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ABSTRACT 
 

PIPELINE FOR CALCULATING CALORIES FOR PRINT RECIPES WITH MINIMAL USER INTERVENTION 
 

by 
 

Karl Holten 
 

The University of Wisconsin-Milwaukee, 2022 
Under the Supervision of Professor Susan McRoy 

 
Abstract: The thesis will provide a pipeline to estimate calorie counts from print recipes. The 

pipeline takes scanned recipes from cookbooks and uses Optical Character Recognition (OCR) to 

convert the scanned images of recipes to text. Several OCR tools were tested for their accuracy 

on fractions using a sample of the data, and the most accurate tool is used on the data. Next, a 

specially trained named entity recognition model is used to identify ingredients, quantities and 

units. These ingredients are used to search a database of values from the FDA to compute a 

calorie count for the recipe. The thesis tests the effectiveness of search by examining 

performance over 100 of the most common ingredients in the corpus of recipes. Finally, the 

thesis tests the performance of the model on a set of recipes, and found to estimate the calorie 

count at least as accurately as other automated approaches, such as those based on image 

recognition. 
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Thesis 
 

1) Introduction 

1.1) Problem and Purpose of Thesis 

 This thesis aims to help people improve their health by making it easier for them to 

track their consumption of calories when they prepare foods using recipes from printed books 

that do not provide a nutritional analysis. Obesity is a growing problem in the United States. 

Twenty years ago, no state had an obesity rate above 15%, but now only one state is below 

20%, and two thirds of states have rates above 25% [1] Obesity increases the risk of various 

health conditions such as heart disease, stroke, diabetes, depression, and cancer. [2] There are 

a variety of techniques and strategies recommended by the National Institutes of Health to 

reduce obesity, one of which is to utilize a food log to track calorie consumption.[3]  

Dietary self-monitoring (DSM) is considered a cornerstone of behavioral weight loss 

programs. DSM has been significantly linked with weight loss in a variety of studies, and is 

widely considered an effective strategy for weight loss. [5] Tracking frequency is also correlated 

with positive weight loss outcomes.[7] However, DSM as an approach has a number of flaws 

which must be noted. Tracking all foods is often considered burdensome and research has 

shown a significant increase in the number of incomplete records as more days of records are 

kept. Underreporting calorie consumption is also frequent. One study indicated obese users 

underreported their calorie consumption between 20-50%. [9]  

Prior to the advent of computer technology, individuals used paper logs, but computer 

logs are now frequently preferred. A 2015 study by Hutchensson et al found that half the 

participants logging their calorie intake preferred computer recording, 44.4% preferred 
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smartphone and only 5.6% preferred paper-based records. [4] Burke et al have found that 

individuals utilizing applications for DSM rather than a paper log were significantly more 

adherent to logging. Over three months, adherents to applications had a 70% retention rate, 

versus a 30% retention rate for paper logging. [8] Hutchensson et al also found that the 

accuracy of calorie logging did not significantly differ between paper versus digital approaches. 

[4]  

With the advent of computers and mobile phones, a variety of applications have been 

developed to assist with tracking calorie consumption. The functionality of these is discussed in 

detail in section 1.2. Some of these applications have tools to import online recipes and 

estimate their calorie intake. However, not all recipes are available online. In 2017, roughly 17.8 

million cookbooks were sold in the US, showing that traditionally published recipes are still 

widely in use. [6] Many of these cookbooks are oriented toward health and dieting and could 

be a useful resource for weight loss. Currently, DSM for cookbook recipes using these 

applications requires the user manually enter the ingredients and their quantities. Developing 

an application to automate calculating calories and assist with tracking these recipes would 

possibly help address two issues: it may help improve the accuracy of self-reported calorie data, 

and it would help reduce the burden of using a calorie counting application. 

The objective of this thesis is to produce a pipeline that takes images of cookbook 

recipes and convert them into accurate calorie counts with minimal user intervention. Accuracy 

will be determined by comparing the values from automatically processed images with those 

calculated by hand. Such an application could reduce the burden of DSM and help improve 

adherence to DSM and weight-loss. This pipeline starts by taking images of text from a selection 
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of cookbooks, and utilizing an OCR tool to convert images to text. Multiple OCR engines have 

been tested, and the most accurate has been selected for the application. Next, the pipeline 

uses a custom-trained named entity recognition model to label key information such as 

ingredients, quantities and units. The pipeline uses a vector space search on a database of 

ingredients to find calorie information, and calculates an estimated calorie amount for each 

ingredient. Finally, it sums the ingredient calories and calculates a final estimate per serving. 

This thesis will assess the rate of error in the application, comparing it a fixed benchmark of 

85%. This benchmark is based on the rate of error for calorie counts estimated from state-of-

the-art automated calorie estimation from images of food. [36]  

 

1.2) Existing Applications and Their Accuracy 

Many calorie tracking applications exist, with varying levels of recipe support. Many of 

these applications support adding recipes but require manually inputting the ingredients. Some 

examples of this type of applications include Lose It!, ControlMyWeight or LifeSum. Other 

applications have built in databases of recipes such as MyNetDiary, Applications such as 

MyFitnessPal support importing digital recipes from websites, but not doing OCR on print 

versions of recipes.  

