
University of Wisconsin Milwaukee University of Wisconsin Milwaukee

UWM Digital Commons UWM Digital Commons

Theses and Dissertations

August 2022

Pipeline for Calculating Calories for Print Recipes with Minimal Pipeline for Calculating Calories for Print Recipes with Minimal

User Intervention User Intervention

Karl W. Holten
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

 Part of the Computer Sciences Commons, and the Public Health Commons

Recommended Citation Recommended Citation
Holten, Karl W., "Pipeline for Calculating Calories for Print Recipes with Minimal User Intervention" (2022).
Theses and Dissertations. 3016.
https://dc.uwm.edu/etd/3016

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more
information, please contact scholarlycommunicationteam-group@uwm.edu.

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F3016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F3016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/738?utm_source=dc.uwm.edu%2Fetd%2F3016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/3016?utm_source=dc.uwm.edu%2Fetd%2F3016&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarlycommunicationteam-group@uwm.edu

PIPELINE FOR CALCULATING CALORIES FOR PRINT RECIPES WITH MINIMAL USER INTERVENTION

by

Karl Holten

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Computer Science

at

The University of Wisconsin-Milwaukee

August 2022

 ii

ABSTRACT

PIPELINE FOR CALCULATING CALORIES FOR PRINT RECIPES WITH MINIMAL USER INTERVENTION

by

Karl Holten

The University of Wisconsin-Milwaukee, 2022
Under the Supervision of Professor Susan McRoy

Abstract: The thesis will provide a pipeline to estimate calorie counts from print recipes. The

pipeline takes scanned recipes from cookbooks and uses Optical Character Recognition (OCR) to

convert the scanned images of recipes to text. Several OCR tools were tested for their accuracy

on fractions using a sample of the data, and the most accurate tool is used on the data. Next, a

specially trained named entity recognition model is used to identify ingredients, quantities and

units. These ingredients are used to search a database of values from the FDA to compute a

calorie count for the recipe. The thesis tests the effectiveness of search by examining

performance over 100 of the most common ingredients in the corpus of recipes. Finally, the

thesis tests the performance of the model on a set of recipes, and found to estimate the calorie

count at least as accurately as other automated approaches, such as those based on image

recognition.

 iii

© Copyright by Karl Holten, 2022
All Rights Reserved

 iv

To my parents, Tom and Rose

 v

TABLE OF CONTENTS

LIST OF FIGURES ... vii

LIST OF TABLES .. viii

LIST OF ABBREVIATIONS .. ix

Thesis ..1

1) Introduction.. 1
1.1) Problem and Purpose of Thesis ... 1
1.2) Existing Applications and Their Accuracy ... 3
1.3) Architecture ... 4

2) Background... 6
2.1) OCR Applications and Their Architecture... 6
2.2) OCR Performance Considerations ... 9
2.3) Named Entity Recognition Definition .. 10
2.4) IOB Tagging .. 11
2.5) Named Entity Recognition Performance ... 11
2.6) Transformers .. 12
2.7) BERT- Bidirectional Encoder Representation from Transformers ... 15
2.8) FoodData Central ... 16
2.9) Vector Space and Word Embeddings .. 17
2.10) Food2Vec Word Embeddings .. 18
2.11) Word2Vec Training Tasks .. 18
2.12) Cosine Similarity ... 19

3) Method ... 20
3.1) Outline of Application Architecture ... 20
3.2) Corpus Data.. 20
3.3) Selecting an OCR Application .. 21
3.4) NER Model ... 21
3.5) Parsing Queries .. 22
3.6) Search .. 23
3.7) Weighting... 24
3.8) Calculating Calories .. 25

4) Results .. 26
4.1) OCR Fraction Performance.. 26
4.2) NER Model Performance .. 27
4.3) Search .. 27
4.4) Full Pipeline .. 28

5) Discussion ... 28
5.1) OCR Performance on Fractions ... 28
5.2) NER Model Performance .. 30
5.3) Search .. 31
5.4) Full Pipeline Test on Recipes ... 31
5.5) Conclusion.. 31

 vi

Bibliography/Works Cited/References ...33

Appendix) Tag Classification Scheme ...37

 vii

LIST OF FIGURES

Figure # Figure title Page #
Figure 1.1 Overview of Application Pipeline 5
Figure 2.1 Comparison of one recipe over multiple OCR solutions 6
Figure 2.2 Formulae for precision and recall and F1 scores 12
Figure 2.3 Formulae for transformers 14
Figure 2.4 Formula for cosine similarity 19
Figure 3.1 Parser Workflow 22
Figure 3.2 Ingredient distribution over corpus 24
Figure 3.3 Calculating calories for a single ingredient 25
Figure 3.4 Equation for calories per serving for a recipe 26
Figure 4.1 BERT model training loss 27
Figure 5.1 Comparison of one recipe over multiple OCR solutions 28

 viii

LIST OF TABLES

Table # Table title Page #
Table 3.1 Tags and Definitions 21
Table 4.1 OCR engine performance for fractions 26

 ix

LIST OF ABBREVIATIONS

BERT Bidirectional Encoder Representations from Transformers
DSM Dietary Self-Monitoring
FN False Negative
FP False Positive
GLUE General Language Understanding Evaluation
IOB Tagging Inside / Outside / Beginning Tagging
KNN K Nearest Neighbors
NER Named Entity Recognition
NLP Natural Language Processing
OCR Optical Character Recognition
ReLU Rectified Linear Unit
TN True Negative
TP True Positive
USDA United States Department of Agriculture

 1

Thesis

1) Introduction

1.1) Problem and Purpose of Thesis

 This thesis aims to help people improve their health by making it easier for them to

track their consumption of calories when they prepare foods using recipes from printed books

that do not provide a nutritional analysis. Obesity is a growing problem in the United States.

Twenty years ago, no state had an obesity rate above 15%, but now only one state is below

20%, and two thirds of states have rates above 25% [1] Obesity increases the risk of various

health conditions such as heart disease, stroke, diabetes, depression, and cancer. [2] There are

a variety of techniques and strategies recommended by the National Institutes of Health to

reduce obesity, one of which is to utilize a food log to track calorie consumption.[3]

Dietary self-monitoring (DSM) is considered a cornerstone of behavioral weight loss

programs. DSM has been significantly linked with weight loss in a variety of studies, and is

widely considered an effective strategy for weight loss. [5] Tracking frequency is also correlated

with positive weight loss outcomes.[7] However, DSM as an approach has a number of flaws

which must be noted. Tracking all foods is often considered burdensome and research has

shown a significant increase in the number of incomplete records as more days of records are

kept. Underreporting calorie consumption is also frequent. One study indicated obese users

underreported their calorie consumption between 20-50%. [9]

Prior to the advent of computer technology, individuals used paper logs, but computer

logs are now frequently preferred. A 2015 study by Hutchensson et al found that half the

participants logging their calorie intake preferred computer recording, 44.4% preferred

 2

smartphone and only 5.6% preferred paper-based records. [4] Burke et al have found that

individuals utilizing applications for DSM rather than a paper log were significantly more

adherent to logging. Over three months, adherents to applications had a 70% retention rate,

versus a 30% retention rate for paper logging. [8] Hutchensson et al also found that the

accuracy of calorie logging did not significantly differ between paper versus digital approaches.

