity of a diagnostic test for a binary outcome 

against a gold standard [87]. The sensitivity and specificity are dependent on the cut-off value 

above or below which the test is positive. The higher the sensitivity, the lower the specificity, 

and vice versa [88].  
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
⁡⁡⁡⁡⁡⁡(6) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
⁡⁡⁡⁡⁡⁡(7) 

TP is the number of true positives, FN is the number of false negatives, TN is the number 

of true negatives, and FP is the number of false positives. 

2.3.2 AUC-ROC 

The Receiver Operating Characteristic (ROC) curve is a performance measurement for 

the classification problems that shows the trade-off between Sensitivity and  1-Specificity at 

various threshold settings. The Area Under the Curve (AUC) measures the ability of a classifier 

to distinguish between classes. AUC is mainly used for medical classification since a highly 

imbalanced dataset is usually involved in medical research. In some medical applications,  

Sensitivity is more critical than Specificity. The ROC curve helps find the optimum sensitivity 

value at a fixed specificity value [87].  
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Chapter 3  

Wound Healing Prognosis Model 

3.1 Problem Statement 

This chapter introduces an EMR-Timeseries Conditional Wasserstein Generative 

Adversarial Network (EMR-TCWGAN) to generate synthetic wound prognosis factors. We then 

evaluate the ability of the suggested GAN to produce realistic data by training a wound healing 

prognosis model based on CNN. This model learns from the wound prognosis factors (both real 

and synthetic) collected from the first three visits. The goal is to predict if a patient with a venous 

leg ulcer heals within 12 weeks after receiving the first treatment. 

3.2 Related Works 

In 2020, Cho et al. [14] reported a wound healing predictive model based on logistic 

regression and classification tree models. They achieved an area under the curve (AUC) of 0.712 

and 0.717, respectively, by training the models using the dataset collected from the first intake 

visit. Their dataset included AU (Arterial Ulcer), DFU (Diabetic Foot Ulcer), PU (Pressure 

Ulcer), and VLU (Venous Leg Ulcer), their relative wound measurements, and patient clinical 

and demographic characteristics. To avoid model complexity and overfitting, they added 

variables stepwise to evaluate their contribution to the model performance, considering the AUC 

as their metric.  Jung et al. [89] developed their proposed model using logistic regression, 

random forest, and gradient boosted tree models and reported the AUC between 0.834 and 0.847. 

The training dataset consisted of patient age, sex, insurance, zip codes, wound information 

including 40 different wound types and 37 wound locations, and wound assessments such as 
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dimension, edema, erythema, and rubor. Cukjati et al. [15] performed a classification decision 

tree to predict the wound healing rate after one to six weeks of follow-up. The data included 

three categories:  

1) Wound characteristics (length, width, depth, grade, date of appearance, date of treatment 

beginning, etiology, and location),  

2) Patient characteristics (sex, age, number of wounds, diagnosis, date of spinal cord 

injury, and degree of spasticity), 

3) Treatment/management (type of treatment, daily duration of therapy, course of 

treatment).   

They reported 62% classification accuracy by training the models using two weeks of data. 

The classification accuracy increased to 80% when three weeks of data were available to the 

model. Margolis et al. [90] built their predictive model using logistic regressions based on 

different DFU prognosis variables to predict the wound status by the 20th week of care. Using 

variables such as age, sex, and the number, duration, size, and grade of wounds, they achieved a 

maximum AUC of 0.70. 

As discussed above, although there are valuable studies in this field with outstanding 

results, all the wound prognosis models have been developed based on the traditional ML 

techniques. Therefore, in this thesis, we aim to predict the wound healing status of VLU patients 

based on deep learning models. We will compare deep models' results to traditional networks to 

assess the efficiency of deep learning in predicting wound healing. 
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3.3 Dataset and Data Processing 

The data in this study is derived from the EMR of patients diagnosed with VLU in AZH 

Wound and Vascular Centers, Milwaukee, WI. The data has been carefully de-identified and 

includes patients’ general information such as age, sex, ethnicity, their wound-related 

information such as wound length, width, area, location, and duration, as well as their clinical 

information, including the history of any vascular diseases, systolic and diastolic blood pressure, 

BMI, etc. The data contains both categorical and continuous values. Some features such as age, 

BMI, and systolic and diastolic blood pressures were discretized and converted to the categorical 

form. However, wound measurements remained continuous, including wound length, width, and 

area. Table 3-1 represents the prognosis factors included in this study, along with their detailed 

categories and statistics. 

Each patient went through a weekly follow-up for up to 12 weeks, and their wounds were 

evaluated at the end of each visit and labeled as healed or not healed by the expert physician. 

Generally, a wound is considered cured if the ulcer has zero measurements [14]. However, the 

ground truth labels are the status of a wound by week 12 of the first visit. Our initial data 

includes the medical records of 70 patients. Patients with less than three weeks of wound 

assessments were excluded from the dataset. Those who stopped follow-ups before 12 weeks 

were considered not healed unless the termination was due to their healing in less than 12 weeks. 

Since not all the patients followed a weekly visit regularly, we applied this irregularity by 

defining a new parameter, separator, to indicate the time gaps between each visit. To handle the 

missing data, we used polynomial regressions in continuous and averaging in the categorical 

variables. The final dataset included the medical records of 60 patients (55% healed- 45% not 

healed), in which 75% of data (46 patients: 26 healed, 20 not healed) were randomly selected as 
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the training dataset, and the remaining data (14 patients: 7 healed, 7 not healed) were used as the 

test set. 

Previous studies have reported that wound level factors such as wound dimensions and 

locations would substantially enhance predictive accuracy [14, 89]. Besides the wound 

measurements, clinical variables that show a weekly changing rate, such as wound fibrin and 

eschar percentage, have more prognostic values in time series analysis compared to those fixed 

between each visit, such as sex and ethnicity. In this study, the analysis of the relative 

importance of variables has been conducted based on the Random Forest (RF) classifier to 

identify the factors with more prognostic information. Random forest (RF) classifiers have been 

widely used in medicine and have shown outstanding performance as feature selector tools [83, 

91, 92]. They provide good predictive performance, low overfitting, and easy interpretability. 

This interpretability makes it possible to study the interaction of variables that provide predictive 

accuracy [82]. This characteristic makes RFs more interesting to be used as a prognosis and 

diagnosis model in medicine and a feature selector tool. RF also can be applied to a mixture of 

continuous and categorical predictors. We explained the details of the RF classifier in section 

2.1.4. Note that the RF model has been trained using the data collected after the first assessment 

for each patient. The second and third visit information was not used to conduct the relative 

importance of features analysis. 
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3.4 Models 

3.4.1 Proposed EMR- Time-series Conditional Wasserstein GAN: EMR-

TCWGAN  

In the proposed EMR-TCWGAN, illustrated in Figure 3-1, we employed WGAN-GP 

introduced by Ishaan Gulrajani et al. to minimize the optimization difficulties that occasionally 

occur in weight clipping by penalizing the norm of the gradient of the critic with respect to its 

input [80]. We utilized the conditional training strategy, in which the GAN learns to generate 

prognosis labels, healed vs. not healed, along with the data. We can further employ the labeled 

synthetic data in training our prognosis network as an augmented dataset. We incorporated the 

prognosis labels into the generator and critic to design a conditional GAN.  

The generator network, G, is a CNN, which takes the input noise and the desired label (healed:1 

vs. not healed:0) and outputs a time series signal which is a 𝑇𝑥 by 𝑛𝑥 matrix in which 𝑇𝑥  is the 

number of successive visits, and 𝑛𝑥  is the number of prognosis variables. In our model, 𝑇𝑥 = 3, 

and 𝑛𝑥 = 14. This transformation is done through a dense layer with 128 neurons, two 

deconvolution layers with 64 and 128, 4 by four filters, LeakyReLU activation functions, batch 

normalization, and dropout, and four dense layers with the network structure of 

(128,128,128,42). The LeakyReLU activation functions, batch normalization, dropout layer, and 

a reshape layer are used to convert the data to a 𝑇𝑥 by 𝑛𝑥 dimension. The activation function for 

the last dense layer is tanh. 

Table 3-1- Summary statistics of EMR dataset used in wound healing prognosis model. 

Prognosis factor Percentage of  prognosis factors Prognosis factor Percentage of prognosis factors 
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visit 

Age 
<55 
56-64 
65-74 
>75 

8.69 
15.22 
32.60 
43.48 

8.69 
15.22 
32.60 
43.48 

8.69 
15.22 
30.43 
45.65 

Systolic blood pressure 
<120 
121-129 
130-139 
140-179 
>180 

6.52 
13.04 
26.08 
41.30 
13.04 

10.87 
2.17 
17.39 
58.69 
10.87 

8.69 
8.69 
21.73 
54.35 
6.52 

Sex 
Female 
Male   

54.34 
45.65 

Diastolic blood pressure 
<80 
81-89 
90-119 
>120 

76.09 
15.22 
8.69 
0.0 

86.95 
8.69 
4.35 
0.0 

84.78 
10.86 
4.34 
0.0 

Ethnicity 
Black 
White 
others 

15.22 
84.78 

0.0 
Wound location 
Mid leg 
Distal 
Anterior leg 
Lateral leg 
others 

67.39 
19.56 
4.34 
6.52 
2.17 

Smoking status 
Yes 
No 
Reformed 

8.69 
43.47 
47.82 

Wound duration 
Less than four weeks 
1-3 months 
Greater than three 
months 

47.82 
23.91 
28.26 

39.13 
32.61 
28.26 

23.91 
47.82 
28.26 

BMI 
<18.5 
18.5-24 
25-29 
>30 

0.0 
4.35 
34.78 
60.87 

0.0 
4.35 
34.78 
60.87 

0.0 
6.52 
32.60 
60.87 

Prior wound infection 
Yes 
No  
Unknown 

10.87 
82.61 
6.52 

History of DVT 
Yes 
No 
Unknown 

13.04 
84.78 
2.17 

Prior ulcer grafting 
Yes 
No 
Unknown 

0.0 
97.83 
2.17 

History of VD 
Yes  
No  

8.69 
91.30 

Percentage of wounds 
covered with fibrin 
<25% 
25-50% 
50-75% 
75-100% 
100% 

50.0 
8.69 
13.04 
6.52 
21.74 

58.69 
6.52 
13.04 
15.21 
6.52 

58.69 
4.35 
13.04 
17.39 
6.52 

Diabetes Type 
Insulin 
Oral medications or 
diet 
No diabetes 

0.0 
54.35 
45.65 

Percentage of wound 
covered with eschar 
<25% 
25-50% 
50-75% 
75-100% 
100% 

86.95 
4.35 
2.17 
0.0 
6.52 

82.61 
6.52 
4.35 
0.0 
6.52 

86.95 
2.17 
4.34 
0.0 
6.52 

Drainage 
None 
Mild 
Moderate 
Heavy 

4.35 
36.96 
56.52 
2.17 

2.17 
60.87 
34.78 
2.17 

21.74 
43.48 
32.61 
2.17 

Doppler pulses 
None 
Monophasic 
Biphasic 
Triphasic 

56.52 
21.74 
17.40 
4.35 

54.35 
23.91 
17.39 
4.35 

54.35 
23.91 
17.39 
4.35 

Edema 
None 
Mild 
Moderate 
Heavy 

2.17 
28.26 
60.86 
8.69 

Doppler evidence 

insufficiency 
No 
GSV/SSV 
Deep 
Both  

69.56 
26.09 
0.0 
97.83 

43.48 
52.17 
0.0 
4.35 

30.43 
65.22 
0.0 
4.35 
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Treatment 
20-30/30-40 mmHg 

Compression 

Stockings 
3-4- Layer 

Compression  
Edema ware/Farrow 
wrap/Spandagrips 

and Short Stretch 

Bandage 
Pneumatic Pump 
Sharp/ultrasonic 

Debridement 
Central Venous 

treatment/Peripheral 

Venous Ablation 

82.61 
80.43 
13.04 
0.0 
0.02 
0.0 

84.78 
80.43 
19.56 
0.0 
0.06 
0.04 

82.61 
73.91 
21.74 
0.0 
0.0 
0.04 

CEAP wound stage 
No visual or palpable 

signs of CVD  
Telangiectasia or reticular 
veins 
Varicose veins 
Edema 
Pigmentation: skin 

changes - hemosiderin 

staining 
Healed ulcer 
Active ulcer 

0.0 
0.0 
0.0 
0.0 
2.17 
0.0 
97.83 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
100 

0.0 
0.0 
0.0 
0.0 
0.0 
19.56 
80.43 

Sharp 

debridement 
Yes 
No  

8.69 
91.31 

13.04 
86.95 

8.69 
91.31 

Endogenous 

intervention 
Yes 
No 

10.87 
89.13 

15.22 
84.78 

17.39 
82.61 

DermaPace 
Yes 
No  

0.0 
100 

HBOT 
Yes 
No  

2.17 
97.82 

2.17 
97.82 

0 
100 

Separator 
1week 
2weeks 
>3weeks 

NAN 91.30 
2.17 
6.52 

86.95 
10.86 
2.17 

Lipodermatosclerosis 
Yes 
No 

39.13 
60.87 

 

The critic, C, is a CNN, receiving the real or generated data and their associated ground 

truth labels as inputs. The ground truth labels have the same dimension as the real and generated 

data.  C outputs a score, representing whether the data is real or generated. The critic network 

comprises three layers of convolution and three dense layers. Each of the three convolution 

layers has 128 filters of size 3 by 3 with a LeakyReLU activation function followed by a dropout 

layer. The two dense layers have 256 and 128 units, followed by a layer normalization, a 

LeakyReLU activation function, and a dropout layer. The last dense layer has one unit with a 

linear activation function. 