Recipe manager applications also have limited functionality to support automated 

ingestion of recipes from cookbooks. Many apps such as Cookmate, Master Cook, Mealime, 

Paprika 3 and Whisk do not support OCR. Some applications do support OCR in a limited 

fashion, such as Basil, Yummy, and The Cookbook App, but these applications require manual 

intervention from the user to draw multiple bounding boxes and do not support calorie 
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tracking. Some applications, such as BigOven, utilize data entry workers to type up recipes but 

this is not an automated solution.  

Some applications, such as Yummly, utilize a camera to take pictures of the cooked 

recipe and attempt to estimate calorie values, however estimating calorie consumption based 

on photographs of food is a difficult problem. Estimating by picture also requires the user to 

create a recipe at least once before getting calorie information.  

The accuracy of these applications varies based on their sophistication. However, many 

picture-based applications have accuracy ratings around 85%. Zhang’s picture-based application 

had 85% accuracy over a controlled subset of 15 foods using standardized photography. [39] 

Okamoto and Yanai found “accuracy of image-based calorie content estimation shows that 79% 

of the estimates are correct within ±40% error and 35% correct within ±20% error” [38] 

GoCARB is another picture-based model which has an individual food accuracy rating of 85%. 

[40] Poply and Jothi also used a picture based approach, and found their accuracy on individual 

foods on items not used for training to be 85.74%. [41] The 85% mark will therefore be used as 

a guideline for the feasibility of the application. 

An application that takes photos of recipes and converts them to estimated calorie 

values would be a novel and useful tool for tracking calories, as it could prove faster than a 

manual approach and more accurate than a photographic approach. 

 

1.3) Architecture 

The Print Recipe Calorie Calculator is a python application designed to prototype a 

workflow that could be utilized in a future mobile phone application. An outline of the pipeline 
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is displayed in Figure 1.1. We start with an image of a recipe. In this prototype, the images are 

provided from a corpus of recipes from the Cookbook and Home Economics Collection from 

archive.org. [28] The image is processed via Amazon Textract OCR to obtain a text version. After 

this, key elements required to calculate the calories for a recipe (such as ingredients, units, and 

quantities) are extracted from the text using a specially trained named entity recognition 

model. Next, quantities, units and ingredients are grouped together, accounting for special 

cases such as countable items and unquantified amounts. Food information from the USDA 

FoodData Central database has been adapted into a data file for search. Each query searches 

the database using cosine similarity and then applies a weight based on the distribution of 

ingredients across the corpus. Calories per unit are pulled from the database and combined to 

create an estimate of the calorie value of the recipe, which is displayed for the user. 

 

Figure 1.1 Overview of application pipeline 
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2) Background 

2.1) OCR Applications and Their Architecture 

 

Figure 2.1 Comparison of one recipe over multiple OCR solutions. 

 

 Several off the shelf solutions were considered for the OCR component of the 

application. Side-by-side comparisons between the performances can be seen in figure 2.1. Two 

of these solutions are proprietary and one is open source. Less information is publicly available 

about the inner workings of the proprietary solutions, so they will be discussed first.  

Both Amazon Textract and Google’s Document AI advertise the ability to do both OCR and 

entity linking. Amazon Textract was released in May 29th, 2019. Amazon’s vice president of 

machine learning, Swami Sivasubramanian, stated: “The power of Amazon Textract is that it 

accurately extracts text and structured data from virtually any document with no machine 
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learning experience required. Subsequently, developers can analyze and query the extracted 

text and data using our database and analytics services.” [12] A similar proprietary product is 

Google’s Document AI, released in November 2020. Document AI also promises to perform OCR 

and entity linking, by “transforming documents into structured data” using automation. [13] 

However, both applications are aimed as business audiences, and their entity linking 

functionality was found to be targeted toward table-based information. While these solutions 

are useful for OCR, their entity linking components are not useful for calorie calculation.  

The open-source program Tesseract tells us more about the workings of OCR. Tesseract 

is an OCR solution originally developed by Hewett-Packard between 1985 and 1995. It was 

revised by Google and released into the public in 2005 and since then has been maintained by 

an open-source community. [10] Tesseract was not selected as the OCR solution for this 

application, but given the proprietary nature of the other two OCR solutions, understanding its 

architecture gives us an insight into how a modern OCR program works. While Google and 

Amazon do not publicize the details of their algorithms, articles from Google research staff have 

released articles discussing the various lessons learned from Tesseract, which have presumably 

influenced their own OCR pipeline. [17] Tesseract’s architecture was explained in a research 

paper on release, and follows a step-by-step pipeline.  

The first step Tesseract performs is binarization. Binarization is a form of preprocessing 

which t urns color and greyscale images into black and white ones. This is done as a way of 

simplifying the task of matching characters, since matching pixels can be turned into a binary 

judgement of yes/no rather than trying to compare shades of grey. The simplest method for 

doing binarization is to set a threshold where greyscale pixels below a certain saturation value 
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are considered white and images above the threshold are considered black. There are a variety 

of ways to calculate this threshold. For example, the Otsu binarization method finds the median 

in a histogram of all greyscale saturation values in the image. Local binarization algorithms 

consider an N-by-N window of pixels and calculate a saturation threshold based on that window 

instead of the entire document. As a general rule, global methods perform better on greyscale 

images and local ones on colored images or ones under intense illumination. [16] Tesseract 

uses a local binarization technique. 

