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ABSTRACT 

UNIVERSITY COURSE SCHEDULING DURING A PANDEMIC AND 
UNIVERSITY COURSE PLANNING: MATH MODELS AND HEURISTIC 

ALGORITHMS 

by 

Mohammad Khamechian 

The University of Wisconsin-Milwaukee, 2022 
Under the Supervision of Professor Matthew Petering 

 This dissertation has two chapters. In Chapter 1, we introduce two optimization 

problems related to university course planning. In the student course planning problem (SCPP), 

a student needs to design a course plan that allows him/her to graduate in a timely manner. In the 

department course planning problem (DCPP), an academic department needs to decide which 

courses to offer during which semesters to facilitate students’ timely graduation. Mathematical 

models of these problems are developed, coded in C++, and solved with IBM ILOG 

CPLEX. Experiments on small, medium-sized, and large real-world and fictional problem 

instances show the utility of the math model. 

Chapter 2 is about university course scheduling during a pandemic. Most universities have 

responded to the COVID-19 pandemic by offering courses in three formats: (1) online, (2) hybrid 

(with online and in-person components), or (3) in-person. Option 1 discourages student interaction; 

option 2 has low classroom utilization; and option 3 poses health risks or is limited to small courses 

meeting in large rooms. We propose a new approach to course scheduling which allows more than 

one classroom to be assigned to the same course.  Our method allows all courses—even the 
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largest—to have a limited number of socially distanced, in-person meetings each semester in 

which all students in the course meet in multiple classrooms simultaneously.  A math model and 

heuristic method are developed for implementation.  Analyses of life-sized problem instances are 

promising. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

© Copyright by Mohammad Khamechian, 
2022 All Rights Reserved 



v 

TABLE OF CONTENTS 

Chapter 1: A mathematical modeling approach to university course planning .............................. 1 

1.1. Introduction ............................................................................................................................. 1 

1.2. Literature review ..................................................................................................................... 2 

1.3. The student course planning problem (SCPP) ........................................................................ 6 

1.3.1. Problem description ...................................................................................................... 6 

1.3.2. Mathematical model...................................................................................................... 8 

1.3.3. Experimental setup...................................................................................................... 12 

1.3.4. Case study: Industrial Engineering BSE program at UW-Milwaukee ....................... 12 

1.3.5. Experiment 1: Student with no leave of absence and no transfer courses .................. 13 

1.3.6. Experiment 2: Student with a leave of absence in semester five and eight transfer 
courses......................................................................................................................... 17 

1.3.7. Experiment 3: Leave of absence timing ...................................................................... 19 

1.3.8. Experiments on fictional problem instances ............................................................... 21 

1.4. The department course planning problem (DCPP) ............................................................... 24 

1.4.1. Problem description .................................................................................................... 24 

1.4.2. Mathematical models .................................................................................................. 25 

1.4.3. Model DCPP I ............................................................................................................. 26 

1.4.4. Model DCPP II ........................................................................................................... 28 

1.4.5. Case study revisited: Industrial Engineering BSE program at UW-Milwaukee......... 29 

1.4.6. Experiments on fictional problem instances ............................................................... 30 

1.5. Conclusion ............................................................................................................................. 34 

Chapter 1 References .................................................................................................................... 35 

Chapter 2: University course scheduling during a pandemic ....................................................... 38 

2.1. Introduction ........................................................................................................................... 38 



vi 

2.2. Literature review ................................................................................................................... 39 

2.3. Problem description ............................................................................................................... 45 

2.4. Exact solution approach using a mathematical model .......................................................... 47 

2.5. Heuristic method ................................................................................................................... 55 

2.5.1. Overall structure of the heuristic method .................................................................... 55 

2.5.2. Step 1: Generate potential room assignments (exact method) .................................... 56 

2.5.3. Step 1: Generate potential room assignments (heuristic method) .............................. 59 

2.5.4. Step 2: Create an initial schedule ................................................................................ 62 

2.5.5. Step 5: Create neighboring solution ............................................................................ 63 

2.5.6. Step 6: Decide if neighboring solution replaces current solution ............................... 65 

2.6. Experimental setup, results, and discussion .......................................................................... 65 

2.6.1. General experimental setup......................................................................................... 66 

2.6.2. Math model experimental setup, results, and discussion ............................................ 69 

2.6.3. Heuristic method experimental setup, results, and discussion .................................... 73 

2.7. Conclusion ............................................................................................................................. 82 

Chapter 2 References .................................................................................................................... 83 



vii 

LIST OF FIGURES 

Figure 1. Branches of educational timetabling ............................................................................... 2 

Figure 2. Research related to course planning and scheduling. .................................................... 40 

Figure 3. Heuristic pseudocode..................................................................................................... 55 

Figure 4. Pseudocode for heuristically generating PRAs ............................................................. 60 

Figure 5. Heuristic pseudocode with simulated annealing steps shown ....................................... 65 



viii 

LIST OF TABLES 

Table 1. Indices, parameters, and decision variables in mathematical model SCPP ...................... 9 

Table 2. Experimental setup and assumptions for model SCPP case study (** indicates how 
many binary terms equal 1) ........................................................................................................... 13 

Table 3. Selected optimal solutions for the SCPP case study (Experiment 1) ............................. 16 

Table 4. Selected optimal solutions for the SCPP case study (Experiment 2) ............................. 18 

Table 5. Effect of LA on the number of semesters needed to graduate for the SCPP case study 
when Max = 5 (Experiment 3) ...................................................................................................... 20 

Table 6. Effect of LA on the number of semesters needed to graduate for the SCPP case study 
when Max = 6 (Experiment 3) ...................................................................................................... 20 

Table 7. Experimental setup and assumptions for model SCPP fictional instances ..................... 21 

Table 8. Experimental results for model SCPP fictional instances. ............................................. 23 

Table 9. Indices, parameters, and decision variables in mathematical models DCPP I and DCPP 
II .................................................................................................................................................... 26 

Table 10. Effect of Max and Wn on results for model DCPP I and DCPP II case study .............. 30 

Table 11. Experimental setup and assumptions for model DCPP I and DCPP II fictional 
instances ........................................................................................................................................ 31 

Table 12. Experimental results for model DCPP I fictional instances ......................................... 32 

Table 13. Experimental results for model DCPP II fictional instances. ....................................... 33 

Table 14. Indices, parameters, and decision variables in mathematical model UCSPDP ............ 49 

Table 15. Indices, parameters, and decision variables in the mini math model that generates room 
possibilities for each course .......................................................................................................... 56 

Table 16. Experimental setup and assumptions for the problem instances .................................. 68 

Table 17. Math model results ........................................................................................................ 71 

Table 18. Heuristic method results for small instances: settings and initial feasible solution ...... 78 

Table 19. Heuristic method results for small instances: best solution obtained ........................... 78 



ix 

Table 20. Heuristic method results for medium-sized instances: settings and initial feasible 
solution .......................................................................................................................................... 79 

Table 21. Heuristic method results for medium-sized instances: best solution obtained ............. 79 

Table 22. Heuristic method results for large instances: settings and initial feasible solution ...... 80 

Table 23. Heuristic method results for large instances: best solution obtained ............................ 80 

Table 24. Detailed objective value breakdown ............................................................................. 81 



x 

ACKNOWLEDGEMENTS 

First and foremost, I would like to express my profound appreciation to my supervisor 

Professor Matthew Petering who generously offered his precious time and expertise in guiding and 

mentoring me step by step through the entire research process. Doctor Petering, your professional 

supervision, insightful comments and continuous encouragement at every stage of this study made 

this thesis possible for which I will always be grateful. I would also like to extend my special 

acknowledgement to the esteemed committee members/readers of my thesis for their time and 

constructive comments during the defense session. 

Words fail me to express my heartfelt appreciation to my parents, whose unconditional 

love and continuous support have always paved the way toward my achievements. It is their 

constant encouragement and support from the very beginning of my life that made it possible for 

me to reach this stage. I will be eternally grateful to you for always believing in me and for your 

endless love, blessings, and support. I love you both from the bottom of my heart. I also wish to 

thank my brother, Mohsen, who has always been my best friend and whose everlasting love and 

support brighten up my life. I love you dearly and I thank you for being my loving and caring 

brother. 

Last but not least I would like to express my heartfelt thanks to the love of my life, Sepideh, 

for her unwavering love and constant encouragement. Thank you for accompanying me throughout 

the whole process. Your love and consideration mean the world to me and give me courage to face 

challenges and never give up. 



1 
 

 Chapter 1: A mathematical modeling approach to university course planning 

1.1. Introduction  

Education is fundamental to human civilization. The relationship between student and 

teacher is older than history itself, and the importance of formal education within a modern society 

is well recognized (Smith et al., 2017). The world’s institutions of higher learning—universities 

and colleges—now number more than 26,000, and this number continues to rise (Sowter, 2017). 

The work performed at these institutions—teaching, research, and service—improves the human 

condition both globally and locally (Winters, 2011).  

As universities become more numerous, many educational in situations are searching for 

better ways to use their limited resources—faculty members, staff members, physical 

infrastructure, time, and money—to serve students. In the United States, the desire to improve 

efficiency is partly motivated by recent cuts in higher education spending (Mitchell, Leachman, & 

Masterson, 2016). Today, many universities are realizing that they need to deliver educational 

programs in more efficient ways and if they wish to prosper in the future.  

One aspect that affects the efficiency of a university is the way in which its courses are 

planned and scheduled. The structure of university degree programs, the courses offered each 

semester, and the assignment of courses to classrooms each semester all impact the student 

experience which in turn affects a university’s reputation, ability to attract funding, and bottom 

line.  

In this chapter, we introduce two optimization problems that relate to the productivity of a 

university and its students. In the student course planning problem (SCPP), a student needs to 

design one or more course plans that allow him/her to graduate in a timely manner. In the 
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department course planning problem (DCPP), an academic department needs to decide which 

courses to offer during which semesters to facilitate students’ timely graduation. Mathematical 

models of these problems are developed, coded in C++, and solved with IBM ILOG CPLEX. 

Experiments on small, medium-sized, and large real-world and fictional problem instances 

demonstrate the math model’s utility. 

1.2. Literature review   

The literature relevant to this study includes all papers which introduce methods for 

automatically doing university course scheduling, university course planning, and resource-

constrained project scheduling (Fig. 1). 

 

 

 

 

 

 

 

 

 

Figure 1. Branches of educational timetabling 
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The goal in university course scheduling is to assign university courses and laboratory 

sessions to classrooms and timeslots considering each room’s maximum capacity, the expected 

number of students in a course, and other related facility issues. This topic is only tangentially 

related to this chapter and will be discussed in Chapter 2. 

A handful of published papers introduce math models and/or algorithms for university 

course planning. Esteban, Zafra, and Romero (2020) develop a genetic algorithm to recommend 

elective courses to computer science students at the University of Cordoba. Mohamed (2015) 

introduces an integer program for long-term course planning (LTCP) that decides which courses 

to take during which semester so that a student’s satisfaction and grade point average is maximized 

upon graduation. Morrow, Hurson, and Sarvestani (2017) propose a hierarchical, multi-stage 

algorithm for designing a personalized, multi-semester course plan for a student considering the 

degree requirements, the student’s personal interests, the time required to earn the degree, and 

expected course grades. Shakhsi-Niaei and Abuei-Mehrizi (2020) present an integer program for 

deciding which courses a student takes during which semester with the goal of finishing a degree 

while taking his/her preferred elective courses, balancing total course complexity across the 

semesters, and balancing the number of credits taken across the semesters. The work described in 

this chapter considers university course planning from both student and department perspectives, 

and it has recently been published in an academic journal (Khamechian & Petering, 2022). 

Our investigation of the student course planning problem (SCPP) in this paper has some 

overlap with the preceding three papers, but our work differs from these papers in several aspects. 

First, we provide a clear, thorough description of the problem. Second, we consider a different 

objective: minimizing the time to graduation. Third, we consider more than ten times as many 

problem instances as any other paper. To our knowledge, no existing work besides Khamechian 
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& Petering (2022) has investigated a problem similar to the department course planning problem 

(DCPP) that is introduced in this chapter. In other words, prior to the publication of the paper by 

Khamechian & Petering (2022), no paper had presented a method for helping university 

departments decide which course to offer in which semesters to facilitate students’ timely 

graduation. 

If we consider a university degree as a project, courses as activities (i.e., jobs, tasks), course 

offerings as resources, and course prerequisites as activity precedence relationships, then 

university course planning resembles a resource-constrained project scheduling problem (RCPSP). 

The RCPSP is an NP-hard combinatorial optimization problem. Due to its extensive engineering 

applications, the RCPSP has become an important research area in recent decades. 

Araujo et al. (2020) describe three variants of the RCPSP: the single-mode resource-

constrained project scheduling problem (SMRCPSP), multi-mode resource-constrained project 

scheduling problem (MMRCPSP), and multi-mode resource-constrained multi-project scheduling 

problem (MMRCMPSP). In the SMRCPSP, an activity-on-node network indicates activity 

precedence relationships; activities may not be preempted; activities are performed over time with 

limited resources; resources are renewable at each time period; and there is only one way to process 

each activity. The goal in a SMRCPSP is to find an activity schedule with minimum makespan 

that satisfies the activity precedence constraints and resource limitations (Chakrabortty, Sarker, & 

Essam, 2018). A branch and bound algorithm is often proposed for this problem (Brucker, Knust, 

Schoo, & Thiele, 1998). Researchers have also applied several types of metaheuristics to the 

SMRCPSP, such as priority rules (Myszkowski, Skowronski, & Podlodowski, 2013), greedy 

algorithms (Myszkowski & Siemienski, 2016), tabu search (Skowronski, Myszkowski, Adamski, 

& Kwiatek, 2013), and simulated annealing (Yannibelli & Amandi, 2013). 
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An extension of the conventional single-mode RCPSP is the MMRCPSP, which considers 

the duration of each task as a function of the level and type of resources committed to it. In the 

MMRCPSP, each task can be accomplished in one of several processing modes, and each 

processing mode has a different task duration, rate of resource usage, and/or type of resources 

associated with it. Two types of resources are considered: renewable resources which are available 

in each time period, and non-renewable resources which can lead to infeasible solutions. In the 

MMRCPSP, project interactions that result from the utilization of shared resources must be taken 

into consideration (Zapata, Hodge, & Reklaitis, 2008). A significant number of exact, heuristic, 

and metaheuristic approaches have been proposed for solving different MMRCPSPs (Almeida, 

Correia, & Saldanha-da-Gama, 2019). The MMRCPSP is distinguishably more complex than the 

SMRCPSP, which is itself NP-hard (Elloumi & Fortemps, 2010). 

The MMRCMPSP is a generalization of the previous problem variants. The MMRCMPSP 

considers a multi-project environment in which there are multiple projects with assigned due dates; 

activities that have alternative resource usage modes; a resource dedication policy that does not 

allow sharing of resources among projects throughout the planning horizon; and a total budget 

(Besikci, Bilge, & Ulusoy, 2015). 

This chapter considers two optimization problems that have at least five features which are 

outside the scope of a typical RCPSP: elective activities (elective courses), activity release times 

(course constraints relating to student seniority), cyclic resource availability (seasonal course 

offerings), non-strict activity precedence relationships (course corequisites), and operational 

interruptions (leaves of absence). 
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Overall, despite the existence of scores of outstanding articles on course scheduling, course 

planning, and the RCPSP in the academic literature, to the authors’ knowledge there is no article 

besides Khamechian & Petering (2022) which has substantial overlap with the content of this 

chapter. This chapter introduces two university course planning problems: the student course 

planning problem (SCPP) and the department course planning problem (DCPP). Our work on the 

SCPP and DCPP is presented in Sections 1.3 and 1.4 respectively, and our concluding remarks are 

found in Section 1.5. 

1.3. The student course planning problem (SCPP) 

We now formally introduce the student course planning problem. 

1.3.1. Problem description 

Consider a student who begins a university degree. Because the student pays tuition, he/she 

wants to graduate as soon as possible without harming his/her learning quality. Thus, when the 

student plans out his/her degree by deciding which courses to take in each future semester, the 

main goal is to minimize the time required to complete the degree; issues relating to specific 

instructors and classrooms are typically not considered. 

The student creates his/her plan for completing the degree based on the following 

information. The university course schedule is assumed to repeat annually, and courses are offered 

during N sessions each year. For example, a university that operates on a semester calendar has 

two sessions per year (N = 2), and a university that works quarterly has four sessions per year (N 

= 4). The most basic unit of academic work in the degree is a course. In other words, progress 

towards completion of the degree is measured in courses, not credit hours. According to university 

policy, the student may take a maximum of Max courses each session. The student begins his/her 
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degree during session Start (1 ≤ Start ≤ N); remains a student for multiple consecutive sessions 

after that; and is required to graduate within a maximum of S semesters (i.e., sessions) after starting 

his/her degree. In this chapter, the term “semester” refers to how long a student has been pursuing 

his/her degree, and the term “session” refers to a time during the year when courses are offered. 

There are total of C available courses which are divided to two categories: required and 

elective. Parameter Rc equals 1 (0) if course c is (is not) a required component of the degree. 

Parameter Ec equals 1 (0) if course c is (is not) an elective course (Rc +Ec =1 for all c). Elective 

courses are divided into two groups. Parameter EMc equals 1 (0) if course c is (is not) an elective 

course in the major (EMc ≤ Ec for all c). A total of E elective courses must be taken to graduate of 

which EM must be elective courses in the major. The university allows students to count courses 

taken at a previous institution towards completion of their degree. Parameter Ac equals 1 (0) if the 

student has (has not) already taken course c. Each course may refer to a specific university course 

or a category of courses. For example, course #5 could be “Computer Science 100,” “any 100-

level computer science course,” or “any humanities course.” 

The course offerings repeat annually, and not every course is offered during every session. 

For example, some courses may only be offered in the fall while others are only offered in the 

spring. Binary parameter Ocn indicates if course c is offered during session n. We assume there are 

no time conflicts between the courses offered in the same session. In other words, the student can 

feasibly attend the lectures for any combination of courses that are offered in the same session. 

A set of prerequisite and corequisite requirements ensure that the student takes courses in 

the proper sequence. Binary parameter Pcd indicates if course c is a prerequisite for course d, i.e., 

if course c must be taken before course d. Without loss of generality (and to avoid circular logic), 
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we assume that courses are numbered in agreement with the prerequisite requirements. That is, Pcd 

may only equal 1 if c < d. Binary parameter Ccd indicates if course c is a corequisite for course d. 

This parameter equals 1 (0) if course c must be taken before, or during the same semester as, course 

d.  

Another set of restrictions relate to the seniority of the student, i.e., how many courses the 

student has completed. Binary parameter Jc indicates if the student must be a junior—i.e., if he/she 

must have completed Junior (e.g., 20) courses—before he/she takes course c. Binary parameter Sc 

indicates if the student must be a senior—i.e., if he/she must have completed Senior (e.g., 30) 

courses—before he/she takes course c (Junior ≤ Senior). 

Finally, the student has the option to take a leave of absence during his/her degree. A leave 

of absence is a semester when the student does not take courses. This option allows the student to 

take a break from his/her studies to seek temporary employment; spend additional time with 

family; or travel around the world. If the student takes a leave of absence, parameter LA (2 ≤ LA ≤ 

S-1) indicates the semester when the leave is taken; otherwise, parameter LA equals 0. 

1.3.2. Mathematical model 

Table 1 lists the indices, parameters, and decision variables in our integer programming 

(IP) formulation of the SCPP. The model has three types of indices. Index n refers to the sessions. 

Indices c and d represent courses. Indices s and t refer to semesters; their value indicates how long 

the student has been pursuing his/her degree. 

Model SCPP has three sets of decision variables. Binary variable Xcs equals 1 (0) if the 

student takes (does not take) course c during his/her sth semester. Binary variable Ys equals 1 (0) if 

the student has not (has) completed his/her degree by the start of his/her sth semester. Integer 
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variable Zs equals the number of courses the student has completed by the beginning of his/her sth 

semester. This variable allows the model to check the junior or senior standing of the student. 

