
University of Wisconsin Milwaukee University of Wisconsin Milwaukee

UWM Digital Commons UWM Digital Commons

Theses and Dissertations

August 2022

University Course Scheduling During a Pandemic and University University Course Scheduling During a Pandemic and University

Course Planning: Math Models and Heuristic Algorithms Course Planning: Math Models and Heuristic Algorithms

Mohammad Khamechian
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

 Part of the Industrial Engineering Commons

Recommended Citation Recommended Citation
Khamechian, Mohammad, "University Course Scheduling During a Pandemic and University Course
Planning: Math Models and Heuristic Algorithms" (2022). Theses and Dissertations. 3021.
https://dc.uwm.edu/etd/3021

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more
information, please contact scholarlycommunicationteam-group@uwm.edu.

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F3021&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=dc.uwm.edu%2Fetd%2F3021&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/3021?utm_source=dc.uwm.edu%2Fetd%2F3021&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarlycommunicationteam-group@uwm.edu

UNIVERSITY COURSE SCHEDULING DURING A PANDEMIC

AND UNIVERSITY COURSE PLANNING: MATH MODELS AND

HEURISTIC ALGORITHMS

by

Mohammad Khamechian

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in Engineering

at

The University of Wisconsin-Milwaukee

August 2022

ii

ABSTRACT

UNIVERSITY COURSE SCHEDULING DURING A PANDEMIC AND
UNIVERSITY COURSE PLANNING: MATH MODELS AND HEURISTIC

ALGORITHMS

by

Mohammad Khamechian

The University of Wisconsin-Milwaukee, 2022
Under the Supervision of Professor Matthew Petering

 This dissertation has two chapters. In Chapter 1, we introduce two optimization

problems related to university course planning. In the student course planning problem (SCPP),

a student needs to design a course plan that allows him/her to graduate in a timely manner. In the

department course planning problem (DCPP), an academic department needs to decide which

courses to offer during which semesters to facilitate students’ timely graduation. Mathematical

models of these problems are developed, coded in C++, and solved with IBM ILOG

CPLEX. Experiments on small, medium-sized, and large real-world and fictional problem

instances show the utility of the math model.

Chapter 2 is about university course scheduling during a pandemic. Most universities have

responded to the COVID-19 pandemic by offering courses in three formats: (1) online, (2) hybrid

(with online and in-person components), or (3) in-person. Option 1 discourages student interaction;

option 2 has low classroom utilization; and option 3 poses health risks or is limited to small courses

meeting in large rooms. We propose a new approach to course scheduling which allows more than

one classroom to be assigned to the same course. Our method allows all courses—even the

iii

largest—to have a limited number of socially distanced, in-person meetings each semester in

which all students in the course meet in multiple classrooms simultaneously. A math model and

heuristic method are developed for implementation. Analyses of life-sized problem instances are

promising.