Next, Tesseract performs a page layout analysis. First, Tesseract detects vertical lines 

and images in the binarized document. Tesseract uses the concept of tab indented areas to 

help determine possible groupings for text. [18] Tesseract groups together tab-stop areas of 

text as blobs. The blobs are then refined by performing connected components analysis, which 

is a task designed to assign groups to clusters of pixels.  Once this is done, the blobs are ready 

to be organized into text lines and words. [18] 

Multiple passes are made over lines to determine if the text is in a fixed pitch font or if it 

is a proportional font in a process called character segmentation. Character segmentation is the 

process where images of lines of text are broken down into individual characters. A key aspect 

of this process is the font used. Fonts can be broken into two general categories, based on the 

relative widths of characters. A fixed-pitch font is one where all characters occupy the same 

amount of space on the page. A proportional font is one where each character occupies a 

different amount of space depending on the width of the character. For example, a fixed width 

font would have characters “W” and “l” as occupying the same amount of space on the page, 

where a proportional font would allocate space proportionate to the size of the character. By 
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selecting fixed-pitched fonts, early systems could effectively hard code the expected size of 

characters. Modern systems cannot make this assumption and therefore have to employ more 

complex methods of isolating characters from each other. [15] In Tesseract, if text can be 

extracted with a reasonable confidence value, it is considered fixed pitch. Otherwise, text is 

assumed to be proportional and broken into characters based on the detected character cell 

size. [14]  

The product of these preprocessing steps is to create a set of feature vectors with three 

dimensions- x-position, y-position, and direction. A length dimension is also calculated, but as a 

preprocessing step the vectors are broken down into a set of features of equal length. Once 

features are extracted, these attributes are measured to see which prototype features they are 

most similar to by using Euclidian distance. Characters consist of a cluster of features, and 

ultimately test features are assigned to a character using a K Nearest Neighbors, or KNN 

classification algorithm. KNN works by having a set of template features that have already been 

classified. The “nearest neighbors” or closest features to our test features, all have a class. A 

plurality vote is taken, and the test feature is assigned the class that gets the most votes. In this 

case, the classes that are assigned are characters in the English language. [18]  

2.2) OCR Performance Considerations 

 There are two considerations in selecting an OCR solution. One is fraction performance 

and the other is general performance. Recipes often have fractions of a unit of measurement, 

such as a 1½ cups of milk or ¾ tablespoons sugar. Getting the quantities correct is important for 

calculating nutritional information, so OCR solutions for recognizing recipes must successfully 
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recognize different types of fractions. Part of the method is performing a test to assess 

performance for fractions. 

For general performance, benchmarking studies show that both proprietary solutions 

outperform Tesseract. A 2021 study by Hegghammer show that Google and Amazon’s OCR 

solutions generally have more accurate performance than Tesseract for larger text data sets. 

Hegghammer used social science documents as a test set and introduced various types of visual 

noise that might be encountered when photographing documents such as blur effects, ink 

stains, and scribbles. Document AI performed best, with Textract described as a “close second.” 

[11] Both proprietary solutions are therefore preferable for higher performance than Tesseract. 

 

2.3) Named Entity Recognition Definition 

 Named entity recognition (NER) is a natural language task which is necessary for our 

application. The premise of NER is that documents contain certain important entities that need 

to be recognized in an unstructured text, and linked to entries in a structured knowledge base. 

Often these are named entities such as people or places, but the entities can be anything that 

belongs to a given class or category. For our application, the named entities are food, units of 

measurement, and quantities of those units of measurement, as well as function words that 

add additional information. Detailed information about the tags applied is available in the 

appendix. 
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2.4) IOB Tagging 

 One common format for tagging in Named Entity Recognition is called IOB tagging. This 

format was established by Ramshaw and Marcus to make the boundaries of tagged entities less 

ambiguous. In this format, tags starting with a “B” mark the left-most beginning part of a chunk 

of words that belong to a single tag, or the ‘beginning’ of a tagged entity. Words that are part of 

the same tag that occur directly after the “B” are marked with an “I”, for ‘inside’. Words not in 

any tagged category are classed as “O” for ‘outside’. [35]  

This is useful when two tagged entities are right next to each other. For example, a 

sentence reading “1 tsp of salt, baking soda, brown sugar” would have five tokens tagged as 

ingredients next to each other- “salt”, “baking”, “soda”, “brown” and “sugar”. Without IOB 

tagging, it would be difficult to reconstruct which adjacent words are part of the same tagged 

chunk. However, with IOB tagging, “salt”, “baking” and “brown” are all given B tags, and both 

“soda” and “sugar” would be given an I tag. This simplifies grouping by the parser. 