We have compared our proposed model to a baseline model, EMR- Conditional Wasserstein 

GAN: EMR-CWGAN, reported in [51]. The architecture of this network is shown in Figure 3-2. 

The generator and critic in EMR-TCWGAN are dense layers with a network structure of (128, 

128, 128, 42) and (42, 256, 128,1), respectively. Each dense layer in G is followed by batch 
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normalization, and in C is followed by a layer normalization. The activation function is 

LeakyReLU, followed by a dropout layer. The activation function for the last dense layer in G is 

tanh followed by a reshape layer to convert the data to a 𝑇𝑥 by 𝑛𝑥  dimension. The activation 

function for the last dense layer in C is linear.   

 

Figure 3-1- Architecture of our proposed GAN; EMR-TCWGAN 

Since there is a limited number of data available, K-fold cross-validation with four folds 

was applied to estimate the performance of GANs. Each EMR-TCWGAN and EMR-CWGAN 

were trained using the four different training sets and evaluated by the remaining data as test 

sets. We summarized the results as the average performance of trained models. 

3.4.2 Wound prognosis classifier 

This classifier is a simple CNN with two 1D convolution layers followed by a dropout 

layer. There are 16 filters of size 3 x 3 for each layer. In the end, there are two fully connected 

layers with 5 and 1 units having a sigmoid activation function.  
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Figure 3-2- Baseline GAN model; EMR-CWGAN 

3.5 Results 

3.5.1 Evaluation of EMR-TCWGAN 

We summarized the relative importance of variables based on the random forest 

regression model in Figure 3-3. Wound length had the highest variable importance in predicting 

wound healing, and the importance of the other variables is presented, respectively. All three 

wound measurements (wound length, width, and area) are considered the most critical variables 

for healing prediction, with scores of 1.00, 0.83, and 0.67, respectively. Doppler evidence and 

fibrin percentage are listed as the second and the third essential variables in Prediction. 

Surprisingly, the least important predictors were separator, which represents the irregular visits 

of a patient. After that, DermaPACE and CEAP wound is listed as the less important variables. 

Although having more prognosis factors could increase the model's predictive power, it may 

cause complexity and overfitting [14]. Therefore, to improve the predictive accuracy, we 
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disregarded variables with a relative importance of less than 0.3.  Hence, we ended up with a 

total of 14 predictive features.  The selected prognostic factors are wound length, width, area, 

Doppler evidence, percentage of fibrin, the number of Doppler pulses, systolic blood pressure, 

age, duration of the wound, history of DVT, wound location, drainage, diabetes type, and edema. 

We used these 14 predictive features to train EMR-TCWGAN and EMR-CWGAN. 

 

Figure 3-3- Relative importance of the VLU prognosis variables 

We first examined the performance of our proposed GAN model (Electronic Medical 

Record- Time-series Conditional Wasserstein Generative Adversarial Network: EMR-

TCWGAN) and compared it to the most recent and related method (Electronic Medical Record- 

Conditional Wasserstein Generative Adversarial Network: EMR-CWGAN [54]). To assess the 

quality of the generated data, we considered three criteria:  

I. The distribution of the generated data should match the original data [93] 

II. Samples should be as valuable as the original data in real-life applications [94]. 
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III. The generated samples should not be distinguishable from the original data [93]. 

To evaluate the GAN models, we have considered four datasets;  

1) The real training data,  

2) The real test data,  

3) The synthetic dataset generated by our proposed model, EMR-TCWGAN,  

4) The synthetic dataset generated by the state-of-the-art model, EMR-CWGAN. 

We started by visualizing the synthetic samples in two dimensions. We used Uniform 

Manifold Approximation and Projection for Dimension Reduction (UMAP), a dimension 

reduction technique for visualization and nonlinear dimension reduction. UMAP is constructed 

from a theoretical framework based on Riemannian geometry and algebraic topology [95]. We 

applied U-map on both synthetic and original data (Test and Train dataset) for visualizations in 

two dimensions. Before using U-map, we flattened the temporal dimension. This evaluation can 

show the similarity of the original and synthetic data distribution. We also applied U-map on the 

test dataset to assess the ability of EMR-TCWGAN to generate synthetic data that can cover the 

distribution of unseen data points. 

We applied a k-nearest neighbors classifier (KNN) with five neighbors on top of the 2D 

compressed features to classify healed samples vs. non-healed samples.  This metric can 

quantitatively assess the performance of EMR-TCWGAN in generating realistic labels and 

compare it to the baseline model. We trained the KNN using the real training dataset and tested it 

by the real test dataset and synthetic datasets generated by EMR-TCWGAN and EMR-CWGAN. 

To evaluate the performance of GANs, we tested the KNN using 100 different randomly 
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generated synthetic datasets by GANs. Each dataset's length and ground truth label vary and are 

generated by random numbers. The classification accuracy is reported as the average accuracy of 

all 100 datasets. 

Figure 3-4 illustrates the two-dimensional distribution of the synthetic (red dots), train 

(blue dots), and test (green dots) dataset. We performed dimension reduction using U-map and 

compared the synthetic labels' distribution to the ground truth labels in Figure 3-4b. In Figure 

3-4c, healed and not healed original samples were mapped into two-dimensional space. 

Comparing the distribution of the synthetic instances generated by EMR-TCWGAN (first row) 

to the ones generated by the baseline model, EMR-CWGAN (second row), a comparable 

performance is observed in samples generated by our proposed model. Comparing the test 

dataset (green dots) vs. synthetic instances (red dots) in Figure 3-4a, we observe that both 

networks could cover unseen data distribution. To assess the performance of the two models 

quantitatively, we reported the average of the KNN classification model in Table 3-2 for both 

EMR-TCWGAN and the baseline model. The classification accuracy is slightly higher in 

samples generated by our proposed model. KNN classified healed vs. non-healed real samples 

with 66.66% accuracy; however, the classification accuracy has increased to 77.98% and 76.57% 

by involving EMR-TCWGAN and EMR-CWGAN synthetic samples in training, respectively. 

This observation suggests that GANs produce more uncomplicated and distinctive labeled 

samples than the actual data. Further analysis is required to investigate the performance of the 

generated labels. Therefore, in the next chapter, we conduct TSTR and TRTR evaluation 

methods to assess the applicability of the generated samples.  
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Figure 3-4- U-map visualization of time-series EMR data generated by the proposed EMR-

TCWGAN (first row) and the baseline model EMR-CWGAN (second row). (a) Synthetic and 

real data distribution, red denotes synthetic, blue represents original train, and green denotes 

original test data mapped into two-dimensional space. (B) healed vs. not healed distribution in 

synthetic and real data. Blue indicates real healed data. Red denotes real not healed data. Green 

represents generated healed class, and black denotes generated not healed class. (C) Real train 

and test data mapped into two-dimensional space. Blue represents healed samples, and red 

indicates not healed samples. 

 

Table 3-2-The results of the KNN classifier trained on a 2D dataset transformed by Umap.  KNN 

was trained by the original training dataset and tested by 100 different randomly generated 

synthetic datasets from EMR-TCWGAN and EMR-CWGAN. 

KNN Classifier Accuracy 

EMR-TCWGAN 77.98% 

EMR-CWGAN 76.57% 

Real Data 66.66% 

 

 

We applied the Kolmogorov-Smirnov (K-S) test, a Goodness-of-fit statistic that tests if a 

sample comes from a population with a specific distribution [96]. Therefore, we employed the K-
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S statistics to test the null hypothesis that synthetic and original samples come from populations 

with the same distribution. K-S statistics are calculated by finding the maximum absolute value 

between the two cumulative distribution functions. Comparing two datasets with cumulative 

distribution functions F(x) and G(x), the statistic is defined as [96]: 

𝐷𝐾𝑆 = max|𝐹(𝑥) − 𝑃(𝑥)|⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

The null hypothesis is accepted if the p-value > 0.05 or otherwise rejected with a 95% 

confidence level. To compare the distribution of synthetic and real samples, we applied K-S tests 

followed by Mann–Whitney tests as post hoc comparisons to evaluate whether GAN models 

learned the distribution of the real samples. If GANs produce realistic examples, we expect the 

null hypothesis not to be rejected in favor of the alternative [97].  

The distribution, 𝜒̂⁡of the continuous features, including wound length, width, and area, 

and their temporal variations generated by EMR-TCWGAN were compared to the distribution, 

𝜒, of those in real samples using K-S tests. To compare EMR-TCWGAN to the baseline model 

(EMR-CWGAN), the distribution of the continuous features generated by EMR-CWGAN, 𝜒̂𝑏 

was also compared to the distribution of the continuous training samples, 𝜒. Figure 3-5 compares 

the distribution of 𝜒̂ and 𝜒̂𝑏  to 𝜒 for three successive visits. From Figure 3-5, we can observe 

that the distribution of  𝜒̂⁡is slightly closer to the distribution of 𝜒 in general, however, statistical 

analysis is required to compare the three distributions quantitively. Thus, we applied K-S 

statistics on each K-fold cross-validation GANs to measure the similarity of the distribution of 𝜒̂ 

and 𝜒̂𝑏 to 𝜒. We reported the average results in Table 3-3. We reject the null hypothesis for the 

wound areas generated by EMR-CWGAN, suggesting that the generated wound areas could not 

follow the distribution of the real ones. We reported the p-values between K-S statistics from 
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EMR-TCWGAN and EMR-CWGAN calculated by Mann–Whitney tests in Table 3-4. Results 

suggest that our proposed GAN significantly outperformed the baseline model in generating 

wound area variable (p-value=0.001). However, the performance of the two models in generating 

synthetic wound length and width features are not significantly different. 

 

Figure 3-5- Probability density function of the continuous features (wound length, wound width, 

and wound area) for real samples, synthetic samples by EMR-TCEGAN, and synthetic samples 

by EMR-CWGAN in three successive visits. The three rows represent the results from the first, 

second, and third visits from top to bottom. 

 

The generator should produce samples that are indistinguishable from the real data. 

Therefore, we trained a post-hoc classifier to classify real and fake samples. The CNN classifier 

with two convolutional layers was trained on an equal number of real and synthetic instances and 

tested on the synthetic data. The classifier must classify a given sample as real or fake. The 

classifier should achieve less than 50% accuracy for an excellent generator at this task [98].  
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Table 3-3- Kolmogorov-Smirnov statistical analysis to compare the probability distribution 

functions of the continuous prognosis factors in real and synthetic datasets generated by the 

proposed EMR-TCWGAN and the baseline model in three successive visits. Results represent 

the average of K fold cross-validation networks. 
 

EMR-TCWGAN EMR-CWGAN 

Feature Visit P-value Statistic Accept/Reject P-value Statistic Accept/Reject 

Wound Length First 0.847 0.108 Accept 0.639 0.137 Accept 

Second 0.291 0.183 Accept 0.356 0.174 Accept 

Third 0.209 0.199 Accept 0.283 0.203 Accept 

Wound Width First 0.539 0.166 Accept 0.686 0.129 Accept 

Second 0.312 0.191 Accept 0.331 0.195 Accept 

Third 0.170 0.212 Accept 0.192 0.208 Accept 

Wound Area First 0.630 0.137 Accept 0.151 0.254 Accept 

Second 0.313 0.179 Accept 0.049 0.304 Reject 

Third 0.301 0.182 Accept 0.131 0.254 Accept 

 

 

Table 3-4- follow-up post hoc Mann–Whitney tests to compare Kolmogorov-Smirnov statistics 

in EMR-TCWGAN and EMR-CWGAN. 

Prognostic Factor P-value 

Wound Length 0.977 

Wound Width 0.670 

Wound Area 0.001 

 

 

We reported the discriminative accuracies in Table 3-5. The discriminative accuracy in 

samples generated by EMR-TCWGAN is relatively lower than those generated by EMR-

CWGAN by 45.03%. As was mentioned before, the discriminative accuracy represents how well 

a classifier can distinguish between real and fake instances. We tested the discriminative 

classifier only on the synthetic data. Therefore, 23.97% accuracy means that 76.03% of the 

EMR-TCWGAN samples were realistic enough to be mistakenly classified as real by the 
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classifier. However, this number was reduced to only 31% in EMR-CWGAN samples. Our 

proposed EMR-TCWGAN produces more realistic synthetic data than the baseline model. 

Table 3-5- Discriminative accuracy of the post-hoc classifier to classify real vs. fake on samples 

generated by EMR-TCWGAN and EMR-CWGAN.  