Table 1. Indices, parameters, and decision variables in mathematical model SCPP 
Indices 
n Session (n = 1, 2, …, N) 
c, d Course (c, d = 1, 2, …, C) 
s, t Semester: a measure of how long the student has been pursuing his/her degree (s, t = 1, 2, …, S) 
Parameters 
N  Number of sessions per year (e.g., 2) 
C Number of available courses (e.g., 40) 
S Number of semesters available for completing a degree (e.g., 10) 
Max Maximum number of courses the student can take per session (e.g., 6) 
Start  Session when the student starts his/her degree (= 1, 2, …, N) 
Ac 1, if course c has already been taken (e.g., by a transfer student) 

0, otherwise 
Rc 1, if course c is required for graduation 

0, otherwise (binary) 
Ec 1, if course c is an elective course 

0, otherwise (binary) 
EMc 1, if course c is an elective course in the major 

0, otherwise (binary) 
E Number of elective courses needed for graduation (e.g., 4) 
EM Number of elective courses in the major needed for graduation (e.g., 2) 
Ocn 1, if course c is offered during session n 

0, otherwise (binary) 
Pcd 1, if course c is a prerequisite for course d (c < d) 

0, otherwise (binary) 
Ccd 1, if course c is a corequisite for course d 

0, otherwise (binary) 
Junior Number courses a student must have completed to be considered a junior  
Senior Number courses a student must have completed to be considered a senior 
Jc 1, if junior standing is required for course c 

0, otherwise (binary) 
Sc 1, if senior standing is required for course c 

0, otherwise (binary) 
LA Semester during which student takes a leave of absence (e.g., to work at a company full time) (= 2, 3, 

…S-1) 
(= 0 if no leave of absence is taken) 

Decision variables 
Xcs 1, if the student takes course c during his/her sth semester  

0, otherwise (binary) 
Ys    1, if the student has not completed his/her degree by the start of his/her sth semester  

0, otherwise (binary) 
Zs   Number of courses student has completed by the beginning of his/her sth semester 
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Mathematical model SCPP is shown below: 

Minimize ∑ 𝑌𝑌𝑠𝑠𝑆𝑆
𝑠𝑠=1  (1) 

Constraints 

Ys+1 ≤ Ys   for all s ≤ S – 1 (2) 

Xcs ≤ Ys  for all c and s (3) 

𝐴𝐴𝑐𝑐 + ∑ 𝑋𝑋𝑐𝑐𝑠𝑠𝑆𝑆
𝑠𝑠=1  ≥ Rc  for all c (4) 

∑ [(𝐴𝐴𝑐𝑐 + ∑ 𝑋𝑋𝑐𝑐𝑠𝑠)𝑆𝑆
𝑠𝑠=1 ∗ (𝐸𝐸𝑐𝑐)] C

c=1 ≥ 𝐸𝐸   (5) 

∑ [(𝐴𝐴𝑐𝑐 + ∑ 𝑋𝑋𝑐𝑐𝑠𝑠)𝑆𝑆
𝑠𝑠=1 ∗ (𝐸𝐸𝑀𝑀𝑐𝑐)] C

c=1 ≥ 𝐸𝐸𝑀𝑀  (6) 

∑ 𝑋𝑋𝑐𝑐𝑠𝑠𝐶𝐶
𝑐𝑐=1  ≤ Max   for all s (7) 

Xcs ≤ Oc, ([(s-1) + (Start-1)] mod N) + 1 for all c and s (8) 

Ac + ∑ 𝑋𝑋𝑐𝑐𝑠𝑠𝑆𝑆
𝑠𝑠=1  ≤ 1       for all c (9) 

∑ 𝑋𝑋𝑑𝑑𝑠𝑠𝑆𝑆
𝑠𝑠=1  ≤ ∑ 𝑋𝑋𝑐𝑐𝑠𝑠𝑆𝑆

𝑠𝑠=1 + 𝐴𝐴𝑐𝑐     for all (c, d) such that Pcd = 1 (10a) 

(∑ 𝑠𝑠 ∗ 𝑋𝑋𝑐𝑐𝑠𝑠) + 1𝑆𝑆
𝑠𝑠=1  ≤ (∑ 𝑠𝑠 ∗ 𝑋𝑋𝑑𝑑𝑠𝑠) + (𝑆𝑆 + 1)(1−  ∑ 𝑋𝑋𝑑𝑑𝑠𝑠)𝑆𝑆

𝑠𝑠=1
𝑆𝑆
𝑠𝑠=1      for all (c, d) such that Pcd = 1 (10b) 

∑ 𝑋𝑋𝑑𝑑𝑠𝑠𝑆𝑆
𝑠𝑠=1  ≤ ∑ 𝑋𝑋𝑐𝑐𝑠𝑠 + 𝐴𝐴𝑐𝑐𝑆𝑆

𝑠𝑠=1      for all (c, d) such that Ccd = 1 
 

(11a) 
(∑ 𝑠𝑠 ∗ 𝑋𝑋𝑐𝑐𝑠𝑠) 𝑆𝑆

𝑠𝑠=1 ≤ (∑ 𝑠𝑠 ∗ 𝑋𝑋𝑑𝑑𝑠𝑠) + (𝑆𝑆)(1−  ∑ 𝑋𝑋𝑑𝑑𝑠𝑠)𝑆𝑆
𝑠𝑠=1

𝑆𝑆
𝑠𝑠=1           for all (c, d) such that Ccd = 1 (11b) 

Zs = ∑ ∑ 𝑋𝑋𝑐𝑐𝑐𝑐𝑠𝑠−1
𝑐𝑐=1

𝐶𝐶
𝑐𝑐=1 + ∑ 𝐴𝐴𝑐𝑐𝐶𝐶

𝑐𝑐=1          for all s (12) 

Zs ≥ Junior * 𝑋𝑋𝑐𝑐𝑠𝑠   for all c and s such that Jc = 1  (13) 

Zs ≥ Senior ∗  𝑋𝑋𝑐𝑐𝑠𝑠 for all c and s such that Sc = 1  (14) 

∑ 𝑋𝑋𝑐𝑐,𝐿𝐿𝐿𝐿 C
c=1 = 0    If LA ≠ 0 (15) 

𝑌𝑌𝐿𝐿𝐿𝐿 = 1     If LA ≠ 0 (16) 

In model SCPP, the objective (1) is to minimize the number of semesters needed to 

complete the degree. Constraint (2) states that if a student has not completed his/her degree by the 
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beginning of his/her s+1st semester, then he/she also has not completed his/her degree by the start 

of his/her sth semester. This constraint ensures the continuity of the student’s degree. Constraint 

(3) ensures that if the student takes course c during his/her semester s, the student must not be 

finished with his/her degree by the start of semester s. Constraint (4) ensures that each required 

course is either taken during the program or has already been taken before the student joins the 

program. Constraints (5) and (6) ensure that the student takes the necessary number of elective 

courses and elective courses in the major. Constraint (7) ensures that the student does not take 

more than Max courses per semester. 

Constraint (8) is the course availability constraint. It ensures that the student does not take 

course c during his/her sth semester if the course is not offered during that semester. In this 

constraint, the expression ([(s-1) +(Start-1)] mod N) +1 converts the semester s into the appropriate 

session for given values of Start and N. For example, if Start = 1 and N = 2 (if the student starts in 

the fall at a university that has two sessions (fall and spring) each year) then the expression 

becomes ([s-1] mod 2) +1, and the expression equals (1, 2, 1, 2, …) when s equals (1, 2, 3, 4, …) 

respectively. If Start = 2 and N = 2, then the expression becomes (s mod 2) +1, and the expression 

equals (2, 1, 2, 1, …) when s equals (1, 2, 3, 4, …) respectively. 

Constraint (9) ensures that each course is taken at most once. Constraints (10a) and (10b) 

are the prerequisite constraints; they ensure that if course d is taken and course c is its prerequisite, 

then course c must be taken before course d. Constraints (11a) and (11b) are the corequisite 

constraints which ensure that if course d is taken and course c is its corequisite, then course c must 

be taken either before or during the same semester as course d. Constraint (12) ensures that Zs 

equals the number of courses the student has taken by the start of his/her sth semester. Constraints 

(13) and (14) ensure that the student already has junior or senior standing by the beginning of 
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semester s if he/she takes a course c that requires junior or senior standing during semester s 

respectively. Constraints (15) and (16) ensure that the student does not take any courses during a 

leave of absence but that the student is still enrolled in the degree program during a leave of 

absence. 

1.3.3. Experimental setup 

All math models in this chapter were coded into MS Visual C++2017, and IBM ILOG 

Concert Technology was used to call IBM ILOG CPLEX 12.9 to solve problem instances 

contained in text files. All experiments were run on a desktop PC with a core i7 3.4 GHz processor 

and 8 GB of RAM. The CPLEX computation time limit was 600 seconds for all problem instances 

in this chapter. 

1.3.4. Case study: Industrial Engineering BSE program at UW-Milwaukee 

Our first experiment applies model SCPP to the industrial engineering bachelor’s degree 

at UW-Milwaukee. The list of requirements for this degree is available online (UW-Milwaukee 

Industrial Engineering curriculum, 2021). 

Table 2 shows the parameter values for this degree program. Most inputs are matrices of 

zeros and ones with different dimensions. The university operates on a semester calendar (N = 2), 

and students are normally expected to finish their degree in ten semesters or less (S = 10). A total 

of 49 courses are available (C = 49) among which 37 are required and 12 are elective. To complete 

the degree, a student must take all required courses and four elective courses—41 courses total. 

Eight of the twelve elective courses are elective courses in the major, and a student must complete 

at least two elective courses in the major to graduate. Five of the 37 required courses are actually 

course categories “Art,” “Humanities,” “Social Sci 1,” “Social Sci 2,” and “Free Elective” for 
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which numerous options are offered each semester, most of which have no prerequisites, no 

corequisites, and no requirements for junior or senior standing. Without loss of generality, we 

aggregate all options for each category into a single course in the model.  

The maximum number of courses that can be taken per semester is 6 (Max = 6), but many 

students impose their own limit of five courses per semester (Max = 5). Thus, we consider two 

values of Max in our experiments. Thirty-five of the 49 courses are offered in both fall and spring 

sessions, and 14 courses—including ten required courses—are offered in one session only. Hence, 

84 (14) of the Ocn parameters equal 1 (0). The number of individual course-to-course prerequisite 

and corequisite requirements is 44 and 13, respectively. Students who complete 20 (30) courses 

are considered juniors (seniors), and a total of 12 (5) courses require junior (senior) standing. The 

following subsections discuss the results of three experiments concerning this degree. 

Table 2. Experimental setup and assumptions for model SCPP case study (** indicates how many binary terms equal 
1) 

Parameter Value(s) used in experiment 
N 2 
C 49 
S 10 
Max 5 or 6 
Start 1 (fall) or 2 (spring) 
Ac **[8 elements = 1 (all others = 0)] (Experiment 2 only) 
Rc **[37 elements = 1 (all others = 0)] 
Ec **[12 elements = 1 (all others = 0)] 
EMc **[8 elements = 1 (all others = 0)] 
E 4 
EM 2 
Ocn **[84 elements = 1 (all others = 0)] (98 elements total) 
Pcd **[44 elements = 1 (all others = 0)] 
Ccd **[13 elements = 1 (all others = 0)] 
Junior 20 
Senior 30 
Jc **[12 elements = 1 (all others = 0)] 
Sc **[5 elements = 1 (all others = 0)] 
LA 5 (Experiment 2 only) 

1.3.5. Experiment 1: Student with no leave of absence and no transfer courses 

Our base scenario is that of a student who enters the program directly from high school 

(with no transfer courses); does not plan to take a leave of absence; and takes up to 6 courses per 
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semester (Max = 6). Table 3 shows our experimental results for this scenario. The left half of the 

table shows five optimal course schedules for a student who starts in fall (Start = 1), and the right 

half shows five optimal course schedules for a student who starts in spring (Start = 2). Each of 

these optimal solutions is obtained within one second of computation time. 

The diverse course schedules shown in Table 3 were obtained by repeatedly solving math 

model SCPP, each time with a different, random term [(. 0001)∑ ∑ 𝑊𝑊𝑐𝑐𝑠𝑠𝑋𝑋𝑐𝑐𝑠𝑠𝑆𝑆
𝑠𝑠=1

𝐶𝐶
𝑐𝑐=1 ] added to the 

objective function where each value Wcs is a random integer from 0 to 9. The Wcs values create 

arbitrary preferences for taking particular courses in specific semesters, and they are randomly 

generated each time the code is run. For example, if W35 is high, there is a preference to not take 

course 3 during semester 5. This may result in a different course plan than if W35 is low. In this 

paper a judgment is not made as to which course schedule is preferred; it is assumed that the 

diverse course schedules shown in Table 3 are equally desirable. Individual students can look at a 

variety of course schedules and make their own final decision regarding which course schedule 

they prefer. 

The results in the left half of Table 3 show that a student who starts in the fall can graduate 

in seven semesters. However, the results in the right half of the table show that a student who starts 

in the spring needs a minimum of eight semesters to graduate. This asymmetry agrees with the 

experience of university students, faculty, and staff members who are familiar with the degree. 

Model SCPP was then used to identify the root causes of this asymmetry, and it was found that 

there were two causes: the semesters when courses are offered (Ocn) and the prerequisite 

requirements (Pcd). If either of these parameters were modified or loosened, both cohorts of 

students—those who start in fall and those who start in spring—would be able to graduate in seven 

semesters. Modifying Pcd at UW-Milwaukee is a time-consuming process because it needs 
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approval at multiple levels within the university government, so the easier solution is to modify 

the course offerings (Ocn). We then considered each of the ten required courses that are offered in 

one session only. We swapped the offering session of each of these ten courses one by one to see 

if it was possible for all students to graduate in seven semesters. The results indicated that all 

students can graduate in seven semesters if the offering session of either of the following courses 

is changed: IE 370 or IE 583. Currently both courses are being offered in the fall semester. If the 

department offers either course in the spring, all students will be able to finish their degrees in 

seven semesters. 

Table 3 allows us to make another interesting observation, namely that the courses IE 111 

and IE 112—which are intended for first-year students—could be taken during the last two or three 

semesters. This is because these courses are not prerequisites or corequisites for other courses. 

Based on this observation, we recommend that each of these courses be made a prerequisite for at 

least one other required course. 

 
 



 
 

Table 3. Selected optimal solutions for the SCPP case study (Experiment 1) 
Start = 1 (fall), Max = 6, no leave of absence and no transfer courses 

Semester 1: Semester 1: Semester 1: Semester 1: Semester 1: 
        EAS 200         EAS 100         EAS 100         EAS 100         EAS 200 
        IE 111         IE 111         IE 111         EAS 200         IE 111 
        Math 116         Math 116         Math 116         Math 116         Math 116 
        Chem 102         Chem 102         Social Science 1         Chem 102         Chem 102 
        Social Science 1         Art         Social Science 2         Social Science 1         Social Science 2 
        Social Science 2         Social Science 1         Free Elective         English 310         Free Elective 
Semester 2: Semester 2: Semester 2: Semester 2: Semester 2: 
        EAS 100         EAS 200         CompSci 240         CompSci 240         EAS 100 
        IE 112         IE 112         Math 231         MatlEng 201         IE 112 
        Math 231         MatlEng 201         Chem 102         Math 231         MatlEng 201 
        Chem 104         Math 231         Art         Chem 104         Math 231 
        Humanities         Social Science 2         Humanities         Humanities         Chem 104 
        English 310         Free Elective         English 310         Social Science 2         Art 
Semester 3: Semester 3: Semester 3: Semester 3: Semester 3: 
        CompSci 240         CompSci 240         IE 112         IE 111         CompSci 240 
        IE 367         IE 350         MatlEng 201         IE 350         IE 350 
        Math 232         IE 367         IE 367         IE 367         IE 367 
        Physics 209         Math 232         Math 232         Math 232         Math 232 
        Free Elective         Chem 104         Chem 104         Physics 209         Physics 209 
        EAS 001         Physics 209         Physics 209         Art         Humanities 
Semester 4: Semester 4: Semester 4: Semester 4: Semester 4: 
        CivEng 201         CivEng 201         CivEng 201         CivEng 201         CivEng 201 
        EE 301         EE 301         EE 301         EE 301         EE 301 
        IE 475         IE 475         IE 475         IE 475         IE 475 
        Math 233         IE 575         IE 575         IE 575         Math 233 
        EE 234         Math 233         Math 233         Math 233         EE 234 
        Physics 210         Physics 210         Physics 210         Physics 210         Physics 210 
Semester 5: Semester 5: Semester 5: Semester 5: Semester 5: 
        CivEng 202         CivEng 202         IE 360         CivEng 202         CivEng 202 
        IE 360         IE 360         IE 350         IE 370         IE 360 
        IE 370         IE 370         IE 370         IE 455         IE 370 
        IE 455         IE 455         IE 455         IE 470         IE 455 
        IE 470         EE 234         IE 580         IE 580         IE 470 
        IE 580         IE 699         EE 234         EE 234         IE 580 
Semester 6: Semester 6: Semester 6: Semester 6: Semester 6: 
        MatlEng 201         IE 465         CivEng 202         IE 360         IE 465 
        IE 465         IE 571         IE 465         IE 465         IE 571 
        IE 571         English 310         IE 571         IE 571         IE 575 
        IE 575         IE 590         IE 550         Free Elective         Social Science 1 
        Art         Bus Adm 330         IE 584         IE 572         IE 550 
        IE 572         EAS 001         Bus Adm 330         IE 587         IE 584 
Semester 7: Semester 7: Semester 7: Semester 7: Semester 7: 
        IE 350         IE 470         EAS 200         IE 112         IE 485 
        IE 485         IE 485         IE 470         IE 485         IE 583 
        IE 583         IE 580         IE 485         IE 583         English 310 
        IE 590         IE 583         IE 583         EAS 001         IE 590 
        MechEng 301         Humanities         MechEng 474         MechEng 301         MechEng 474 
     

 

 

 

 

Start = 2 (spring), Max = 6, no leave of absence and no transfer courses 
Semester 1: Semester 1: Semester 1: Semester 1: Semester 1: 
        EAS 100         EAS 200         EAS 200         IE 111         IE 111 
        EAS 200         Math 116         Math 116         Math 116         Math 116 
        Math 116         Chem 102         Chem 102         Chem 102         Chem 102 
        Chem 102         Art         Humanities         Humanities         Art 
        Art         Humanities         Social Science 2         English 310         Social Science 1 
        Free Elective         Social Science 1         Free Elective         Free Elective         Social Science 2 
Semester 2: Semester 2: Semester 2: Semester 2: Semester 1: 
        IE 111         IE 112         EAS 100         EAS 100         IE 112 
        CompSci 240         CompSci 240         IE 112         EAS 200         CompSci 240 
        Math 231         MatlEng 201         CompSci 240         CompSci 240         MatlEng 201 
        Chem 104         Math 231         MatlEng 201         MatlEng 201         Math 231 
        Social Science 1         Social Science 2         Math 231         Math 231         Chem 104 
        EAS 001         Free Elective         English 310         Social Science 2         Free Elective 
Semester 3: Semester 3: Semester 3: Semester 3: Semester 3: 
        IE 112         EAS 100         IE 111         IE 112         EAS 100 
        MatlEng 201         IE 111         IE 367         IE 367         EAS 200 
        IE 367         IE 367         Math 232         Math 232         IE 367 
        Math 232         Math 232         Physics 209         Chem 104         Math 232 
        Physics 209         Physics 209         Art         Physics 209         Physics 209 
        English 310         EAS 001         EAS 001         EAS 001         Humanities 
Semester 4: Semester 4: Semester 4: Semester 4: Semester 4: 
        CivEng 201         CivEng 201         CivEng 201         CivEng 201         CivEng 201 
        EE 301         EE 301         EE 301         EE 301         EE 301 
        Math 233         IE 350         IE 350         IE 350         IE 350 
        EE 234         Math 233         Math 233         Math 233         Math 233 
        Physics 210         EE 234         EE 234         EE 234         EE 234 
        Humanities         Physics 210         Physics 210         Physics 210         Physics 210 
Semester 5: Semester 5: Semester 5: Semester 5: Semester 5: 
        CivEng 202         CivEng 202         CivEng 202         CivEng 202         IE 360 
        IE 465         IE 465         IE 360         IE 360         IE 465 
        IE 475         IE 475         IE 465         IE 465         IE 475 
        IE 571         IE 571         IE 475         IE 475         IE 571 
        IE 575         IE 575         IE 571         IE 571         IE 575 
        IE 584         IE 572         IE 575         IE 575         IE 572 
Semester 6: Semester 6: Semester 6: Semester 6: Semester 6: 
        IE 360         IE 370         IE 370         IE 370         CivEng 202 
        IE 370         IE 455         IE 455         IE 455         IE 370 
        IE 455         IE 470         IE 470         IE 470         IE 455 
        IE 470         IE 580         IE 580         IE 580         IE 470 
        IE 580         English 310         Chem 104         IE 584         IE 580 
        IE 590         MechEng 474         MechEng 474         IE 699         IE 584 
Semester 7: Semester 7: Semester 7: Semester 7: Semester 7: 
        Social Science 2         IE 360         Social Science 1         Art         English 310 
        MechEng 301         Chem 104         IE 584         Social Science 1         Bus Adm 330 
          IE 699           IE 572         MechEng 474 
Semester 8: Semester 8: Semester 8: Semester 8: Semester 8: 
        IE 350         IE 485         IE 485         IE 485         IE 485 
        IE 485         IE 583         IE 583         IE 583         IE 583 
        IE 583           IE 582     
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1.3.6. Experiment 2: Student with a leave of absence in semester five and eight transfer courses 