 

2.5) Named Entity Recognition Performance 

 Performance for NER models are generally evaluated by calculating a F1 score, which 

itself is determined by using the harmonic mean of scores of precision and recall. There are four 

possible outcomes when a binary classification is given to an object by a model. A true positive 

(TP) is when a class is correctly assigned to a word by a model. A true negative (TN) is when the 

model correctly labels the word as not belonging to a class. A false positive (FP) is when the 

model incorrectly labels the word as belonging to a class when it does not. A false negative (FN) 

is when the model incorrectly labels a word as not belonging to a class, when it actually does. 
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Precision measures the number of relevant words among all words labeled as positive. Recall 

measures the number of relevant results out of all words that are actually belonging to the 

class, including false negatives. [25] 

  Precision and recall have an inverse relationship. A high recall can be trivially achieved 

by classing all words as positive, but this would result in poor precision. A high precision score 

can easily be achieved by having a very high threshold for labelling a word as positive, but this 

results in few words being labelled and result in a low recall. A strong model will have good 

performance scores for both precision and recall. The F1 score is the harmonic mean between 

these two scores, and therefore used for classifying accuracy in models. The full equations for 

all three measures can be viewed in Figure 2.2. [25] 

 

Figure 2.2 Formulae for precision and recall and F1 scores 

 

  

2.6) Transformers 

 Natural language processing models have a variety of architectures, but recently a 

model called transformers has come to provide state-of-the-art performance for many natural 

language tasks, including NER. The General Language Understanding Evaluation (GLUE) 
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benchmark averages the performance of NER and language understanding across several test 

question sets. As of July 2022, six of the top ten highest performing models on GLUE are various 

implementations of this machine learning approach. [22] In this section, we will discuss the 

architecture of transformers.  

The initial paper describing transformers was published by Vaswani et al working for 

Google in 2017. Transformers have two types of components in their architecture- encoders 

and decoders. There are multiple encoders and decoders in the model, contained in an encoder 

and decoder stack, respectively. Each encoder consists of a multi-headed self-attention 

mechanism and a position-wise feed-forward network. Decoders add an additional layer, which 

performs self-attention over the outputs provided from the encoder stack. We will describe 

each component of encoders, and then briefly discuss how decoders use these elements. [21] 

The self-attention function first takes an input word vector, and calculates query, key 

and value vectors. These vectors are initialized randomly and adjusted using training data using 

residual dropout and label smoothing. Next, the function takes the dot product of the query 

and key vectors to calculate a score for each other word vector in the sentence. The next step is 

to divide the scores by the square root of the size of the key vector. This step is done because 

as the size of the key vector increases, the softmax function used in the next step produces very 

small gradients, reducing the effectiveness of the algorithm. Scaling the dot products results in 

more useful gradients. A softmax function takes the scores and converts them into a probability 

scaled from 0 to 1. Higher scores get a higher probability, and lower scores get lower 

probabilities. Next, the values vector gets scaled by the output of the softmax function, so that 

more important words get higher value scores, and less important ones get smaller values. 
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Finally, these weighted value vectors are summed up and turned into an output vector. The 

formula for this is expressed in figure 2.3. The multiheaded nature of the attention function 

means that the attention calculation is run multiple times. This gives us several differently 

initialized weights for query, key and value vectors. Once all of the different attention heads are 

calculated, they are concatenated and multiplied by a weight matrix, trained with the model, 

resulting in the output for the attention mechanism.  

The feed-forward function is similar to convolutions in a very shallow neural network. 

According to Vashwani et al, “[The feed-forward function] consists of two linear 

transformations with a ReLU activation in between… Another way of describing this is as two 

convolutions with kernel size 1.” The formula for this function can also be seen in Figure 2.3. 

After both the self-attention and feed-forward mechanism, there is a normalization step which 

serves to reduce training time. [26] Finally, the results of the encoder are fed forward to the 

next encoder in the stack as well as all decoders in the decoder stack.  

 

Figure 2.3 Formulae for transformers (Vashwani [26]) 
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One more important element of this transformers model is positional encodings, which 

are added to the input word vectors in order to account for each word’s position in a sentence. 

There are a variety of ways of doing positional encodings. The method used in the initial 

transformers paper is described in Figure 2.3. Vashwani et al state this method was chosen 

because “we hypothesized it would allow the model to easily learn to attend by relative 

positions, since for any fixed offset k, P Epos+k can be represented as a linear function of P 

Epos.” In other words, each word in the model’s sentence requires a relatively small amount of 

work to attend to another word in the sentence. [26] 

 

2.7) BERT- Bidirectional Encoder Representation from Transformers 

 Transformers are the key component in a language model called BERT, which stands for 

Bidirectional Encoder Representations from Transformers. Many previous models to BERT 

attempted to predict output by reading in each word from either left-to-right or right-to-left. 

BERT instead considered the entire document at once, masking a percentage of random words 

and asking stacks of encoders and decoders to predict the output. The model was initially 

trained over a large corpus of data of hundreds of millions of words from Wikipedia and the 

BooksCorpus. The model can be fine-tuned on a smaller set of training data to perform a variety 

of NLP tasks, such as NER. This is done by adding another encoder layer with outputs 

corresponding to the various entities that need to be recognized. [27] 

Food recognition is an emerging topic of NER research. Popovski et al conducted a 

survey of NER techniques in 2020 for food on a test set of 1000 manually annotated recipes. 

The best performing model by far was FoodIE. FoodIE was based on a more comprehensive NER 
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program called drNER which was designed to extract evidence-based nutritional impacts from 

scientific articles.[32] FoodIE was a simplified version of this designed to focus on food 

identification, using a manual ruleset and a complex set of handwritten rules to determine 

foods based on parts of speech from each sentence. FoodIE had a F1 rate of 96%. [23] However, 

transformer-based models were not tested as part of the survey. Stojanov et al used a 

transformer-based model in a 2021 paper, and their F1 performance on distinguishing food vs 

non-food had an F1 score ranging from 93-94%. [24] 

 

2.8) FoodData Central 

 The United States Department of Agriculture maintains a database called FoodData 

Central, containing many common ingredients and their calorie information. [19] FoodData 

Central contains a variety of useful information that is used in the calorie counting application. 