[4]

With the advent of computers and mobile phones, a variety of applications have been

developed to assist with tracking calorie consumption. The functionality of these is discussed in

detail in section 1.2. Some of these applications have tools to import online recipes and

estimate their calorie intake. However, not all recipes are available online. In 2017, roughly 17.8

million cookbooks were sold in the US, showing that traditionally published recipes are still

widely in use. [6] Many of these cookbooks are oriented toward health and dieting and could

be a useful resource for weight loss. Currently, DSM for cookbook recipes using these

applications requires the user manually enter the ingredients and their quantities. Developing

an application to automate calculating calories and assist with tracking these recipes would

possibly help address two issues: it may help improve the accuracy of self-reported calorie data,

and it would help reduce the burden of using a calorie counting application.

The objective of this thesis is to produce a pipeline that takes images of cookbook

recipes and convert them into accurate calorie counts with minimal user intervention. Accuracy

will be determined by comparing the values from automatically processed images with those

calculated by hand. Such an application could reduce the burden of DSM and help improve

adherence to DSM and weight-loss. This pipeline starts by taking images of text from a selection

 3

of cookbooks, and utilizing an OCR tool to convert images to text. Multiple OCR engines have

been tested, and the most accurate has been selected for the application. Next, the pipeline

uses a custom-trained named entity recognition model to label key information such as

ingredients, quantities and units. The pipeline uses a vector space search on a database of

ingredients to find calorie information, and calculates an estimated calorie amount for each

ingredient. Finally, it sums the ingredient calories and calculates a final estimate per serving.

This thesis will assess the rate of error in the application, comparing it a fixed benchmark of

85%. This benchmark is based on the rate of error for calorie counts estimated from state-of-

the-art automated calorie estimation from images of food. [36]

1.2) Existing Applications and Their Accuracy

Many calorie tracking applications exist, with varying levels of recipe support. Many of

these applications support adding recipes but require manually inputting the ingredients. Some

examples of this type of applications include Lose It!, ControlMyWeight or LifeSum. Other

applications have built in databases of recipes such as MyNetDiary, Applications such as

MyFitnessPal support importing digital recipes from websites, but not doing OCR on print

versions of recipes.

Recipe manager applications also have limited functionality to support automated

ingestion of recipes from cookbooks. Many apps such as Cookmate, Master Cook, Mealime,

Paprika 3 and Whisk do not support OCR. Some applications do support OCR in a limited

fashion, such as Basil, Yummy, and The Cookbook App, but these applications require manual

intervention from the user to draw multiple bounding boxes and do not support calorie

 4

tracking. Some applications, such as BigOven, utilize data entry workers to type up recipes but

this is not an automated solution.

Some applications, such as Yummly, utilize a camera to take pictures of the cooked

recipe and attempt to estimate calorie values, however estimating calorie consumption based

on photographs of food is a difficult problem. Estimating by picture also requires the user to

create a recipe at least once before getting calorie information.

The accuracy of these applications varies based on their sophistication. However, many

picture-based applications have accuracy ratings around 85%. Zhang’s picture-based application

had 85% accuracy over a controlled subset of 15 foods using standardized photography. [39]

Okamoto and Yanai found “accuracy of image-based calorie content estimation shows that 79%

of the estimates are correct within ±40% error and 35% correct within ±20% error” [38]

GoCARB is another picture-based model which has an individual food accuracy rating of 85%.

[40] Poply and Jothi also used a picture based approach, and found their accuracy on individual

foods on items not used for training to be 85.74%. [41] The 85% mark will therefore be used as

a guideline for the feasibility of the application.

An application that takes photos of recipes and converts them to estimated calorie

values would be a novel and useful tool for tracking calories, as it could prove faster than a

manual approach and more accurate than a photographic approach.

1.3) Architecture

The Print Recipe Calorie Calculator is a python application designed to prototype a

workflow that could be utilized in a future mobile phone application. An outline of the pipeline

 5

is displayed in Figure 1.1. We start with an image of a recipe. In this prototype, the images are

provided from a corpus of recipes from the Cookbook and Home Economics Collection from

archive.org. [28] The image is processed via Amazon Textract OCR to obtain a text version. After

this, key elements required to calculate the calories for a recipe (such as ingredients, units, and

quantities) are extracted from the text using a specially trained named entity recognition

model. Next, quantities, units and ingredients are grouped together, accounting for special

cases such as countable items and unquantified amounts. Food information from the USDA

FoodData Central database has been adapted into a data file for search. Each query searches

the database using cosine similarity and then applies a weight based on the distribution of

ingredients across the corpus. Calories per unit are pulled from the database and combined to

create an estimate of the calorie value of the recipe, which is displayed for the user.

Figure 1.1 Overview of application pipeline

 6

2) Background

2.1) OCR Applications and Their Architecture

Figure 2.1 Comparison of one recipe over multiple OCR solutions.

 Several off the shelf solutions were considered for the OCR component of the

application. Side-by-side comparisons between the performances can be seen in figure 2.1. Two

of these solutions are proprietary and one is open source. Less information is publicly available

about the inner workings of the proprietary solutions, so they will be discussed first.

Both Amazon Textract and Google’s Document AI advertise the ability to do both OCR and

entity linking. Amazon Textract was released in May 29th, 2019. Amazon’s vice president of

machine learning, Swami Sivasubramanian, stated: “The power of Amazon Textract is that it

accurately extracts text and structured data from virtually any document with no machine

 7

learning experience required. Subsequently, developers can analyze and query the extracted

text and data using our database and analytics services.” [12] A similar proprietary product is

Google’s Document AI, released in November 2020. Document AI also promises to perform OCR

and entity linking, by “transforming documents into structured data” using automation. [13]

However, both applications are aimed as business audiences, and their entity linking

functionality was found to be targeted toward table-based information. While these solutions

are useful for OCR, their entity linking components are not useful for calorie calculation.

The open-source program Tesseract tells us more about the workings of OCR. Tesseract

is an OCR solution originally developed by Hewett-Packard between 1985 and 1995. It was

revised by Google and released into the public in 2005 and since then has been maintained by

an open-source community. [10] Tesseract was not selected as the OCR solution for this

application, but given the proprietary nature of the other two OCR solutions, understanding its

architecture gives us an insight into how a modern OCR program works. While Google and

Amazon do not publicize the details of their algorithms, articles from Google research staff have

released articles discussing the various lessons learned from Tesseract, which have presumably

influenced their own OCR pipeline. [17] Tesseract’s architecture was explained in a research

paper on release, and follows a step-by-step pipeline.