In this experiment we assume that Max = 6 and we consider a transfer student who has 

already taken the following courses at a previous academic institution: Math 116, Math 231, Math 

232, Math 233, IE 367, CivEng 201, Chem 102, and Physics 209. Table 4 shows the results for 

this student if he/she takes a leave of absence in semester five and starts his/her program in the 

spring session (Start = 2). Each column of Table 4 shows a different optimal course schedule that 

is obtained by solving math model SCPP with a different, random term added to the objective 

function as described in Section 1.3.5. Less than one second of computation time is used to obtain 

each of these optimal solutions. Note that this student needs seven semesters—including the leave 

of absence—to complete his/her degree. 
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Table 4. Selected optimal solutions for the SCPP case study (Experiment 2) 
Start = 2(spring), LA = 5, Max = 6, transferred courses: Math 116, 231, 232, 233, IE 367, CivEng 201, Chem 102, Physics 209 
Semester 1: Semester 1: Semester 1: Semester 1: Semester 1: 
        EAS 100         EAS 100         EAS 100         EAS 200         EAS 100 
        EAS 200         IE 111         IE 111         IE 111         EAS 200 
        IE 111         Art         Humanities         Art         Art 
        Art         Humanities         Social Science 1         Humanities         Social Science 1 
        English 310         Social Science 2         Social Science 2         Social Science 2         Social Science 2 
        Free Elective         English 310         EAS 001         English 310         English 310 
Semester 2: Semester 2: Semester 2: Semester 2: Semester 2: 
        IE 112         IE 112         CivEng 202         EAS 100         IE 112 
        CompSci 240         CivEng 202         CompSci 240         CompSci 240         CompSci 240 
        EE 301         CompSci 240         IE 370         IE 370         EE 301 
        IE 370         EE 301         EE 234         EE 234         MatlEng 201 
        Chem 104         IE 370         Chem 104         Physics 210         IE 370 
        Physics 210         Physics 210         Physics 210         MechEng 301         Physics 210 
Semester 3: Semester 3: Semester 3: Semester 3: Semester 3: 
        MatlEng 201         MatlEng 201         IE 112         EE 301         IE 111 
        IE 465         IE 465         EE 301         IE 465         IE 360 
        IE 475         IE 475         MatlEng 201         IE 475         IE 465 
        IE 571         IE 571         IE 465         IE 571         IE 475 
        EE 234         Social Science 1         IE 475         IE 575         IE 571 
        Social Science 1         EAS 001         IE 571         IE 699         IE 575 
Semester 4: Semester 4: Semester 4: Semester 4: Semester 4: 
        IE 360         IE 360         IE 350         CivEng 202         CivEng 202 
        IE 350         IE 350         IE 455         MatlEng 201         IE 350 
        IE 455         IE 455         IE 470         IE 455         IE 455 
        IE 470         IE 470         IE 580         IE 470         IE 470 
        IE 580         IE 580         Art         IE 580         IE 580 
        Humanities         Chem 104         English 310         IE 584         Bus Adm 330 
Semester 5: Semester 5: Semester 5: Semester 5: Semester 5: 
          
Semester 6: Semester 6: Semester 6: Semester 6: Semester 6: 
        CivEng 202         EAS 200         IE 485         IE 112         IE 485 
        IE 485         IE 485         IE 583         IE 350         IE 583 
        IE 583         IE 583         Free Elective         IE 485         EE 234 
        IE 405         Free Elective         IE 582         IE 583         Chem 104 
        IE 584         IE 405         IE 699         Free Elective         Humanities 
        IE 590         MechEng 301         Bus Adm 330         MechEng 474         IE 590 
Semester 7: Semester 7: Semester 7: Semester 7: Semester 7: 
        IE 575         IE 575         EAS 200         IE 360         Free Elective 
        Social Science 2         EE 234         IE 360         Chem 104         IE 405 
        IE 587         IE 590         IE 575         Social Science 1         IE 584 
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1.3.7. Experiment 3: Leave of absence timing 

In this experiment, we explore how the timing of a leave of absence—i.e., the value of 

parameter LA—affects a student’s time to graduate. We assume that the student begins from 

scratch with no transfer courses, and he/she starts the degree in either fall or spring. Table 5 shows 

how LA affects the optimal graduation time when Max = 5, and Table 6 shows how LA affects the 

optimal graduation time when Max = 6. 

Table 5 shows that, when Max = 5, a leave of absence always delays a student’s graduation 

by one semester regardless of the student’s starting session or when the leave of absence is taken. 

Indeed, a student needs nine semesters to graduate if he/she does not take a leave of absence 

regardless of his/her starting session. Also, a student needs ten semesters to graduate for all values 

of LA from 2 to 9 and all values of Start from 1 to 2. These results are hardly surprising. 

Table 6 shows a more complex situation when Max = 6. The rows labeled “(none)” show 

that, if no leave of absence is taken, a student who starts in fall (spring) can graduate in 7 (8) 

semesters (see Table 3). If the student starts in fall and takes a leave of absence in semester six, 

his/her graduation will be delayed by one semester, but if the student starts in fall and takes a leave 

of absence in any other semester, his/her graduation will be delayed by two semesters. On the other 

hand, if the student starts in spring and takes a leave of absence in semester 2, 3, 4, 5, or 7, his/her 

graduation will not be delayed. However, if the student starts in spring and takes a leave of absence 

in semester 6 or 8, his/her graduation will be delayed by two semesters. 

These results show that leaves of absence need to be carefully planned. A poorly planned 

leave of absence can add 1–2 semesters to a student’s graduation time compared to a well-planned 

leave. Based on these results, we advise that the course offerings (Ocn) and/or degree requirements 
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(Pcd, Ccd) be modified so that students’ graduation time is less sensitive to the semester when they 

take a leave of absence. In the meantime, before these modifications are implemented, we 

recommend that new students either (1) begin the program in the fall and do not take a leave of 

absence; (2) begin the program in the fall and take a leave of absence during semester 6; or (3) 

begin the program in the spring and take a leave of absence during semester 2, 3, 4, 5, or 7. 

Table 5. Effect of LA on the number of semesters needed to graduate for the SCPP case study when Max = 5 
(Experiment 3) 

Start =1 (fall) 
LA #Semesters 

(none) 9 

2 10 

3 10 

4 10 

5 10 

6 10 

7 10 

8 10 

9 10 

Start =2 (spring) 
LA #Semesters 

(none) 9 

2 10 

3 10 

4 10 

5 10 

6 10 

7 10 

8 10 

9 10 

Table 6. Effect of LA on the number of semesters needed to graduate for the SCPP case study when Max = 6 
(Experiment 3) 

Start =1 (fall) 
LA #Semesters 

(none) 7 

2 9 

3 9 

4 9 

5 9 

6 8 

7 9 
  

Start =2 (spring) 
LA #Semesters 

(none) 8 

2 8 

3 8 

4 8 

5 8 

6 10 

7 8 

8 10 
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1.3.8. Experiments on fictional problem instances 

We now test model SCPP on 12 fictional problem instances. These instances are 

categorized by their size—small, medium, large—with four instances considered for each size. We 

gradually tighten the four instances within each size by increasing the number of prerequisites. In 

other words, each problem instance within each instance size has more ones in the Pcd matrix 

compared to the preceding problem instance. For example, in instance 1 of each problem size, 2% 

of the elements in the upper triangle of the Pcd matrix equal one while this number is 5% in instance 

4. 

Table 7 lists the main inputs and assumptions for the fictional problem instances. For the 

sake of simplicity, in all fictional instances we assume that there are no elective courses in the 

major (EM = 0) and that Ccd = 0 for all c and d. We set a computation time limit of 600 seconds. 

Table 7. Experimental setup and assumptions for model SCPP fictional instances 
Small instances Medium-sized instances Large instances 

N = 3 N = 4 N = 6 

C = 20 C = 50 C = 80 
S = 8 S = 10 S = 12 
Max = 6 Max = 6 Max = 6 
Ac: All elements = 0 Ac: All elements = 0 Ac: All elements = 0 
Rc: 12 elements = 1 Rc: 35 elements = 1 Rc: 45 elements = 1 
Ec: 8 elements = 1 Ec: 15 elements = 1 Ec: 35 elements = 1 
E = 3 E =5 E = 15 
EM = 0 EM = 0 EM = 0 
15 courses needed for graduation 40 courses needed for graduation 60 courses needed for graduation 
Ocn: 47 elements = 1 and all others = 0 Ocn: 174 elements = 1 and all others = 0 Ocn: 365 elements = 1 and all others = 0 
Pcd: 2%, 3%, 4%, or 5% of elements = 1 Pcd: 2%, 3%, 4%, or 5% of elements = 

1 
Pcd: 2%, 3%, 4%, or 5% of elements = 1 

Ccd: All elements = 0 Ccd: All elements = 0 Ccd: All elements = 0 
Junior = 5 Junior = 20 Junior = 30 
Senior = 10 Senior = 30 Senior = 40 
Jc: 6 elements = 1 Jc: 14 elements = 1 Jc: 17 elements = 1 
Sc: 5 elements = 1 Sc: 8 elements = 1 Sc: 12 elements = 1 
No leaves of absence  No leaves of absence  No leaves of absence  
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Table 8 shows the results of our experiments. Each instance is solved for each possible 

value of Start. As can be seen in Table 8, model SCPP produces optimal solutions for all instances 

in less than ten seconds. For the small instances, the optimal value is either 3 or 4. For the medium- 

sized instances, the optimal value generally increases from 7 to 9 from instance 1 to instance 4. 

For the large instances, the optimal value is either 10 or 11 depending on the session when the 

student starts his/her degree. Overall, it appears that a direct mathematical programming approach 

with default CPLEX settings is effective in solving a variety of small and large instances of the 

SCPP. 



 
 

Table 8. Experimental results for model SCPP fictional instances. 
Small instances 

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1) 

Start 1 2 3 1 2 3 1 2 3 1 2 3 

Optimal value 4 3 4 4 3 4 4 3 4 4 3 4 

Time elapsed (sec) 1 1 1 1 1 1 1 1 1 1 1 1 

 
 

Medium-sized instances 

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1) 

Start 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Optimal value 7 7 7 7 9 8 9 8 9 8 9 8 9 8 9 8 

Time elapsed (sec) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

 
 

 
 
 
 
 
 
 

Large instances 

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1) 

Start 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

Optimal value 10 10 10 10 10 10 11 10 11 10 11 10 10 10 11 10 10 10 10 11 11 11 11 11 

Time elapsed (sec) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

23 
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1.4. The department course planning problem (DCPP) 

We now introduce a second optimization problem called the department course planning 

problem (DCPP). 

1.4.1. Problem description 

Consider an academic department at a university that needs to decide when during the year 

it will teach courses that support an academic degree that it offers. The curriculum of this degree 

is defined by parameters N, C, S, Max, Rc, Ec, EMc, E, EM, Pcd, Ccd, Junior, Senior, Jc, and Sc as 

described in Section 1.3.2. (The discussion of Start, Ac, Ocn, and LA in Section 1.3.2 is also relevant 

here, but these are not parameters in the DCPP.) 

The department wants to facilitate the timely graduation of regular students who begin the 

program from scratch (without any transfer courses) and do not take any leaves of absence. In 

other words, the department plans its course offerings assuming that Ac = 0 for all c and LA = 0 for 

each student. Students are allowed to begin the degree in any session n (1 ≤ n ≤ N). From historical 

data, the department knows that the proportion of students who begin the degree in session n is 

Wn. For example, if 70% of students begin their studies in the fall and the university has two 

sessions per year—fall and spring—then W1 = 0.7 and W2 = 0.3. Students who begin the degree 

during the same session are said to be in the same cohort. 

Courses within the degree are taught either by the department or by a unit outside of the 

department. Binary parameter Dc equals 1 (0) if course c is taught by (outside of) the department. 

Courses taught outside of the department are in good supply, and it can be assumed that every such 

course is offered every session. The department, on the other hand, has limited (staff, budgetary) 

resources to offer the courses it teaches. In particular, the maximum number of course sections it 
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can offer in a year is CourseLimit. Each course section is equivalent to one course offered during 

one session. If the department wishes to offer the same course in two different sessions, two course 

sections are needed. 

Given the above information, the department wishes to decide the value of binary decision 

variable Ocn—which equals 1 (0) if course c is offered during session n—so as to facilitate the 

timely graduation of all student cohorts. We assume that Ocn always equals 1 if course c is taught 

outside of the department. 

If the department is only interested in facilitating the graduation of one student cohort, this 

can be done by setting Wn = 1 for that cohort and Wn =0 for all other cohorts. However, if course 

offerings are tailored to only one cohort, students in other cohorts may experience unnecessarily 

long graduation times. For this reason, our model of the DCPP is designed to consider the 

graduation time for all student cohorts simultaneously. 

1.4.2. Mathematical models 

We develop two closely linked integer programming models of the DCPP. Model DCPP I 

minimizes the graduation time for the average student who enters the program, and model DCPP 

II minimizes the maximum number of semesters needed for any student cohort to graduate. Table 

9 lists the indices, parameters, and decision variables in these models. The elements in these two 

models are identical except that model DCPP I has one more parameter (Wn), and one less decision 

variable (K), than model DCPP II. We now discuss each model in detail. 
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Table 9. Indices, parameters, and decision variables in mathematical models DCPP I and DCPP II 
Indices 
n Session (n = 1, 2……. N) 
c, d Course (c, d = 1, 2, …., C) 
s, t Semester; a measure of how long a student has been pursuing his/her degree (s, t = 1, 2, …… S) 
Parameters 
N  Number of sessions per year (e.g., 2) 
C Number of available courses (e.g., 40) 
S Number of semesters available for completing a degree (e.g., 10) 
Max Maximum number of courses student can take per semester (e.g., 6) 
Rc 1, if course c is required for graduation 

0, otherwise (binary) 
Ec 1, if course c is an elective course 

0, otherwise (binary) 
EMc 1, if course c is an elective course in the major 

0, otherwise (binary) 
E Number of elective courses needed for graduation (e.g., 4) 
EM Number of elective courses in the major needed for graduation (e.g., 2) 
Pcd 1, if course c is a prerequisite for course d (c < d) 

0, otherwise (binary) 
Ccd 1, if course c is a corequisite for course d 

0, otherwise (binary) 
Junior Number courses a student needs to pass to be considered a junior  
Senior Number courses a student needs to pass to be considered a senior 
Jc 1, if junior standing is required for course c 

0, otherwise (binary) 
Sc 1, if senior standing is required for course c 

0, otherwise (binary) 
Dc 1, if course c is taught by the department 

0, otherwise (binary) 
CourseLimit Maximum number of course sections the department can offer in a year 
Wn Weight for the graduation time of a student who starts in session n (∑ 𝑊𝑊𝑛𝑛

𝑁𝑁
𝑛𝑛=1  = 1)  

(Model DCPP I only) 
Decision variables 
Xncs 1, if a student who starts his/her degree in session n takes course c during his/her sth semester 

0, otherwise (binary) 
Yns    1, if a student who starts his/her degree in session n has not completed his/her degree by the start 

of his/her sth semester 
0, otherwise (binary) 

Zns   Number of courses a student who started his/her degree in session n has completed by the 
beginning of his/her sth semester 

Ocn 1, if course c is offered during session n 
0, otherwise (binary) 

K The greatest number of semesters any student needs to graduate (model DCPP II only) 
 
 
1.4.3. Model DCPP I 

All parameters in model DCPP I except Dc, CourseLimit, and Wn are identical to those in 

model SCPP. Model DCPP I has four sets of decision variables. The first three are identical to the 

decision variables in model SCPP except that a new dimension corresponding to the session n has 
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been added. By adding this new dimension, the model can generate results for all student cohorts 

at the same time. For example, binary variable Xncs equals 1 (0) if students who begin their degree 

in session n take course c during their sth semester. Binary variables Yns and Zns have a similar 

relationship to variables Ys and Zs in model SCPP. The fourth decision variable, Ocn, is the focus 

of the DCPP. It equals 1 (0) if course c is offered during session n. This was a parameter in the 

SCPP. Model DCPP I is shown below: 

Minimize ∑ ∑ 𝑊𝑊𝑛𝑛 ∗ 𝑌𝑌𝑛𝑛𝑠𝑠𝑆𝑆
𝑠𝑠=1

𝑁𝑁
𝑛𝑛=1   (17) 

Constraints 
Yn,s+1 ≤ Yns    for all n and s ≤ S – 1 (18) 

Xncs ≤ Yns for all n, c, and s (19) 

∑ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠𝑆𝑆
𝑠𝑠=1  ≥ Rc  for all c and n (20) 

∑ ∑ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠 ∗ 𝐸𝐸𝑐𝑐S
s=1

C
c=1 ≥ 𝐸𝐸         for all n (21) 

∑ ∑ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠S
s=1

C
c=1 ∗ 𝐸𝐸𝑀𝑀𝑐𝑐 ≥ 𝐸𝐸𝑀𝑀   for all n (22) 

∑ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠𝐶𝐶
𝑐𝑐=1  ≤ Max      for all s and n (23) 

Xncs ≤ Oc, ([(s-1) + (n-1)] mod N) + 1  for all n, c, and s (24) 

∑ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠𝑆𝑆
𝑠𝑠=1  ≤ 1  for all c and n (25) 

∑ 𝑋𝑋𝑛𝑛𝑑𝑑𝑠𝑠𝑆𝑆
𝑠𝑠=1  ≤ ∑ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠𝑆𝑆

𝑠𝑠=1         for all (n, c, d) such that Pcd = 1 (26a) 

(∑ 𝑠𝑠 ∗ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠) + 1𝑆𝑆
𝑠𝑠=1  ≤ (∑ 𝑠𝑠 ∗ 𝑋𝑋𝑛𝑛𝑑𝑑𝑠𝑠) + (𝑆𝑆 + 1)(1−  ∑ 𝑋𝑋𝑛𝑛𝑑𝑑𝑠𝑠)𝑆𝑆

𝑠𝑠=1
𝑆𝑆
𝑠𝑠=1      for all (n, c, d) such that Pcd = 1 (26b) 

∑ 𝑋𝑋𝑛𝑛𝑑𝑑𝑠𝑠𝑆𝑆
𝑠𝑠=1  ≤ ∑ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠𝑆𝑆

𝑠𝑠=1        for all (n, c, d) such that Ccd = 1 (27b) 

(∑ 𝑠𝑠 ∗ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠) 𝑆𝑆
𝑠𝑠=1 ≤ (∑ 𝑠𝑠 ∗ 𝑋𝑋𝑛𝑛𝑑𝑑𝑠𝑠) + (𝑆𝑆)(1−  ∑ 𝑋𝑋𝑛𝑛𝑑𝑑𝑠𝑠)𝑆𝑆

𝑠𝑠=1
𝑆𝑆
𝑠𝑠=1                   for all (n, c, d) such that Pcd = 1 (27b) 

Zns = ∑ ∑ 𝑋𝑋𝑛𝑛𝑐𝑐𝑐𝑐𝐶𝐶
𝑐𝑐=1

𝑠𝑠−1
𝑐𝑐=1          for all n and s (28) 

Zns  ≥ Junior * 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠  for all n, c, and s such that Jc = 1  (29) 

Zns  ≥ Senior ∗  𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠 for all n, c, and s such that Sc = 1 (30) 

∑ ∑ 𝐷𝐷𝑐𝑐 ∗ 𝑂𝑂𝑐𝑐𝑛𝑛𝐶𝐶
𝑐𝑐=1

𝑁𝑁
𝑛𝑛=1  ≤ CourseLimit (31)
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In model DCPP I, the objective (17) is to minimize the weighted total number of semesters 

needed by all cohorts to graduate. There are 14 constraints. Constraints (18)-(30) are identical to 

constraints (2)-(14) in model SCPP except that the new dimension n has been added to the decision 

variables. Importantly, Ocn is a decision variable in constraint (24) but was a parameter in 

constraint (8) in model SCPP. Constraint (31) is a new constraint which ensures that the department 

offers no more than CourseLimit course sections each year. Note that this constraint only restricts 

the value of Ocn if Dc = 1, i.e., if the department teaches course c. If Dc = 0—if the department 

does not teach course c—then the value of Ocn is assumed to be 1 for all n. 