Metrics EMR-TCWGAN EMR-CWGAN 

Discriminative Accuracy 

(Lower the better) 

23.97% 69.00% 

 

3.5.2 Evaluation of Wound Healing Prognosis Model 

We proposed a wound healing predictive model to predict if a VLU heals within 12 weeks 

from the first visit. We used the synthetic samples generated by GANs to train the predictive 

model and tested it on the original dataset.  With this evaluation, we can assess the performance 

of the GANs in producing realistic instances that can be useful in real-life applications. We also 

trained the wound healing prognosis model on the original dataset and tested it on the original 

dataset. Comparing the two results, we can investigate the power of GANs as EMR 

augmentation tools. Moreover, we compared the result from CNN to the models widely 

employed for medical purposes, such as Random Forest, Logistic Regression, and Gradient 

Boosted Trees, to estimate the power of deep learning in medical prognosis. 

The generated samples should be realistic and practical in real-life applications. Therefore, 

we have trained a wound healing prognosis model based on CNN with two different approaches 

to test this statement.  

(1) We trained the first network using the synthetic dataset and tested it on the real 

test dataset (TSTR).  



 

 

35 

 

(2) We trained the second network using the real training dataset and tested it on the 

real test dataset (TRTR).  

If the GANs are good enough to generate realistic samples, we expect the prediction 

performance in TSTR to be close to the accuracy of the TRTR technique.  

We used the Area Under the ROC Curve (AUROC or AUC) metric to evaluate the 

performance of TSTR-CNN and TRTR-CNN. An advantage of AUC over accuracy is that AUC 

is not a function of threshold. It evaluates the classifier as the threshold varies over all possible 

values. Hence it can be used when highly imbalanced classes are involved [99]. Moreover, AUC 

is a helpful metric for comparing two diagnostic models since it enables comparing the entire 

ROC curve rather than at a particular point [100]. A random guess result is an AUC of 0.5, while 

a prefect model will achieve an AUC of 1.0. Generally, models with AUC above 0.7 are 

considered an acceptable predictive model fit [14]. To test if the EMR-TCWGAN is not copying 

the training samples, we reported the classification AUC on the real test dataset (unseen by 

GANs). Moreover, we trained a random forest, a logistic regression, and a gradient boosted tree 

model with TSTR and TRTR approaches to compare the performance of the CNN to the state-of-

the-art prognosis models mentioned in chapter 2.  

In the TSTR evaluation approach, we trained each network 30 times using randomly 

generated synthetic datasets by GANs and reported the average AUC with a 95% confidence 

interval. Since the number of the training data is limited, AUCs can validate the hypothesis that 

the generated instances by EMR-TCWGAN can be applicable enough to train a prognosis model 

and predict the healing status of new patients using the trained network.  



 

 

36 

 

The classification AUC of the proposed model is indicated in Table 3-6. T indicates the 

number of successive visits we used to train the prognosis CNN. Generally, the prognosis model 

trained by the EMR-TCWGAN samples shows a higher AUC than those trained by samples 

generated by the EMR-CWGAN. Using the synthetic samples generated by our proposed EMR-

TCWGAN, we trained the prognosis model using the factors from the first three, the first two, 

and the first visit. The classification AUC decreased from 0.875 to 0.810 and then to 0.647 due 

to less temporal information available to the network. The classification AUCs were relatively 

lower when we trained the prognosis CNN model with synthetic samples generated by EMR-

CWGAN. For EMR-CWGAN, the  AUC decreased from 0.836 for T=3  to  0.751 for T=2 and 

then to 0.590 for T=1.  

Table 3-6- The area under the curve (AUC) of the prognosis model (Prog-CNN) was trained 

using data generated by EMR-TCWGAN and EMR-CWGAN. T indicates the number of follow-

up visits. 
 

EMR-TCWGAN EMR-CWGAN 

Visits/metrics AUC, 95% CI AUC, 95% CI 

T=1 0.647, [0.531 – 0.720] 0.590, [ 0.520 – 0.651] 

T=2 0.810, [0.719 – 0.872] 0.751, [ 0.653 – 0.817] 

T=3 0.875, [0.822 – 0.912] 0.836, [0.797 – 0.878] 

 

Table 3-7 compares the classification AUC of the prognosis CNN model to the other state-

of-the-art models; random forest, logistic regression, and gradient boosted trees. We trained the 

networks by TSTR and TRTR methods. In the TSTR method, we trained each network ten times 

using ten different synthetic datasets and reported the average AUC and the confidence interval 

of all AUCs. In the TRTR method, we used k-fold cross-validation with k=10  and trained each 

network ten times using a different distribution of the real dataset. We also reported the average 
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AUC and the confidence interval of all AUCs in the TRTR metric method in Table 3-7. 

Generally, networks trained by synthetic EMR-TCWGAN datasets achieved a higher AUC than 

those trained by synthetic EMR-CWGAN.  This observation suggests that our proposed GAN 

model could generate more efficient samples than the baseline. 

Moreover, training the networks on the real data results in a lower AUC and wider 

confidence interval than EMR-TCWGAN. This wide confidence interval is due to the limited 

number of available real training datasets and their sparse distribution.  The AUC's confidence 

intervals decreased by training the networks with the generated samples, and the average AUC 

increased significantly. This result suggests that EMR-TCWGAN can act as a data augmentation 

tool to create new datasets which can improve the ML models' prediction accuracy. 

Table 3-7- The area under the curve (AUC) of the prognosis models (CNN, Random Forest, 

Logistic Regression, and Gradient Boosted Tree) trained with TSTR and TRTR approaches. 

GANs generated synthetic datasets used in the TSTR method for three follow-up visits. The 

average AUC with 95% confidence intervals is reported. 
 

EMR-TCWGAN EMR-CWGAN TRTR 

Model AUC, 95% CI AUC, 95% CI AUC, 95% CI 

CNN 0.875, [0.822 – 0.912] 0.836, [0.797 – 0.878] 0.884 

Random Forest 0.806, [0.732 – 0.869] 0.775, [0.681 – 0.841] 0.750 

Logistic Regression 0.736, [0.701 – 0.778] 0.732, [0.691 – 0.784] 0.828 

Gradient Boosted Tree 0.836, [0.754 – 0.913] 0.723, [0.586 – 0.822] 0.766 

 

3.6 Discussion and Concolusion 

Statistical analysis shows our proposed model has a relatively close performance to the 

baseline, if not slightly better. Using the K-nearest neighbor classification model, we could 

classify healed vs. not healed synthetic samples generated by our proposed model with 77.97% 
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accuracy. Comparing the continuous prognostic factors, such as wound length, width, and area, 

both models performed equally in generating the synthetic factors. However, our proposed model 

learned to generate the distribution of wound areas better than the baseline model.  

We utilized the GANs as data augmentation techniques to increase the number of our 

training datasets. We developed a wound prognosis model based on deep learning to predict the 

healing of chronic VLUs within 12 weeks of the initial intake exam. We used the wound factors 

from the first three visits to train the prognosis model. Factors include wound length, width, area, 

Doppler evidence, percentage of fibrin, the number of Doppler pulses, systolic blood pressure, 

age, duration of the wound, history of DVT, wound location, drainage, diabetes type, and edema. 

Training deep prognosis model with the real available dataset, we could achieve the AUC 

of 0.828 with a wide confidence interval of 0.523-0.963. However, training the network using 

the generated samples improved the AUC to 0.875, and the confidence interval was reduced to 

[0.822-0.912]. This result indicates that EMR-TCWGAN can help augment the EMR dataset, 

which solves the challenges against EMR data accessibility.  

Comparing the deep CNN prognosis model to the random forest, logistic regression, and 

gradient boosted trees,  our results show higher AUC in the deep model. Although deep learning 

proved its prediction power once again compared to the conventional method, the only 

disadvantage of deep learning is that the feature importance of each risk factor in predicting the 

healing status is not evident.  Further analysis, such as neural network weight-based and 

Breiman's perturbation feature ranking algorithms, can rank the feature vectors on their relative 

importance to the model's accuracy [101].  
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Chapter 4  

Prediction of Antibiotic Resistance 

4.1 Problem Statement 

Since the introduction of antibiotics, an alarming increase in the resistance of bacterial 

pathogens has been observed [5]. The prevalence of multidrug resistance (MDR) has increased 

significantly among many pathogens due to the overuse and misuse of antimicrobial agents [6]. 

Such a misuse increases the cost of medical care, exposes patients to potential adverse effects, 

and significantly risks the development and spread of antimicrobial resistance in healthcare 

facilities. Hence, antimicrobial resistance surveillance is essential for estimating the magnitude 

and trends of antibiotic resistance and monitoring the results of medical interventions [7]. Local 

surveillance data are critical and must be used to direct clinical management, formulate treatment 

guidelines, and guide infection control policies [8]. Although there is a relative dearth of local 

antibiotic susceptibility data in patients with SSTI in India, our data was collected from a health 

care center in Western Maharashtra. This project aims to assess the magnitude and clinical 

pattern of SSTIs, their causative microorganisms, and the antibiotic resistance patterns using 

machine learning algorithms. 

4.2 Related Works 

In this section, we reviewed the previous research focused on the prediction of antibiotic 

resistance using ML. Generally, we could find a few studies conducted on this topic. Studies can 

be categorized into two groups: 1. Those are focusing on predicting antibiotic resistance using 

genome sequences, 2. Those are developing the resistance classifiers using EMR data.  Hicks et 
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al. used a random forest classifier to predict the resistance of gonococci genome sequence to 

Ciprofloxacin and Azithromycin. They reported a balanced accuracy of 76%-87% and 73%-83% 

for CIP and AZM, depending on their dataset [102]. They also developed classifiers to predict 

CIP non-susceptibility to K. pneumoniae and A. baumannii and achieved a significantly lower 

accuracy than the gonococci dataset. Kavvas et al. developed an SVM classifier to predict the 

resistance of the Mycobacterium tuberculosis genome to five different antibiotics listed in Table 

4-1. They achieved an average AUC of 0.8 depending on the antibiotic family. Kim et al. 

performed Gradient boosting trees to study the antibiotic resistance pathway of Enterobacter 

cloacae, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa whole genome 

sequences to Cefepime, Meropenem, and Ceftazidime with AUC in range of [0.7-1], [0.98-1] 

and [0.88-0.99], depending on the species, respectively [103].  

We only found three studies incorporating EMR data in training the resistance classifiers, 

similar to our research. Feretzakis et al. used information from samples gram strains (GPC or 

GNB), site of infections (blood, tracheobronchial aspirates, urine, skin/wounds/soft tissue), and 

patient demographics in training various machine learning models listed in Table 4-1. They 

reported achieving a Maximum AUC of 0.726 and F-measure of 0.663 for the MLP algorithm 

[104]. Lewin-Epstein et al. dataset contain patient demographics data such as age and sex, and 

clinical data, including duration of hospitalization. By incorporating the three most common 

bacteria species information, they achieved the highest AUC in the range of [0.8-0.88], 

depending on the antibiotics. They reached the best performance using an ensemble model with a 

combination of Lasso logistic regression, neural networks, and gradient-boosted trees. They 

reported Escherichia coli as the most common bacterial species resistant to  Ceftazidime, 

Gentamicin, Imipenem, Ofloxacin, Sulfamethoxazole-trimethoprim.  Klebsiella pneumonia is the 
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second most common species resistant to Ceftazidime, Gentamicin, and Sulfamethoxazole-

trimethoprim. Pseudomonas aeruginosa and Staphylococcus coagulase-negative group are the 

second most frequent resistant species to Imipenem and Ofloxacin, respectively [105]. Ayyıldız 

et al. studied the resistance of Escherichia coli to 15 antibiotics listed in Table 4-1. They 

analyzed biochemical parameters such as complete blood count, urinalysis, and C-Reactive 

protein with machine learning models without using an antibiogram. They reported a 

classification accuracy of [62%-98%] depending on the antibiotic family [106]. 

Table 4-1- summary of studies conducted on antibiotic resistance using machine learning 

algorithms. 

Research Dataset Metrics Antibiotics performance Methods 

Hicks et al. [102] gonococci datasets 

with whole-genome 

sequence data  

Balanced 

accuracy 

Ciprofloxacin, 

Azithromycin 

76–87% 

73–83% 

random forest  

Kavvas et al. 

[107] 

Mycobacterium 

tuberculosis pan-

genome 

Average AUC Isoniazid, 

Rifampicin, 

Ethambutol, 

Pyrazinamide, 

Streptomycin, 

Ofloxacin, 

4-Aminosalicylic acid 

Ethionamide 

0.8 support vector 

machine 

Kim et al. [103] Enterobacter 

cloacae, 

Escherichia coli, 

Klebsiella 

pneumoniae, and 

Pseudomonas 

aeruginosa dataset 

with 

whole-genome 

sequencing data 

AUC Cefepime, 

Meropenem, 

Ceftazidime 

 

0.7-1.0, 

0.98-1.0, 

0.88-0.99 

gradient boosting 

tree 

Feretzakis et al. 