The first step Tesseract performs is binarization. Binarization is a form of preprocessing

which t urns color and greyscale images into black and white ones. This is done as a way of

simplifying the task of matching characters, since matching pixels can be turned into a binary

judgement of yes/no rather than trying to compare shades of grey. The simplest method for

doing binarization is to set a threshold where greyscale pixels below a certain saturation value

 8

are considered white and images above the threshold are considered black. There are a variety

of ways to calculate this threshold. For example, the Otsu binarization method finds the median

in a histogram of all greyscale saturation values in the image. Local binarization algorithms

consider an N-by-N window of pixels and calculate a saturation threshold based on that window

instead of the entire document. As a general rule, global methods perform better on greyscale

images and local ones on colored images or ones under intense illumination. [16] Tesseract

uses a local binarization technique.

Next, Tesseract performs a page layout analysis. First, Tesseract detects vertical lines

and images in the binarized document. Tesseract uses the concept of tab indented areas to

help determine possible groupings for text. [18] Tesseract groups together tab-stop areas of

text as blobs. The blobs are then refined by performing connected components analysis, which

is a task designed to assign groups to clusters of pixels. Once this is done, the blobs are ready

to be organized into text lines and words. [18]

Multiple passes are made over lines to determine if the text is in a fixed pitch font or if it

is a proportional font in a process called character segmentation. Character segmentation is the

process where images of lines of text are broken down into individual characters. A key aspect

of this process is the font used. Fonts can be broken into two general categories, based on the

relative widths of characters. A fixed-pitch font is one where all characters occupy the same

amount of space on the page. A proportional font is one where each character occupies a

different amount of space depending on the width of the character. For example, a fixed width

font would have characters “W” and “l” as occupying the same amount of space on the page,

where a proportional font would allocate space proportionate to the size of the character. By

 9

selecting fixed-pitched fonts, early systems could effectively hard code the expected size of

characters. Modern systems cannot make this assumption and therefore have to employ more

complex methods of isolating characters from each other. [15] In Tesseract, if text can be

extracted with a reasonable confidence value, it is considered fixed pitch. Otherwise, text is

assumed to be proportional and broken into characters based on the detected character cell

size. [14]

The product of these preprocessing steps is to create a set of feature vectors with three

dimensions- x-position, y-position, and direction. A length dimension is also calculated, but as a

preprocessing step the vectors are broken down into a set of features of equal length. Once

features are extracted, these attributes are measured to see which prototype features they are

most similar to by using Euclidian distance. Characters consist of a cluster of features, and

ultimately test features are assigned to a character using a K Nearest Neighbors, or KNN

classification algorithm. KNN works by having a set of template features that have already been

classified. The “nearest neighbors” or closest features to our test features, all have a class. A

plurality vote is taken, and the test feature is assigned the class that gets the most votes. In this

case, the classes that are assigned are characters in the English language. [18]

2.2) OCR Performance Considerations

 There are two considerations in selecting an OCR solution. One is fraction performance

and the other is general performance. Recipes often have fractions of a unit of measurement,

such as a 1½ cups of milk or ¾ tablespoons sugar. Getting the quantities correct is important for

calculating nutritional information, so OCR solutions for recognizing recipes must successfully

 10

recognize different types of fractions. Part of the method is performing a test to assess

performance for fractions.

For general performance, benchmarking studies show that both proprietary solutions

outperform Tesseract. A 2021 study by Hegghammer show that Google and Amazon’s OCR

solutions generally have more accurate performance than Tesseract for larger text data sets.

Hegghammer used social science documents as a test set and introduced various types of visual

noise that might be encountered when photographing documents such as blur effects, ink

stains, and scribbles. Document AI performed best, with Textract described as a “close second.”

[11] Both proprietary solutions are therefore preferable for higher performance than Tesseract.

2.3) Named Entity Recognition Definition

 Named entity recognition (NER) is a natural language task which is necessary for our

application. The premise of NER is that documents contain certain important entities that need

to be recognized in an unstructured text, and linked to entries in a structured knowledge base.

Often these are named entities such as people or places, but the entities can be anything that

belongs to a given class or category. For our application, the named entities are food, units of

measurement, and quantities of those units of measurement, as well as function words that

add additional information. Detailed information about the tags applied is available in the

appendix.

 11

2.4) IOB Tagging

 One common format for tagging in Named Entity Recognition is called IOB tagging. This

format was established by Ramshaw and Marcus to make the boundaries of tagged entities less

ambiguous. In this format, tags starting with a “B” mark the left-most beginning part of a chunk

of words that belong to a single tag, or the ‘beginning’ of a tagged entity. Words that are part of

the same tag that occur directly after the “B” are marked with an “I”, for ‘inside’. Words not in

any tagged category are classed as “O” for ‘outside’. [35]

This is useful when two tagged entities are right next to each other. For example, a

sentence reading “1 tsp of salt, baking soda, brown sugar” would have five tokens tagged as

ingredients next to each other- “salt”, “baking”, “soda”, “brown” and “sugar”. Without IOB

tagging, it would be difficult to reconstruct which adjacent words are part of the same tagged

chunk. However, with IOB tagging, “salt”, “baking” and “brown” are all given B tags, and both

“soda” and “sugar” would be given an I tag. This simplifies grouping by the parser.

2.5) Named Entity Recognition Performance

 Performance for NER models are generally evaluated by calculating a F1 score, which

itself is determined by using the harmonic mean of scores of precision and recall. There are four

possible outcomes when a binary classification is given to an object by a model. A true positive

(TP) is when a class is correctly assigned to a word by a model. A true negative (TN) is when the

model correctly labels the word as not belonging to a class. A false positive (FP) is when the

model incorrectly labels the word as belonging to a class when it does not. A false negative (FN)

is when the model incorrectly labels a word as not belonging to a class, when it actually does.

 12

Precision measures the number of relevant words among all words labeled as positive. Recall

measures the number of relevant results out of all words that are actually belonging to the

class, including false negatives. [25]

 Precision and recall have an inverse relationship. A high recall can be trivially achieved

by classing all words as positive, but this would result in poor precision. A high precision score

can easily be achieved by having a very high threshold for labelling a word as positive, but this

results in few words being labelled and result in a low recall. A strong model will have good

performance scores for both precision and recall. The F1 score is the harmonic mean between

these two scores, and therefore used for classifying accuracy in models. The full equations for

all three measures can be viewed in Figure 2.2. [25]

Figure 2.2 Formulae for precision and recall and F1 scores

2.6) Transformers

 Natural language processing models have a variety of architectures, but recently a

model called transformers has come to provide state-of-the-art performance for many natural

language tasks, including NER. The General Language Understanding Evaluation (GLUE)

 13

benchmark averages the performance of NER and language understanding across several test

question sets. As of July 2022, six of the top ten highest performing models on GLUE are various

implementations of this machine learning approach. [22] In this section, we will discuss the

architecture of transformers.