An extensive list of ingredients is maintained in the database, and each ingredient is associated 

with a variety of nutrients including a metabolized calorie count calculated with Atwater 

General Factor System. [20] 

FoodData Central supplies calorie counts per 100g of a given food for every ingredient. 

Frequently, alternative unit measurements are given for many ingredients. These include 

common quantity types such as unit count or volume. These alternative units have a grams per 

unit associated with them, which are also useful since most recipes do not contain 

measurement by grams. This is the basis for the database used by the application to ultimately 

calculate calorie values. 
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2.9) Vector Space and Word Embeddings 

 The FoodData Central database has thousands of items. In order to calculate the 

calories for an ingredient, for each candidate ingredient in a recipe, we must isolate the most 

similar ingredient type in FoodData Central to the entity string we have for our ingredient. 

Matching (or search) is an information retrieval task of finding the most relevant document for 

a given sample query. 

Ingredients may not exactly match their FoodData Central counterpart, and simple 

similarity metrics are not always sufficient to bridge the gap. For example, “1 can of green 

beans” may be stored in the database as “Beans, snap, green, canned, regular pack, drained 

solids.” [19] Simple string match metrics such as Levenshtein distance were tested over a small 

ten item data set and were not able to match several ingredients, including the green beans 

example above.  

Many search algorithms used for information retrieval tasks make use of a vector space 

model, where, originally, each word in a vocabulary comprises a unique dimension in the space, 

and each term corresponds to a unique element in a vector. [37]  

  Vectors are objects with magnitude and direction, and can be thought of as rays or 

arrows pointing out in multi-dimensional space. In a vector space model, the first step to 

conducting search is to embed documents and the query as vectors, and the second step is to 

use a similarity metric between the query vector and each document vector. [31] 

“Word embeddings” are a related but somewhat different concept to vector space. 

Embedding is a term used for designating a vector representation of a single word, where the 

values of the elements have been optimized to help distinguish the meaning of the word. There 
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are multiple ways of generating word embeddings, which can vary greatly depending on the 

model used to generate them. 

 

2.10) Food2Vec Word Embeddings 

 Some of these embedding methods have been applied to the food domain. BERT 

generates embeddings, and those embeddings were considered for search. Published tools 

such as FoodNER [30] and BuTTer [29] provided code for creating BERT embeddings for food, 

but lacked a set of pretrained embeddings that could simply be used as part of a search tool.  

Food2Vec is a publicly available set of word embeddings for food. The embeddings files 

were in JSON and publicly available on github. They were adapted with a python script to work 

with gensim for further extension as a search tool. Food2Vec also had the practical advantages 

of a pip repository in python, meaning that basic matching functions could be easily tested. 

Food2Vec embeddings were trained using Word2Vec training tasks over a collection of 95,896 

recipes pulled from the Allrecipes.com website. [34] 

 

2.11) Word2Vec Training Tasks 

 Word2vec trains its word embeddings on two related tasks. Word2Vec looks at a sliding 

window of words which we will say is size N. Half of the words in this window occur directly 

before our target word, and half of the words occur directly after it. The “Continuous Bag of 

Words” training method takes as an input the N-1 words surrounding our target word and tries 

to guess our target word. The “skipgram” method flips the task, taking as an input the one 

‘target’ word and trying to predict the surrounding context of N-1 words.  
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Word2Vec also selects random words from our corpus that are not related and asks the 

model to predict that these words are in fact unrelated, in a process called “negative sampling.” 

Word2Vec conducts its training by attempting either of these two tasks over a corpus. First, the 

model’s initial values are randomized. The model guesses the target word or words based on 

the task, then checks to see what the actual value of the word or words is. It calculates an error 

percentage based on how correct or incorrect the guesses were, and adjusts the embeddings of 

each word in the task accordingly. It does this words that are correct, and conducts negative 

sampling to train other words as incorrect. [33] 

2.12) Cosine Similarity 

 Once documents are embedded, we have to calculate a similarity metric between our 

query embedding and the document embeddings for the corpus. Distance between two 

documents seems like an obvious choice for a similarity metric, but distance is susceptible to 

being strongly influenced by the size of documents. Instead, a metric called cosine similarity is 

more often used, which measures the differences in angle between where two vectors are 

pointing. Calculating the cosine similarity is simply a matter of summing up the dot product 

between each element in the two vectors. For document D and query Q, figure 2.4 shows the 

cosine similarity formula. W_tiQ represents the ith term in the query, and W_tiD represents the 

ith term in the document. 

 

Figure 2.4 Formula for cosine similarity (Singhal [31]) 
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3) Method 

3.1) Outline of Application Architecture 

 The application’s architecture starts with the input- an image of a recipe. Next, the 

Textract OCR engine is used to obtain a text version of the recipe. The application then uses a 

BERT NER model to label important sections of text, such as ingredients, quantities and units. 

These sections of text are then used to search a database with food calorie values called 

FoodData Central. Pretrained word embeddings from Food2Vec are used to embed the 

ingredient and the database descriptions in vector space. Cosine similarity is then calculated to 

find the closest matching ingredients and database entries. A logarithmic weight based on 

ingredient counts over our corpus is multiplied with the cosine similarity score. The highest 

result is pulled from the database and calories are calculated for the ingredient. The final 

calorie output is a sum of the calorie values of each ingredient.  