[104] 

Sample’s Gram 

stain, Site of 

infection including  

blood, 

tracheobronchial 

aspirates/ 

bronchoalveolar 

lavage fluid, urine, 

skin/wounds/soft 

tissue, and patient 

demographics 

The weighted 

average of F-

measure and 

AUC 

Amikacin,  

Aztreonam,  

Cefepime,  

Ceftazidime, 

ciprofloxacin,  

Colistin,  

Gentamicin,  

Imipenem,  

Meropenem, 

doripenem, 

piperacillin/tazobactam, 

Tobramycin, and 

Levofloxacin 

Maximum 

AUC of 0.726 

and F-

measure of 

0.663 

Support Vector 

Machine, 

Sequential 

Minimal 

Optimization, 

k-Nearest 

Neighbors, 

Random Forest, 

Multilayer 

Perceptron 

Lewin-Epstein et 

al.  [105] 

Age, 

Sex, 

Most common 

bacterial species, 

AUC Ceftazidime 

Gentamicin 

Imipenem 

Ofloxacin 

0.8-0.88 Lasso logistic 

regression 

Neural networks 

Gradient boosted 
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Second-most 

common bacterial 

species, 

Third-most common 

bacteria species, 

Latest 

hospitalization 

duration, 

Sulfamethoxazole-

trimethoprim 

trees 

Ensemble learning 

 

Ayyıldız et al. 

[106] 

Complete blood 

count, 

Urinalysis, 

C-Reactive Protein 

Accuracy Amikacin, 

Ampicillin, 

Ceftazidime,  

Cefixime, 

Cefotaxime, 

Colistin, 

Ciprofloxacin, 

Cefepime, 

Ertapenem, 

Nitrofurantoin, 

Phosphomycin, 

Gentamicin, 

Levofloxacin, 

Piperacillin-

Tazobactam, 

Trimethoprim-

Sulfadiazine  

96.0%, 

77%, 

62%, 

63%, 

68%, 

95%, 

76%, 

70%, 

96%, 

90%, 

98%, 

84%, 

98%, 

92%, 

 

79% 

K-Nearest 

Neighbors, 

Artificial Neural 

Networks (ANN), 

Support Vector 

Machine, and 

Decision Tree 

Learning 

 

 

4.3 Methodology 

4.3.1 Dataset 

We analyzed clinically relevant data of patients diagnosed with SSTIs collected from the 

Departments of Dermatology and Microbiology of a tertiary care center in Pune, India, for over 

one year. The dataset of 103 patients with GPC bacteria contains the variables of age in years, 

gender, MRSA screening test, inducible Clindamycin resistance, organism, and diagnoses. The 

class attribute, which is antibiotic non-susceptibility, has binary values for six antibiotics, 

including Gentamicin (GEN), Cotrimoxazole (COT), Cefoxitin (CEF), Erythromycin (ERY), 

Clindamycin (CLIN), and Ciprofloxacin (CIP). The dataset of 107 patients with GNB bacteria 

consists of age in years, gender, Extended-spectrum β-lactamases (ESBL) test, Carbapenem-

resistant Enterobacteriaceae (CRE), organism, and diagnoses. The class labels that indicate 

antibiotic resistance are binary for six antibiotics, including Ceftazidime (CEFT), Ceftazidime-
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Clavulanic Acid (CEFT+CLAV), Imipenem (IMP), Piperacillin-Tazobactam (PIP+TAZO), 

Ofloxacin (OFL), and Meropenem (MERO). Table 4-2 includes the summary statistics of the 

dataset and the distribution of each class (R: Resistance, S: Susceptible) in each antibiotic family 

for GPC and GNB bacteria. Data Processing includes scaling for age, one-hot encoding for the 

organism, and diagnosis and categorization for the other factors. 

4.3.2 Models 

DermaGAN 

Generator. The inputs to the generator are a noise vector (z) with a normal distribution and 

a dimension of Zdim=128 and label information. The label information is converted to a dense 

vector of size Zdim using an embedding layer. Then the embedded label is multiplied by the noise 

vector. The resulting vector is then fed to a generator with the structure as follows: 

Table 4-2- Summary statistics of the dataset and the distribution of resistance and susceptible 

class in each antibiotic family for GPC and GNB bacteria. 

GPC (Gram Positive Cocci Bacteria) Distribution of antibiotic 
resistance (GPC) 

Feature Type Feature Type ▪ Gentamycin (R: 
38.55%, S: 61.45%) 

▪ Cotrimoxazole (R: 
33.66%, S: 66.34%) 

▪ Cefoxitin (R: 
49.47%, S: 50.53%) 

▪ Erythromycin (R: 
74.75%, S: 25.25%) 

▪ Clindamycin (R: 
54.45%, S: 45.55%) 

▪ Ciprofloxacin (R: 
87.37%, S: 12.63%) 

Age (Years) Mean: 44.34 

Std: 15.74 

Range: 95 

 
Organism 

Categorical: 
▪ Staphylococcus Aureus (82.52%) 
▪ Enterococcus SPP (1.94%) 
▪ Streptococcus Pyogenes (5.8%) 
▪ Staphylococcus, coagulase negative (9.7%) 

Sex Male (65%) 
Female (35%) 

 

Diagnosis 

Categorical: 
▪ Psoriasis (0.97%) 
▪ Erythema (0.97%) 
▪ Erythrasma (1.94%) 
▪ Folliculitis (4.85%) 
▪ Furuncle (1.94%) 
▪ Hansen (15.53%) 
▪ Infected Ulcer 

(0.97%) 
▪ Impetigo (6.79%) 
▪ Lichen (0.97%) 
▪ Lupus (0.97%) 
▪ Cellulitis (0.97%) 
▪ Stasis ulcer (0.97%) 
▪ Trophic ulcer (0.97%) 
▪ Traumatic ulcer 

(0.97%) 

▪ Mycetoma (1.94%) 
▪ Pemphigus (6.79%) 
▪ Pyoderma (5.82%) 

Gangrenosum 

▪ Pyoderma (18.44%)  
▪ Secondary infected 

eczema (4.85%) 
▪ Sclerosis (0.97%) 
▪ Toxic Necrolysis 

(0.97%) 
▪ Abscess (3.88%) 
▪ Burn (2.91%) 
▪ Ecthyma (1.94%) 
▪ Sebaceous cyst (1.94%) 
▪ Vascular ulcer (0.97%) 
▪ Eczema (8.73%) 

Methicillin-Resistant 
Staphylococcus aureus 
(MRSA screening test) 

▪ Positive 
(38.83%) 

▪ Negative 
(43.68%) 

▪ Not 
applicabl
e 
(17.46%) 

Inducible clindamycin 
resistance 

▪ Positive 
(25.24%) 

▪ Negative 
(74.76%) 

GNB (Gram Negative Bacilli Bacteria) Distribution of antibiotic 
resistance (GNB) 
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Age (Years) Mean: 44.13 

Std: 14.94 

Range: (11-89) 

 
 
Organism 

Categorical: 
▪ Citrobacter (5.61%) 
▪ Acinetobacter SPP 

(7.48%) 
▪ Enterobacter SPP 

(1.87%) 
▪ Escherichia Coli 

(6.54%) 

▪ Klebsiella (28.04%) 
▪ Proteus (4.67%) 
▪ Pseudomonas SPP 

(9.34%) 
▪ Pseudomonas 

Aeruginosa (34.58%) 
▪ maltophilia (1.87%) 

▪ Ceftazidime (R: 
55.14%, S: 44.85%) 

▪ Ceftazidime and 
Clavulanic Acid (R: 
80.55%, S: 19.45%) 

▪ Imipenem (R: 
88.57%, S: 11.43%) 

▪ Piperacillin and 
Tazobactam (R: 
85.71%, S: 14.28%) 

▪ Ofloxacin (R: 
73.73%, S: 26.26%) 

▪ Meropenem (R: 
87.85%, S: 12.14%) 

Sex Male (54%) 
Female (46%) 

 

Diagnosis 

Categorical: 
▪ Nodosum (0.93%) 
▪ Hansen (35.51%) 
▪ Mycetoma (0.93%) 
▪ Pemphigus Vulgaris 

(5.61%) 
▪ Gangrenosum 

(5.61%) 
▪ Perianal ulcers 

(0.93%) 
▪ Scrofuloderma 

(6.54%) 
▪ Lupus Erythematosus 

(1.87%)  
▪ Vascular ulcer 

(2.80%) 

▪ Necrolysis (2.80%) 
▪ Abscess (0.93%) 
▪ Burn (1.87%) 
▪ Carbuncle (0.93%) 
▪ Cellulitis (0.93%) 
▪ Diabetic ulcer (1.87%) 
▪ Ecthyma (1.87%) 
▪ Eczema (2.80%) 
▪ Furuncle (0.93%) 
▪ Stasis ulcer (11.21%) 
▪ SCLEROSIS (0.93%) 
▪ Ulcer (3.74%) 

ESBL test ▪ Positive 
(26.17%) 

▪ Negative 
(73.83%) 

carbapenem-resistant 
Enterobacteriaceae 

(CRE)  

▪ Positive 
(10.28%) 

▪ Negative 
(89.71%) 

 

• Layer 1: A fully connected layer of 128*3*3 hidden units with a ReLU activation 

function (Rectified Linear Unit). This is followed by a reshape layer to reshape the 

information to the size of (3,3,128) and an up-sampling layer to convert it to the size of 

(6,6,128). 

• Layer 2: A convolutional layer containing 128 filters with a size of 4. This is followed by 

a batch normalization layer and a ReLU activation function. 

• Layer 3: A convolutional layer containing one filter size 4. This is followed by a Tanh 

activation function. 

Critic. The inputs to the critic are the original and generated samples and their label 

information. The label information is converted into a dense vector of size 6*6*1=36 using 

an embedding layer. The input sample is also flattened and multiplied by the embedded 

labels. The resulting vector goes through a structure as follows: 
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• Layer 1: A fully connected layer of 128*3*3 hidden units with a Leaky ReLU activation 

function (α=0.2). This is followed by a reshape layer to reshape the information to the 

size of (3,3,128). 

• Layer 2: A convolutional layer containing 16 filters with a size of 3 and strides of 2. This 

is followed by a Leaky ReLU activation function (α=0.2) and a dropout layer with a rate 

of 0.25. 

• Layer 3: A convolutional layer containing 32 filters with a size of 3 and strides of 2. This 

is followed by a batch normalization layer, a Leaky ReLU activation function (α=0.2), 

and a dropout layer with a rate of 0.25. The result is then flattened. 

• Layer 4: A fully connected linear layer of 1 hidden unit. 

Training procedure. A DermaGAN is trained to synthesize SSTI data for susceptible and 

resistant classes per antibiotic family. Therefore, 12 DermaGANs are trained for CEFT, 

CEFT+CLAV, IMP, PIP+TAZO, OFL, MERO, GEN, COT, CEF, ERY, CLIN, and CIP 

antibiotics. Data preprocessing involved zero padding and resizing (6 * 6 * 1). The following 

hyperparameters are used for training DermaGAN: optimizer = RMSprop, batch_size = 8, 

learning_rate = 0.0002, number of epochs = 5000. The critic gets optimized using two loss 

functions: The Wasserstein loss and the Gradient penalty loss. The gradient penalty loss 

function is a soft version of the Lipschitz constraint used to avoid gradient 

vanishing/explosion. The generator’s weights get optimized using the Wasserstein loss 

function. Figure 4-1 illustrates the general schematic of the DermaGAN. 

Antibiotic Resistance Classifier 

FNN. We trained post-hoc fully connected classifiers to predict the nonsusceptibility of 

different bacteria to antibiotics used to treat SSTIs. The classifiers are constructed of two 
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fully connected layers of 16 and 8 hidden units and ReLU activation functions. This is 

followed by batch normalization and a dropout layer with a rate of 0.2. the last layer is a 

fully-connected layer of 1 unit and a sigmoid activation function. For each antibiotic family, 

we trained three classifiers: 

• To evaluate the performance of GANs in producing realistic samples. 

• To assess the effect of synthetic data augmentation in improving nonsusceptibility 

classification. 

CNN. Our CNN classifiers comprise a 1-D Convolution layer with 64 filters of size 3, a 

batch normalization layer, and a dropout layer with a rate of 0.2. This is followed by four 

fully-connected layers with 16, 8, and 1 units. The activation functions are ReLU except for 

the last layer, which is a sigmoid function. 

 

4.4 Results 

We Initially used a supervised ML approach to classify each sample as either susceptible or 

resistant to twelve antibiotics. We trained an FNN, a CNN, and an RF classifier for each 

antibiotic. We examined the success of each model in predicting antibiotic resistance in three 

feature combinations:  

I. Networks were trained and tested only on the bacteria information listed in Table 4-2. 

Four GPC bacteria species, including Staphylococcus Aureus, Enterococcus SPP, 

Streptococcus Pyogenes, Staphylococcus, and coagulase-negative, were used to train the 

resistance classifier for  GEN, COT, CEF, ERY, CLIN, and CIP. Nine GNB bacteria 

species, including Citrobacter, Acinetobacter SPP, Enterobacter SPP, Escherichia Coli, 
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Klebsiella, Proteus, Pseudomonas SPP, Pseudomonas Aeruginosa, and maltophilia, were 

used to train resistance classifiers for CEFT, CEFT+CLAV, IMP, PIP+TAZO, OFL, and 

MERO.  