1.4.4. Model DCPP II 

Model DCPP II is identical to model DCPP I except that it focuses on a different objective: 

minimizing the maximum time needed for any student to graduate, regardless of when he/she 

begins the degree. This model has one less parameter (Wn), and one more decision variable (K), 

than model DCPP I. Decision variable K represents the greatest number of semesters any student 

cohort takes to graduate. Overall, DCPP I minimizes the time for an average student to graduate 

while DCPP II minimizes the maximum time taken by any student to graduate. Math model DCPP 

II is shown below: 

Minimize K  (32) 

Constraints 

Subject to (18) – (31)  

K ≥ ∑ 𝑌𝑌𝑛𝑛𝑠𝑠𝑆𝑆
𝑠𝑠=1                                                     for all n (33) 

In model DCPP II, the objective (32) is to minimize decision variable K. There are 15 

constraints, including all constraints from model DCPP I and a new constraint (33) which ensures 
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that K is an upper bound for the graduation time of a student who begins the degree in session n 

for all n. 

1.4.5. Case study revisited: Industrial Engineering BSE program at UW-Milwaukee 

Models DCPP I and DCPP II were deployed to gain additional insight into the case study 

from Sections 1.3.4-1.3.7 which considered the Industrial Engineering BSE program at UW-

Milwaukee. This degree is managed by the UW-Milwaukee Department of Industrial & 

Manufacturing Engineering which teaches 23 courses to support it. In other words, Dc is an array 

with 49 binary elements, 23 (26) of which equal 1 (0). 

In our first experiment, we use models DCPP I and DCPP II to see how the department 

should plan its course offerings assuming CourseLimit = 27, which represents the current (staff, 

budgetary) resources available to the department. We consider two values of Max—5 and 6—and 

three values of Wn—[0.9, 0.1], [0.7, 0.3], and [0.5, 0.5]—for model DCPP I. The experimental 

results indicate that, when Max = 5, courses can be offered so that both student cohorts are able to 

graduate in 9 semesters (regardless of Wn). Also, when Max = 6, courses can be offered so that 

both student cohorts are able to graduate in 7 semesters (regardless of Wn). These results are hardly 

surprising given that a total of 41 courses must be taken to complete the degree which means that 

9 (7) semesters is a lower bound on the time needed to complete the degree when Max = 5 (6). In 

this case study, models DCPP I and DCPP II obtained the same results but in other cases they 

might be different. The decision of which model to choose depends on the department and its 

policy. 

In our second experiment, we gradually reduce CourseLimit to identify the minimum value 

of CourseLimit for which students’ graduation time is the same as when CourseLimit = 27. Table 
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10 shows the results of this experiment which considers the same values of Max and Wn as the 

previous experiment. The results show that, in all cases, CourseLimit can be reduced to 17 without 

lengthening students’ time in the program. This is a very small number considering that the 

department teaches 14 required courses, each of which must be offered at least once a year. These 

results show that some required courses such as IE 111 and IE 112 need not be offered in both fall 

and spring semesters, and that the faculty teaching load—which is currently four courses per 

year—could likely be reduced to three courses per year without lengthening students’ time in the 

program. 

Table 10. Effect of Max and Wn on results for model DCPP I and DCPP II case study 
 Max = 5 Max = 6 

Model Optimal value Minimum 
CourseLimit Optimal value Minimum 

CourseLimit 
DCPP I (Wn = [0.9, 0.1]) 9 17 7 17 

DCPP I (Wn = [0.7, 0.3]) 9 17 7 17 

DCPP I (Wn = [0.5, 0.5]) 9 17 7 17 

DCPP II 9 17 7 17 

 
1.4.6. Experiments on fictional problem instances 

Models DCPP I and DCPP II were also tested on 12 fictional instances that are based on 

the instances from Section 1.3.8. Table 11 summarizes the parameter values in these instances. In 

all instances, the values of all parameters besides Dc, CourseLimit, and Wn equal those in the SCPP 

stances from Section 1.3.8. Note that the value of CourseLimit—which is (20, 40, 60) for the 

(small, medium-sized, large) instances respectively—is noticeably less than the number of unique 

course sections that theoretically exist each year which is (3*10, 4*25, 6*40) respectively. Thus, 

the value of CourseLimit places meaningful restrictions on the department in all instances. 
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Table 11. Experimental setup and assumptions for model DCPP I and DCPP II fictional instances 
Small instances Medium-sized instances Large instances 

All parameters except those below are 
identical to the SCPP instances. 

All parameters except those below are 
identical to the SCPP instances. 

All parameters except those below are 
identical to the SCPP instances. 

Dc has 20 elements, 10 of which 
equal one. 

Dc has 50 elements, 25 of which 
equal one. 

Dc has 80 elements, 40 of which 
equal one. 

CourseLimit = 20  CourseLimit = 40 CourseLimit = 60  

Wn = [0.7, 0.2, 0.1] 
(Model DCPP I only) 

Wn = [0.5, 0.3, 0.15, 0.05]  
(Model DCPP I only) 

Wn = [0.35, 0.25, 0.2, 0.1, 0.07, 0.03] 
(Model DCPP I only) 

 

The experimental results for model DCPP I (DCPP II) are displayed in Tables 12 and 13. 

Note that optimal values are obtained within 20 s for all small and medium-sized instances. For 

model DCPP I, we see that the optimal value is not an integer for medium-sized instances 2, 3, and 

4. This is because of the weights allocated to each session and the number of semesters taken to 

graduate for each session. In these instances, students who start the degree in session 1—half of 

all students—need eight semesters to graduate and students who start the degree in other sessions 

need only seven semesters to graduate. 

For large problem sizes, CPLEX identifies optimal solutions for the first three instances 

within 600 s. Note that the runtime gradually increases from instance 1 to instance 3. For instance 

4, a feasible solution with an optimality gap of 8.33% was identified within 600 s when model 

DCPP II is used, but no feasible solution was found within 600 s when model DCPP I is used. 

Overall, a direct mathematical programming approach with default CPLEX settings is effective in 

solving all but the largest and most highly constrained DCPP instance that we consider.  



 
 

Table 12. Experimental results for model DCPP I fictional instances 
Small instances 

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1) 

Final objective value 3 3 3 3 

Semesters of enrollment (3, 3, 3) (3, 3, 3) (3, 3, 3) (3, 3, 3) 

Time elapsed (sec) 4 4 4 4 

 
Medium-sized instances 

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1) 

Final objective value 7 7.5 7.5 7.5 

Semesters of enrollment  (7, 7, 7, 7) (8, 7, 7, 7) (8, 7, 7, 7) (8, 7, 7, 7) 

Time elapsed (sec) 9 9 9 10 

 

Large instances 

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1) 

Final objective value 10 10 10 unknown 

Semesters of enrollment (10, 10, 10, 10, 10, 10) (10, 10, 10, 10, 10, 10) (10, 10, 10, 10, 10, 10) unknown 

Time elapsed (sec) 76 113 297 600 
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Table 13. Experimental results for model DCPP II fictional instances. 
Small instances 

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1) 

Final objective value 3 3 3 3 

Time elapsed (sec) 4 4 4 4 

 

Medium-sized instances 

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1) 

Final objective value 7 8 8 8 

Time elapsed (sec) 10 10 9 11 

 

Large instances 

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1) 

Final objective value 10 10 10 12 (feasible; gap = 8.33%) 

Time elapsed (sec) 233 248 258 600 
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1.5. Conclusion 

This research introduced two university course planning problems. In the student course 

planning problem (SCPP), a student needs to design a course plan that allows him/her to graduate 

in a timely manner. In the department course planning problem (DCPP), an academic department 

needs to decide which courses to offer in which semester to facilitate students’ timely graduation. 

Three closely linked integer programming models of these problems were developed, coded in 

C++, and solved with IBM ILOG CPLEX. Experiments on small, medium, and large real-world 

and fictional instances showed that these models provide swift insight into a university degree 

program and help identify ways to modify a program to better meet the needs of students and 

faculty. Future work might consider other objectives such as minimizing the number of courses 

taken per semester while achieving a specified a graduation date (e.g., allowing students to work 

full- or part-time while taking courses). More experiments that consider additional scenarios could 

also be conducted. In addition, it might be possible to develop math models and/or heuristic 

methods for planning course offerings within a college that houses several departments. Finally, 

the analysis might be taken one step further to develop models and methods for course planning 

from the perspective of an entire academic institution with multiple colleges. 
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Chapter 2: University course scheduling during a pandemic 

2.1. Introduction 

Education is one of the most important aspects of human life in a modern society. 

Universities and educational institutes play a vital role in this regard. In late 2019 a new 

coronavirus named SARS-CoV-2 (i.e., COVID-19) was identified in China which quickly became 

a pandemic and affected the whole world and has killed more than 900,000 people in the United 

States and 6.2 million people worldwide (Dong et al., 2020). Before facing the pandemic, the latest 

research on education shows the importance of in-person classroom environments that facilitate 

discussions to enhance critical thinking and communication skills (Freeman et al., 2014). 

However, having students physically in classrooms to engage with their instructor and peers is in 

direct conflict with the research on the COVID-19 pandemic, which has shown that transmission 

of the coronavirus is highest when people are sitting indoors for a long period and talking (de 

Oliveira et al., 2021). 

Around the world, governments have taken drastic steps to slow the spread of the virus by 

closing most of the organizations which require face-to-face interaction. Although universities and 

academic institutions require face-to-face interaction, closing universities altogether was not an 

option, so universities had to re-think how they offered their courses. The main problem was that 

classroom capacities suddenly decreased by about six fold because students had to socially 

distance to meet the U.S. Centers for Disease Control and Prevention (CDC) guidelines. Most 

universities responded to this situation by offering courses in three formats (with 0 or 1 classrooms 

assigned to a course): (a) online, (b) hybrid, and (c) in-person. Each format has its own 

disadvantages. With an online format, there is little student interaction. A hybrid format has 

multiple cons such as low classroom utilization, health risks, and/or overworked teaching staff. An 
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in-person format, on the other hand, poses health risks if social distancing is not enforced or is 

limited to low-enrollment courses being scheduled in large classrooms if social distancing is 

enforced. 

This research proposes an alternate framework for offering university courses during a 

pandemic in which multiple classrooms may be assigned to the same course. In this approach, 

students in the same course gather for a limited number of socially distanced, in-person meetings 

called face-to-face meetings (i.e., f2f meetings) each semester. During each f2f meeting, all 

students in the course simultaneously spread out across multiple classrooms in a socially distanced 

manner. The instructor teaches in one classroom, and a video of the instructor is displayed in all 

rooms simultaneously. Alternatively, an exam could be scheduled during a f2f meeting, in which 

case one or more proctors are present to monitor the exam in each classroom. 

In this chapter we introduce this alternative framework for university course scheduling 

during a pandemic. We develop a mathematical model of the problem and compare two methods 

for solving it, exact and heuristic. In the exact method, we use the IBM ILOG CPLEX solver to 

solve problem instances. We also develop a heuristic approach which uses simulated annealing 

principles to get a high quality solution using a reasonable amount of computation time. Both 

methods are coded in C++. Experiments on small, medium-sized, and large fictional instances 

show promising results. 

2.2. Literature review 

This research relates to the general area of educational timetabling.  In the previous chapter 

we discussed four problems that relate to educational timetabling (Figure 2). Whereas Chapter 1 

focused on the resource-constrained project scheduling problem (RCPSP), student course planning 
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problem (SCPP), and department course planning problem (DCPP), this chapter deals with the 

university course scheduling problem (UCSP). 

 

 

 

 

 

 

Figure 1: Branches of educational timetabling 

 

Figure 2. Research related to course planning and scheduling. 

The university course scheduling problem (UCSP) is a well-known and highly constrained 

real-world problem. It is a timetabling problem that deals with scheduling a predetermined number 

of courses to time slots and resources (i.e., resources) considering several constraints (Chiarandini 

et al., 2006; Imran Hossain et al., 2019; Mencía et al., 2016; Tang et al., 2018). The goal of the 

UCSP is to assign all university lectures and laboratory sessions to rooms and timeslots (and 

possibly instructors) considering each room’s maximum capacity, the expected number of students 

enrolled in each course, and other related facility related issues (Feizi-Derakhshi et al., 2012; Naji 

Azimi, 2005). The UCSP is an NP-complete problem, meaning that approaches that are guaranteed 

to provide an optimal solution are often too time-consuming, so heuristic and metaheuristic 

approaches are often utilized (Goh et al., 2017). Hard and soft constraints may vary from institution 
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to institution based on their resources and facilities. Typical hard constraints in the UCSP require 

that at most one lecture or laboratory session be assigned to each classroom during each timeslot 

and that students attend at most one course at any time. As an example of a soft constraint, Shiau 

(2011) solved a UCSP in which instructors and students indicate their course preferences, along 

with their preferred days and times for attending courses. 

Articles on the UCSP consider either a prior-enrollment or post-enrollment perspective. 

The prior-enrollment perspective groups students according to their study curriculum and student 

grade; hence it is also named curriculum-based scheduling (Jamal, 2020). This approach consists 

of the weekly scheduling of the lectures for several university courses within a given number of 

rooms and time periods, where conflicts between courses are set according to the curriculum 

published by the university and not based on enrollment data. In post-enrollment course 

scheduling, course times and locations are decided after students have enrolled in courses. This 

type of scheduling considers individual students and faculty members, and the main goal is to 

schedule courses so that all students can feasibly attend the courses in which they have enrolled. 

(Bettinelli et al., 2015). 

Many methods for addressing the prior-enrollment UCSP have been proposed including 

integer programing formulations (da Fonseca et al., 2017) and heuristics such as simulated 

annealing (Abramson, 1991), local search (da Fonseca et al., 2016), harmony search algorithms 

(Al-Betar & Khader, 2012), genetic algorithms (Lewis & Paechter, 2005), and adaptive tabu search 

algorithms (Lü & Hao, 2010). Other researchers have used swarm intelligence optimization 

methods such as ant colony optimization (Ayob & Jaradat, 2009), honey-bee mating optimization 

(Sabar et al., 2012), and particle swarm algorithms (Imran Hossain et al., 2019). Chiarandini et al. 
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(2006) compares the performance of various metaheuristic algorithms for the prior-enrollment 

UCSP including simulated annealing, variable neighborhood descent, and tabu search. 

A different approach is post-enrollment scheduling, in which individual students’ 

enrollment is explicitly accounted for. In post-enrollment course scheduling, course times and 

locations are decided after students have enrolled in courses.  An important constraint is that no 

student may attend more than one event at the same time.  The objective is typically to minimize 

the penalty for undesirable situations in which a student has a single class on a day, more than two 

classes in a row, or a class in the last time slot of a day (Jat & Yang, 2011). Méndez-Díaz et al. 

(2016) propose an integer programming formulation that is heuristically solved to produce high-

quality solutions. Goh et al. (2017) solve a post-enrollment UCSP by combining two different 

search algorithms into an iterative two-stage procedure. In stage 1, tabu search with sampling and 

perturbation generates feasible solutions. In stage 2, simulated annealing with reheating is used to 

improve the quality of feasible solutions. Gonzalez et al. (2018) explain that advances in integer 

programming solvers such as CPLEX have made exact approaches possible. 

Recently, due to room capacity constraints, the question of assigning students to courses 

has sparked interesting work in mechanism design (Budish et al., 2017). For instance, Atef Yekta 

& Day (2020) introduced five new algorithms for course allocation problem using various 

combinations of existing methods such as matching algorithms.  

As we mentioned before, the recent pandemic has opened a new window of research 

opportunities to optimally utilize university classroom seats. During the pandemic, classroom 

capacities have decreased by a factor of about six to comply with CDC guidelines, and the effective 

utilization of scarce classroom space has become more important than ever. 
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To our knowledge, there are only three published works that consider university course 

scheduling during a pandemic. Barnhart et al. (2021)  propose a unified model for university course 

scheduling under a two-stage framework. They use integer optimization combined with enrollment 

data from thousands of past students in the MIT Sloan School of Business. Their model’s objective 

is to maximize the number of courses that students can take, with a preference for an on-campus 

experience. Notable assumptions in their study are as follows: 

- A four-fold reduction in classroom capacity 

- A maximum of two classrooms can be used for the same course 

- Some courses’ preferred format is fully online 

Johnson & Wilson (2022) propose a multi-objective assignment model for scheduling 

classrooms during COVID-19 at the Spears School of Business at Oklahoma State University. The 

authors surveyed students, faculty, and staff to learn about their preferences and concerns. The 

results indicated that a majority of students wished to return to campus. In their model, instead of 

allowing simultaneous teachings, they used rotations. For example, in a Tuesday-Thursday class, 

half of the students might attend physically on Tuesday, whereas the other half might attend 

physically on Thursday. In this example, there are two rotations. Students might attend remotely 

or learn other online modules during their off-rotation days. Their model has three objectives: (1) 

maximize the number of courses that meet f2f with (two or more) rotations; (2) minimize the 

number of f2f courses that have three or more rotations; and (3) maximize the number of courses 

that stay in the same classroom. 
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Navabi-Shirazi et al. (2022) propose an integer programming model for simultaneously 

assigning course modes and classrooms to class sections when classroom capacities are reduced 

by 75-80%. They define four possible teaching modes: 

• Residential: The section is held in-person with all students attending every class. 

• Hybrid Split: The section is simultaneously taught online and in-person with students 

attending in-person on a rotating basis. 

• Hybrid Touch Point: Most class delivery takes place online, but a few f2f meetings are 

scheduled each semester, so students can touch base with the instructor 

• Remote: The section is fully online 

 Their work assumes that at most one classroom is assigned to a course section and all course 

sections are delivered in their previously assigned time slots due to existing registrations and ease 

of administrative implementation. They use hierarchical optimization to handle multiple 

optimization criteria according to priorities. 

This chapter presents an alternate approach to university course scheduling during a 

pandemic in which multiple classrooms may be assigned to a course and all courses—even the 

largest—have one or more f2f meetings each semester. Our approach has the following desirable 

features. 