Evaluation of the results will be done by running 5 recipes from the corpus through the 

pipeline. Calories will also be manually tabulated for those recipes. The amount of difference 

between the output of the calorie counting pipeline and the manually tabulated calorie count is 

the percentage of error. The percentage of error will be averaged to come up with an overall 

accuracy for the application.  

A detailed outline of each step in the pipeline continues below. 

3.2) Corpus Data 

 Test data is used to train and assess the quality of a number of functions in the pipeline. 

All test recipes were pulled from a corpus of 19 cookbooks from the Cookbook and Home 

Economics Collection were used from archive.org. [28] 
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3.3) Selecting an OCR Application 

 The first step was to assess the accuracy of various OCR engines on a crucial aspect of 

recipes, which is the recognition of fractions. To evaluate OCR functionality, a test set of four 

pages from three different cookbooks from the corpus were used as input to three OCR 

engines- Tesseract, Document AI and Textract. Pages with a variety of fraction types on them 

were selected, so quantities would not just consist of one fraction like ½ or ¼. In the test set, a 

total of 38 fractions were spread over the four pages, with 23 of them being ½ and 15 being 

other fraction types. The accuracy of the OCR solution was manually determined. After testing 

multiple applications, Amazon Textract was determined to be the most accurate and selected 

for the application. 

3.4) NER Model 

 Once a text version of the recipe is obtained, the remaining steps to computing calories 

are to analyze the text and categorize all of the necessary information to calculate the calorie 

content. A BERT model was trained specifically for this task. Pages with recipes from the baking 

sections were used to create training data. (It was noted that every one of the cookbooks 

selected had a baking selection.) The images were run through Amazon’s Textract OCR engine 

and then manually marked up using the BIO schema with the tags specified in table 3.1. 

Tag Definition 

ING Name of ingredient 

UNIT Type of measurement 

QTY Number indicating amount of unit 

CONT Countable ingredients lacking units 

NQT Ingredients with no quantity specified 

FUNC Indicates parser should function differently 

based on word 
Table 3.1 Tags and Definitions (Details in Appendix)  
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The coding was done manually by the researcher. Additional information about the 

classification scheme is available in appendix A. One hundred thousand words were included in 

the training set. The training data was split into train and test sets. 90% of the inputs were set 

as training set and the remaining 10% was test set. Training data was iterated over 10 epochs. 

3.5) Parsing Queries 

 In order to calculate calories, ingredients, units and quantities all need to be present. 

The parser groups tagged words together into complete sets called queries. The process is 

documented in figure 3.1. If any information is missing from a query, the calorie calculation 

cannot be performed. The parser takes several passes to create a query. As a first pass, the 

parser strips out all O-tags generated by the NER. The parser detects division symbols and 

ensures they are grouped together with a numerator and denominator to make a fraction.  

 

Figure 3.1 Parser Workflow 
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The parser goes through the tokens backwards, combining I-tags with the B-tags that are to 

their left in the original document.  

Query sets are formed next, which require ingredient, unit and quantity information. 

New queries are created every time a QTY or NQT tag is encountered. NQT ingredients are 

given one default serving unit. UNIT and ING tags are put in query sets as they are encountered. 

CONT tags are classified as both unit and ingredient elements of the query, since they represent 

both a unit and ingredient. For complex queries involving FUNC, any entities following the word 

“or” are ignored, since only the first option is selected. Entities following the word “and” are 

given copies of the quantity and unit information from the previous query. All queries are then 

given a final pass and any queries missing an ingredient name or quantity are discarded.  

3.6) Search 

 Once the data has been formulated as queries, the model must match each query to an 

entity in FoodData Central. First, the model embeds the ingredient information from the query 

in vector space. Next, the model calculates the cosine similarity between the ingredient and all 

the descriptions of food in our database, which includes data from FoodData Central, modified 

descriptions, weights, and additional entries to make up for gaps in FoodData Central’s 

database.  

Weights are applied to the cosine similarity scores. The weights are softmax scores, 

calculated by taking the log of the number of times an ingredient occurred in the corpus. Each 

ingredient’s softmax score is multiplied by the cosine similarity score to get the final weighted 

similarity metric. The top scoring ingredient’s calorie information is pulled from the database. 

Unit information is calculated based on the nearest string match. 
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3.7) Weighting 

 The weights used as part of the search process were derived by running the previously 

trained ingredient recognition BERT model over a 400,000 token selection from the archive.org 

collection of cookbooks. There were found to be 29,543 occurrences of ingredients and 1342 

unique ingredients in this selection. As figure 3.2 shows, certain ingredients were much more 

likely than others to be in a given recipe. The top 25 ingredients made up 54.6% of all 

occurrences of ingredients in a recipe. The top 100 made up 76% of all occurrences of 

ingredients. Applying the weighting function requires manually matching the search result, so 

only the top 100 most common unique ingredients had their softmax scores set. The remaining 

unique ingredients in the database were set to a softmax score equivalent of 6 occurrences, 

because that is approximately equal to the 6794 remaining ingredient instances spread evenly 

over the remaining 1242 ingredients.  