The initial paper describing transformers was published by Vaswani et al working for

Google in 2017. Transformers have two types of components in their architecture- encoders

and decoders. There are multiple encoders and decoders in the model, contained in an encoder

and decoder stack, respectively. Each encoder consists of a multi-headed self-attention

mechanism and a position-wise feed-forward network. Decoders add an additional layer, which

performs self-attention over the outputs provided from the encoder stack. We will describe

each component of encoders, and then briefly discuss how decoders use these elements. [21]

The self-attention function first takes an input word vector, and calculates query, key

and value vectors. These vectors are initialized randomly and adjusted using training data using

residual dropout and label smoothing. Next, the function takes the dot product of the query

and key vectors to calculate a score for each other word vector in the sentence. The next step is

to divide the scores by the square root of the size of the key vector. This step is done because

as the size of the key vector increases, the softmax function used in the next step produces very

small gradients, reducing the effectiveness of the algorithm. Scaling the dot products results in

more useful gradients. A softmax function takes the scores and converts them into a probability

scaled from 0 to 1. Higher scores get a higher probability, and lower scores get lower

probabilities. Next, the values vector gets scaled by the output of the softmax function, so that

more important words get higher value scores, and less important ones get smaller values.

 14

Finally, these weighted value vectors are summed up and turned into an output vector. The

formula for this is expressed in figure 2.3. The multiheaded nature of the attention function

means that the attention calculation is run multiple times. This gives us several differently

initialized weights for query, key and value vectors. Once all of the different attention heads are

calculated, they are concatenated and multiplied by a weight matrix, trained with the model,

resulting in the output for the attention mechanism.

The feed-forward function is similar to convolutions in a very shallow neural network.

According to Vashwani et al, “[The feed-forward function] consists of two linear

transformations with a ReLU activation in between… Another way of describing this is as two

convolutions with kernel size 1.” The formula for this function can also be seen in Figure 2.3.

After both the self-attention and feed-forward mechanism, there is a normalization step which

serves to reduce training time. [26] Finally, the results of the encoder are fed forward to the

next encoder in the stack as well as all decoders in the decoder stack.

Figure 2.3 Formulae for transformers (Vashwani [26])

 15

One more important element of this transformers model is positional encodings, which

are added to the input word vectors in order to account for each word’s position in a sentence.

There are a variety of ways of doing positional encodings. The method used in the initial

transformers paper is described in Figure 2.3. Vashwani et al state this method was chosen

because “we hypothesized it would allow the model to easily learn to attend by relative

positions, since for any fixed offset k, P Epos+k can be represented as a linear function of P

Epos.” In other words, each word in the model’s sentence requires a relatively small amount of

work to attend to another word in the sentence. [26]

2.7) BERT- Bidirectional Encoder Representation from Transformers

 Transformers are the key component in a language model called BERT, which stands for

Bidirectional Encoder Representations from Transformers. Many previous models to BERT

attempted to predict output by reading in each word from either left-to-right or right-to-left.

BERT instead considered the entire document at once, masking a percentage of random words

and asking stacks of encoders and decoders to predict the output. The model was initially

trained over a large corpus of data of hundreds of millions of words from Wikipedia and the

BooksCorpus. The model can be fine-tuned on a smaller set of training data to perform a variety

of NLP tasks, such as NER. This is done by adding another encoder layer with outputs

corresponding to the various entities that need to be recognized. [27]

Food recognition is an emerging topic of NER research. Popovski et al conducted a

survey of NER techniques in 2020 for food on a test set of 1000 manually annotated recipes.

The best performing model by far was FoodIE. FoodIE was based on a more comprehensive NER

 16

program called drNER which was designed to extract evidence-based nutritional impacts from

scientific articles.[32] FoodIE was a simplified version of this designed to focus on food

identification, using a manual ruleset and a complex set of handwritten rules to determine

foods based on parts of speech from each sentence. FoodIE had a F1 rate of 96%. [23] However,

transformer-based models were not tested as part of the survey. Stojanov et al used a

transformer-based model in a 2021 paper, and their F1 performance on distinguishing food vs

non-food had an F1 score ranging from 93-94%. [24]

2.8) FoodData Central

 The United States Department of Agriculture maintains a database called FoodData

Central, containing many common ingredients and their calorie information. [19] FoodData

Central contains a variety of useful information that is used in the calorie counting application.

An extensive list of ingredients is maintained in the database, and each ingredient is associated

with a variety of nutrients including a metabolized calorie count calculated with Atwater

General Factor System. [20]

FoodData Central supplies calorie counts per 100g of a given food for every ingredient.

Frequently, alternative unit measurements are given for many ingredients. These include

common quantity types such as unit count or volume. These alternative units have a grams per

unit associated with them, which are also useful since most recipes do not contain

measurement by grams. This is the basis for the database used by the application to ultimately

calculate calorie values.

 17

2.9) Vector Space and Word Embeddings

 The FoodData Central database has thousands of items. In order to calculate the

calories for an ingredient, for each candidate ingredient in a recipe, we must isolate the most

similar ingredient type in FoodData Central to the entity string we have for our ingredient.

Matching (or search) is an information retrieval task of finding the most relevant document for

a given sample query.

Ingredients may not exactly match their FoodData Central counterpart, and simple

similarity metrics are not always sufficient to bridge the gap. For example, “1 can of green

beans” may be stored in the database as “Beans, snap, green, canned, regular pack, drained

solids.” [19] Simple string match metrics such as Levenshtein distance were tested over a small

ten item data set and were not able to match several ingredients, including the green beans

example above.

Many search algorithms used for information retrieval tasks make use of a vector space

model, where, originally, each word in a vocabulary comprises a unique dimension in the space,

and each term corresponds to a unique element in a vector. [37]

 Vectors are objects with magnitude and direction, and can be thought of as rays or

arrows pointing out in multi-dimensional space. In a vector space model, the first step to

conducting search is to embed documents and the query as vectors, and the second step is to

use a similarity metric between the query vector and each document vector. [31]

“Word embeddings” are a related but somewhat different concept to vector space.

Embedding is a term used for designating a vector representation of a single word, where the

values of the elements have been optimized to help distinguish the meaning of the word. There

 18

are multiple ways of generating word embeddings, which can vary greatly depending on the

model used to generate them.

2.10) Food2Vec Word Embeddings

 Some of these embedding methods have been applied to the food domain. BERT

generates embeddings, and those embeddings were considered for search. Published tools

such as FoodNER [30] and BuTTer [29] provided code for creating BERT embeddings for food,

but lacked a set of pretrained embeddings that could simply be used as part of a search tool.