• Practical: To the authors’ best knowledge, no one has solved this problem in a way that 

guarantees that all courses—even the largest—have an in-person component. The 

aforementioned methods from the literature generally assign the largest courses to a fully 

online teaching mode so their classrooms can be used for smaller courses. 
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• Flexible: Our approach is flexible and always provides a high-quality feasible solution. The 

preferred timing of a course’s f2f meetings for each course can be customized. If the 

preferred timing of f2f meetings cannot be perfectly satisfied, our approach recommends 

other nearby timeslots for the course’s f2f meetings. Additionally, the model can be used 

to schedule a minimum number of f2f meetings for each course. 

• Multi-criteria: Our approach considers seven different objectives that are weighted to 

reflect changing priorities identified by faculty members and university administrators. 

• Scalable: Our approach can handle small and large problem instances. Our smallest 

problem instance has 40 courses, 10 classrooms, 4 weeks, and 15 timeslots per week, and 

our largest problem instance has 600 courses, 60 classrooms, 16 weeks, and 15 timeslots 

per week.  

2.3. Problem description 

We call our problem the university course scheduling problem during a pandemic 

(UCSPDP). Consider a university that wants schedule face-to-face (f2f) lectures (i.e., meetings) 

for a set of courses that it offers during a pandemic. All classrooms have a lower capacity than 

usual to be able to practice social distancing as recommended by the CDC or other public health 

organization. Although classroom capacity is limited, the university still wants students in all 

courses—even the largest—to have a limited number of socially distanced f2f meetings during the 

semester when all students in the course meet in person (in one or more rooms) simultaneously. 

We assume the university is not interested in splitting a course into separate groups that meet at 

separate times. 

The university wishes to decide when and where all of the coming semester’s f2f meetings 

will take place. It makes these decisions based on the following information. There are total of R 
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rooms available to be assigned. The parameter Cr indicates the (reduced) capacity of room r with 

social distancing guidelines in place. There are total of C courses (i.e., course sections) that need 

to be scheduled. The parameter Sc indicates the number of students enrolled in (or expected to be 

enrolled in) course c. Parameters W and T refer to the total number of weeks and timeslots that are 

being used in the schedule, respectively. Each time slot refers to a different continuous time period 

during the week when a f2f meeting can take place. For example, if the university wants to assign 

classrooms to courses for a 16-week semester and there are five business days each week and five 

2-hour timeslots beginning at 08:00, 10:00, 12:00, 14:00, and 16:00 each day, then W = 16 and T 

= 25.  

Instructors must inform the university about how many f2f meetings (including in-person 

exam sessions) they want during each week. Parameter DNcw indicates the number of f2f meetings 

for course c that are desired to take place during week w. Parameter CuDNcw indicates the 

cumulative number of f2f meetings for course c that are desired to take place during weeks 1–w 

combined. For example, if the number of desired f2f meetings for course 3 during an 8-week 

semester is DN3w = [0, 1, 0, 2, 0, 3, 0, 1], then CuDN3w = [0, 1, 1, 3, 3, 6, 6, 7]. Parameters DNcw 

and CuDNcw reflect what the instructor of course c desires which may deviate from what is 

possible. If all course instructors desire many f2f meetings, it will not be possible to schedule all 

such meetings. However, if instructors desire roughly one f2f meeting every six class sessions then 

it will likely be possible to schedule most such meetings (assuming that classroom capacities are 

reduced by a factor of no more than six). 

 Parameter Distrs is the distance between classrooms r and s, and parameter DistOffcr is the 

distance between the office of the professor who teaches course c and room r. These parameters 

are implemented to reflect the difficulty of traveling from one room to another which may differ 
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greatly from the actual distance (in meters) between the centroids of the rooms. Binary parameter 

Jcr equals 1 if course c is eligible to be scheduled in room r and equals 0 otherwise. Binary 

parameter Ict equals 1 if course c is eligible to have a f2f meeting during time slot t and equals 0 

otherwise. Parameters Jcr and Ict are resource availability parameters. Parameter MaxTSc is the 

maximum number of weekly time slots that can be associated with course c in the timetable 

published by the university. 

The goal of the UCSPDP is to schedule f2f meetings for each course (a) in a set of rooms 

that do not violate Jcr that have enough combined seats to host the selected course; (b) during 

weeks when the meetings are desired as specified by DNcw; (c) during time slots that agree with 

Ict; and (d) so that two courses do not use the same classroom during the same time slot in the same 

week. Additional goals of the UCSPDP are to (e) minimize the distance between rooms assigned 

to a course (Distrs); (f) minimize the distance from the office of the professor who teaches a course 

and the classrooms used for the course (DistOffcr); (g) minimize the number of rooms assigned to 

a course; and (h) schedule as many f2f meetings as possible for each course regardless of when 

they take place. The UCSPDP is a highly constrained, nontrivial optimization problem with 

multiple objectives. Advanced methods are therefore needed to address this challenging problem. 

2.4. Exact solution approach using a mathematical model 

We propose two methods to solve this problem. The first method is to develop a 

mathematical model—in particular an integer programming model—and then call the IBM ILOG 

CPLEX solver to solve it for various problem instances. The second method, described in Section 

2.5, is a heuristic algorithm aimed at obtaining good solutions quickly. 
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Table 14 lists the indices, parameters, and decision variables in our integer programming 

(IP) formulation of the problem. The integer program, which we call model UCSPDP, has four 

categories of indices. Indices r and s represent classrooms. Two indices are needed to be able to 

represent the distance between rooms. Index c refers to the courses. Indices w and k refer to weeks. 

Index t refers to the time slots within each week. 
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Table 14. Indices, parameters, and decision variables in mathematical model UCSPDP 
Indices 

r, s Rooms 
c Courses (i.e., course sections) 

w, k Weeks 
t Time slots  

Parameters 
R Total number of available rooms 
Cr Capacity of room r (during COVID-19) 
C Number of courses for which at least one f2f meeting is desired 
W Total number of weeks in the semester (e.g., 16) 
T Number of unique time slots when a f2f meeting can occur within a week (e.g., 15) 
Sc Number of students enrolled in (or expected to be enrolled in) course c 

DNcw Number of f2f meetings for course c that are desired to take place during week w 
CuDNcw Cumulative number of f2f meetings for course c that are desired to take place during weeks 1-w 

combined 
Distrs Distance between rooms r and s 

DistOffcr Distance between office of professor who teaches course c and room r 
Jcr = 1 if course c is eligible to be scheduled in room r 

= 0 otherwise (binary) 
Ict = 1 if course c is eligible to be scheduled during time slot t 

= 0 otherwise (binary) 
MaxTSc Maximum number of weekly time slots that can be associated with course c in the timetable 

published by the university 
α1, α2… α7 Weights for objective function components (real, > 0) 

Decision variables 
Xctw = 1 if course c has a f2f meeting during time slot t in week w 

= 0 otherwise (binary)  
Ycr = 1 if room r is used for course c 

= 0 otherwise (binary) 
Zcrtw = 1 if course c has a f2f meeting in room r during time slot t in week w 

= 0 otherwise 
Uc

 = 1 if at least one f2f meeting is scheduled for course c during the semester 
= 0 otherwise (binary) 

Vct = 1 if the university’s published timetable states that course c has f2f meetings during time slot t 
= 0 otherwise (binary) 

ANcw Actual number of f2f meetings for course c that are scheduled to take place during week w (integer, ≥ 
0) 

CuANcw Cumulative number of f2f meetings for course c that are scheduled to take place during weeks 1-w 
combined (integer, ≥ 0) 

Diffcw Deviation between the actual and desired number of f2f meetings for course c that are scheduled to 
take place during weeks 1-w combined (integer, ≥ 0) 

NumRmc Number of rooms assigned to course c (integer, ≥ 1) 
WastedSeatsc Number of empty seats in course c’s room assignment (integer, ≥ 0) 

Mc Maximum distance between rooms assigned to course c (real, ≥ 0) 
Nc Maximum distance between office of professor who teaches course c and any room assigned to 

course c (real, ≥ 0) 
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The model has twelve sets of decision variables. Binary variable Xctw equals 1 (0) if course 

c has (does not have) a f2f meeting during time slot t in week w. Binary variable Ycr equals 1 (0) 

if room r is used (is not used) for course c’s f2f meetings. Binary variable Zcrtw equals 1 (0) if 

course c has (does not have) a f2f meeting in room r during time slot t in week w. Binary variable 

Uc equals 1 if at least one f2f meeting is scheduled for course c during the semester. Binary variable 

Vct equals 1 (0) if the university’s published timetable states that course c has f2f meetings during 

time slot t. Integer variable ANcw equals the actual number of f2f meetings for course c that are 

scheduled to take place during week w. Integer variable CuANcw equals the cumulative number of 

f2f meetings for course c that are scheduled to take place during weeks 1–w combined. Integer 

variable Diffcw equals the deviation between the actual and desired number of f2f meetings for 

course c that are scheduled to take place during weeks 1-w combined. Integer variables NumRmc 

and WastedSeatsc equal the number of rooms assigned to course c and the number of empty seats 

that course c’s room assignment, respectively. Real variables Mc and Nc equal the maximum 

distance between rooms assigned to course c and the maximum distance between the office of the 

professor who teaches course c and a room assigned to course c, respectively. Our integer 

programming model is shown below. 

Minimize : 
 
(α1) * ( ∑ 𝑆𝑆𝑐𝑐 ∗𝐶𝐶

𝑐𝑐=1  NumRmc) + 

(α2) * ( ∑ 𝑆𝑆𝑐𝑐 ∗C
𝑐𝑐=1  Mc) +  

(α3) * ( ∑ 𝑆𝑆𝑐𝑐 ∗C
𝑐𝑐=1  Nc) + 

(α4) * ( ∑ 𝑆𝑆𝑐𝑐 ∗𝐶𝐶
𝑐𝑐=1  WastedSeatsc) +  

(α5) * ( ∑ 𝑆𝑆𝑐𝑐 ∗𝐶𝐶
𝑐𝑐=1  (CuDNcW – CuANcW)) + 

(α6) * ( ∑ ∑ 𝑆𝑆𝑐𝑐 ∗𝑊𝑊
𝑤𝑤=1

𝐶𝐶
𝑐𝑐=1  Diffcw) + 

(α7) * ( ∑ 𝑆𝑆𝑐𝑐 ∗𝐶𝐶
𝑐𝑐=1  (1 – Uc))  

 

 

(34) 
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Constraints: 

∑ 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑤𝑤𝐶𝐶
𝑐𝑐=1 ≤ 1     

                                                                  
for all r, t, and w (35) 

∑ 𝐶𝐶𝑐𝑐 ∗ 𝑌𝑌𝑐𝑐𝑐𝑐𝑅𝑅
𝑐𝑐=1 ≥ 𝑆𝑆𝑐𝑐     

                                                             
for all c (36) 

Vct ≤ Ict       
                                                                           

for all c and t (37) 

Xctw ≤ Vct 
 

for all c, t, and w         (38) 

Ycr ≤ Jcr    
                                                                             

for all c and r (39) 

Zcrtw ≤ Ycr    
                                                                            

for all c, r, t, and w (40) 

Zcrtw ≤ Xctw   
                                                                           

for all c, r, t, and w (41) 

Zcrtw ≥ Ycr + Xctw - 1         
                                                    

for all c, r, t, and w         (42) 

∑ 𝐴𝐴𝑁𝑁𝑐𝑐𝑤𝑤𝑊𝑊
𝑤𝑤=1  ≤ ∑ 𝐷𝐷𝑁𝑁𝑐𝑐𝑤𝑤𝑊𝑊

𝑤𝑤=1  for all c  (43) 

Distrs ≤ Mc + (BigM)*(2 - Ycr - Ycs  ) for all c, r, and s (44) 

Diffcw ≥ CuDNcw – CuANcw 
 

for all c and w         (45) 

Diffcw ≥ CuANcw – CuDNcw 
 

for all c and w         (46) 

∑ 𝑋𝑋𝑐𝑐𝑐𝑐𝑤𝑤𝑇𝑇
𝑐𝑐=1  = ANcw 

 
for all c and w (47) 

CuANcw = ∑ 𝐴𝐴𝑁𝑁𝑐𝑐𝑐𝑐𝑤𝑤
𝑐𝑐=1  for all c and w         (48) 

∑ 𝑉𝑉𝑐𝑐𝑐𝑐𝑇𝑇
𝑐𝑐=1 ≤ MaxTSc for all c (49) 

Zcrtw ≤ Vct for all c, r, t, and w         (50) 

DistOffcr ≤ Nc + (BigM)*(1 - Ycr) for all c and r (51) 

Uc ≤ ∑ ∑ 𝑋𝑋𝑐𝑐𝑐𝑐𝑤𝑤𝑊𝑊
𝑤𝑤=1

𝑇𝑇
𝑐𝑐=1  for all c (52) 

NumRmc =  ∑ 𝑌𝑌𝑐𝑐𝑐𝑐𝑅𝑅
𝑐𝑐=1  for all c (53) 

WastedSeatsc = (∑ 𝐶𝐶𝑐𝑐 ∗ 𝑌𝑌𝑐𝑐𝑐𝑐𝑅𝑅
𝑐𝑐=1 ) - Sc for all c  (54) 
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The objective function (34) has seven parts that are weighted by positive values α1 to α7. 

Weights can be modified based on the importance of the objectives in different applications. Each 

part of the objective function is a sum of C individual penalty values, one for each course. The 

penalty value for course c is weighted by the number of students in the course, Sc. The seven main 

parts of the objective function emphasize the following goals respectively. 

1. Minimize the number of rooms used for a course. 

2. Minimize the maximum distance between rooms assigned to a course.  

3. Minimize the maximum distance between the office of the instructor who teaches a course and 

any room assigned to the course. 

4. Minimize the number of wasted seats in a course’s room assignment. 

5. Minimize the difference between the total number of f2f meetings scheduled for a course and 

total the number of f2f meetings that were desired. 

6. Optimize the timing when f2f meetings are held. In other words, minimize the sum of Diffcw 

over all w for each course c (more details are provided in the paragraph below). 

7. Minimize the number of courses with no f2f meetings scheduled  

We now provide a few examples to illustrate these goals. Regarding goals 2 and 3, consider 

a set of three rooms assigned to a course with the pairwise distances, and distances from the 

instructor’s office to each room, shown below on the left and right, respectively. 

Distrs = �
0 536 445

536 0 653
445 653 0

�   
DistOffcr = [456 214 785] 

According to the above values, the maximum distance between rooms assigned to the course is 

653 and the maximum distance between the office of the professor who teaches the course and a 



53 
 

room assigned to it is 785. Regarding goal 4, consider a course with 45 students (Sc = 45) that is 

assigned to three rooms with capacities of 23, 18, and 10. In this case the number of wasted seats 

for this course is 6 (= 23 + 18 + 10 – 45).  Goal 4 is to assign each course to a set of rooms in a 

way that minimizes the number of wasted seats. To explain goals 5 and 6, consider an 8-week 

scenario with the following values for parameters DNcw and CuDNcw and decision variables ANcw 

and CuANcw for a particular course c: 

DNcw: 0 1 0 2 1 0 3 1  CuDNcw: 0 1 1 3 4 4 7 8 

ANcw: 0 1 0 1 1 0 2 0  CuANcw: 0 1 1 2 3 3 5 5  

    Diffcw:   0 0 0 1 1 1 2 3  

Goal 5 is to minimize the difference between the total number of f2f meetings scheduled 

and the number of f2f meetings that were desired. For the above data this difference is 3 (= 8 – 5). 

Goal 6 is to optimize the timing of a course’s f2f meetings. The timing of the meetings is evaluated 

by computing Diffcw (shown above) which is the absolute value of the difference between CuDNcw 

and CuANcw for each week w. The Diffcw values for all w are then summed. In the above case, the 

sum of the Diffcw values is 8 (= 0 + 0 + 0 + 1 + 1 +1 + 2 + 3) which is the total amount of deviation 

in the timing of courses c’s actual, scheduled f2f meetings compared to the timing that was desired. 

We now discuss the constraints of the math model in detail. Constraint 35 ensures that no 

more than one course meets in the same room at the same time. Constraint 36 is a capacity 

constraint that ensures that the combined capacity of all rooms assigned to a course is greater than 

the number of students in that course. In other words, it ensures that each course is assigned to 

rooms with enough combined capacity to host it. Constraint 37 ensures that the university’s 

published timetable may state that course c has f2f meetigns during time slot t only if Ict = 1. 



54 
 

Constraint 38 ensures that all f2f meetings for course c are scheduled during timeslots that agree 

with the university’s published timetable. Constraint 39 ensures that course c can only be 

scheduled in room r if Jcr = 1. Constraints 40, 41, and 42 ensure that the values of the Z variables 

agree with those of the Y and X variables. If either the Y or X variable is zero, the Z variable must 

be zero (constraints 40 – 41). If the Y and X variables are both 1, the Z variable must be 1 (constraint 

42). Constraint 43 ensures that the total number of actual, scheduled f2f meetings for course c does 

not exceed the total number that is desired. Constraint 44 ensures that variable Mc is properly 

computed. In particular, if course c is scheduled in both rooms r and s, this constraint ensures that 

Mc is greater than or equal to the distance between rooms r and s. If course c is not scheduled in 

both rooms r and s, this constraint does not restrict any decision variables because the “BigM” is 

multiplied by a nonzero value on the right side. Constraints 45 and 46 make sure that Diffcw is 

properly computed. In particular, they ensure that Diffcw is greater than or equal to the deviation 

between the cumulative actual and cumulative desired number of f2f meetings for coure c during 

weeks 1-w. For all c and w, constraint 47 ensures that ANcw is properly computed based on Xctw. 

Constraint 48 ensures that CuANcw is properly computed based on ANcw. Constraint 49 ensures that 

MaxTSc is the maximum number of weekly time slots that can be allocated to course c in the 

timetable published by the university. Constraint 50 ensures that the values of the Z variables agree 

with the values of the V variables. Constraint 51 ensures that Nc is properly computed. In particular, 

if course c is assigned to room r, then the distance between the office of the instructor who teaches 

course c and room r is less than or equal to Nc. Constraint 52 ensures that Uc is correctly computed 

based upon the Xctw variables. Constraint 53 ensures that NumRmc is correctly computed. 

Constraint 54 ensures that WastedSeatsc is properly computed. 
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2.5. Heuristic method 

The experimental results in Section 2.6.2 show that directly applying the mathematical 

model to instances of the UCSPDP is not effective. In particular, the IBM ILOG CPLEX solver 

fails to obtain satisfactory solutions to large instances of the UCSPDP within an hour. Thus, a 

heuristic method was developed for addressing the UCSPDP. 

2.5.1. Overall structure of the heuristic method 

Figure 3 shows the overall procedure of our heuristic. The sections that follow describe 

various steps in detail. 

Figure 3. Heuristic pseudocode 

Overall heuristic method for the UCSPDP: 
1 For each course c, use an exact or heuristic method to generate a set of potential room assignments 

(PRAs) (i.e., sets of rooms where the course could feasibly be held) that have good values for 

NumRmc, WastedSeatsc, Mc, and Nc. 

2 Create an initial schedule for all courses in which as many f2f meetings as possible are scheduled, 

assuming that each course’s first PRA is used. This is the current solution. 

3 Compute the objective value of the current solution 

4 If the time limit has been reached, STOP and display the best solution that was found. If not, go 

to step 5. 

5 Create a neighboring solution by (a) removing all f2f meetings for a subset of courses from the 

current solution, (b) selecting a new, random PRA for each such course, (c) forming a waitlist of 

one or more unscheduled f2f meetings, and (d) placing as many of the waitlisted f2f meetings as 

possible back into the schedule. 

6 Compute the objective value difference between the neighboring and current solutions. 

Use simulated annealing principles to decide if the neighboring solution replaces the 

current solution. Go to step 3. 
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2.5.2. Step 1: Generate potential room assignments (exact method) 

The first step in the heuristic method is to generate different room combinations for each 

course that are able to host all students in the course. We develop two methods to automatically 

generate these potential room assignments (PRAs). In first method, we use a mathematical model 

to generate different room combinations ranked from best to worst. The model runs several times, 

and the result of each run is the best room assignment that has not yet been generated. We set a 

limit on how many different room combinations are computed. Table 15 lists the indices, 

parameters, and decision variables in the mini math model that generates the PRAs. 