iv

© Copyright by Mohammad Khamechian,
2022 All Rights Reserved

v

TABLE OF CONTENTS

Chapter 1: A mathematical modeling approach to university course planning 1

1.1. Introduction ... 1

1.2. Literature review ... 2

1.3. The student course planning problem (SCPP) .. 6

1.3.1. Problem description .. 6

1.3.2. Mathematical model.. 8

1.3.3. Experimental setup.. 12

1.3.4. Case study: Industrial Engineering BSE program at UW-Milwaukee 12

1.3.5. Experiment 1: Student with no leave of absence and no transfer courses 13

1.3.6. Experiment 2: Student with a leave of absence in semester five and eight transfer
courses... 17

1.3.7. Experiment 3: Leave of absence timing .. 19

1.3.8. Experiments on fictional problem instances ... 21

1.4. The department course planning problem (DCPP) ... 24

1.4.1. Problem description .. 24

1.4.2. Mathematical models .. 25

1.4.3. Model DCPP I ... 26

1.4.4. Model DCPP II ... 28

1.4.5. Case study revisited: Industrial Engineering BSE program at UW-Milwaukee......... 29

1.4.6. Experiments on fictional problem instances ... 30

1.5. Conclusion ... 34

Chapter 1 References .. 35

Chapter 2: University course scheduling during a pandemic ... 38

2.1. Introduction ... 38

vi

2.2. Literature review ... 39

2.3. Problem description ... 45

2.4. Exact solution approach using a mathematical model .. 47

2.5. Heuristic method ... 55

2.5.1. Overall structure of the heuristic method .. 55

2.5.2. Step 1: Generate potential room assignments (exact method) 56

2.5.3. Step 1: Generate potential room assignments (heuristic method) 59

2.5.4. Step 2: Create an initial schedule .. 62

2.5.5. Step 5: Create neighboring solution .. 63

2.5.6. Step 6: Decide if neighboring solution replaces current solution 65

2.6. Experimental setup, results, and discussion .. 65

2.6.1. General experimental setup... 66

2.6.2. Math model experimental setup, results, and discussion .. 69

2.6.3. Heuristic method experimental setup, results, and discussion 73

2.7. Conclusion ... 82

Chapter 2 References .. 83

vii

LIST OF FIGURES

Figure 1. Branches of educational timetabling ... 2

Figure 2. Research related to course planning and scheduling. .. 40

Figure 3. Heuristic pseudocode... 55

Figure 4. Pseudocode for heuristically generating PRAs ... 60

Figure 5. Heuristic pseudocode with simulated annealing steps shown 65

viii

LIST OF TABLES

Table 1. Indices, parameters, and decision variables in mathematical model SCPP 9

Table 2. Experimental setup and assumptions for model SCPP case study (** indicates how
many binary terms equal 1) ... 13

Table 3. Selected optimal solutions for the SCPP case study (Experiment 1) 16

Table 4. Selected optimal solutions for the SCPP case study (Experiment 2) 18

Table 5. Effect of LA on the number of semesters needed to graduate for the SCPP case study
when Max = 5 (Experiment 3) .. 20

Table 6. Effect of LA on the number of semesters needed to graduate for the SCPP case study
when Max = 6 (Experiment 3) .. 20

Table 7. Experimental setup and assumptions for model SCPP fictional instances 21

Table 8. Experimental results for model SCPP fictional instances. ... 23

Table 9. Indices, parameters, and decision variables in mathematical models DCPP I and DCPP
II .. 26

Table 10. Effect of Max and Wn on results for model DCPP I and DCPP II case study 30

Table 11. Experimental setup and assumptions for model DCPP I and DCPP II fictional
instances .. 31

Table 12. Experimental results for model DCPP I fictional instances ... 32

Table 13. Experimental results for model DCPP II fictional instances. 33

Table 14. Indices, parameters, and decision variables in mathematical model UCSPDP 49

Table 15. Indices, parameters, and decision variables in the mini math model that generates room
possibilities for each course .. 56

Table 16. Experimental setup and assumptions for the problem instances 68

Table 17. Math model results .. 71

Table 18. Heuristic method results for small instances: settings and initial feasible solution 78

Table 19. Heuristic method results for small instances: best solution obtained 78

ix

Table 20. Heuristic method results for medium-sized instances: settings and initial feasible
solution .. 79

Table 21. Heuristic method results for medium-sized instances: best solution obtained 79

Table 22. Heuristic method results for large instances: settings and initial feasible solution 80

Table 23. Heuristic method results for large instances: best solution obtained 80

Table 24. Detailed objective value breakdown ... 81

x

ACKNOWLEDGEMENTS

First and foremost, I would like to express my profound appreciation to my supervisor

Professor Matthew Petering who generously offered his precious time and expertise in guiding and

mentoring me step by step through the entire research process. Doctor Petering, your professional

supervision, insightful comments and continuous encouragement at every stage of this study made

this thesis possible for which I will always be grateful. I would also like to extend my special

acknowledgement to the esteemed committee members/readers of my thesis for their time and

constructive comments during the defense session.

Words fail me to express my heartfelt appreciation to my parents, whose unconditional

love and continuous support have always paved the way toward my achievements. It is their

constant encouragement and support from the very beginning of my life that made it possible for

me to reach this stage. I will be eternally grateful to you for always believing in me and for your

endless love, blessings, and support. I love you both from the bottom of my heart. I also wish to

thank my brother, Mohsen, who has always been my best friend and whose everlasting love and

support brighten up my life. I love you dearly and I thank you for being my loving and caring

brother.