 

Figure 3.2. Ingredient distribution over corpus 
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3.8) Calculating Calories 

 The number of calories in a given recipe is calculated as the sum of the calories of each 

ingredient contained in the recipe. For a given ingredient i, we calculate the calories multiplying 

together three numbers- g_i, u_i and q_i. The quantity of units of measurement in the 

ingredient in the recipe is represented by q_i. The number of calories per gram of a given 

ingredient is g_i. The number of grams per unit of measurement in the recipe for the ingredient 

is represented by u_i. q_i is taken from the query, and the other two quantities are taken from 

the ingredient and unit matched in FoodData Central. Figure 3.3 shows an example calculation 

of a single ingredient’s calories. 

 

Figure 3.3 Calculating calories for a single ingredient 
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To obtain a calorie count of the entire recipe, the calorie count application calculates the 

calorie counts of all ingredients and sums them together. In a recipe with j as the total number 

of ingredients, the expression we will use to ultimately calculate a recipe’s calorie value is 

represented in figure 3.4. Once calculated, we divide by the number of servings s to get a 

calories per serving count.  

 

Figure 3.4 Equation for calories per serving for a recipe 

4) Results 

4.1) OCR Fraction Performance 

 ½ ¼ 1/8 ¾ 2/3 1/3 Total % 

Accuracy 

Ground 

Truth 

23 9 3 1 1 1 38 1.00 

Tesseract 0 0 0 0 0 1 1 0.03 

Amazon 

Textract 

18 9 3 1 0 1 32 0.84 

Google 

Document 

AI 

22 5 0 1 0 1 29 0.76 

Table 4.1 OCR engine performance for fractions 
 

Table 4.1 demonstrates the overall results of the fraction OCR on the test set. Tesseract’s 

accuracy was only 3%, making it unacceptable as a solution. Google Document AI had 76% 

accuracy. Textract proved the best at recognizing fractions with an overall accuracy of 84%. 

Moreover, once automated corrections were performed to split the double-digit numerators, 

this accuracy increased to 92%. Because Textract had the highest accuracy for fractions, it was 

selected at the top candidate for the project’s OCR component. 
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4.2) NER Model Performance 

 The calorie counter app F1 score was 96.4%. Accuracy was 99.6%. Precision was 96.0%, 

and the recall was 96.7%. Validation loss decreased for both training and test data. Figure 4.1 

displays the training loss decreasing over 10 epochs.  

 

Figure 4.1 BERT model training loss 

4.3) Search 

 To test ingredient search, the top 100 most common ingredients were formatted as 

queries and searched using the weighted cosine similarity metric. Of these ingredients, 76 

directly matched the term, 18 incorrectly matched with a different ingredient, and 6 were 

incorrectly chunked partial ingredients (such as “baking”, “green” or “grated”). Disregarding the 

incorrectly formatted ingredients, the success rate for searching correctly formatted 

ingredients was 80.9% for the top 100. 
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The top 25 most common ingredients had a higher success rate. Of these ingredients, 23 

directly matched the term, 1 incorrectly matched and 1 was incorrectly labelled (“baking”). This 

would make for a 92% success rate over the most common ingredients. 

4.4) Full Pipeline 

 Five actual images of recipes were also tested on the entire pipeline. Full calorie counts 

were not provided for the recipes in the corpus and as such were not able to be assessed. 

However, the results of each ingredient search were manually reviewed. 37 ingredients were 

successfully matched, and 2 ingredients were not correctly matched. This was an ingredient 

matching success rate of 94.9%. Calorie results were manually calculated and compared to the 

calories suggested by the pipeline. The calorie counts were 96.5% accurate. 

5) Discussion 

 
Figure 5.1 Comparison of one recipe over multiple OCR solutions. 
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5.1) OCR Performance on Fractions 

 Based on manual inspection, testing revealed several types of errors. Tesseract failed 

outright to recognize any individual fraction characters, such as ¼, with the only success being a 

fraction that was not a special character (e.g., “1 / 4”). Proprietary OCR solutions performed 

much better, but not perfectly. Figure 5.1 (page 28) demonstrates how each OCR solution 

performed on a single recipe, and also shows the two types of errors that occurred, namely, 

incorrect denominators and incorrect mixed fractions.  

Incorrect denominators were more common in Document AI, where most fractions 

were recognized as ½, regardless of their actual denominator. ½ was the most frequent fraction 

in the test set, so Document AI still managed to be relatively accurate overall. Textract 

performed much better at recognizing denominators and numerators, missing only one out of 

the fifteen non-½ fractions. This type of error is difficult to sanity check, as it is feasible that a 

recipe would have either ¼ cup or ½ cup of a given ingredient. Figure 5.1 (page 28) 

demonstrates how 1/8 cup chopped nuts in the original recipe becomes ½ cup chopped nuts in 

Document AI. 

Incorrect mixed fractions were also an issue. Incorrect mixed fractions occurred when 

numbers such as 1½ had whole number components that were concatenated with the fraction, 

so 1½ might be recognized as 11/2. Document AI often made the distinction between fractions 

and whole numbers, but Textract did not perform as well in recognizing the mixed nature of the 

fraction. For example, in Figure 4.1 we can see that Textract successfully recognized each 

number in the fraction, but did not put a space between the whole number and the numerator 

of the fraction, resulting in the double-digit numerator 31/2 instead of 3½. This is a problem, 
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but not a severe one, as it is relatively easy to detect and correct during post-processing. Most 

recipes will more be more likely to call for ingredients with denominators of 2, 3, 4 or 8, where 

a double-digit numerator would be noticeably wrong. The only double-digit denominator likely 

to be used is 16, but it would be unlikely for a recipe to call for 11/16ths of an ingredient, rather 

than some easier to measure but roughly equal number like 2/3rds.  