Food2Vec is a publicly available set of word embeddings for food. The embeddings files

were in JSON and publicly available on github. They were adapted with a python script to work

with gensim for further extension as a search tool. Food2Vec also had the practical advantages

of a pip repository in python, meaning that basic matching functions could be easily tested.

Food2Vec embeddings were trained using Word2Vec training tasks over a collection of 95,896

recipes pulled from the Allrecipes.com website. [34]

2.11) Word2Vec Training Tasks

 Word2vec trains its word embeddings on two related tasks. Word2Vec looks at a sliding

window of words which we will say is size N. Half of the words in this window occur directly

before our target word, and half of the words occur directly after it. The “Continuous Bag of

Words” training method takes as an input the N-1 words surrounding our target word and tries

to guess our target word. The “skipgram” method flips the task, taking as an input the one

‘target’ word and trying to predict the surrounding context of N-1 words.

 19

Word2Vec also selects random words from our corpus that are not related and asks the

model to predict that these words are in fact unrelated, in a process called “negative sampling.”

Word2Vec conducts its training by attempting either of these two tasks over a corpus. First, the

model’s initial values are randomized. The model guesses the target word or words based on

the task, then checks to see what the actual value of the word or words is. It calculates an error

percentage based on how correct or incorrect the guesses were, and adjusts the embeddings of

each word in the task accordingly. It does this words that are correct, and conducts negative

sampling to train other words as incorrect. [33]

2.12) Cosine Similarity

 Once documents are embedded, we have to calculate a similarity metric between our

query embedding and the document embeddings for the corpus. Distance between two

documents seems like an obvious choice for a similarity metric, but distance is susceptible to

being strongly influenced by the size of documents. Instead, a metric called cosine similarity is

more often used, which measures the differences in angle between where two vectors are

pointing. Calculating the cosine similarity is simply a matter of summing up the dot product

between each element in the two vectors. For document D and query Q, figure 2.4 shows the

cosine similarity formula. W_tiQ represents the ith term in the query, and W_tiD represents the

ith term in the document.

Figure 2.4 Formula for cosine similarity (Singhal [31])

 20

3) Method

3.1) Outline of Application Architecture

 The application’s architecture starts with the input- an image of a recipe. Next, the

Textract OCR engine is used to obtain a text version of the recipe. The application then uses a

BERT NER model to label important sections of text, such as ingredients, quantities and units.

These sections of text are then used to search a database with food calorie values called

FoodData Central. Pretrained word embeddings from Food2Vec are used to embed the

ingredient and the database descriptions in vector space. Cosine similarity is then calculated to

find the closest matching ingredients and database entries. A logarithmic weight based on

ingredient counts over our corpus is multiplied with the cosine similarity score. The highest

result is pulled from the database and calories are calculated for the ingredient. The final

calorie output is a sum of the calorie values of each ingredient.

Evaluation of the results will be done by running 5 recipes from the corpus through the

pipeline. Calories will also be manually tabulated for those recipes. The amount of difference

between the output of the calorie counting pipeline and the manually tabulated calorie count is

the percentage of error. The percentage of error will be averaged to come up with an overall

accuracy for the application.

A detailed outline of each step in the pipeline continues below.

3.2) Corpus Data

 Test data is used to train and assess the quality of a number of functions in the pipeline.

All test recipes were pulled from a corpus of 19 cookbooks from the Cookbook and Home

Economics Collection were used from archive.org. [28]

 21

3.3) Selecting an OCR Application

 The first step was to assess the accuracy of various OCR engines on a crucial aspect of

recipes, which is the recognition of fractions. To evaluate OCR functionality, a test set of four

pages from three different cookbooks from the corpus were used as input to three OCR

engines- Tesseract, Document AI and Textract. Pages with a variety of fraction types on them

were selected, so quantities would not just consist of one fraction like ½ or ¼. In the test set, a

total of 38 fractions were spread over the four pages, with 23 of them being ½ and 15 being

other fraction types. The accuracy of the OCR solution was manually determined. After testing

multiple applications, Amazon Textract was determined to be the most accurate and selected

for the application.

3.4) NER Model

 Once a text version of the recipe is obtained, the remaining steps to computing calories

are to analyze the text and categorize all of the necessary information to calculate the calorie

content. A BERT model was trained specifically for this task. Pages with recipes from the baking

sections were used to create training data. (It was noted that every one of the cookbooks

selected had a baking selection.) The images were run through Amazon’s Textract OCR engine

and then manually marked up using the BIO schema with the tags specified in table 3.1.

Tag Definition

ING Name of ingredient

UNIT Type of measurement

QTY Number indicating amount of unit

CONT Countable ingredients lacking units

NQT Ingredients with no quantity specified

FUNC Indicates parser should function differently

based on word
Table 3.1 Tags and Definitions (Details in Appendix)

 22

The coding was done manually by the researcher. Additional information about the

classification scheme is available in appendix A. One hundred thousand words were included in

the training set. The training data was split into train and test sets. 90% of the inputs were set

as training set and the remaining 10% was test set. Training data was iterated over 10 epochs.

3.5) Parsing Queries

 In order to calculate calories, ingredients, units and quantities all need to be present.

The parser groups tagged words together into complete sets called queries. The process is

documented in figure 3.1. If any information is missing from a query, the calorie calculation

cannot be performed. The parser takes several passes to create a query. As a first pass, the

parser strips out all O-tags generated by the NER. The parser detects division symbols and

ensures they are grouped together with a numerator and denominator to make a fraction.

Figure 3.1 Parser Workflow

 23

The parser goes through the tokens backwards, combining I-tags with the B-tags that are to

their left in the original document.

Query sets are formed next, which require ingredient, unit and quantity information.

New queries are created every time a QTY or NQT tag is encountered. NQT ingredients are

given one default serving unit. UNIT and ING tags are put in query sets as they are encountered.

CONT tags are classified as both unit and ingredient elements of the query, since they represent

both a unit and ingredient. For complex queries involving FUNC, any entities following the word

“or” are ignored, since only the first option is selected. Entities following the word “and” are

given copies of the quantity and unit information from the previous query. All queries are then

given a final pass and any queries missing an ingredient name or quantity are discarded.

3.6) Search

 Once the data has been formulated as queries, the model must match each query to an

entity in FoodData Central. First, the model embeds the ingredient information from the query

in vector space. Next, the model calculates the cosine similarity between the ingredient and all

the descriptions of food in our database, which includes data from FoodData Central, modified

descriptions, weights, and additional entries to make up for gaps in FoodData Central’s

database.