 

Figure 4-1- General schematic of (a) DermaGAN and (b) evaluation methods. 

II. Networks were trained and tested on demographic and clinical data listed in Table 4-2. 

Bacterial species information was excluded for this dataset. Age, Sex, MRSA test, ICR 

test, and diagnoses were employed in training resistance classifiers for GEN, COT, CEF, 

ERY, CLIN, and CIP. Age, Sex, ESBL, CRE, and diagnoses were used in training 

resistance classifiers for CEFT, CEFT+CLAV, IMP, PIP+TAZO, OFL, and MERO. 

III. The bacteria species information and patient demographic and clinical data were 

employed in training the classifiers. 

We then analyzed the performance of the DermaGAN in producing realistic synthetic data. 

We synthesized data from patients diagnosed with SSTIs using DermaGAN. Initially, to identify 

the resistance of bacteria to antibiotics, we trained an FNN-based baseline resistant classifier on 
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the original training set per antibiotic and tested it on the original test dataset. This evaluation 

method is called TRTR, Train on Real, Test on Real. We also train a secondary resistant 

classifier on a generated dataset and test it on a similar original test dataset as the TRTR 

approach. This approach is called the TSTR evaluation method, Train on Synthetic, Test on Real 

[93, 108]. The evaluation methods are illustrated in Figure 4-1-b. Because of the limited data, for 

each evaluation, the performance of the models is estimated by 5-fold cross-validation. The last 

training fold is used as a validation set for the hyperparameter tuning. We reported the mean per 

fold classification AUC as a classification metric. We kept the training size similar in both 

approaches. The TSTR evaluation method assesses the assumption that the generated samples by 

DermaGAN are realistic to be employed in training a machine learning classifier with a real-life 

application. To accept this assumption, the classification AUC in the TSTR method should 

correlate with the TRTR AUC.  

We also applied t-distributed stochastic neighbor embedding (t-SNE) analyses to both the 

original and synthetic datasets to reduce the dimension of feature space for visualization. This 

2D visualization helps to understand how close the distribution of the generated samples is to the 

original samples. 

Further, in this section, we analyze the effect of the synthetic data augmentation technique in 

improving antibiotic resistance prediction. We trained a resistant classifier per antibiotic on the 

augmented dataset and tested them on the original real test dataset, as depicted in Figure 4-1-b. 

4.4.1 Performance of antibiotic resistance classifiers 

The CNN-based and FNN-based classifiers achieved a similar classification success in terms 

of AUC. However, their performance outperforms the RF model in all three conformations of 
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features significantly. Generally, higher classification success was achieved when networks were 

trained on demographic, diagnoses, bacterial information, and clinical test results. Prediction of 

OFL, COT, and CIP resistance is dependent mainly on the identity of the bacterial species. 

Excluding this information from the dataset decreased the classification AUC in these families 

by 25%. This result is consistent with the correlation analysis depicted in Figure 4-3. 

Enterococcus SPP, Coagulase-negative staphylococci, and Streptococcus pyogenes are 

significantly correlated to the prediction of CIP resistance with positive correlation coefficients 

and zero P-values. Enterococcus SPP is associated substantially with predicting CIP 

susceptibility by a negative coefficient of 0.59 and P-value < 0.05. Coagulase-negative 

staphylococci and Streptococcus  

 

Figure 4-2- Classification AUC of the resistance classifiers trained on (a) bacterial species 

information, (b) basic demographic information, diagnoses, and clinical test results, (c) all the 

predictive variables. 

 

 pyogenes have shown to be significantly contributed to the prediction of COT 

susceptibility (coef<0), and Enterococcus SPP is highly correlated to the prognosis of COT 

resistance (coef>0). Acinetobacter SPP, Proteus mirabilis, and Pseudomonas SPP contributed to 
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the prediction of resistance class, and Stenotrophomonas maltophilia helped predict 

susceptibility class in OFL. 

 

Figure 4-3- Correlation analysis of GNB and GPC bacteria with antibiotic resistance. (a) 

correlation coefficients. Bacteria with Positive coefficients are directly correlated with antibiotic 

resistance. Negative coefficients show a direct correlation with antibiotic susceptibility. (b) p-

values. Stars represent a significant linear correlation. 

 

Prediction of resistance in MERO and CEF has shown to be highly dependent on the 

patients’ demographic and clinical data. We have performed variable importance analysis using 

Random Forest to investigate variables' predictive power in predicting each antibiotic resistance. 
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In contrast to neural networks, the contribution of each factor to an outcome can be obtained 

using an RF classifier. The result is shown in Figure 4-4. For the diagnosis, we reported the 

average coefficient for all the diagnoses listed in Table 4-2. This analysis revealed that the 

factors with the highest effect across all the families were Age, MRSA test, and CRE test. For 

MERO, age and CRE test, and for CEF, MRSA test and age are the two crucial predictive factors 

contributing to the outcome.  

 

Figure 4-4- Variable importance analysis using Random Forest (RF). 

 

4.4.2 Evaluation of DermaGAN 

The summary result of classification AUC for TSTR and TRTR techniques is shown in 

Figure 4-5. Out of the twelve antibiotics under study, the classification AUC decreased by less 

than 5% in eight families while tied in one family in TSTR method compared to TRTR. The 

classification accuracy dropped in PIP+TAZO, MERO, and GEN by 11%, 24%, and 24%, 

respectively. A possible reason for this significant diminish in the AUC of TSTR is mode 
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collapsing, as reported in [108]. A possible solution to mode collapsing might be hyperparameter 

tuning, which needs to be considered in future research. Moreover, the AUC of the TSTR 

method is more than 0.6 in most families. A random guess results in an AUC of 0.5 and models 

above 0.7 are considered a good fit [14]. With this result, we can conclude that the generated 

samples have meaningful features closely related to most families' original data.  

 

Figure 4-5- Performance of the classifier trained by only synthetic dataset (TSTR, solid lines) 

compared to the baseline (TRTR, dash lines) in twelve antibiotic families. 

 

To go one step further, we applied t-SNE analyses to both the original and synthetic datasets 

to reduce the dimension of feature space for visualization. This 2D visualization helps to 

understand how close the distribution of the generated samples is to the original samples. Also, 

we visualized the distribution of the resistance and susceptible labels to assess the performance 

of the conditional GAN in producing ground-truth labels.  Generally, with this evaluation, we 

can ensure that GANs are not suffering from mode drop and generate all the underlying 

distribution of the original data. Figure 4-6 demonstrates a 2D t-SNE visualization for twelve 

families under study. Figure 4-6-a shows the distribution of train, test, and fake samples. Figure 

4-6-b depicts the susceptible and resistance distribution in the train, test, and fake instances. 
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Figure 4-6-c shows the distribution of the ground truth labels only for the original train and test 

dataset. Firstly, GANs could successfully generate all the possible distributions in the original 

dataset. Secondly, the distribution of the synthetic data is close to the distribution of the original 

data. Thirdly, synthetic ground-truth labels generated by the conditional GANs also successfully 

follow the distribution of labels in the original dataset; however, in some families, including 

GEN, COT, ERY, and CLIN, it is difficult to cluster the resistance and susceptible class in the 

latent space. 

4.4.3 Performace of synthetic data augmentation 

In this section, we analyzed the effect of the synthetic data augmentation technique in the 

improvement of antibiotic resistance prediction. We trained a resistant classifier per antibiotic on 

the combination of the real and synthetic dataset and tested it on the original real test dataset, as 

depicted in Figure 4-1-b. The mean per fold classification AUC is reported in Table 4-3. 

Generally, the classifier's performance depends on the proportion of the additional synthetic data. 

The amount of the augmented synthetic data is proportion to the number of the original train 

dataset. 0x represents no appending synthetic data, and Nx (0<N<=5) represents N times the 

number of the original training set. We achieved the mean AUC of 0.80 for the baseline model. 

In general, the mean AUC of the classifiers trained on the augmented dataset is slightly higher 

than the baseline except for the data size of 5x. Appending synthetic data with the amount of 3 

and 4 times the original train dataset achieved the highest mean AUC of 0.82. The classification 

AUC enhanced up to 11% in data size of 3x depending on the antibiotic family. We reported the 

percentage improvement rate in the mean AUC of each antibiotic family in Table 4-3. We 

defined an improvement rate as the number of families with an enhancement in their 

classification AUC over the total number of families with an improvement or deterioration in 
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their classification AUC. With the increment of the synthetic data by 3x, the AUC was enhanced 

in 6 out of 12 (improvement rate = 60.00%) antibiotic families (CEFT+CLAV, IMP, 

PIP+TAZO, OFL, CLIN, CIP) while tied in two families (CEFT and CEF). 
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Figure 4-6- Two-dimensional visualizations of the real and generated dataset. (a) Data points 

with blue, orange and green colors represent the synthetic, train, and test data. (b) Data points 

with blue, and orange represent susceptible and resistant samples in fake, train, and test data. (c) 

Blue and orange data points represent the original susceptible and resistant labels. 
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This result confirms that synthetic data augmentation can improve the model's performance 

depending on the antibiotic family. 

Table 4-3- Performance of the classifiers trained on the combination of the synthetic and original 

dataset compared to the baseline model (0x). Nx (N times the size of the original dataset, N=1:5) 

indicates the amount of the appendant synthetic dataset to the original training set. The AUCs are 

the mean of classification AUC per fold. The percentage of improvement compared to the 

baseline, the average AUC of all antibiotic families, and the rate of improvement are reported. 

Bacteria 
Type Appendant rate  0x 1x 2x 3x 4x 5x 

Antibiotics|Metrics AUC AUC %Improvement AUC %Improvement AUC %Improvement AUC %Improvement AUC %Improvement 

G
N

B
 

CEFT 0.89 0.87 -2% 0.87 -2% 0.89 0% 0.87 -2% 0.90 +1% 
CEFT+CLAV 0.66 0.70 +4% 0.65 -1% 0.70 +4% 0.69 +3% 0.69 +3% 
IMP 0.85 0.93 +8% 0.91 +6% 0.96 +11% 0.93 +8% 0.89 +4% 
PIP+TAZO 0.73 0.79 +6% 0.79 +6% 0.84 +11% 0.85 +12% 0.81 +8% 
OFL 0.85 0.95 +10% 0.93 +8% 0.92 +7% 0.94 +9% 0.96 +11% 
MERO 0.96 0.93 -3% 0.90 -6% 0.90 -6% 0.92 -4% 0.91 -5% 

G
P

C
 

GEN 0.66 0.58 -8% 0.55 -11% 0.60 -6% 0.59 -7% 0.52 -14% 
COT 0.70 0.66 -4% 0.74 +4% 0.66 -4% 0.70 0% 0.64 -6% 
CEF 0.99 0.99 0% 0.99 0% 0.99 0% 0.99 0% 0.99 0% 
ERY 0.73 0.68 -5% 0.73 0% 0.67 -6% 0.71 -2% 0.69 -4% 
CLIN 0.73 0.73 0% 0.75 +2% 0.76 +3% 0.74 +1% 0.75 +2% 
CIP 0.95 0.95 0% 0.94 -1% 0.98 +3% 0.94 -1% 0.95 0% 

Average of AUC | improvement rate 0.80 0.81 44.44% 0.81 50.00% 0.82 60.00% 0.82 50.00% 0.80 60.00% 
 

We reported TPR, FNR, FPR, and TNR in the form of a confusion matrix for each 

antibiotic in Figure 4-7. TPR or sensitivity shows the ability of the classifiers to classify resistant 

samples correctly. TNR or specificity, on the other hand, is the ability of the classifiers to 

identify susceptible samples accurately. In antibiotic resistance studies, sensitivity is a more 

serious concern than specificity. In other words, misclassifying resistant samples as susceptible 

can put a patient’s life in danger.  Figure 4-7-a and Figure 4-7-b include metrics for the baseline 

classifier (0x), and the augmented classifier (3x), respectively. Generally, synthetic data 

augmentation enhanced the sensitivity (TPR) by 5%-19%, especially in cases where the baseline 

model achieved a low sensitivity and high specificity, such as in CEFT+CLAV, PIP+TAZO, 
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OFL, and COT. This result suggests that the data augmentation compensates for the dataset's 

imbalanced problem. 

Sensitivity decreased in GEN, ERY, CLIN, and CIP between 1%-6%; however, this 

looks like a compromise between sensitivity and specificity. A possible reason for this 

significant decrease in sensitivity in GEN and ERY is the difficulty in clustering the resistant and 

susceptible classes in the latent space, as illustrated in Figure 4-6. As observed from this 2-D 

visualization, the boundary between resistance and susceptible samples in these antibiotics is 

unclear. A possible solution to improve the accuracy is feature selection, which must be 

considered in future studies. The worst result is for MERO, in which sensitivity and specificity 

decreased.  