Table 15. Indices, parameters, and decision variables in the mini math model that generates room possibilities for each 
course 
Indices  

r, s Rooms  
Parameters  

R Total number of available rooms 
S Number of students enrolled in (or expected to be enrolled in) the course at hand 
Cr Capacity of room r (during COVID-19) 

MaxM Maximum allowed value of the decision variable M 
MaxN Maximum allowed value of the decision variable N 
Distrs Distance between rooms r and s 

DistOffr Distance between room r and office of instructor who teaches the course at hand 
Jr = 1 if the course on hand is eligible to be scheduled in room r  

= 0 otherwise (binary) 
α1, α2, α3, α4 Weights for parts of the objective function (real, ≥ 0) 

Decision variables  
Yr = 1 if room r is used for the course at hand 

= 0 otherwise (binary) 
M Maximum distance between rooms assigned to the course at hand 
N  Maximum distance between the office of the professor who teaches the course and a room 

assigned to it 
WastedSeats Number of empty seats in course c’s room assignment (integer, ≥ 0) 

Most of the indices, parameters, and decision variables are similar to elements in Table 14. 

The model is applied to each course individually. Hence, the course index c is removed. Our 

integer programming model is shown below. 
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Minimize: (α1) * (∑ 𝑌𝑌𝑐𝑐𝑅𝑅
r=1 ) + (α2) * M + (α3) * N + (α4) * WastedSeats (55) 

Constraints: 

�𝐶𝐶𝑐𝑐 ∗ 𝑌𝑌𝑐𝑐

𝑅𝑅

𝑐𝑐=1

≥ 𝑆𝑆 (56) 

DistOffr  ≤ N +(BigM) * (1 - Yr) for all r (57) 

Yr  ≤  Jr for all r (58) 

Distrs  ≤ M + (BigM) * (2 - Yr - Ys) for all r and s (59) 

M ≤ MaxM  (60) 

N ≤ MaxN  (61) 

WastedSeats = (∑ 𝐶𝐶𝑐𝑐 ∗  𝑌𝑌𝑐𝑐𝑅𝑅
𝑐𝑐=1 ) - S  (62) 

This model has four objectives that are weighted by nonnegative values α1, α2, α3, and α4 

respectively: 

1. Minimize the number of rooms used for the course 

2. Minimize the distance between rooms assigned to the course 

3. Minimize the distance between the office of the professor who teaches the course 

and any room used for the course 

4. Minimize the total number of wasted seats in the course’s room assignment 

Constraint 56 is a capacity constraint that ensures that the combined capacity of all rooms 

assigned to the course is greater than the number of students enrolled in the course. Constraint 57 

ensures that N is an upper bound on the distance between the office of the instructor who teaches 
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the course and any room assigned to it. Constraint 58 ensures that room r may only be used for the 

course if room r is compatible with the course. Constraint 59 ensures that M is an upper bound on 

the distance between any two rooms assigned to the course. Constraints 60 and 61 make sure that 

M and N are less than MaxM and MaxN, respectively. Constraint 62 ensures that WastedSeats is 

properly computed. 

The model is applied to each course separately. For each individual course, the model is 

solved many times. Each time an optimal solution is identified, one additional constraint is added 

to the model to forbid that solution from appearing when the model is solved again. Let the 

parameter NumRooms equal the number of rooms used (e.g., 4) in the optimal solution that was 

most recently generated when the model was solved, and let Ri be the ith room used in the most 

recently generated solution. Then the new constraint that is added to the model each time is: 

∑ 𝑌𝑌𝑅𝑅𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠 
𝑖𝑖=1 ≤ NumRooms – 1.  

 
(63) 

This constraint states that no more than NumRooms – 1 of the NumRooms that were used 

in the most recently generated optimal solution may be used in the next optimal solution. In other 

words, constraint 63 ensures that the most recently generated optimal solution is no longer feasible 

the next time the model is solved.  A constraint of this type is added to the model each time we 

run the model. For example, if 20 PRAs are to be generated, a constraint of this type is added a 

total of 19 times to the model to make sure that each previously generated solution is never 

generated again. 
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2.5.3. Step 1: Generate potential room assignments (heuristic method) 

Using an exact method for generating PRAs has its own advantages and disadvantages. 

The main advantage is the quality of the generated PRAs. In other words, the exact method 

generates high quality PRAs, but the disadvantage of this method is the run time. When developing 

our heuristic approach to solve the UCSPDP (Figure 3), we aimed to allocate at most 1/3 of the 

total computation time for generating PRAs (i.e., for performing step 1 in Figure 3). With this 

restriction, only a limited number of PRAs could be generated for each course if they were 

generated using the mini math model. Therefore, we also developed a heuristic approach to 

generate PRAs. Figure 4 shows the logic of this heuristic. The heuristic is guided by the values of 

five input parameters: PRA_limit, MaxRoom, MaxM, MaxN, and MaxWS. 
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Heuristically generating PRAs 
For each course c 

1 Create a list of rooms available for course c based on the room availability matrix (Jcr) 

2 Let #AvailRooms equal the number of rooms in the list 

3 Let #PRAsMade = 0, #RoomsUsed = 0, and AllRecentlyMadePRAsRedundant = false 

4 While (#PRAsMade < PRA_limit & #RoomsUsed < MaxRoom & AllRecentlyMadePRAsRedundant = false) 

5  #RoomsUsed ++ 

6  Let #PossibitiesWithThisNumRooms = choose(#AvailRooms, #RoomsUsed) 

7  Let iterator = 0 

8  Let AllRecentlyMadePRAsRedundant = true 

9  While (iterator < #PossibitiesWithThisNumRooms & #PRAsMade < PRA_limit) 

10   ** Generate the next PRA in the sequence ** 

11   Iterator ++ 

12   If (total seats in PRA < Sc) 

13    AllRecentlyMadePRAsAreRedundant = false 

14   Else 

15    If the PRA still has enough seats to accommodate course c even if one of its rooms is removed from it 

16     PRAisRedundant = true 

17    Else 

18     PRAisRedundant = false 

19    Compute the values of M, N, and WastedSeats for this PRA as defined in Table 15 

20    If (PRAisRedundant = false & M ≤ MaxM & N ≤ MaxN & WastedSeats ≤ MaxWS) 

21     The current PRA is approved and joins the list of the PRAs generated for course c 

22     #PRAsMade ++ 

23     AllRecentlyMadePRAsRedundant = false 

Figure 4. Pseudocode for heuristically generating PRAs 

The method generates PRAs exhaustively beginning with those with the fewest rooms. 

Only PRAs that have enough seats to accommodate the course are considered. Among these PRAs, 

only non-redundant PRAs that do not have enough seats to accommodate a course if any room is 

removed from the PRA are considered. Among these PRAs, only those with values of M, N, and 

WastedSeats (as defined in Table 15) that are below MaxM, MaxN, and MaxWS, respectively, are 

approved for use in the heuristic shown in Figure 3. The method terminates when then number of 
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approved PRAs reaches PRA_limit; all PRAs have been exhaustively considered; or all PRAs in 

the most recent PRA cohort (i.e., all PRAs with a given number of rooms) are determined to be 

redundant. 

For example, consider a case in which only 3 rooms may be used for a course (according 

to Jcr). First, the method starts with room combinations with just 1 room. Then it computes total 

number of possible combinations consisting of just one room as (3 choose 1) which is 3. It starts 

with the first combination to be just {room1}. Then it increases the room number to reach the total 

number of possible combinations of just one room which is 3. Now we have three room 

combinations of {room1}, {room2}, and {room3}. Then so far possible room combinations are 

{1},{2}, and {3}. Then while number of PRAs and the number of rooms considered in each 

combination are within their threshold and the number of rooms considered in each combination 

is less than available rooms, it increases the number of rooms considered in each combination by 

1. Then by incrementing each value in each combination, other combinations are being created. 

For each room combination M1, N1, and WastedSeats are computed to check it’s within the limit. 

If not, this combination will not be considered. Also, it checks for redundancy in each combination 

as well by comparing each room capacity in each combination with number of students enrolled 

in the course. If there is a room with enough capacity for all student in the course in room 

combinations with two or more rooms, then this combination is redundant.  

It should be mentioned that we considered two main approaches for heuristically 

generating the PRAs. In the first approach, we divide campus into quadrants, each with roughly 

the same supply of classroom seats and the same total demand for seating during the semester. We 

then require that a demand in one quadrant must be satisfied by the available classrooms in the 

same quadrant. The second method is to not divide the campus to quadrants. Depending on which 
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method is used, the room availability matrix Jcr (see line 1 in Figure 4) is modified to check the 

availabilities in each quadrant separately or for the entire campus. Preliminary experiments 

indicated that the quadrant approach was inferior to the non-quadrant approach, so the quadrant 

approach was abandoned. 

2.5.4. Step 2: Create an initial schedule 

Once the PRAs are created, the next step is to create an initial feasible solution. The initial 

feasible solution is constructed one f2f meeting at a time, not one course at a time. We first build 

a giant list of all desired f2f meetings (for all courses), each specified by a course number and 

week number. The week number for each desired f2f meeting comes from parameter DNcw. The 

list is then randomly scrambled. We then proceed sequentially through the list and attempt to 

schedule each f2f meeting one at a time, during the week when it is desired, using the first PRA 

for the course that is associated with the f2f meeting. All eligible timeslots (indicated by Ict) within 

the week at hand and for the course at hand are considered. If any timeslot works, the f2f meeting 

is placed in the schedule. If no timeslots work, the f2f meeting is not placed in the schedule. After 

considering all f2f meetings in such manner, we then revisit those which were not placed in the 

schedule, and we try to place each of them, one at a time, in the schedule one week before or after 

the f2f meeting’s desired week. After considering all f2f meetings in this manner, we then revisit 

those not in the schedule, and we try to place each of them, one at a time, in the schedule two 

weeks before or two weeks after the f2f meeting’s desired week. This process continues until all 

of the f2f meetings are scheduled or no more f2f meetings can be feasibly scheduled in any week. 
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2.5.5. Step 5: Create neighboring solution 

Steps 3 and 4 of the heuristic (see Figure 3) are self explanatory. The next step (step 5) is 

to create a neighboring solution by (a) removing all f2f meetings for a subset of courses from the 

current solution, (b) selecting a new, random PRA for each such course, (c) forming a waitlist of 

one or more unscheduled f2f meetings, and (d) placing as many of the waitlisted f2f meetings as 

possible back into the schedule. 

In (a), we define three options for deciding how many courses’ f2f meetings should be 

removed from the current schedule: 

1. A certain percentage of courses  

2. A certain number of courses  

3. All courses  

In (a) we also need to decide which courses’ f2f meetings to remove from schedule. We 

define six options for doing this.  

1. The N courses with the greatest number of unscheduled f2f meetings (ties broken in favor 

of removing larger courses’ f2f meetings)  

2. The N courses with the lowest fraction of f2f meetings scheduled (ties broken in favor of 

removing larger courses’ f2f meetings)  

3. The N largest courses that have at least one unscheduled f2f meeting  

4. The N courses whose scheduled f2f meeting timing has the highest total deviation from 

desired  



64 
 

5. The N courses whose scheduled f2f meeting timing has the highest average deviation from 

desired  

6. N random courses  

In step (c), we define three options for deciding which unscheduled f2f meetings are added 

to the waitlist. 

1. All unscheduled f2f meetings  

2. Only the unscheduled f2f meetings related to the course(s) removed from the schedule in 

step (a) 

3. Only the unscheduled f2f meetings related to the course(s) with no f2f meetings scheduled 

right now 

Step (d) proceeds very much like the creation of the initial feasible solution in step 2 of 

Figure 3. First, we randomly scramble the (unscheduled) f2f meetings in the waitlist. We then 

proceed sequentially through the waitlist and attempt to schedule each f2f meeting, one at a time, 

during the week when it is desired, using the PRA that was most recently selected for the course 

that is associated with the f2f meeting. As before, all eligible timeslots within the week at hand are 

considered. After considering all f2f meetings in such a manner, we revisit those that were not 

placed in the schedule, and we try to place each of them, one at a time, in the schedule one week 

before or after the f2f meeting’s desired week. If any f2f meetings in the waitlist are still not 

scheduled, we revisit those f2f meetings, and we try to place each of them, one at a time, in the 

schedule two weeks before or two weeks after the f2f meeting’s desired week. The process 

continues until all waitlisted f2f meetings are scheduled or no more waitlisted f2f meetings can be 

scheduled in any week.  
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2.5.6. Step 6: Decide if neighboring solution replaces current solution 

In step 6, we compare the neighboring solution’s objective value to the current solution’s 

objective value. If the neighboring solution has a lower objective value or its objective value is 

within the simulated annealing (SA) acceptance range, the neighboring solution is accepted, and 

the neighboring solution replaces the current solution. The procedure then returns to step 3. This 

process continues until the time limit is reached. When the time limit is reached, the best solution 

that was found in displayed. Figure 5 shows the pseudocode for the heuristic with the simulated 

annealing steps shown. Two input parameters—StartTemp and TempFactor—are used in the 

procedure. 

 
Perform steps 1 and 2 in Figure 3 

 
Let SCurrent = initial feasible soloution and ObjCurrent = initial objective value 

 
Let SBest = SCurrent  and Let ObjBest = ObjCurrent  

 
Let T = StartTemp 

 
 

Let Iter = 0 

 
While (time has not yet expired) 

  
Perform step 5: Generate neighboring solution (SNext, ObjNext) 

  
If (ObjNext < ObjCurrent) then 

  
 SCurrent = SNext, ObjCurrent = ObjNext 

  
Else 

   
Let Rand be a random real number between 0 and 1 

   
Let ∆ =  𝑂𝑂𝑂𝑂𝑗𝑗𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐 − 𝑂𝑂𝑂𝑂𝑗𝑗𝐶𝐶𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑛𝑛𝑐𝑐  

   
If (Rand < 𝑒𝑒−∆/𝑇𝑇) 

    
SCurrent = SNext, ObjCurrent = ObjNext  

  
If (ObjCurrent < ObjBest) then 

   
SBest = SCurrent, ObjBest = ObjCurrent   

  
Iter = Iter + 1 

 
 T = T * TempFactor 

 
Return SBest and ObjBest         

Figure 5. Heuristic pseudocode with simulated annealing steps shown 

2.6. Experimental setup, results, and discussion 

The math model and heuristic method were tested on a variety of problem instances. In this 

section we describe the experimental setup, present the results, and discuss their significance. 
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2.6.1. General experimental setup 

The math model and heuristic method were coded into MS Visual C++ 2015, and IBM 

ILOG Concert Technology was used to call IBM ILOG CPLEX 12.10 to solve instances of the 

math model contained in text files. All experiments were run on a desktop PC with an 11th 

generation intel core i7 (3.00 GHz) processor and 32 GB of RAM. Random cartesian (X, Y) 

coordinates ranging from 0 to 800 were generated to define the location of each classroom and the 

office of the professor who teaches each course, and the Euclidean distance formula is used to 

calculate the distance between each pair of rooms (Distrs) and the distance between each room and 

each professor’s office (DistOffcr). 

For testing our approaches, we created 135 instances. These instances are categorized by 

their size—small, medium, large—based on the total available supply of seat-timeslots during the 

semester as computed in equation 64. All small (medium; large) instances have a seat-timeslot 

supply ranging from 6000-9000 (55,000-70,000; 370,000-420,000) for the entire semester. Each 

problem size is divided into three categories based on the room and time slot availability – 100%, 

75%, 50% – which indicates the percentage of Jcr and Ict values that are 1. Each category is further 

divided into to three subcategories, each with a different demand level: low demand (LD), medium 

demand (MD), and high demand (HD). For the purposes of computing the demand level, we define 

the Supply and Demand in a problem instance as follows. 

Supply = (∑ 𝐶𝐶𝑟𝑟) ∗ 𝑊𝑊 ∗ 𝑇𝑇𝑅𝑅
𝑟𝑟=1    (64) 

Demand = (∑ 𝑆𝑆𝑐𝑐 ∗ 𝐶𝐶𝐶𝐶𝐷𝐷𝑁𝑁𝑐𝑐𝑊𝑊
𝐶𝐶
𝑐𝑐=1 )  (65) 
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The value of Demand/Supply in all LD (MD, HD) problem instances falls within the range 

0.45-0.6 (0.65-0.8, 0.85-1). The three problem sizes, three availability levels, and three demand 

levels create 27 subcategories of problem instances. Five instances are created for each 

subcategory, making 135 instances altogether. It should be noted that set of Ict and Jcr values that 

equal 1 in each instance with 50% availability is a strict subset of the set of Ict and Jcr values that 

equal 1 in one of the instances with 75% availability.  

Table 16 shows the values of the main input parameters—including R, Cr, C, W, T, and 

Sc—that define the problem instances. In this table, “DU” refers to the discrete uniform 

distribution. The expression “X, Y = DU(0,800)" means that each classroom and professor’s office 

was given an X, Y coordinate ranging from 0 to 800, and parameters Distrs and DistOffcr were 

computed as the straight line distance between two points. Also, the expression “P(DNcw) = [.7, 

.15, .1, .05]” means that, for each course in all problem instances, the number of desired f2f 

meetings in any given week has a 70% chance being of 0, 15% chance of being 1, 10% chance of 

being 2, and 5% chance of being 3. Thus, the average number of f2f meetings desired per week is 

0.5 (=0.7*0 + 0.15*1 + 0.1*2 + 0.05*3) for each course in all problem instances. 

For example, each of the five “Large–100%–HD” instances (see the bottom-left portion of 

Table 16) has 60 rooms (R), classroom capacities generated from the DU(5, 50) distribution, 600 

courses (C), 16 weeks (W), 15 time slots per week (T), and DU(10, 140) students in each course. 

In experiments testing the math model and heuristic, we set a computation time limit of 300, 1200, 

and 3600 seconds for small, medium, and large instances, respectively.  