Weights are applied to the cosine similarity scores. The weights are softmax scores,

calculated by taking the log of the number of times an ingredient occurred in the corpus. Each

ingredient’s softmax score is multiplied by the cosine similarity score to get the final weighted

similarity metric. The top scoring ingredient’s calorie information is pulled from the database.

Unit information is calculated based on the nearest string match.

 24

3.7) Weighting

 The weights used as part of the search process were derived by running the previously

trained ingredient recognition BERT model over a 400,000 token selection from the archive.org

collection of cookbooks. There were found to be 29,543 occurrences of ingredients and 1342

unique ingredients in this selection. As figure 3.2 shows, certain ingredients were much more

likely than others to be in a given recipe. The top 25 ingredients made up 54.6% of all

occurrences of ingredients in a recipe. The top 100 made up 76% of all occurrences of

ingredients. Applying the weighting function requires manually matching the search result, so

only the top 100 most common unique ingredients had their softmax scores set. The remaining

unique ingredients in the database were set to a softmax score equivalent of 6 occurrences,

because that is approximately equal to the 6794 remaining ingredient instances spread evenly

over the remaining 1242 ingredients.

Figure 3.2. Ingredient distribution over corpus

 25

3.8) Calculating Calories

 The number of calories in a given recipe is calculated as the sum of the calories of each

ingredient contained in the recipe. For a given ingredient i, we calculate the calories multiplying

together three numbers- g_i, u_i and q_i. The quantity of units of measurement in the

ingredient in the recipe is represented by q_i. The number of calories per gram of a given

ingredient is g_i. The number of grams per unit of measurement in the recipe for the ingredient

is represented by u_i. q_i is taken from the query, and the other two quantities are taken from

the ingredient and unit matched in FoodData Central. Figure 3.3 shows an example calculation

of a single ingredient’s calories.

Figure 3.3 Calculating calories for a single ingredient

 26

To obtain a calorie count of the entire recipe, the calorie count application calculates the

calorie counts of all ingredients and sums them together. In a recipe with j as the total number

of ingredients, the expression we will use to ultimately calculate a recipe’s calorie value is

represented in figure 3.4. Once calculated, we divide by the number of servings s to get a

calories per serving count.

Figure 3.4 Equation for calories per serving for a recipe

4) Results

4.1) OCR Fraction Performance

 ½ ¼ 1/8 ¾ 2/3 1/3 Total %

Accuracy

Ground

Truth

23 9 3 1 1 1 38 1.00

Tesseract 0 0 0 0 0 1 1 0.03

Amazon

Textract

18 9 3 1 0 1 32 0.84

Google

Document

AI

22 5 0 1 0 1 29 0.76

Table 4.1 OCR engine performance for fractions

Table 4.1 demonstrates the overall results of the fraction OCR on the test set. Tesseract’s

accuracy was only 3%, making it unacceptable as a solution. Google Document AI had 76%

accuracy. Textract proved the best at recognizing fractions with an overall accuracy of 84%.

Moreover, once automated corrections were performed to split the double-digit numerators,

this accuracy increased to 92%. Because Textract had the highest accuracy for fractions, it was

selected at the top candidate for the project’s OCR component.

 27

4.2) NER Model Performance

 The calorie counter app F1 score was 96.4%. Accuracy was 99.6%. Precision was 96.0%,

and the recall was 96.7%. Validation loss decreased for both training and test data. Figure 4.1

displays the training loss decreasing over 10 epochs.

Figure 4.1 BERT model training loss

4.3) Search

 To test ingredient search, the top 100 most common ingredients were formatted as

queries and searched using the weighted cosine similarity metric. Of these ingredients, 76

directly matched the term, 18 incorrectly matched with a different ingredient, and 6 were

incorrectly chunked partial ingredients (such as “baking”, “green” or “grated”). Disregarding the

incorrectly formatted ingredients, the success rate for searching correctly formatted

ingredients was 80.9% for the top 100.

 28

The top 25 most common ingredients had a higher success rate. Of these ingredients, 23

directly matched the term, 1 incorrectly matched and 1 was incorrectly labelled (“baking”). This

would make for a 92% success rate over the most common ingredients.

4.4) Full Pipeline

 Five actual images of recipes were also tested on the entire pipeline. Full calorie counts

were not provided for the recipes in the corpus and as such were not able to be assessed.

However, the results of each ingredient search were manually reviewed. 37 ingredients were

successfully matched, and 2 ingredients were not correctly matched. This was an ingredient

matching success rate of 94.9%. Calorie results were manually calculated and compared to the

calories suggested by the pipeline. The calorie counts were 96.5% accurate.

5) Discussion

Figure 5.1 Comparison of one recipe over multiple OCR solutions.

 29

5.1) OCR Performance on Fractions

 Based on manual inspection, testing revealed several types of errors. Tesseract failed

outright to recognize any individual fraction characters, such as ¼, with the only success being a

fraction that was not a special character (e.g., “1 / 4”). Proprietary OCR solutions performed

much better, but not perfectly. Figure 5.1 (page 28) demonstrates how each OCR solution

performed on a single recipe, and also shows the two types of errors that occurred, namely,

incorrect denominators and incorrect mixed fractions.

Incorrect denominators were more common in Document AI, where most fractions

were recognized as ½, regardless of their actual denominator. ½ was the most frequent fraction

in the test set, so Document AI still managed to be relatively accurate overall. Textract

performed much better at recognizing denominators and numerators, missing only one out of

the fifteen non-½ fractions. This type of error is difficult to sanity check, as it is feasible that a

recipe would have either ¼ cup or ½ cup of a given ingredient. Figure 5.1 (page 28)

demonstrates how 1/8 cup chopped nuts in the original recipe becomes ½ cup chopped nuts in

Document AI.

Incorrect mixed fractions were also an issue. Incorrect mixed fractions occurred when

numbers such as 1½ had whole number components that were concatenated with the fraction,

so 1½ might be recognized as 11/2. Document AI often made the distinction between fractions

and whole numbers, but Textract did not perform as well in recognizing the mixed nature of the

fraction. For example, in Figure 4.1 we can see that Textract successfully recognized each

number in the fraction, but did not put a space between the whole number and the numerator

of the fraction, resulting in the double-digit numerator 31/2 instead of 3½. This is a problem,

 30

but not a severe one, as it is relatively easy to detect and correct during post-processing. Most

recipes will more be more likely to call for ingredients with denominators of 2, 3, 4 or 8, where

a double-digit numerator would be noticeably wrong. The only double-digit denominator likely

to be used is 16, but it would be unlikely for a recipe to call for 11/16ths of an ingredient, rather

than some easier to measure but roughly equal number like 2/3rds.

Textract was the highest performing model, but it also seems likely that Document AI

and Tesseract were either not trained on fractions altogether or only trained to recognize ½.

Further work could be done to improve fraction performance by including more fractions in

training data for OCR models.