 

Figure 4-7- TPR, FNR, FPR, and TNR of the classifiers trained by (a) original training set and 

(b) original + synthetic training set (3x) for 12 antibiotic families. 
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4.4.4 Further improvement in antibiotic resistance classifiers 

GANs are not perfect in generating synthetic samples. The predictive variables used in this 

study are categorical integer variables with values of -1, 0, and 1. However, the synthetic factors 

generated by GANs are continuous float variables in a range of [-1,1]. To compensate for these 

differences, we applied a post-processing cleaning process to round the synthetic float variables 

to the nearest integer values in categorical factors. For “age,” which is a continuous float 

variable, we removed the synthetic data with a negative value and rounded the positive values to 

two decimal places. The cleaning process of each variable is shown in Figure 4-8.  The 2D 

visualization by t-SNE is shown in Figure 4-9 for twelve families. Figure 4-9-a shows the 

distribution of synthetic and original samples without a cleaning process. Figure 4-9-b illustrates 

the distribution of the generated and original samples after the cleaning process. We obtained 

fewer instances with a more concentrated distribution after cleaning.  With this process, we can 

preserve the samples with a closer distribution similarity to the original dataset and remove the 

duplicated samples.  

The generator should produce samples that are indistinguishable from the original dataset. 

Therefore, we trained a post-hoc MLP-based classifier to classify between the real and fake 

examples. We trained the discriminative classifier on an equal number of original and synthetic 

instances and tested it on the synthetic data. The classifier must classify a given sample as real or 

fake. The classifier should achieve 50% (or less) accuracy for an excellent generator at this task. 

The discriminator accuracy for samples generated by GANs is shown in Figure 4-10. We 

achieved the average discriminator accuracy of 76.05% before and 72.99% after cleaning. The 

result suggests that the generators could not produce completely indistinguishable synthetic 
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samples from the original real data. The discriminative accuracy decreased by approximately 3% 

by applying the cleaning process, meaning that cleaning helped create a more realistic dataset.  

We applied a further post-processing analysis to select the discriminative classifier's 

synthetic samples chosen as realistic. The discriminative classifier tested each synthetic sample 

produced by the generator. If the sample is classified as “real” by mistake, it is selected to be a 

part of the synthetic dataset. Otherwise, it is disregarded and removed from the set. We called 

this processing “selection.” 

 

Figure 4-8- The cleaning method for each predictive variable used in this study. Except for age, 

which became a continuous variable after normalization, the other factors are rounded to the 

nearest integer value. 

 

As depicted in Figure 4-7, the sensitivity is still relatively low for some families such as 

CEFT+CLAV, PIP+TAZO, GEN, and COT even after the data augmentation. Since we are  
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Figure 4-9- Two-dimensional visualizations of the real and generated dataset. (a) before 

cleaning. (b) after cleaning. Data points with blue, orange and green colors represent the 

synthetic, train, and test data. 

 

dealing with a very limited and highly imbalanced dataset, usually, we have a maximum of two 

resistance samples in our test set in some cross-validation folds. With this limited number of 
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resistance test samples, the sensitivity will be either 0%, 50%, or 100%.  Therefore, we cannot 

evaluate theperformance of the classifiers properly unless we have more samples in our test set. 

We have generated thousands of synthetic samples for each family to overcome this problem. 

We performed four types of analysis on this big synthetic dataset as follows: 

I. We applied both cleaning and selection to the dataset. 

II. We applied just cleaning to the dataset (no selection). 

III. We applied just selection to the dataset (no cleaning). 

IV. Baseline dataset (no cleaning, no selection). 

 

Figure 4-10- Discriminative accuracy of the synthetic samples before and after the cleaning 

process. 

 

We trained the resistance classifiers using a big synthetic dataset and tested them on the original 

dataset. Our test set now includes the real training and the real testing set to create a bigger test 

set for better evaluation. Please note that the training set is only used in training the GANs and is 

completely unseen by the resistance classifiers. Figure 4-11 represents the AUC, recall, and 

specificity for the four analyses described above. We achieved the average AUC of 0.83 by 

applying the cleaning process. The performance improved for antibiotics with relatively low 

0

50

100

Discriminative Accuracy (lower the 
better)

No Cleaning (76.05%) Cleaning (72.99%)
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recall, including CEFT+CLAV, PIP+TAZO, GEN, and COT, with an increase to 51%, 70.66%, 

63.24%, and 72.94%, respectively. Surprisingly, applying selection to the cleaned synthetic 

dataset showed the minimum average AUC of 0.78 among the four analyses. As shown in Figure 

4-7, the sensitivity of ERY, which has the lowest performance of 33%, increased to 49.23% with 

cleaning. In general, selecting more realistic samples did not help with the enhancement of the 

performance; however, cleaning the synthetic samples improved the performance significantly. 

 

Figure 4-11- Performance metrics of the TSTR method trained and tested on a larger dataset. 

Each metric is reported for the four types of analysis (cleaning with selection, cleaning with no 

selection, selection with no cleaning, and the baseline (no selection, no cleaning). 

 

4.5 Discussion and Conclusion 
 

Traditional microbiological susceptibility testing result requires 24-48 hours to be 

processed; therefore, machine learning techniques could be used as clinical decision support 

tools to predict antimicrobial resistance and select appropriate empirical antibiotic treatment 

[109]. This chapter discussed a CWGAN-based model called DermaGAN that generates 

synthetic samples for SSTI to enlarge the dataset and improve the performance of the antibiotic-

resistant classifiers. The research is implemented on a dermatological dataset from 103 patients 

with GPC and 107 patients with GNB bacteria. Our limited dataset highlights medical data's 
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scarcity and accessibility challenges in the research communities. Initially, we trained a baseline 

resistant classifier on the original dataset. 

Further, the performance of the DermaGAN in producing realistic features is investigated 

by training the resistant classifier only on a synthetic dataset. Classifiers trained on synthetic data 

have shown similar performance to the baseline in most families. We have also visualized the 

feature space in 2D using a dimension reduction technique (t-SNE). The 2D visualization helps 

us ensure DermaGANs do not suffer from mode dropping. We also trained the resistant 

classifiers by enlarging the original training set by adding synthetic data. Up to 11% and 19% of 

improvement are observed in classification AUC and sensitivity depending on the antibiotic 

family, respectively.  We applied post-synthetic data processing to create more realistic samples. 

We improved the resistance classifiers' performance by generating a big synthetic dataset, 

cleaning the samples, and employing them in training the resistance classifiers.  

Staphylococcus aureus showed a significant correlation in predicting CIP and COT 

resistance. These antibiotics are often prescribed in clinical practice as a treatment option for 

MRSA; however, there is reported that there are limited data to support the effectiveness of these 

antibiotics in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) [110]. The 

RF classifier has also confirmed this correlation. Previously, the emergence of resistance to CIP 

and COT in these species has also been discussed in [111, 112].  

The carbapenem-resistant Enterobacteriaceae (CRE) can cause various infections such as 

pneumonia, wound, and urinary tract infections. The carbapenem class of antibiotics, including 

MERO and IMP, represent a valuable option and are considered last-resort antibiotics for 

treating infections caused by resistant Gram-negative bacteria, including Enterobacteriaceae 
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[113, 114]. The Random Forest classifier also shows the importance of CRE in predicting 

outcomes.  

Our result from the RF classifier confirms that ESBLs can mediate resistance to CEFT, as 

reported by Jonathan et al. [115]. Age was also a decisive factor in predicting resistance to most 

antibiotic families. Garcia et al. investigated the correlation between age and antibiotic resistance 

in patients with positive MRSA. They found that the antibiotics that target DNA syntheses, such 

as OFL and CIP, show a significant correlation between older patients and antibiotic resistance. 

However, antibiotics targeting ribosomal functions or cell wall synthesis, such as 

aminoglycosides, cephalosporins, etc., showed consistent resistance across all age classes [116].  

It is reported that any model with AUC> 0.7 can be regarded as a good fit [14]. We 

achieved the AUC> 0.75 in all the families except for GEN. Generally, it is more challenging to 

predict resistance for antibiotics associated with unknown or multifactorial resistance 

mechanisms than those in which resistance is significantly related to a single variable, such as 

IMP and MERO [102].  Our result shows that the Gram-positive group had slightly worse 

performance than the Gram-negative group due to their distinctive structure. Gram-negative 

bacteria are more resistant than Gram-positive bacteria and cause significant morbidity and 

mortality worldwide [117]. 

Generally, antibiotics resistance studies have focused on the resistance of single species to 

different antibiotics and developed an individual machine learning model for each bacterium. For 

example, Ayyıldız et al. detected the resistance of Escherichia coli to a wide range of antibiotics. 

Those in common with our study are Ceftazidime (acc: 62%, tpr: 75%, tnr:92%), Ciprofloxacin 

(acc: 76%, tpr: 82%, tnr: 69%), Gentamicin (acc: 84%, tpr: 92%, tnr: 59%), and Piperacillin-

Tazobactam (acc: 92%, tpr: 97%, tnr: 44%) [106]. Kim et. al studied the resistance of 
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Enterobacter cloacae, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa to 

Cefepime (AUC: 1, 0.7, 0.87, 1 for each species, respectively), Meropenem (AUC: n/a, 1, 1, 0.98 

for each bacterium, respectively) and Ceftazidime (AUC: n/a, 0.88, 0.99, 0.88 for each 

bacterium, respectively). In this study, the existence of each species forms a binary vector 

determined by a binary value of either 1 (existence) or 0 (nonexistence) in the dataset; therefore, 

there is no need to train a separate network per species. 

In conclusion, we proposed a way to enhance the accuracy of antibiotic-resistant detection 

with minimal data by generating synthetic samples using GANs. Despite the good performance 

of the resistance classifiers, they are not intended to compete with laboratory testing. Limited 

data and sampling bias, such as sampling from limited patient demographics within a certain age 

or gender, present a substantial challenge in any predictive modeling. Our result showed a 

significant variation in the performance of classifiers trained on a different data distribution in 

each cross-validation fold due to data imbalance. In highly imbalanced datasets, models trained 

on datasets with more resistance samples, such as IMP, CIP, OFL, and MERO, showed a higher 

predictive performance with AUC > 0.90. For optimizing the sensitivity of predictive models for 

drugs with a low prevalence of resistance samples, we enrich the resistance class by generating 

synthetic samples using GANs. However, physician expertise remains crucial in prescription 

choices.  
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Chapter 5  

Contribution and Discussion 

5.1 Wound Healing Prognosis Model 

Although medical generative adversarial networks have recently shown acceptable 

performance in generating synthetic patients' records, there have been some limitations that have 

been taken into account in this study: 

1. The previous studies have only focused on binary features, and the input dataset 

only included count and binary representation of the medical record. Moreover, 

the input vector size equals the number of the diagnosis, medication, and 

procedure codes in the available EMR data. This representation creates a very 

high dimensional input vector and requires having access to a large EMR dataset. 

It is almost impossible to include all the current diagnoses, medications, and 

procedure codes in the dataset; therefore, having a small dataset, the GAN learns 

to generate only a minimal distribution of patients' records and can not cover all 

the possible distributions.  

2. Our dataset consists of both categorical and continuous features. The input data 

size equals the number of wound prognosis factors listed in Table 3-1. To reduce 

the input data size, instead of training an autoencoder, we trained a random forest 

classification model to select variables that significantly contribute to the healing 

process. With this method, the generator must produce only the informative 

features to make the model less complex. This representation of the medical 
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records does not require an extensive dataset; thus, it can overcome the challenges 

of access to massive EMR data.  

3. Previous studies have used a statical EMR dataset. In these studies, temporal 

information, representing a disease evolution, has not been considered. For 

example, in wound assessments, the variations in the wound dimensions are 

deemed essential in predicting the healing status. Temporal information was 

included and modeled accordingly in the current study to generate a realistic 

synthetic medical record. 

4. The data generated by previous medGANs has never been applied in a real-life 

application. This evaluation is vital to assess the quality of the generated data as 

well as their practicality. Hence, a wound prognosis model was trained in the 

present work to predict a chronic wound healing status within 12 weeks of the 

initial intake exam.  The model was prepared using the generated instances and 

tested on the original EMR to investigate the functionality of our synthetic 

medical records. 

5. Using GANs techniques in time series medical data, we have provided a pathway 

to overcoming the challenges of accessing patients' electronic medical records 

with VLU. This limited access is due to privacy, security, and difficulties 

extracting useful information. 

6. Combining the conditional training with Wasserstein divergence allowed the 

medical GAN to generate more realistic EMR data with a limited number of train 

data than the simple training strategy [41]. 
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By training a prognosis model as a real-life application for augmented data by GAN, we 

could validate the power of the suggested EMR-TCWGAN in producing synthetic time-series 

EMR. The performance of EMR-TCWGAN in prognosis classification AUC and discriminative 

accuracy was relatively higher than the baseline model, implying that CNN will perform better 

than feedforward networks in generating EMR data. 

Our prognosis CNN model achieved higher performance than the other state-of-the-art 

models. The proposed prognosis CNN may help the clinicians with treatment decision-making 

by alerting them if the wound has a low probability of healing during the early stages.  