In all experiments, the values of α1, α2, α3, α4, α5, α6, and α7, were set to 10, 0.01, 0.01, 10, 

100, 10, and 100000, respectively (see equation 34). 
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Table 16. Experimental setup and assumptions for the problem instances 
Small (supply = 6000 - 9000 seat timeslots) 

Jcr & Ict: 100% Jcr & Ict: 75% Jcr & Ict: 50% 
LD: 45-60% MD: 65-80% HD:  85-100% LD: 45-60% MD: 65-80% HD: 85-100% LD: 45-60% MD: 65-80% HD: 85-100% 

R = 10 R = 10 R = 10 R = 10 R = 10 R = 10 R = 10 R = 10 R = 10 

Cr = DU (5,20) Cr = DU (5,20) Cr = DU (5,20) Cr = DU (5,20) Cr = DU (5,20) Cr = DU (5,20) Cr = DU (5,20) Cr = DU (5,20) Cr = DU (5,20) 

C = 40 C = 55 C = 70 C = 40 C = 55 C = 70 C = 40 C = 55 C = 70 

W = 4 W = 4 W = 4 W = 4 W = 4 W = 4 W = 4 W = 4 W = 4 

T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 

Sc = DU (10,80) Sc = DU (10,80) Sc = DU (10,80) Sc = DU (10,80) Sc = DU (10,80) Sc = DU (10,80) Sc = DU (10,80) Sc = DU (10,80) Sc = DU (10,80) 

X,Y= 
DU (0, 800) 

X,Y=  
DU (0, 800) 

X,Y= 
DU (0, 800) 

X,Y= 
DU (0, 800) 

X,Y=  
DU (0, 800) 

X,Y= 
DU (0, 800) 

X,Y= 
DU (0, 800) 

X,Y=  
DU (0, 800) 

X,Y= 
DU (0, 800) 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

Medium (supply = 55,000 – 70,000 seat timeslots) 

Jcr & Ict: 100% Jcr & Ict: 75% Jcr & Ict: 50% 
LD: 45-60% MD: 65-80% HD: 85-100% LD: 45-60% MD: 65-80% HD: 85-100% LD: 45-60% MD: 65-80% HD: 85-100% 

R = 30 R = 30 R = 30 R = 30 R = 30 R = 30 R = 30 R = 30 R = 30 

Cr = DU (5,30) Cr = DU (5,30) Cr = DU (5,30) Cr = DU (5,30) Cr = DU (5,30) Cr = DU (5,30) Cr = DU (5,30) Cr = DU (5,30) Cr = DU (5,30) 

C = 140 C = 190 C = 240 C = 140 C = 190 C = 240 C = 140 C = 190 C = 240 

W = 8 W = 8 W = 8 W = 8 W = 8 W = 8 W = 8 W = 8 W = 8 

T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 

Sc = DU (10,110) Sc = DU (10,110) Sc = DU (10,110) Sc = DU (10,110) Sc = DU (10,110) Sc = DU (10,110) Sc = DU (10,110) Sc = DU (10,110) Sc = DU (10,110) 

X,Y= 
DU (0, 800) 

X,Y=  
DU (0, 800) 

X,Y= 
DU (0, 800) 

X,Y= 
DU (0, 800) 

X,Y=  
DU (0, 800) 

X,Y= 
DU (0, 800) 

X,Y= 
DU (0, 800) 

X,Y=  
DU (0, 800) 

X,Y= 
DU (0, 800) 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

Large (supply = 370,000 – 420,000 seat timeslots) 

Jcr & Ict: 100% Jcr & Ict: 75% Jcr & Ict: 50% 
LD: 45-60% MD: 65-80% HD: 85-100% LD: 45-60% MD: 65-80% HD: 85-100% LD: 45-60% MD: 65-80% HD: 85-100% 

R = 60 R = 60 R = 60 R = 60 R = 60 R = 60 R = 60 R = 60 R = 60 

Cr = DU (5,50) Cr = DU (5,50) Cr = DU (5,50) Cr = DU (5,50) Cr = DU (5,50) Cr = DU (5,50) Cr = DU (5,50) Cr = DU (5,50) Cr = DU (5,50) 

C = 340 C = 470 C = 600 C = 340 C = 470 C = 600 C = 340 C = 470 C = 600 

W = 16 W = 16 W = 16 W = 16 W = 16 W = 16 W = 16 W = 16 W = 16 

T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 

Sc = DU (10,140) Sc = DU (10,140) Sc = DU (10,140) Sc = DU (10,140) Sc = DU (10,140) Sc = DU (10,140) Sc = DU (10,140) Sc = DU (10,140) Sc = DU (10,140) 

X,Y= 
DU (0, 800) 

X,Y=  
DU (0, 800) 

X,Y= 
DU (0, 800) 

X,Y= 
DU (0, 800) 

X,Y=  
DU (0, 800) 

X,Y= 
DU (0, 800) 

X,Y= 
DU (0, 800) 

X,Y=  
DU (0, 800) 

X,Y= 
DU (0, 800) 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 

P(DNcw) =  
[.7, .15, .1, .05] 
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2.6.2. Math model experimental setup, results, and discussion 

The math model was tested on all problem instances in which the size is small (S) or large 

(L), the availability is 100% or 50%, and the demand level is low (LD) or high (HD). Thus, the 

math model was tested on all instances in eight problem subcategories (40 instances total). The 

CPLEX computation time limit for small and large problem sizes was set to 300 and 3600 seconds, 

respectively, and the node parameter was set to 3 to minimize the likelihood of CPLEX reaching 

an out-of-memory status.  

 Before discussing the results, it is important to mention that we divide courses into four 

groups based on how well their f2f meetings are scheduled in the best solution identified by 

CPLEX. 

1. Unscheduled courses (UC): Courses with no scheduled f2f meetings. 

2. Partially scheduled courses (PSC): Courses in which the total number of scheduled f2f 

meetings is less than the desired number of f2f meetings. 

3. Fully scheduled courses (FSC): Courses in which all desired f2f meetings are scheduled 

but not all in the desired weeks. 

4. Perfectly scheduled courses (PeSC): Courses in which all desired f2f meetings are 

scheduled and they are scheduled in the desired weeks. 

Table 17 shows the results of the experiments that tested the math model. Each row in the 

table refers to a different problem subcategory, and the results in each row are average results for 

five problem instances. Table 17 has 21 columns. The first column refers to the demand density 

of the problem instance which equals Demand/Supply as computed in equations 64-65. The next 
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two columns show the number of binary variables and constraints in the IP formulation that 

remains after CPLEX finishes preprocessing the initial IP formulation shown in equations 34-54.  

The next four columns show the time needed to solve the IP’s LP relaxation, CPLEX gap for the 

best solution identified by CPLEX, number of wasted seats for all courses combined in the best 

solution identified by CPLEX, and density of the best solution found by CPLEX, respectively. The 

density equals the total number of seat time slots used divided by the total number of seat time 

slots available. The next column, “Density Gap,” shows the difference between the instance 

density and the best solution density. The next four columns show the average number of 

unscheduled, partially scheduled, fully scheduled, and perfectly scheduled courses, respectively, 

in the best solution identified by CPLEX. The next seven columns show the values of the seven 

parts of the objective function (described in Section 2.4) in the best solution identified by CPLEX. 

The second to the last column shows the overall objective value which is the summation of the 

values in the previous seven columns. Finally, last column shows the objective value without 

objective 4 which is related to the wasted seats. The reason we added this column is that 

minimizing the number of wasted seats is an intermediate priority that is generally less important 

than other objectives such as the number of meetings lacking. 



 
 

Table 17. Math model results 
 

 

Instance 
density 

(%) 

#Binary 
vars 

#  
Const 

LP relax 
Soln 
Time 
(sec) 

Cplex 
Gap 
(%) 

# 
Wasted 
seats 

Best 
Soln 

Density 
(%) 

Density 
Gap 
(%) 

#UC #PSC #FSC #PeSC Obj1 Obj2 Obj3 Obj4 Obj5 Obj6 Obj7 Best  
OV 

Best 
OV 
w/o 

Obj 4 

S-100%-LD 54.14 26816 75165 0.4 14.12 19 54.14 0 0 0 2.2 37.8 63776 7897 9659 7730 0 1490 0 90552 82822 

S-100%-HD 94.00 47087 131215 0.9 93.26 42 61.92 32.08 2.2 25.6 2 40.2 109656 16489 16672 18728 283640 70422 13080000 13595606 13576878 

S-50%-LD 54.14 4973 12085 0.17 0.03 86 54.14 0 0 0 3 37 66370 9380 10690 39168 0 1412 0 127020 87852 

S-50%-HD 94.00 11070 27769 0.95 54.43 193 76.91 17.09 0.2 16.6 12.4 40.8 115712 18282 18047 94896 151340 46366 1540000 1984763 1889747 

L-100%-LD 52.77 Failed to generate feasible solution because of out-of-memory status in 3 out of 5 instances 

L-100%-HD 92.44 8820710 27057756 2770 100 4670 0 92.44 600 0 0 0 170666

 

306005 286482 2748198 37093800 31609188 4570260000 4644010336 4641262138 

L-50%-LD 52.77 1266371 3834490 38 99.76 1202 20.67 32.10 53.4 205.8 12 68.8 665132 88596 104580 942372 12683960 10965900 519160000 544610541 543668169 

L-50%-HD 92.44 2257226 6819602 75 99.96 3496 11.35 81.09 325.8 216 17.2 41 121383

 

187636 214015 2716758 32554960 27841382 2916980000 2981708585 2978991827 
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As Table 17 shows, the math model performs well on small instances with low demand 

(with 100% or 50% availability). However, performance drastically worsens when the problem 

size or demand level increases. Within the same instance size and demand level, the number of 

binary variables and constraints in the math model decreases when availability decreases from 

100% to 50%. This happens due to having fewer room and timeslot options to check. The average 

CPLEX gap and density gap (gap between the best solution density and instance density) for all 

small cases is 40.46% and 12.29% respectively. The average time to solve the LP relaxation of the 

integer program is less than one second for all small instances. Even though we expect the math 

model to solve all small instances to optimality, the math model generates non-optimal feasible 

solutions with 0.6 unscheduled courses on average per small instance. 

In large instances with 100% availability and low demand (L-100%-LD), CPLEX reached 

an out-of-memory status in 3 out of 5 instances. In the other three subcategories of large instances, 

the math model did not generate acceptable results. Indeed, the average CPLEX gap and density 

gap is 100% and 68.4% for those instances, respectively. Interestingly, for the HD instances, the 

time needed to solve the LP relaxation dramatically increases (from 75 seconds to 2770 seconds) 

when the room and timeslot availability increases from 50% to 100%. Overall, CPLEX does a 

terrible job solving the large problem instances, leaving more than half of the courses unscheduled 

on average. 

The results in Table 17 verify the absolute need for a heuristic approach than can generate 

high quality solutions within a reasonable amount of time. This is especially the case for large 

instances with a large number of binary variables and constraints which are similar in size to real-

life problems. 
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2.6.3. Heuristic method experimental setup, results, and discussion 
 

A significant number of preliminary experiments were performed to determine the best 

way to generate PRAs in step 1 of the heuristic (Figure 3). Results overwhelmingly showed that 

heuristically generating PRAs (Section 2.5.3) was better than using the mini math model (Section 

2.5.2) because less computation time was used. Regarding step 5 of the heuristic (Section 2.5.5), 

preliminary experiments revealed the following. 

• Options 1 and 3 for deciding how many courses’ f2f meetings to remove from the current 

schedule do not help to create better solutions, and they slow down the algorithm. We 

decided to ignore these options and just use option 2 which is to remove all f2f meetings 

for a certain number of courses. The number of courses is random integer from 1 to 7.  

• Options 1-6 for deciding which courses’ f2f meetings to remove from the schedule were 

all beneficial. Based on the results of preliminary runs, the likelihood of selecting option 

(1, 2, 3, 4, 5, 6) when generating a neighboring solution was (15%, 25%, 3%, 7%, 15%, 

35%).  

• Options 1-3 for deciding which unscheduled f2f meetings are added to the waitlist were 

all beneficial. Based on preliminary experiments, the likelihood of selecting option (1, 

2, 3) was selected to be (40%, 30%, 30%). 

A start temperature (StartTemp) of 30,000 and temperature factor (TempFactor) of 0.99999 were 

used in all experiments. In all experiments the parameter PRA_limit (see Figure 4) was set to 

infinity; there was no predefined limit on the number of PRAs generated for each course. 
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Tables 18-24 show the results for the heuristic algorithm on all 135 problem instances. 

Table 18 shows the settings and quality of the initial feasible solutions that were generated in the 

experiments on the small (S) problem instances. Table 19 shows the quality of the best feasible 

solutions that were found in the experiments on the small instances. Tables 20-21 are analogous 

to Tables 18-19 and show the results of the experiments on the medium-sized (M) instances. Tables 

22-23 are analogous to Tables 18-19 and show the results of the experiments on the large (L) 

instances. Table 24 shows a detailed breakdown of the objective value on a “per course” basis for 

all instances. Each row in each table is the average result for five instances within the same 

subcategory. For each instance subcategory, the values of the parameters MaxM, MaxN, MaxWS, 

and MaxRoom (Figure 4) are modified to be able to generate at least one PRA for each course in 

all 5 instances within each subcategory. 

 Tables 18, 20, and 22 have nine columns with the same headers. The first two columns 

show the problem instance demand density and computation time limit. The next column refers to 

the settings used to generate the PRAs (Figure 4). The setting components are MaxM, MaxN, 

MaxWS, and MaxRoom. The next column shows the time elapsed to generate the initial feasible 

solution. The next three columns show the number of unscheduled courses, density, and number 

of wasted seats in the initial feasible solution, respectively. The density equals the total number of 

seat time slots used divided by the total number of seat time slots available. The second to the last 

column shows the objective value of the initial feasible solution. Finally, the last column shows 

the total number of PRAs generated for all courses combined (in the procedure shown in Figure 

4). 

Tables 19, 21, and 23 have 20 columns with the same headers. The first three columns 

show the total number of iterations, iterations in which the neighboring solution is accepted, and 
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iterations in which a neighboring solution with a better objective value is accepted, respectively. 

The next three columns show the number of wasted seats, best solution density, and density gap 

(i.e., difference between the demand density of the problem instance and the best solution density), 

respectively. The next four columns show the average number of unscheduled, partially scheduled, 

fully scheduled, and perfectly scheduled courses, respectively. The next seven columns show the 

values of the seven parts of the objective function in the best solution identified by the heuristic. 

The next two columns show the overall objective value (which is the summation of the values in 

the previous seven columns) and objective value improvement compared to the initial feasible 

solution. Finally, the last column shows the objective value without objective 4 which is related to 

the wasted seats. Minimizing the number of wasted seats is an intermediate priority that is 

generally less important than other objectives. The last column shows the overall objective value 

without considering the number of wasted seats in each course’s room assignment.  

Table 24 shows how the objective value breaks down on a “per course” basis for all 

problem instances. Each column in the table refers to a different objective function component 

(objectives 1-7). The values in the table are computed by dividing the objective values in columns 

Obj1, Obj2, Obj3, Obj4, Obj5, Obj6, and Obj7 in Tables 19, 21, and 23 by their weights (α1 – α7), 

then dividing the result by the number of courses, and lastly dividing the result by the average 

number of students in a course. For example, the values in row “M-100%-LD” are computed by 

first dividing the corresponding values in Table 21 by the appropriate weight (α1 – α7), then 

dividing the result by 140 (the number of courses), and finally dividing the result by 60 (the average 

number of students per course which is the expectation of the DU(10,110) distribution). The values 

in this row of the table are interpreted as follows. 
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• Objective 1 is 3.56 which means each course occupies about 3.56 rooms on average. 

• Objective 2 is 303.63 which means that the maximum distance between rooms assigned 

to each course is about 303.63 meters on average (in a campus measuring 800m x 800m.) 

• Objective 3 is 474.21 which means that the maximum distance between the office of the 

professor who teaches a course and any room assigned to it is about 474.21 meters on 

average. 

• Objective 4 is 0.24 which means that about 0.24 seats are wasted in each course’s 

assignment on average. 

• Objective 5 is 0 which means that all desired f2f meetings have been scheduled for all 

courses in all instances in this problem subcategory. 

• Objective 6 is 0.07 which means that the deviation between when f2f sessions are desired 

and when they are scheduled is about 0.07 on average. In other words, the average course 

has one f2f meeting that is scheduled 0.07 weeks away from when it is desired, and all 

other f2f meetings are scheduled in the exact weeks when desired. 

• Objective 7 is 0 which means that there are no unscheduled courses in any instance in this 

problem subcategory. 

Tables 18-24 show that the heuristic performs well across all subcategories of problem 

instances. The values in column “UC” in Tables 19, 21, and 23 shows that, in all instances, the 

heuristic is able to schedule one or more socially distanced, in-person meetings each semester 

(when all students in a course gather in multiple rooms simultaneously) for each course. As 

expected, within the same instance size and availability, when the demand level increases, the gap 

between the best solution density and the instance density increases. For the small, medium, and 
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large instances–across all availability levels and demand levels–the average gap between the best 

solution density and the instance density is 4.04%, 6.99%, and 5.98%, respectively. The 5.98% 

gap for the large instances indicates that the heuristic approach works very well for large instances 

(which are closest to real-life problems) if seat-timeslot utilization is the main goal. The average 

seat-timeslot utilization across all HD instances (shown in column “Best Soln Density” in Tables 

19, 21, and 23) is 78.1%. Across all instance sizes, on average the objective value of the best 

solution is 99.31% better than that of the initial feasible solution.  

Table 24 shows that, in all problem subcategories, courses are scheduled in two to four 

rooms on average (Obj1). The values of Mc and Nc (Obj2 and Obj3) vary due to different settings 

used in each scenario but are generally low considering that the university campus is assumed to 

be an 800x800 square (with diagonal length 1131 = 800√2) and classrooms are randomly scattered 

within the campus. As expected, the number of wasted seats (Obj4), number of meetings lacking 

(Obj5), and timing deviation (Obj6) generally increase as the demand increases (from LD to MD 

to HD). The most important information in this table which verifies the power of the heuristic is 

shown in the third-last and last columns. The last column shows that, in all instances, there are no 

unscheduled courses. In other words, there are no courses without any f2f meetings scheduled. The 

third-last column shows that, in 24 of the 27 problem subcategories, the average number of f2f 

meetings lacking per course is less than 1. A comparison of columns “Best OV” and “Best OV 

w/o Obj4” in Tables 17, 19, and 23 shows that the heuristic clearly outperforms CPLEX across all 

problem subcategories.



Table 18. Heuristic method results for small instances: settings and initial feasible solution 

Instance 
density 

(%) 

Allowed 
time 
(sec) 

Heuristic settings 
[MaxM, MaxN, 

MaxWS, MaxRoom] 

IFS 
time elapsed 

(sec) 

IFS  
# Unscheduled 

courses 

IFS 
density 

(%) 

IFS 
 # Wasted 

seats 

IFS 
OV Total # PRA Generated 

S-100%-LD 54.14 300 [700, 9999, 10, 6] 0 5.8 34.20 171 27,227,560 2779 

S-100%-MD 71.08 300 [700, 9999, 10, 6] 0 14.6 35.87 215 62,468,020 2779 

S-100%-HD 94.00 300 [400, 9999, 10, 5] 0 24.4 34.66 156 112,312,140 4112 

S-75%-LD 54.14 300 [900, 9999, 15, 6] 0 3.2 41.93 244 17,615,560 1333.4 

S-75%-MD 71.08 300 [900, 9999, 15, 6] 0 6.4 44.70 364 34,352,100 1627 

S-75%-HD 94.00 300 [900, 9999, 20, 6] 0 20 45.23 261 92,605,939 2102 

S-50%-LD 54.14 300 [1000, 9999, 15, 6] 0 1 46.92 308 8,029,595 294 

S-50%-MD 71.08 300 [900, 9999, 20, 6] 0 5 50.24 533 26,872,443 363 

S-50%-HD 54.14 300 [1000, 9999, 20, 6] 0 11 53.57 453 64,269,011 724 

Table 19. Heuristic method results for small instances: best solution obtained 

# 
Iter 

# 
Acp 

# 
Better 

# 
Wasted 
seats 

Best 
soln 

density 
(%) 

Density 
Gap 
(%) 

#UC #PSC #FSC #PeSC Obj1 Obj2 Obj3 Obj4 Obj5 Obj6 Obj7 Best
OV 

OV 
improve 

(%) 

Best 
OV 
w/o 
Obj4 

S-100%-LD 801555 161965 78268 23 54.14 0 0 0 0.8 39.2 63192 7609 9665 1866 0 510 0 82842 99.62 80976 

S-100%-MD 521276 65709 31918 135 70.28 0.80 0 1.2 8.6 38.6 73108 11297 13087 18192 35040 5670 0 168394 99.73 138202 

S-100%-HD 612313 32374 15169 252 84.72 9.28 0 10.4 24.4 35.2 114990 16178 17486 39226 83280 22360 0 293532 99.73 254294 

S-75%-LD 805394 156346 73069 50 54.14 0 0 0 0.6 39.4 65776 8437 10,059 7256 0 513 0 87955 99.39 84682 

S-75%-MD 556176 70198 31677 234 71.08 0 0 0 12.2 42.8 90608 13602 14298 42296 0 10274 0 171077 99.44 128781 

S-75%-HD 584931 52248 20245 298 83.5 10.5 0 12 26 32 117602 18659 18242 57008 92680 21914 0 324105 99.65 269096 

S-50%-LD 672253 213453 73687 218 54.14 0 0 0 2.6 37.4 66402 9430 10725 39892 0 1478 0 125598 84.86 88035 

S-50%-MD 626090 188602 42926 507 68.98 2.1 0 2 15 37 92452 14607 14893 97682 17360 12180 0 249174 99.05 151492 

S-50%-HD 601765 116729 28398 487 80.3 13.7 0 12 22 36 117242 18326 18300 102802 117800 16624 0 391094 99.34 288292 
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Table 20. Heuristic method results for medium-sized instances: settings and initial feasible solution 