5.2) NER Model Performance

 For the custom BERT model, overall results were in line with other models. As discussed

in the background section, FoodIE had a F1 rate of 96% and Stojanov et al had a transformer-

based model with a F1 score ranging from 93-94%.[23] [24]

While the calorie counter app has a slightly higher F1 score than the other applications,

it should be noted that the calorie counter application labelled quantities and units, not just

food. These tasks were likely more straightforward than labelling food, which could be

thousands of possible words. For units, there’s a much smaller selection of a few dozen words

that are typically used. Quantities are usually numbers, either full integers or fractions. These

more straightforward tasks may have improved the scoring of the labelling overall.

These results also show that the labelling non-ingredient data can also be done at a high

level of accuracy. However, there is a limitation regarding having only one person code the data

that was used to train the NER model. This limitation does not allow this thesis to quantify how

 31

difficult or ambiguous this coding task is or to assess inter-rater agreement. These aspects were

considered beyond the scope of the thesis.

5.3) Search

 Search is the worst performing component with an 80.9% success rating for the 100

most frequently occurring ingredients. The embeddings used for search were domain specific

but did not match well without the weighting component. Perhaps a more purpose-built set of

embeddings could improve the match rate. Or perhaps the NER model could be trained to

directly match ingredients with their respective database entry, avoiding the step of search

altogether. While disappointing, the top 25 ingredients had a higher success rate of 92%, and

due to the top-heavy distribution of ingredients, these inaccuracies had less impact on the

overall results than might be expected.

5.4) Full Pipeline Test on Recipes

 Running five test recipes through the entire pipeline yielded a relatively successful

94.8% ingredient match rate and 96.5% calorie match rate, above the 85% baseline established.

This demonstrates that the pipeline is feasible. If implemented in a phone application, it could

be used as a way to improve the speed and accuracy of dietary self-monitoring for people using

cookbooks.

5.5) Conclusion

 Most components of the application were more successful than the 85% benchmark set

by other calorie counting applications. The OCR application had an accuracy rating of 92% with

cleanup. OCR could likely be improved further by training fractions more thoroughly. The NER

model had a 96.4% F1 score, on par with many other food NER tools. Search was near the

 32

baseline at 84%. Improved embeddings for search are an area for further research, which may

improve the success rate even further. Overall, the prototype pipeline for the calorie counting

app has met the baseline set for general feasibility.

 33

Bibliography/Works Cited/References

[1] Collier, R. (2011). US obesity rates growing [Article]. Canadian Medical Association Journal
(CMAJ), 183(11), E723. https://doi.org/10.1503/cmaj.109-3936

[2] Long, D. A., Reed, R., & Lehman, G. (2006). The Cost of Lifestyle Health Risks:: Obesity
[Article]. Journal of Occupational and Environmental Medicine, 48(3), 244–251.
https://doi.org/10.1097/01.jom.0000201568.73562.a2

[3] The practical guide : identification, evaluation, and treatment of overweight and obesity in
adults. (2000). [Book]. National Heart, Lung, and Blood Institute.

[4] Hutchesson, M. J., Rollo, M. E., Callister, R., & Collins, C. E. (2015). Self-Monitoring of Dietary
Intake by Young Women: Online Food Records Completed on Computer or Smartphone Are as
Accurate as Paper-Based Food Records but More Acceptable. Journal of the Academy of
Nutrition and Dietetics, 115(1), 87–94. https://doi.org/10.1016/j.jand.2014.07.036

[5] Burke, L. E., Wang, J., & Sevick, M. A. (2011). Self-Monitoring in Weight Loss: A Systematic
Review of the Literature. Journal of the American Dietetic Association, 111(1), 92–102.
https://doi.org/10.1016/j.jada.2010.10.008

[6] White, Martha. Recipe for Success: Cookbook sales survive shift to digital media. NBC News.
https://www.nbcnews.com/business/consumer/recipe-success-cookbook-sales-survive-shift-
digital-media-n900621

[7] Dunn, C. G., Turner-McGrievy, G. M., Wilcox, S., & Hutto, B. (2019). Dietary Self-Monitoring
Through Calorie Tracking but Not Through a Digital Photography App Is Associated with
Significant Weight Loss: The 2SMART Pilot Study—A 6-Month Randomized Trial. Journal of the
Academy of Nutrition and Dietetics, 119(9), 1525–1532.
https://doi.org/10.1016/j.jand.2019.03.013

[8] Burke L.E., Conroy M.B., Sereika S.M., et al: The effect of electronic self-monitoring on
weight loss and dietary intake: a randomized behavioral weight loss trial. Obesity (Silver Spring)
2011; 19: pp. 338-344

[9] Coulston, A. M., Rock, C., & Monsen, E. R. (2001). Nutrition in the prevention and treatment
of disease / edited by Ann M. Coulston, Cheryl L. Rock, and Elaine R. Monsen. Academic Press.

[10] Vincent, Luc. “Announcing Tesseract OCR.” August 30, 2006. From website:
http://googlecode.blogspot.com/2006/08/announcing-tesseract-ocr.html

[11] Hegghammer, Thomas. "OCR with Tesseract, Amazon Textract, and Google Document AI: a
benchmarking experiment." Journal of Computational Social Science (2021): 1-22.

https://doi.org/10.1016/j.jand.2014.07.036
https://doi.org/10.1016/j.jada.2010.10.008
https://www.nbcnews.com/business/consumer/recipe-success-cookbook-sales-survive-shift-digital-media-n900621
https://www.nbcnews.com/business/consumer/recipe-success-cookbook-sales-survive-shift-digital-media-n900621
https://doi.org/10.1016/j.jand.2019.03.013
http://googlecode.blogspot.com/2006/08/announcing-tesseract-ocr.html

 34

[12] Amazon.com. “AWS Announces General Availability of Amazon Textract.” Amazon.com,
Inc. - Press Room, https://press.aboutamazon.com/news-releases/news-release-details/aws-
announces-general-availability-amazon-textract.

[13] Liu, Lewis, and Yang Liang . “Introducing Document AI Platform, a Unified Console for
Document Processing.” Google Cloud Blog, https://cloud.google.com/blog/products/ai-
machine-learning/google-cloud-announces-document-ai-platform.

[14] Smith, Ray. "An overview of the Tesseract OCR engine." Ninth international conference on
document analysis and recognition (ICDAR 2007). Vol. 2. IEEE, 2007.

[15] Lu. (1995). Machine printed character segmentation —; An overview. Pattern
Recognition., 28(1), 67–80. https://doi.org/10.1016/0031-3203(94)00068-W

[16] Garg, Naresh, and N. Garg. "Binarization techniques used for grey scale
images." International Journal of Computer Applications 71.1 (2013): 8-11.

[17] History of the Tesseract OCR engine: what worked and what didn't

[18] Akhil, S. "An overview of tesseract OCR engine." A seminar report. Department of
Computer Science and Engineering National Institute of Technology, Calicut Monsoon. 2016.