Last but not least I would like to express my heartfelt thanks to the love of my life, Sepideh,

for her unwavering love and constant encouragement. Thank you for accompanying me throughout

the whole process. Your love and consideration mean the world to me and give me courage to face

challenges and never give up.

1

 Chapter 1: A mathematical modeling approach to university course planning

1.1. Introduction

Education is fundamental to human civilization. The relationship between student and

teacher is older than history itself, and the importance of formal education within a modern society

is well recognized (Smith et al., 2017). The world’s institutions of higher learning—universities

and colleges—now number more than 26,000, and this number continues to rise (Sowter, 2017).

The work performed at these institutions—teaching, research, and service—improves the human

condition both globally and locally (Winters, 2011).

As universities become more numerous, many educational in situations are searching for

better ways to use their limited resources—faculty members, staff members, physical

infrastructure, time, and money—to serve students. In the United States, the desire to improve

efficiency is partly motivated by recent cuts in higher education spending (Mitchell, Leachman, &

Masterson, 2016). Today, many universities are realizing that they need to deliver educational

programs in more efficient ways and if they wish to prosper in the future.

One aspect that affects the efficiency of a university is the way in which its courses are

planned and scheduled. The structure of university degree programs, the courses offered each

semester, and the assignment of courses to classrooms each semester all impact the student

experience which in turn affects a university’s reputation, ability to attract funding, and bottom

line.

In this chapter, we introduce two optimization problems that relate to the productivity of a

university and its students. In the student course planning problem (SCPP), a student needs to

design one or more course plans that allow him/her to graduate in a timely manner. In the

2

department course planning problem (DCPP), an academic department needs to decide which

courses to offer during which semesters to facilitate students’ timely graduation. Mathematical

models of these problems are developed, coded in C++, and solved with IBM ILOG CPLEX.

Experiments on small, medium-sized, and large real-world and fictional problem instances

demonstrate the math model’s utility.

1.2. Literature review

The literature relevant to this study includes all papers which introduce methods for

automatically doing university course scheduling, university course planning, and resource-

constrained project scheduling (Fig. 1).

Figure 1. Branches of educational timetabling

Educational
Timetabling

University Course Scheduling Problem (UCSP)

Resource Constrained Project Scheduling
Problem (RCPSP)

Student Course Planning Problem (SCPP)

Department Course Planning Problem (DCPP)

Discussed in introduction

Objectives of this chapter

3

The goal in university course scheduling is to assign university courses and laboratory

sessions to classrooms and timeslots considering each room’s maximum capacity, the expected

number of students in a course, and other related facility issues. This topic is only tangentially

related to this chapter and will be discussed in Chapter 2.

A handful of published papers introduce math models and/or algorithms for university

course planning. Esteban, Zafra, and Romero (2020) develop a genetic algorithm to recommend

elective courses to computer science students at the University of Cordoba. Mohamed (2015)

introduces an integer program for long-term course planning (LTCP) that decides which courses

to take during which semester so that a student’s satisfaction and grade point average is maximized

upon graduation. Morrow, Hurson, and Sarvestani (2017) propose a hierarchical, multi-stage

algorithm for designing a personalized, multi-semester course plan for a student considering the

degree requirements, the student’s personal interests, the time required to earn the degree, and

expected course grades. Shakhsi-Niaei and Abuei-Mehrizi (2020) present an integer program for

deciding which courses a student takes during which semester with the goal of finishing a degree

while taking his/her preferred elective courses, balancing total course complexity across the

semesters, and balancing the number of credits taken across the semesters. The work described in

this chapter considers university course planning from both student and department perspectives,

and it has recently been published in an academic journal (Khamechian & Petering, 2022).

Our investigation of the student course planning problem (SCPP) in this paper has some

overlap with the preceding three papers, but our work differs from these papers in several aspects.

First, we provide a clear, thorough description of the problem. Second, we consider a different

objective: minimizing the time to graduation. Third, we consider more than ten times as many

problem instances as any other paper. To our knowledge, no existing work besides Khamechian

4

& Petering (2022) has investigated a problem similar to the department course planning problem

(DCPP) that is introduced in this chapter. In other words, prior to the publication of the paper by

Khamechian & Petering (2022), no paper had presented a method for helping university

departments decide which course to offer in which semesters to facilitate students’ timely

graduation.