Instance 
density 

(%) 

Allowed 
time 
(sec) 

Heuristic settings 
[MaxM, MaxN, 

MaxWS, MaxRoom] 

IFS 
time elapsed 

(sec) 

IFS  
#Unscheduled 

courses 

IFS 
Density 

 (%) 

IFS 
#Wasted 

seats 

IFS 
OV Total # PRA Generated 

M-100%-LD 53.58 1200 [400, 9999, 5, 5] 3.6 23.2 24.17 456 166,798,280 39336 

M-100%-MD 74.97 1200 [400, 9999, 5, 5] 4 63 20.98 506 422,917,400 41753 

M-100%-HD 90.42 1200 [400, 9999, 5, 5] 5.8 90.2 25.10 652 598,762,800 49634 

M-75%-LD 53.58 1200 [500, 9999, 5, 5] 1 16 30.46 593 112,315,400 35061 

M-75%-MD 74.97 1200 [500, 9999, 5, 5] 2 44.2 28.79 723 303,847,600 41390 

M-75%-HD 90.42 1200 [500, 9999, 5, 5] 2 64 31.60 865 448,614,400 46968 

M-50%-LD 53.58 1200 [800, 9999, 5, 6] 1 9 36.04 699 68,933,300 75982 

M-50%-MD 74.97 1200 [800, 9999, 5, 6] 1 25 38.42 931 186,538,200 120880 

M-50%-HD 90.42 1200 [800, 9999, 5, 6] 1 45 38.28 967 327,108,600 120145 

Table 21. Heuristic method results for medium-sized instances: best solution obtained 

# 
 Iter 

# 
Acp 

# 
Better 

# 
Wasted 
seats 

Best 
soln 

density 
(%) 

Density 
Gap 
(%) 

#UC #PSC #FSC #PeSC Obj1 Obj2 Obj3 Obj 4 Obj5 Obj6 Obj7 Best
OV 

OV 
improve 

(%) 

Best 
OV 
w/o 

Obj4 

M-100%-LD 583283 98053 47596 178 53.58 0 0 0 7.2 132.8 298670 25505 39833 19878 0 6012 0 389,898 99.73 370,021 

M-100%-MD 619978 25309 12372 794 71.62 3.33 0 19.8 79 91.2 456588 34097 57447 108646 212580 205176 0 1,054,535 99.75 1,027,689 

M-100%-HD 669318 15351 9238 1196 77.98 12.44 0 65 75.6 99.4 539976 42357 72348 181246 788500 259564 0 1,883,990 99.67 1,702,745 

M-75%-LD 571465 85238 41133 204 53.58 0 0 0 23.6 116.4 301952 30293 42251 20280 0 21564 0 416,340 99.47 396,060 

M-75%-MD 643528 25145 18000 848 69.97 4.99 0 29.4 76.4 84.2 438464 42232 59364 120190 318040 222320 0 1,200,610 99.60 1,080,421 

M-75%-HD 679675 17500 7293 1131 76.37 14.04 0 71.4 71.4 97.2 541116 52815 74827 177810 892400 269142 0 2,008,108 99.54 1,830,300 

M-50%-LD 448555 58813 28372 328 53.45 0.13 0 0.4 48 91.6 315368 44805 47645 39236 8140 62522 0 498,951 98.91 478,480 

M-50%-MD 688482 23135 11369 996 66.85 8.12 0 41 64.8 82.2 453156 66150 54567 141182 519880 234668 0 1,481,603 99.20 1,328,421 

M-50%-HD 580797 18052 8947 1280 70.58 19.84 0 79.4 74.4 86.2 557606 82341 84601 200798 1261240 239238 0 2,425,818 99.24 2,225,026 
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Table 22. Heuristic method results for large instances: settings and initial feasible solution 

Instance 
density (%) 

Allowed 
time (sec) 

Heuristic settings 
[MaxM, MaxN, 

MaxWS, MaxRoom] 

IFS 
time elapsed 

(sec) 

IFS  
#Unscheduled 

courses 

IFS 
density 

(%) 

IFS 
#Wasted 

seats 

IFS 
OV Total # PRA Generated 

L-100%-LD 52.77 3600 [200, 9999, 5, 4] 23.2 40.6 20.24 2740 373,467,800 26519 

L-100%-MD 69.39 3600 [200, 9999, 5, 4] 29.6 57.4 25.74 3644 483,591,200 31967 

L-100%-HD 92.44 3600 [200, 9999, 5, 4] 37.8 145.2 22.62 2897 1,338,280,200 35560 

L-75%-LD 52.77 3600 [200, 9999, 15, 4] 7 40.8 21.75 6064 352,080,080 24878 

L-75%-MD 69.39 3600 [200, 9999, 15, 4] 12.2 69 25.57 7332 525,608,600 29821 

L-75%-HD 92.44 3600 [200, 9999, 15, 4] 14.2 136 25.54 8242 1,137,623,800 33413 

L-50%-LD 52.77 3600 [500, 9999, 15, 4] 4.4 30.8 22.27 6279 286,841,400 247128 

L-50%-MD 69.39 3600 [500, 9999, 15, 4] 5 55.8 24.40 6625 482,577,600 305907 

L-50%-HD 92.44 3600 [500, 9999, 15, 4] 6.2 100.8 28.27 8487 880,899,000 363502 

Table 23. Heuristic method results for large instances: best solution obtained 

# 
Iter 

# 
Acp 

# 
Better 

# 
Wasted 
seats 

Best 
soln 

density  
(%) 

Density 
Gap 
(%) 

#UC #PSC #FSC #PeSC Obj1 Obj2 Obj3 Obj4 Obj5 Obj6 Obj7 Best 
OV 

OV 
improve 

(%) 

Best 
OV 
w/o 

Obj4 

L-100%-LD 346051 70576 33652 2944 52.77 0 0 0 79.4 260.6 624,776 37,056 112,137 222,946 0 94,206 0 1,242,602 99.60 868,175 

L-100%-MD 266169 26862 13183 7041 69.39 0 0 0 333.6 136.4 1,043,274 50,958 162,091 611,366 0 1,123,814 0 2,991,504 99.33 2,380,137 

L-100%-HD 361659 7551 4507 8898 80.36 12.08 0 187.6 286.4 126 1,372,894 66,307 208,137 903,750 4,777,720 2,717,692 0 10,046,492 99.10 9,142,749 

L-75%-LD 316298 47758 23282 5669 52.77 0 0 0 143.2 196.8 778,684 38,146 113,422 429,210 0 205,758 0 1,565,222 99.31 1,136,010 

L-75%-MD 353957 17195 8467 13911 68.89 0.50 0 15.6 344 110.4 1,049,352 50,743 161,550 1,168,472 193,180 1,553,148 0 4,176,444 99.17 3,007,973 

L-75%-HD 409893 12373 5182 16132 77.30 15.15 0 215.2 282.6 102.2 1,380,914 66,555 211,486 1,586,878 6,020,060 2,777,112 0 12,043,040 98.84 10,456,126 

L-50%-LD 283006 66823 13100 8158 52.73 0.04 0 0.4 277.8 61.8 816,846 93,646 133,027 660,914 13,160 987,986 0 2,705,576 99.01 2,044,665 

L-50%-MD 464032 12451 6278 13608 64.09 5.30 0 99.6 274.2 96.2 1,078,406 124,002 183,581 1,248,738 2,118,900 2,036,384 0 6,790,010 98.48 5,541,273 

L-50%-HD 351107 10244 5244 17105 71.66 20.79 0 268.4 272.2 59.4 1,420,294 165,715 239,038 1,697,154 8,271,600 2,941,906 0 14,735,700 98.28 13,038,553 
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Table 24. Detailed objective value breakdown 
Obj1: 
Num 

rooms 

Obj2: 
Mc

(meters) 

Obj3: 
Nc 

(meters) 

Obj4: 
Wasted 
seats 

Obj5: 
Meetings 
lacking 

Obj6: 
Timing 

deviation 

Obj7: 
Unscheduled 

courses 

S-100%-LD 3.51 422.72 536.94 0.10 0.00 0.03 0.00 
S-100%-MD 2.95 456.45 528.76 0.74 0.14 0.23 0.00 

S-100%-HD 3.65 513.58 555.11 1.25 0.26 0.71 0.00 

S-75%-LD 3.62 463.00 548.04 0.38 0.00 0.03 0.00 

S-75%-MD 3.66 549.56 577.68 1.71 0.00 0.42 0.00 

S-75%-HD 3.73 592.34 579.10 1.81 0.29 0.70 0.00 

S-50%-LD 3.67 527.05 589.18 2.39 0.00 0.06 0.00 

S-50%-MD 3.74 590.19 601.74 3.95 0.07 0.49 0.00 

S-50%-HD 3.72 581.79 580.94 3.26 0.37 0.53 0.00 

M-100%-LD 3.56 303.63 474.21 0.24 0.00 0.07 0.00 

M-100%-MD 4.01 299.10 503.92 0.95 0.19 1.80 0.00 

M-100%-HD 3.75 294.15 502.42 1.26 0.55 1.80 0.00 

M-75%-LD 3.59 360.63 502.99 0.24 0.00 0.26 0.00 

M-75%-MD 3.85 370.46 520.74 1.05 0.28 1.95 0.00 

M-75%-HD 3.76 366.77 519.63 1.23 0.62 1.87 0.00 

M-50%-LD 3.75 533.39 567.21 0.47 0.01 0.74 0.00 

M-50%-MD 3.98 580.27 478.66 1.24 0.46 2.06 0.00 

M-50%-HD 3.87 571.81 587.51 1.39 0.88 1.66 0.00 

L-100%-LD 2.45 145.32 439.75 0.87 0.00 0.37 0.00 

L-100%-MD 2.96 144.56 459.83 1.73 0.00 3.19 0.00 

L-100%-HD 3.05 147.35 462.53 2.01 1.06 6.04 0.00 

L-75%-LD 3.05 149.59 444.79 1.68 0.00 0.81 0.00 

L-75%-MD 2.98 143.95 458.30 3.31 0.05 4.41 0.00 

L-75%-HD 3.07 147.90 469.97 3.53 1.34 6.17 0.00 

L-50%-LD 3.20 367.24 521.67 2.59 0.01 3.87 0.00 

L-50%-MD 3.06 351.78 520.80 3.54 0.60 5.78 0.00 

L-50%-HD 3.16 368.26 531.20 3.77 1.84 6.54 0.00 
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2.7. Conclusion 

In response to the COVID-19 pandemic, academic institutions offered courses in three 

formats: in-person, online, and hybrid. In each format, no more than one classroom could be 

assigned to a course. However, we believe that a more sophisticated course format is needed. In 

this chapter, we propose a method for university course scheduling during a pandemic in which 

multiple classrooms may be assigned to each course. The goal is for all courses to have limited 

number of socially distanced, face-to-face (f2f) meetings each semester when all students in the 

course simultaneously spread out across multiple classrooms. We develop a mathematical model 

that can be used to schedule such face-to-face meetings for all courses. The model considers 

COVID-19-reduced classroom capacities, the number of students enrolled in each course, 

distances between rooms, and other practical constraints. Seven optimization criteria are 

considered including the timing of f2f meetings, distances of classrooms from instructor offices, 

and the distances between classrooms assigned to the same course. A heuristic algorithm is also 

developed. The heuristic method significantly outperforms a direct approach in which the math 

model is solved using standard integer programming software. The heuristic obtains excellent 

results on life-sized instances (with up to 600 courses and 60 classrooms), allowing all courses—

even the largest—to have one or more socially distanced, in-person meetings each semester in 

which all students in the course simultaneously gather in multiple rooms. 

Future work might consider applying the methods proposed in this chapter to real-life 

settings to help real universities prepare for future pandemics. More experiments that consider 

additional scenarios could also be conducted. Design-of-experiment methods (such as Taguchi 

methods) could also be applied to find the best settings for the heuristic. 



83 
 

Chapter 2 References 

Abramson, D. (1991). Constructing school timetables using simulated annealing: Sequential and 

parallel algorithms. Management Science, 37(1), 98–113.  

Al-Betar, M. A., & Khader, A. T. (2012). A harmony search algorithm for university course 

timetabling. Annals of Operations Research, 194(1), 3–31.  

Atef Yekta, H., & Day, R. (2020). Optimization-based mechanisms for the course allocation 

Problem. INFORMS Journal on Computing, 32(3), 641–660.  

Ayob, M., & Jaradat, G. (2009). Hybrid ant colony systems for course timetabling problems. 

2009 2nd Conference on Data Mining and Optimization, 120–126.  

Barnhart, C., Bertsimas, D., Delarue, A., & Yan, J. (2021). Course scheduling under sudden 

scarcity: Applications to pandemic planning. Manufacturing & Service Operations 

Management, 24(2), 727–745.  

Bettinelli, A., Cacchiani, V., Roberti, R., & Toth, P. (2015). An overview of curriculum-based 

course timetabling. TOP, 23(2), 313–349.  

Budish, E., Cachon, G. P., Kessler, J. B., & Othman, A. (2017). Course Match: A large-scale 

implementation of approximate competitive equilibrium from equal incomes for 

combinatorial allocation. Operations Research, 65(2), 314–336.  

Chiarandini, M., Birattari, M., Socha, K., & Rossi-Doria, O. (2006). An effective hybrid 

algorithm for university course timetabling. Journal of Scheduling, 9(5), 403–432.  



84 
 

da Fonseca, G. H. G., Santos, H. G., Toffolo, T. Â. M., Brito, S. S., & Souza, M. J. F. (2016). 

GOAL solver: a hybrid local search-based solver for high school timetabling. Annals of 

Operations Research, 239(1), 77–97.  

da Fonseca, G. H. G., Santos, H. G., Carrano, E. G., & Stidsen, T. J. R. (2017). Integer 

programming techniques for educational timetabling. European Journal of Operational 

Research, 262(1), 28–39.  

de Oliveira, P. M., Mesquita, L. C. C., Gkantonas, S., Giusti, A., & Mastorakos, E. (2021). 

Evolution of spray and aerosol from respiratory releases: theoretical estimates for insight on 

viral transmission. Proceedings of the Royal Society A: Mathematical, Physical and 

Engineering Sciences, 477(2245), 20200584.  

Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 

in real time. The Lancet Infectious Diseases, 20(5), 533–534.  

Feizi-Derakhshi, M.-R., Babaei, H., & Heidarzadeh, J. (2012). A survey of approaches for 

university course timetabling problem. Proceedings of 8th International Symposium on 

Intelligent and Manufacturing Systems, Sakarya University Department of Industrial 

Engineering, Adrasan, Antalya, Turkey, 307–321. 

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & 

Wenderoth, M. P. (2014). Active learning increases student performance in science, 

engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 

8410–8415.  



85 
 

Goh, S. L., Kendall, G., & Sabar, N. R. (2017). Improved local search approaches to solve the 

post enrolment course timetabling problem. European Journal of Operational Research, 

261(1), 17–29.  

Gonzalez, G., Richards, C., & Newman, A. (2018). Optimal course scheduling for United States 

Air Force academy cadets. Interfaces, 48(3), 217–234.  

Imran Hossain, Sk., Akhand, M. A. H., Shuvo, M. I. R., Siddique, N., & Adeli, H. (2019). 

Optimization of university course scheduling problem using particle swarm optimization 

with selective search. Expert Systems with Applications, 127, 9–24.  

Jamal, A. (2020). Global optimization using local search approach for course scheduling 

problem. In Scheduling Problems - New Applications and Trends. IntechOpen.  

Jat, S. N., & Yang, S. (2011). A hybrid genetic algorithm and tabu search approach for post 

enrolment course timetabling. Journal of Scheduling, 14(6), 617–637.  

Johnson, C., & Wilson, R. L. (2022). Practice summary: A multiobjective assignment model for 

optimal socially distanced classrooms for the Spears School of Business at Oklahoma State 

University. INFORMS Journal on Applied Analytics, 52(3), 295–300.  

Lewis, R., & Paechter, B. (2005). Application of the grouping genetic algorithm to university 

course timetabling (pp. 144–153).  

Lü, Z., & Hao, J.-K. (2010). Adaptive tabu search for course timetabling. European Journal of 

Operational Research, 200(1), 235–244.  



86 
 

Mencía, R., Sierra, M. R., Mencía, C., & Varela, R. (2016). Genetic algorithms for the 

scheduling problem with arbitrary precedence relations and skilled operators. Integrated 

Computer-Aided Engineering, 23(3), 269–285.  

Méndez-Díaz, I., Zabala, P., & Miranda-Bront, J. J. (2016). An ILP based heuristic for a 

generalization of the post-enrollment course timetabling problem. Computers & Operations 

Research, 76, 195–207.  

Naji Azimi, Z. (2005). Hybrid heuristics for examination timetabling problem. Applied 

Mathematics and Computation, 163(2), 705–733.  

Navabi-Shirazi, M., El Tonbari, M., Boland, N., Nazzal, D., & Steimle, L. N. (2022). 

Multicriteria course mode selection and classroom assignment under sudden space scarcity. 

Manufacturing & Service Operations Management. 

https://doi.org/10.1287/msom.2022.1131 

Sabar, N. R., Ayob, M., Kendall, G., & Qu, R. (2012). A honey-bee mating optimization 

algorithm for educational timetabling problems. European Journal of Operational 

Research, 216(3), 533–543.  

Shiau, D.-F. (2011). A hybrid particle swarm optimization for a university course scheduling 

problem with flexible preferences. Expert Systems with Applications, 38(1), 235–248.  

Tang, Y., Liu, R., Wang, F., Sun, Q., & Kandil, A. A. (2018). Scheduling optimization of linear 

schedule with constraint programming. Computer-Aided Civil and Infrastructure 

Engineering, 33(2), 124–151.  


	University Course Scheduling During a Pandemic and University Course Planning: Math Models and Heuristic Algorithms
	Recommended Citation

	Chapter 1: A mathematical modeling approach to university course planning
	1.1.  Introduction
	1.2.  Literature review
	1.3.  The student course planning problem (SCPP)
	1.3.1. Problem description
	1.3.2. Mathematical model
	1.3.3. Experimental setup
	1.3.4. Case study: Industrial Engineering BSE program at UW-Milwaukee
	1.3.5. Experiment 1: Student with no leave of absence and no transfer courses
	1.3.6. Experiment 2: Student with a leave of absence in semester five and eight transfer courses
	1.3.7. Experiment 3: Leave of absence timing
	1.3.8. Experiments on fictional problem instances

	1.4.  The department course planning problem (DCPP)
	1.4.1. Problem description
	1.4.2. Mathematical models
	1.4.3. Model DCPP I
	1.4.4. Model DCPP II
	1.4.5. Case study revisited: Industrial Engineering BSE program at UW-Milwaukee
	1.4.6. Experiments on fictional problem instances

	1.5.  Conclusion
	Chapter 1 References
	Chapter 2: University course scheduling during a pandemic
	2.1.  Introduction
	2.2.  Literature review
	2.3.  Problem description
	2.4.  Exact solution approach using a mathematical model
	2.5.  Heuristic method
	2.5.1. Overall structure of the heuristic method
	2.5.2. Step 1: Generate potential room assignments (exact method)
	2.5.3. Step 1: Generate potential room assignments (heuristic method)
	2.5.4. Step 2: Create an initial schedule
	2.5.5. Step 5: Create neighboring solution
	2.5.6. Step 6: Decide if neighboring solution replaces current solution

	2.6.  Experimental setup, results, and discussion
	2.6.1. General experimental setup
	2.6.2. Math model experimental setup, results, and discussion
	2.6.3. Heuristic method experimental setup, results, and discussion

	2.7.  Conclusion
	Chapter 2 References
	Chapter 2 References
	Chapter 2 References
	Chapter 2 References