Textract was the highest performing model, but it also seems likely that Document AI 

and Tesseract were either not trained on fractions altogether or only trained to recognize ½. 

Further work could be done to improve fraction performance by including more fractions in 

training data for OCR models. 

5.2) NER Model Performance 

 For the custom BERT model, overall results were in line with other models. As discussed 

in the background section, FoodIE had a F1 rate of 96% and Stojanov et al had a transformer-

based model with a F1 score ranging from 93-94%.[23] [24]  

While the calorie counter app has a slightly higher F1 score than the other applications, 

it should be noted that the calorie counter application labelled quantities and units, not just 

food. These tasks were likely more straightforward than labelling food, which could be 

thousands of possible words. For units, there’s a much smaller selection of a few dozen words 

that are typically used. Quantities are usually numbers, either full integers or fractions. These 

more straightforward tasks may have improved the scoring of the labelling overall.  

These results also show that the labelling non-ingredient data can also be done at a high 

level of accuracy. However, there is a limitation regarding having only one person code the data 

that was used to train the NER model. This limitation does not allow this thesis to quantify how 
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difficult or ambiguous this coding task is or to assess inter-rater agreement. These aspects were 

considered beyond the scope of the thesis. 

5.3) Search 

 Search is the worst performing component with an 80.9% success rating for the 100 

most frequently occurring ingredients. The embeddings used for search were domain specific 

but did not match well without the weighting component. Perhaps a more purpose-built set of 

embeddings could improve the match rate. Or perhaps the NER model could be trained to 

directly match ingredients with their respective database entry, avoiding the step of search 

altogether. While disappointing, the top 25 ingredients had a higher success rate of 92%, and 

due to the top-heavy distribution of ingredients, these inaccuracies had less impact on the 

overall results than might be expected.  

5.4) Full Pipeline Test on Recipes 

 Running five test recipes through the entire pipeline yielded a relatively successful 

94.8% ingredient match rate and 96.5% calorie match rate, above the 85% baseline established. 

This demonstrates that the pipeline is feasible. If implemented in a phone application, it could 

be used as a way to improve the speed and accuracy of dietary self-monitoring for people using 

cookbooks. 

5.5) Conclusion 

 Most components of the application were more successful than the 85% benchmark set 

by other calorie counting applications. The OCR application had an accuracy rating of 92% with 

cleanup. OCR could likely be improved further by training fractions more thoroughly. The NER 

model had a 96.4% F1 score, on par with many other food NER tools. Search was near the 
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baseline at 84%. Improved embeddings for search are an area for further research, which may 

improve the success rate even further. Overall, the prototype pipeline for the calorie counting 

app has met the baseline set for general feasibility. 
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Appendix) Tag Classification Scheme 
 

Three pieces of information are required to calculate calories, and the basic tags in the 

classification scheme correspond to these. The ING tag indicates the name of an ingredient, 

which can be used to look up the nutritional information in food central. The UNIT tag specifies 

the unit type, a tablespoon or gallon for example. The quantity of units of measurement in the 

ingredient is captured by a quantity tag QTY. Those are the most basic tags. 

However, recipes were often inconsistently formatted in the training set, which required 

additions to the simple schema above to account for potentially missing information. These 

special categories account for various special cases that exclude or duplicate certain elements 

from the three basic categories. Such special categories include function words, unquantified 

ingredients, and countable ingredients. 

Function words are labelled FUNC, and are words such as “and”, “or” and “of” that 

often served to group ingredients together, provide an option between two ingredients.  “And” 

means that the unit and quantity from the previous ingredient should be applied to the next 

ingredient. For example, a recipe may call for “1 tbsp cinnamon, cloves, and nutmeg.” The 

quantity 1 tbsp applies to each ingredient. “Or” is also a function word that suggests 

alternatives. When a recipe calls for something like “2 tbsp honey or 1 tbsp sugar.”, only the 

first option in groups with “or” is calculated.  

Unquantified ingredients often occurred in recipes, and are labelled NQT, for not 

quantified. This meant that ingredients were listed without any specific quantity or unit 

associated. Very frequently, these were spices. Many recipes simply called for “salt and pepper” 

and not specify any particular quantity or unit, presumably to taste. Other examples might 
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include “eggs, breadcrumbs and oil” for frying, or “broth to cover” certain recipes. The 

FoodCentral database includes default values for each ingredient which represent a common 

amount for a single serving. In the case of unquantified ingredients, such as “broth to cover”, 

the default values from the FoodCentral database are used for calculations. 

Countable ingredients labeled CONT are also a unique case which requires special 

consideration. For foods which come in discrete units, the food may or may not have a unit 

explicitly listed. For example, a recipe may call “3 cups of chopped carrots” or simply “3 

chopped carrots.” In the second case, a carrot is both the unit and the ingredient. The parser 

considers these countable ingredients as both a unit and an ingredient. 
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