If we consider a university degree as a project, courses as activities (i.e., jobs, tasks), course

offerings as resources, and course prerequisites as activity precedence relationships, then

university course planning resembles a resource-constrained project scheduling problem (RCPSP).

The RCPSP is an NP-hard combinatorial optimization problem. Due to its extensive engineering

applications, the RCPSP has become an important research area in recent decades.

Araujo et al. (2020) describe three variants of the RCPSP: the single-mode resource-

constrained project scheduling problem (SMRCPSP), multi-mode resource-constrained project

scheduling problem (MMRCPSP), and multi-mode resource-constrained multi-project scheduling

problem (MMRCMPSP). In the SMRCPSP, an activity-on-node network indicates activity

precedence relationships; activities may not be preempted; activities are performed over time with

limited resources; resources are renewable at each time period; and there is only one way to process

each activity. The goal in a SMRCPSP is to find an activity schedule with minimum makespan

that satisfies the activity precedence constraints and resource limitations (Chakrabortty, Sarker, &

Essam, 2018). A branch and bound algorithm is often proposed for this problem (Brucker, Knust,

Schoo, & Thiele, 1998). Researchers have also applied several types of metaheuristics to the

SMRCPSP, such as priority rules (Myszkowski, Skowronski, & Podlodowski, 2013), greedy

algorithms (Myszkowski & Siemienski, 2016), tabu search (Skowronski, Myszkowski, Adamski,

& Kwiatek, 2013), and simulated annealing (Yannibelli & Amandi, 2013).

5

An extension of the conventional single-mode RCPSP is the MMRCPSP, which considers

the duration of each task as a function of the level and type of resources committed to it. In the

MMRCPSP, each task can be accomplished in one of several processing modes, and each

processing mode has a different task duration, rate of resource usage, and/or type of resources

associated with it. Two types of resources are considered: renewable resources which are available

in each time period, and non-renewable resources which can lead to infeasible solutions. In the

MMRCPSP, project interactions that result from the utilization of shared resources must be taken

into consideration (Zapata, Hodge, & Reklaitis, 2008). A significant number of exact, heuristic,

and metaheuristic approaches have been proposed for solving different MMRCPSPs (Almeida,

Correia, & Saldanha-da-Gama, 2019). The MMRCPSP is distinguishably more complex than the

SMRCPSP, which is itself NP-hard (Elloumi & Fortemps, 2010).

The MMRCMPSP is a generalization of the previous problem variants. The MMRCMPSP

considers a multi-project environment in which there are multiple projects with assigned due dates;

activities that have alternative resource usage modes; a resource dedication policy that does not

allow sharing of resources among projects throughout the planning horizon; and a total budget

(Besikci, Bilge, & Ulusoy, 2015).

This chapter considers two optimization problems that have at least five features which are

outside the scope of a typical RCPSP: elective activities (elective courses), activity release times

(course constraints relating to student seniority), cyclic resource availability (seasonal course

offerings), non-strict activity precedence relationships (course corequisites), and operational

interruptions (leaves of absence).

6

Overall, despite the existence of scores of outstanding articles on course scheduling, course

planning, and the RCPSP in the academic literature, to the authors’ knowledge there is no article

besides Khamechian & Petering (2022) which has substantial overlap with the content of this

chapter. This chapter introduces two university course planning problems: the student course

planning problem (SCPP) and the department course planning problem (DCPP). Our work on the

SCPP and DCPP is presented in Sections 1.3 and 1.4 respectively, and our concluding remarks are

found in Section 1.5.

1.3. The student course planning problem (SCPP)

We now formally introduce the student course planning problem.

1.3.1. Problem description

Consider a student who begins a university degree. Because the student pays tuition, he/she

wants to graduate as soon as possible without harming his/her learning quality. Thus, when the

student plans out his/her degree by deciding which courses to take in each future semester, the

main goal is to minimize the time required to complete the degree; issues relating to specific

instructors and classrooms are typically not considered.