Based on the definition of a chronic wound, a wound that has not healed in 4-12 weeks, it 

would be reasonable to consider the critical prognosis factors collected from the first three visits. 

Moreover, it was reported that although four weeks is a short period to predict a wound healing 

status clinically, a shorter time for Prediction would help clinicians decide and modify treatment 

strategies [15]. Our study suggests that it may not be feasible to accurately predict the wound 

healing rate using only the first-week data (in this case, we achieved AUC=0.647). We believe 

data from three weeks of follow-up will provide enough information to calculate a strong 

prediction of healing potential (with AUC=0.875). This early Prediction of wound healing will 

enhance clinical outcomes and provide efficiencies in care.  

Despite the success of the suggested prognosis model in wound healing prediction, the 

interpretability of the model needs to be considered [118]. Moreover, by reporting the area under 

the curve, we have compared the overall quality of the prognosis models. However, an optimum 

decision criterion (threshold) needs to be defined based on the cost of the screening, the 

prevalence of a disease, and its mortality rate [119].   
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In conclusion, we developed the pipeline of the medical GANs by representing patients’ 

EMR data based on their prognosis factors and applying deep learning models in medGAN to 

generate time-series continuous and categorical EMR data. We utilized samples generated by 

medGAN in training a real-world prognosis classifier to predict the wound healing status within 

12 weeks of the first visit. Our experimental results illustrated that the proposed EMR-

TCWGAN outperforms the previous EMR-GAN. Moreover, prognosis accuracy has shown a 

promising development for clinical decision-making. 

5.2 Antibiotic Resistance Classifier 

This study improves antibiotic resistance classifiers using data augmentation techniques 

based on generative adversarial networks. The key findings of this project are as follows: 

1. Previous studies have mostly focused on the genomic information as input features 

and investigated if a bacteria genome is resistant to various types of antibiotics.  

Therefore, they mostly reported performance metrics for the combination of bacteria 

species and antibiotics. This study, however, investigates if a patient with a specific 

bacteria and diagnosis is resistant to particular antibiotics by knowing basic patient 

demographics, diagnosis, bacteria species, and some relevant clinical tests. We have a 

single dataset to train resistance classifiers for each antibiotic. A binary value 

determines the existence of 13 bacteria species. If a bacterium exists in the 

dermatology sample, it is determined by 1; otherwise, 0. With this approach, there is 

no need to train multiple classifiers for each species-antibiotic combination.  

2. To the best of our knowledge, it is the first time that the Generative Adversarial 

Networks are used as a data augmentation tool for non-image datasets. Despite the 
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recent development of EMR-GANs, there is no evidence of their application in real-

life studies. 

3. We achieved a slightly better classification of AUC in most families compared to the 

previous studies [104, 106]. However, comparing the results to prior studies is still 

difficult. The reasons are due to differences in objectives, infection types, size of the 

test data, and the class distributions in the test data. 

In conclusion, we developed a pipeline for data augmentation using GANs for non-image 

data. We employed the generated samples to enlarge our current dataset to improve the 

performance of the antibiotic resistance classifiers. We hope that these findings lead to 

developing GANs on non-image datasets and incorporating ML algorithms in real-life 

applications. 

5.3 Future Directions 

The future directions for this thesis are: 

• Since very limited data was used in this study, adding more real data to the dataset 

will help create robust and more reliable prognosis algorithms. 

• Hyperparameter tuning of the GANs across different cross-validation folds is 

required to avoid poor performance in some folds. 

• The wound healing prognosis model can be improved by incorporating image data 

and performing hybrid machine learning algorithms. 

• Enriching the antibiotic resistance dataset by including further clinical information 

such as recorded symptoms and patient comorbidities may increase the classifiers' 

performance. 



 

 

71 

 

Bibliography 

1. Chen, S.-H., Computational intelligence in economics and finance: Carrying on the 

legacy of Herbert Simon. Information Sciences, 2005. 170(1): p. 121-131. 

2. Ma, L. and B. Sun, Machine learning and AI in marketing–Connecting computing power 

to human insights. International Journal of Research in Marketing, 2020. 37(3): p. 481-

504. 

3. Aziz, S. and M. Dowling, Machine learning and AI for risk management, in Disrupting 

finance. 2019, Palgrave Pivot, Cham. p. 33-50. 

4. Sun, Y., et al., Battery-based energy storage transportation for enhancing power system 

economics and security. IEEE Transactions on Smart Grid, 2015. 6(5): p. 2395-2402. 

5. Topol, E.J., High-performance medicine: the convergence of human and artificial 

intelligence. Nature medicine, 2019. 25(1): p. 44-56. 

6. Toh, T.S., F. Dondelinger, and D. Wang, Looking beyond the hype: Applied AI and 

machine learning in translational medicine. EBioMedicine, 2019. 47: p. 607-615. 

7. Hamet, P. and J. Tremblay, Artificial intelligence in medicine. Metabolism, 2017. 69: p. 

S36-S40. 

8. Han, G. and R. Ceilley, Chronic wound healing: a review of current management and 

treatments. Advances in therapy, 2017. 34(3): p. 599-610. 

9. Wang, H.-H., et al., Assessment of deep learning using nonimaging information and 

sequential medical records to develop a prediction model for nonmelanoma skin cancer. 

JAMA dermatology, 2019. 155(11): p. 1277-1283. 

10. Ayer, T., et al., Breast cancer risk estimation with artificial neural networks revisited: 

discrimination and calibration. Cancer, 2010. 116(14): p. 3310-3321. 

11. Chokwijitkul, T., et al. Identifying risk factors for heart disease in electronic medical 

records: A deep learning approach. in Proceedings of the BioNLP 2018 workshop. 2018. 

12. Gheshlaghi, S.H., et al. Efficient Oct Image Segmentation Using Neural Architecture 

Search. in 2020 IEEE International Conference on Image Processing (ICIP). 2020. 

IEEE. 

13. Liang, Z., et al. Deep learning for healthcare decision making with EMRs. in 2014 IEEE 

International Conference on Bioinformatics and Biomedicine (BIBM). 2014. IEEE. 

14. Cho, S.K., et al., Development of a model to predict healing of chronic wounds within 12 

weeks. Advances in Wound Care, 2020. 

15. Cukjati, D., et al., Prognostic factors in the prediction of chronic wound healing by 

electrical stimulation. Medical and Biological Engineering and Computing, 2001. 39(5): 

p. 542-550. 

16. Chu, C.S., et al., Machine learning and treatment outcome prediction for oral cancer. 

Journal of Oral Pathology & Medicine, 2020. 49(10): p. 977-985. 

17. Shoeb, A.H., Application of machine learning to epileptic seizure onset detection and 

treatment. 2009, Massachusetts Institute of Technology. 

18. Myszczynska, M.A., et al., Applications of machine learning to diagnosis and treatment 

of neurodegenerative diseases. Nature Reviews Neurology, 2020. 16(8): p. 440-456. 

19. Chekroud, A.M., et al., Cross-trial prediction of treatment outcome in depression: a 

machine learning approach. The Lancet Psychiatry, 2016. 3(3): p. 243-250. 



 

 

72 

 

20. Wang, F. and A. Preininger, AI in health: state of the art, challenges, and future 

directions. Yearbook of medical informatics, 2019. 28(01): p. 016-026. 

21. Siddiqui, A.R. and J.M. Bernstein, Chronic wound infection: facts and controversies. 

Clinics in dermatology, 2010. 28(5): p. 519-526. 

22. Kurd, S.K., et al., Evaluation of the use of prognostic information for the care of 

individuals with venous leg ulcers or diabetic neuropathic foot ulcers. Wound Repair and 

Regeneration, 2009. 17(3): p. 318-325. 

23. Skene, A., et al., Venous leg ulcers: a prognostic index to predict time to healing. British 

Medical Journal, 1992. 305(6862): p. 1119-1121. 

24. FRANKS, P.J., et al., Factors associated with healing leg ulceration with high 

compression. Age and ageing, 1995. 24(5): p. 407-410. 

25. Karanikolic, V., et al., Prognostic factors related to delayed healing of venous leg ulcer 

treated with compression therapy. Dermatologica sinica, 2015. 33(4): p. 206-209. 

26. Margolis, D.J., et al., The accuracy of venous leg ulcer prognostic models in a wound 

care system. Wound Repair and Regeneration, 2004. 12(2): p. 163-168. 

27. Margolis, D.J., et al., Risk factors for delayed healing of neuropathic diabetic foot ulcers: 

a pooled analysis. Archives of dermatology, 2000. 136(12): p. 1531-1535. 

28. Margolis, D.J., J.A. Berlin, and B.L. Strom, Risk factors associated with the failure of a 

venous leg ulcer to heal. Archives of dermatology, 1999. 135(8): p. 920-926. 

29. Khachemoune, A., Y.M. Bello, and T.J. Phillips, Factors that influence healing in 

chronic venous ulcers treated with cryopreserved human epidermal cultures. 

Dermatologic surgery, 2002. 28(3): p. 274-280. 

30. Phillips, T.J., et al., Prognostic indicators in venous ulcers. Journal of the American 

Academy of Dermatology, 2000. 43(4): p. 627-630. 

31. Ki, V. and C. Rotstein, Bacterial skin and soft tissue infections in adults: a review of their 

epidemiology, pathogenesis, diagnosis, treatment and site of care. Canadian Journal of 

Infectious Diseases and Medical Microbiology, 2008. 19(2): p. 173-184. 

32. Kaye, K.S., et al., Current epidemiology, etiology, and burden of acute skin infections in 

the United States. Clinical Infectious Diseases, 2019. 68(Supplement_3): p. S193-S199. 

33. Ramakrishna, M.S., et al., Microbial Profile and Antibiogram Pattern Analysis of Skin 

and Soft Tissue Infections at A Tertiary Care Center in South India. Journal of Pure and 

Applied Microbiology, 2021. 

34. Dryden, M.S., Skin and soft tissue infection: microbiology and epidemiology. 

International journal of antimicrobial agents, 2009. 34: p. S2-S7. 

35. Keil, F., et al., Use of daptomycin for Gram-positive infections in neutropenic patients: 

Clinical experience from a European Outcomes Registry. Transplantation. 124: p. 28. 

36. Mohareb, A.M., et al. Addressing antibiotic overuse in the outpatient setting: lessons 

from behavioral economics. in Mayo Clinic Proceedings. 2021. Elsevier. 

37. Gandhi, N.R., et al., Multidrug-resistant and extensively drug-resistant tuberculosis: a 

threat to global control of tuberculosis. The Lancet, 2010. 375(9728): p. 1830-1843. 

38. Ramakrishna, M.S., et al., Microbial Profile and Antibiogram Pattern Analysis of Skin 

and Soft Tissue Infections at A Tertiary Care Center in South India. J Pure Appl 

Microbiol, 2021. 15(2): p. 915-925. 

39. Benkova, M., O. Soukup, and J. Marek, Antimicrobial susceptibility testing: currently 

used methods and devices and the near future in clinical practice. Journal of Applied 

Microbiology, 2020. 129(4): p. 806-822. 



 

 

73 

 

40. Sanchez, G.V., et al., Antibiotic resistance among urinary isolates from female 

outpatients in the United States in 2003 and 2012. Antimicrobial agents and 

chemotherapy, 2016. 60(5): p. 2680-2683. 

41. Reed, W. MRSN. 2022. 

42. CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria 

(NARMS). 2022. 

43. Nguyen, P., et al., $\mathtt {Deepr} $: a convolutional net for medical records. IEEE 

journal of biomedical and health informatics, 2016. 21(1): p. 22-30. 

44. Ho, L.V., et al. The dependence of machine learning on electronic medical record 

quality. in AMIA Annual Symposium Proceedings. 2017. American Medical Informatics 

Association. 

45. Kim, Y.J., et al., Highrisk prediction from electronic medical records via deep attention 

networks. arXiv preprint arXiv:1712.00010, 2017. 

46. Sahni, N., G. Simon, and R. Arora, Development and validation of machine learning 

models for prediction of 1-year mortality utilizing electronic medical record data 

available at the end of hospitalization in multicondition patients: a proof-of-concept 

study. Journal of general internal medicine, 2018. 33(6): p. 921-928. 

47. Yang, H.-C., et al., Artificial Intelligence–Based Prediction of Lung Cancer Risk Using 

Nonimaging Electronic Medical Records: Deep Learning Approach. Journal of medical 

Internet research, 2021. 23(8): p. e26256. 

48. Ningrum, D.N.A., et al., A Deep Learning Model to Predict Knee Osteoarthritis Based on 

Nonimage Longitudinal Medical Record. Journal of Multidisciplinary Healthcare, 2021. 

14: p. 2477. 

49. Kaur, H., et al., Automated chart review utilizing natural language processing algorithm 

for asthma predictive index. BMC pulmonary medicine, 2018. 18(1): p. 1-9. 

50. Sung, S.-F., et al., Applying natural language processing techniques to develop a task-

specific EMR interface for timely stroke thrombolysis: a feasibility study. International 

journal of medical informatics, 2018. 112: p. 149-157. 