[19] U.S. Department of Agriculture, Agricultural Research Service. FoodData Central,
2019. fdc.nal.usda.gov.

[20] Mayxard, L. A. "The Atwater system of calculating the caloric value of diets." Journal of
Nutrition 28 (1944): 443-452.

[21] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information
processing systems 30 (2017).

[22] Wang, Alex, et al. "GLUE: A multi-task benchmark and analysis platform for natural
language understanding." arXiv preprint arXiv:1804.07461 (2018).

[23] Popovski, Gorjan, Barbara Koroušić Seljak, and Tome Eftimov. "A survey of named-entity
recognition methods for food information extraction." IEEE Access 8 (2020): 31586-31594.

[24] Stojanov, Riste, et al. "A Fine-Tuned Bidirectional Encoder Representations From
Transformers Model for Food Named-Entity Recognition: Algorithm Development and
Validation." Journal of Medical Internet Research 23.8 (2021): e28229.

[25] Idris, Ivan. Python data analysis cookbook. Packt Publishing Ltd, 2016.

https://press.aboutamazon.com/news-releases/news-release-details/aws-announces-general-availability-amazon-textract
https://press.aboutamazon.com/news-releases/news-release-details/aws-announces-general-availability-amazon-textract
https://doi.org/10.1016/0031-3203(94)00068-W
http://fdc.nal.usda.gov/

 35

[26] Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv
preprint arXiv:1607.06450 (2016).

[27] Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language
understanding." arXiv preprint arXiv:1810.04805 (2018).

[28] “Cookbooks and Home Economics.” Cookbooks and Home Economics, Internet Archive,
https://archive.org/details/cbk.

[29] Cenikj, Gjorgjina, et al. "BuTTER: BidirecTional LSTM for Food Named-Entity
Recognition." 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020.

[30] Stojanov R, Popovski G, Cenikj G, Koroušić Seljak B, Eftimov T. A Fine-Tuned Bidirectional
Encoder Representations From Transformers Model for Food Named-Entity Recognition:
Algorithm Development and Validation. J Med Internet Res. 2021;23(8):e28229. Published 2021
Aug 9. doi:10.2196/28229

[31] Singhal, Amit (2001). "Modern Information Retrieval: A Brief Overview". Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering 24 (4): 35–43.

[32] Eftimov T, Korousˇić Seljak B, Korosˇec P (2017) A rule-based named-entity recognition
method for knowledge extraction of evidencebased dietary recommendations. PLoS ONE 12(6):
e0179488. https://doi.org/10.1371/journal. pone.0179488

[33] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

[34] Altosaar, Jaan. food2vec - Augmented Cooking with Machine Intelligence, 20 Aug. 2018,
https://jaan.io/food2vec-augmented-cooking-machine-intelligence/. Accessed 3 Aug. 2022.

[35] Ramshaw, Lance A., and Mitchell P. Marcus. "Text chunking using transformation-based
learning." Natural language processing using very large corpora. Springer, Dordrecht, 1999.
157-176.

[36] Attokaren, David J., et al. "Food classification from images using convolutional neural
networks." TENCON 2017-2017 IEEE Region 10 Conference. IEEE, 2017.

[37] Salton, Gerard, Anita Wong, and Chung-Shu Yang. "A vector space model for automatic
indexing." Communications of the ACM 18.11 (1975): 613-620.

[38] Okamoto, Koichi, and Keiji Yanai. "An automatic calorie estimation system of food images
on a smartphone." Proceedings of the 2nd International Workshop on Multimedia Assisted
Dietary Management. 2016.

https://doi.org/10.1371/journal.%20pone.0179488

 36

[39] Zhang, Weiyu, et al. "“snap-n-eat” food recognition and nutrition estimation on a
smartphone." Journal of diabetes science and technology 9.3 (2015): 525-533.

[40] Rhyner, D.; Loher, H.; Dehais, J.; Anthimopoulos, M.; Shevchik, S.; Botwey, R.H.; Duke, D.;
Stettler, C.; Diem, P.; Mougiakakou, S. Carbohydrate estimation by a mobile phone-based
system versus self-estimations of individuals with type 1 diabetes mellitus: A comparative
study. J. Med. Int. Res. 2016, 18, e101. [CrossRef] [PubMed]

[41] Poply, Parth, and J. Angel Arul Jothi. "Refined image segmentation for calorie estimation of
multiple-dish food items." 2021 International Conference on Computing, Communication, and
Intelligent Systems (ICCCIS). IEEE, 2021.

 37

Appendix) Tag Classification Scheme

Three pieces of information are required to calculate calories, and the basic tags in the

classification scheme correspond to these. The ING tag indicates the name of an ingredient,

which can be used to look up the nutritional information in food central. The UNIT tag specifies

the unit type, a tablespoon or gallon for example. The quantity of units of measurement in the

ingredient is captured by a quantity tag QTY. Those are the most basic tags.

However, recipes were often inconsistently formatted in the training set, which required

additions to the simple schema above to account for potentially missing information. These

special categories account for various special cases that exclude or duplicate certain elements

from the three basic categories. Such special categories include function words, unquantified

ingredients, and countable ingredients.

Function words are labelled FUNC, and are words such as “and”, “or” and “of” that

often served to group ingredients together, provide an option between two ingredients. “And”

means that the unit and quantity from the previous ingredient should be applied to the next

ingredient. For example, a recipe may call for “1 tbsp cinnamon, cloves, and nutmeg.” The

quantity 1 tbsp applies to each ingredient. “Or” is also a function word that suggests

alternatives. When a recipe calls for something like “2 tbsp honey or 1 tbsp sugar.”, only the

first option in groups with “or” is calculated.

Unquantified ingredients often occurred in recipes, and are labelled NQT, for not

quantified. This meant that ingredients were listed without any specific quantity or unit

associated. Very frequently, these were spices. Many recipes simply called for “salt and pepper”

and not specify any particular quantity or unit, presumably to taste. Other examples might

 38

include “eggs, breadcrumbs and oil” for frying, or “broth to cover” certain recipes. The

FoodCentral database includes default values for each ingredient which represent a common

amount for a single serving. In the case of unquantified ingredients, such as “broth to cover”,

the default values from the FoodCentral database are used for calculations.

Countable ingredients labeled CONT are also a unique case which requires special

consideration. For foods which come in discrete units, the food may or may not have a unit

explicitly listed. For example, a recipe may call “3 cups of chopped carrots” or simply “3

chopped carrots.” In the second case, a carrot is both the unit and the ingredient. The parser

considers these countable ingredients as both a unit and an ingredient.

	Pipeline for Calculating Calories for Print Recipes with Minimal User Intervention
	Recommended Citation

	tmp.1675096203.pdf.rpZAO