51. Zhang, Z., et al., Ensuring electronic medical record simulation through better training, 

modeling, and evaluation. Journal of the American Medical Informatics Association, 

2020. 27(1): p. 99-108. 

52. Miller, A.R. and C. Tucker, Privacy protection and technology diffusion: The case of 

electronic medical records. Management science, 2009. 55(7): p. 1077-1093. 

53. Enaizan, O., et al., Effects of privacy and security on the acceptance and usage of EMR: 

the mediating role of trust on the basis of multiple perspectives. Informatics in Medicine 

Unlocked, 2020. 21: p. 100450. 

54. Baowaly, M.K., et al., Synthesizing electronic health records using improved generative 

adversarial networks. Journal of the American Medical Informatics Association, 2019. 

26(3): p. 228-241. 

55. Frid-Adar, M., et al., GAN-based synthetic medical image augmentation for increased 

CNN performance in liver lesion classification. Neurocomputing, 2018. 321: p. 321-331. 

56. Bowles, C., et al., Gan augmentation: Augmenting training data using generative 

adversarial networks. arXiv preprint arXiv:1810.10863, 2018. 

57. Han, C., et al. GAN-based synthetic brain MR image generation. in 2018 IEEE 15th 

International Symposium on Biomedical Imaging (ISBI 2018). 2018. IEEE. 



 

 

74 

 

58. Islam, J. and Y. Zhang, GAN-based synthetic brain PET image generation. Brain 

informatics, 2020. 7(1): p. 1-12. 

59. Shin, H.-C., et al. Medical image synthesis for data augmentation and anonymization 

using generative adversarial networks. in International workshop on simulation and 

synthesis in medical imaging. 2018. Springer. 

60. Togo, R., T. Ogawa, and M. Haseyama, Synthetic gastritis image generation via loss 

function-based conditional pggan. IEEE access, 2019. 7: p. 87448-87457. 

61. Hung, C.-Y., et al. Comparing deep neural network and other machine learning 

algorithms for stroke prediction in a large-scale population-based electronic medical 

claims database. in 2017 39th Annual International Conference of the IEEE Engineering 

in Medicine and Biology Society (EMBC). 2017. IEEE. 

62. Taud, H. and J. Mas, Multilayer perceptron (MLP), in Geomatic Approaches for 

Modeling Land Change Scenarios. 2018, Springer. p. 451-455. 

63. Yan, H., et al., A multilayer perceptron-based medical decision support system for heart 

disease diagnosis. Expert Systems with Applications, 2006. 30(2): p. 272-281. 

64. Hosseinzadeh, M., et al., A multiple multilayer perceptron neural network with an 

adaptive learning algorithm for thyroid disease diagnosis in the internet of medical 

things. The Journal of Supercomputing, 2021. 77(4): p. 3616-3637. 

65. Ting, F. and K. Sim. Self-regulated multilayer perceptron neural network for breast 

cancer classification. in 2017 International Conference on Robotics, Automation and 

Sciences (ICORAS). 2017. IEEE. 

66. Yildirim, P. Chronic kidney disease prediction on imbalanced data by multilayer 

perceptron: Chronic kidney disease prediction. in 2017 IEEE 41st Annual Computer 

Software and Applications Conference (COMPSAC). 2017. IEEE. 

67. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. nature, 2015. 521(7553): p. 436-

444. 

68. Teng, L., H. Li, and S. Karim, DMCNN: A deep multiscale convolutional neural network 

model for medical image segmentation. Journal of Healthcare Engineering, 2019. 2019. 

69. Wang, C., et al., Fully automatic wound segmentation with deep convolutional neural 

networks. Scientific Reports, 2020. 10(1): p. 1-9. 

70. Guo, Z., et al. Medical image segmentation based on multi-modal convolutional neural 

network: Study on image fusion schemes. in 2018 IEEE 15th International Symposium on 

Biomedical Imaging (ISBI 2018). 2018. IEEE. 

71. Rostami, B., et al., Multiclass Wound Image Classification using an Ensemble Deep 

CNN-based Classifier. Computers in Biology and Medicine, 2021: p. 104536. 

72. Anisuzzaman, D., et al., Multi-modal Wound Classification using Wound Image and 

Location by Deep Neural Network. arXiv preprint arXiv:2109.06969, 2021. 

73. Ting, F.F., Y.J. Tan, and K.S. Sim, Convolutional neural network improvement for breast 

cancer classification. Expert Systems with Applications, 2019. 120: p. 103-115. 

74. Alom, M.Z., et al., Breast cancer classification from histopathological images with 

inception recurrent residual convolutional neural network. Journal of digital imaging, 

2019. 32(4): p. 605-617. 

75. Zou, L., et al., A technical review of convolutional neural network-based mammographic 

breast cancer diagnosis. Computational and mathematical methods in medicine, 2019. 

2019. 



 

 

75 

 

76. Jifara, W., et al., Medical image denoising using convolutional neural network: a 

residual learning approach. The Journal of Supercomputing, 2019. 75(2): p. 704-718. 

77. Zhang, Y. and H. Yu, Convolutional neural network based metal artifact reduction in x-

ray computed tomography. IEEE transactions on medical imaging, 2018. 37(6): p. 1370-

1381. 

78. Goodfellow, I.J., et al., Generative adversarial networks. arXiv preprint 

arXiv:1406.2661, 2014. 

79. Arjovsky, M., S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. 

in International conference on machine learning. 2017. PMLR. 

80. Gulrajani, I., et al., Improved training of wasserstein gans. arXiv preprint 

arXiv:1704.00028, 2017. 

81. Choi, E., et al. Generating multi-label discrete patient records using generative 

adversarial networks. in Machine learning for healthcare conference. 2017. PMLR. 

82. Breiman, L., Random forests. Machine learning, 2001. 45(1): p. 5-32. 

83. Khalilia, M., S. Chakraborty, and M. Popescu, Predicting disease risks from highly 

imbalanced data using random forest. BMC medical informatics and decision making, 

2011. 11(1): p. 1-13. 

84. Sage, A., Random forest robustness, variable importance, and tree aggregation. 2018. 

85. Stoltzfus, J.C., Logistic regression: a brief primer. Academic Emergency Medicine, 

2011. 18(10): p. 1099-1104. 

86. Si, S., et al. Gradient boosted decision trees for high dimensional sparse output. in 

International conference on machine learning. 2017. PMLR. 

87. Kumar, R. and A. Indrayan, Receiver operating characteristic (ROC) curve for medical 

researchers. Indian pediatrics, 2011. 48(4): p. 277-287. 

88. Lalkhen, A.G. and A. McCluskey, Clinical tests: sensitivity and specificity. Continuing 

Education in Anaesthesia Critical Care & Pain, 2008. 8(6): p. 221-223. 

89. Jung, K., et al., Rapid identification of slow healing wounds. Wound Repair and 

Regeneration, 2016. 24(1): p. 181-188. 

90. Margolis, D.J., et al., Diabetic neuropathic foot ulcers: predicting which ones will not 

heal. The American journal of medicine, 2003. 115(8): p. 627-631. 

91. Kaur, P., R. Kumar, and M. Kumar, A healthcare monitoring system using random forest 

and internet of things (IoT). Multimedia Tools and Applications, 2019. 78(14): p. 19905-

19916. 

92. Alam, M.Z., M.S. Rahman, and M.S. Rahman, A Random Forest based predictor for 

medical data classification using feature ranking. Informatics in Medicine Unlocked, 

2019. 15: p. 100180. 

93. Yoon, J., D. Jarrett, and M. Van der Schaar, Time-series generative adversarial networks. 

Advances in neural information processing systems, 2019. 32. 

94. Esteban, C., S.L. Hyland, and G. Rätsch, Real-valued (medical) time series generation 

with recurrent conditional gans. arXiv preprint arXiv:1706.02633, 2017. 

95. McInnes, L., J. Healy, and J. Melville, Umap: Uniform manifold approximation and 

projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018. 

96. Massey Jr, F.J., The Kolmogorov-Smirnov test for goodness of fit. Journal of the 

American statistical Association, 1951. 46(253): p. 68-78. 

97. Zoufal, C., A. Lucchi, and S. Woerner, Quantum generative adversarial networks for 

learning and loading random distributions. npj Quantum Information, 2019. 5(1): p. 1-9. 



 

 

76 

 

98. Aviñó, L., M. Ruffini, and R. Gavaldà, Generating synthetic but plausible healthcare 

record datasets. arXiv preprint arXiv:1807.01514, 2018. 

99. Bradley, A.P., The use of the area under the ROC curve in the evaluation of machine 

learning algorithms. Pattern recognition, 1997. 30(7): p. 1145-1159. 

100. Hajian-Tilaki, K., Receiver operating characteristic (ROC) curve analysis for medical 

diagnostic test evaluation. Caspian journal of internal medicine, 2013. 4(2): p. 627. 

101. Heaton, J., et al. Early stabilizing feature importance for TensorFlow deep neural 

networks. in 2017 International Joint Conference on Neural Networks (IJCNN). 2017. 

IEEE. 

102. Hicks, A.L., et al., Evaluation of parameters affecting performance and reliability of 

machine learning-based antibiotic susceptibility testing from whole genome sequencing 

data. PLoS computational biology, 2019. 15(9): p. e1007349. 

103. Kim, J., et al., VAMPr: VA riant M apping and P rediction of antibiotic r esistance via 

explainable features and machine learning. PLoS computational biology, 2020. 16(1): p. 

e1007511. 

104. Feretzakis, G., et al., Using machine learning techniques to aid empirical antibiotic 

therapy decisions in the intensive care unit of a general hospital in Greece. Antibiotics, 

2020. 9(2): p. 50. 

105. Lewin-Epstein, O., et al., Predicting Antibiotic Resistance in Hospitalized Patients by 

Applying Machine Learning to Electronic Medical Records. Clinical Infectious Diseases, 

2020. 72(11): p. e848-e855. 

106. Ayyıldız, H. and S.A. Tuncer, Is it possible to determine antibiotic resistance of E. coli 

by analyzing laboratory data with machine learning? Turkish Journal of Biochemistry, 

2021. 46(6): p. 623-630. 

107. Kavvas, E.S., et al., Machine learning and structural analysis of Mycobacterium 

tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nature 

communications, 2018. 9(1): p. 1-9. 

108. Smith, K.E. and A.O. Smith, Conditional GAN for timeseries generation. arXiv preprint 

arXiv:2006.16477, 2020. 

109. Feretzakis, G., et al., Machine learning for antibiotic resistance prediction: A prototype 

using off-the-shelf techniques and entry-level data to guide empiric antimicrobial 

therapy. Healthcare Informatics Research, 2021. 27(3): p. 214-221. 

110. Hong, J., M.H. Ensom, and T.T. Lau, What Is the Evidence for Co-trimoxazole, 

Clindamycin, Doxycycline, and Minocycline in the Treatment of Methicillin-Resistant 

Staphylococcus aureus (MRSA) Pneumonia? Annals of Pharmacotherapy, 2019. 53(11): 

p. 1153-1161. 

111. Ball, P., Emergent resistance to ciprofloxacin amongst Pseudomonas aeruginosa and 

Staphylococcus aureus: clinical significance and therapeutic approaches. Journal of 

Antimicrobial Chemotherapy, 1990. 26(suppl_F): p. 165-179. 

112. Blumberg, H.M., et al., Rapid development of ciprofloxacin resistance in methicillin-

susceptible and-resistant Staphylococcus aureus. Journal of Infectious Diseases, 1991. 

163(6): p. 1279-1285. 

113. Pascale, R., et al., Use of meropenem in treating carbapenem-resistant 

Enterobacteriaceae infections. Expert Review of Anti-infective Therapy, 2019. 17(10): p. 

819-827. 



 

 

77 

 

114. Sheu, C.-C., et al., Infections caused by carbapenem-resistant Enterobacteriaceae: an 

update on therapeutic options. Frontiers in microbiology, 2019. 10: p. 80. 

115. Jonathan, N., Screening for extended-spectrum beta-lactamase-producing pathogenic 

enterobacteria in district general hospitals. Journal of clinical microbiology, 2005. 43(3): 

p. 1488-1490. 

116. Garcia, A., T. Delorme, and P. Nasr, Patient age as a factor of antibiotic resistance in 

methicillin-resistant Staphylococcus aureus. Journal of medical microbiology, 2017. 

66(12): p. 1782-1789. 

117. Breijyeh, Z., B. Jubeh, and R. Karaman, Resistance of gram-negative bacteria to current 

antibacterial agents and approaches to resolve it. Molecules, 2020. 25(6): p. 1340. 

118. Holzinger, A., et al., Towards multi-modal causability with Graph Neural Networks 

enabling information fusion for explainable AI. Information Fusion, 2021. 71: p. 28-37. 

119. Safari, S., et al., Evidence based emergency medicine; part 5 receiver operating curve 

and area under the curve. Emergency, 2016. 4(2): p. 111. 

 


	Applications of Machine Learning in Medical Prognosis Using Electronic Medical Records
	Recommended Citation

	tmp.1675096203.pdf.TnKSP