The student creates his/her plan for completing the degree based on the following

information. The university course schedule is assumed to repeat annually, and courses are offered

during N sessions each year. For example, a university that operates on a semester calendar has

two sessions per year (N = 2), and a university that works quarterly has four sessions per year (N

= 4). The most basic unit of academic work in the degree is a course. In other words, progress

towards completion of the degree is measured in courses, not credit hours. According to university

policy, the student may take a maximum of Max courses each session. The student begins his/her

7

degree during session Start (1 ≤ Start ≤ N); remains a student for multiple consecutive sessions

after that; and is required to graduate within a maximum of S semesters (i.e., sessions) after starting

his/her degree. In this chapter, the term “semester” refers to how long a student has been pursuing

his/her degree, and the term “session” refers to a time during the year when courses are offered.

There are total of C available courses which are divided to two categories: required and

elective. Parameter Rc equals 1 (0) if course c is (is not) a required component of the degree.

Parameter Ec equals 1 (0) if course c is (is not) an elective course (Rc +Ec =1 for all c). Elective

courses are divided into two groups. Parameter EMc equals 1 (0) if course c is (is not) an elective

course in the major (EMc ≤ Ec for all c). A total of E elective courses must be taken to graduate of

which EM must be elective courses in the major. The university allows students to count courses

taken at a previous institution towards completion of their degree. Parameter Ac equals 1 (0) if the

student has (has not) already taken course c. Each course may refer to a specific university course

or a category of courses. For example, course #5 could be “Computer Science 100,” “any 100-

level computer science course,” or “any humanities course.”

The course offerings repeat annually, and not every course is offered during every session.

For example, some courses may only be offered in the fall while others are only offered in the

spring. Binary parameter Ocn indicates if course c is offered during session n. We assume there are

no time conflicts between the courses offered in the same session. In other words, the student can

feasibly attend the lectures for any combination of courses that are offered in the same session.

A set of prerequisite and corequisite requirements ensure that the student takes courses in

the proper sequence. Binary parameter Pcd indicates if course c is a prerequisite for course d, i.e.,

if course c must be taken before course d. Without loss of generality (and to avoid circular logic),

8

we assume that courses are numbered in agreement with the prerequisite requirements. That is, Pcd

may only equal 1 if c < d. Binary parameter Ccd indicates if course c is a corequisite for course d.

This parameter equals 1 (0) if course c must be taken before, or during the same semester as, course

d.

Another set of restrictions relate to the seniority of the student, i.e., how many courses the

student has completed. Binary parameter Jc indicates if the student must be a junior—i.e., if he/she

must have completed Junior (e.g., 20) courses—before he/she takes course c. Binary parameter Sc

indicates if the student must be a senior—i.e., if he/she must have completed Senior (e.g., 30)

courses—before he/she takes course c (Junior ≤ Senior).

Finally, the student has the option to take a leave of absence during his/her degree. A leave

of absence is a semester when the student does not take courses. This option allows the student to

take a break from his/her studies to seek temporary employment; spend additional time with

family; or travel around the world. If the student takes a leave of absence, parameter LA (2 ≤ LA ≤

S-1) indicates the semester when the leave is taken; otherwise, parameter LA equals 0.

1.3.2. Mathematical model

Table 1 lists the indices, parameters, and decision variables in our integer programming

(IP) formulation of the SCPP. The model has three types of indices. Index n refers to the sessions.

Indices c and d represent courses. Indices s and t refer to semesters; their value indicates how long

the student has been pursuing his/her degree.

Model SCPP has three sets of decision variables. Binary variable Xcs equals 1 (0) if the

student takes (does not take) course c during his/her sth semester. Binary variable Ys equals 1 (0) if

the student has not (has) completed his/her degree by the start of his/her sth semester. Integer

9

variable Zs equals the number of courses the student has completed by the beginning of his/her sth

semester. This variable allows the model to check the junior or senior standing of the student.

Table 1. Indices, parameters, and decision variables in mathematical model SCPP
Indices
n Session (n = 1, 2, …, N)
c, d Course (c, d = 1, 2, …, C)
s, t Semester: a measure of how long the student has been pursuing his/her degree (s, t = 1, 2, …, S)
Parameters
N Number of sessions per year (e.g., 2)
C Number of available courses (e.g., 40)
S Number of semesters available for completing a degree (e.g., 10)
Max Maximum number of courses the student can take per session (e.g., 6)
Start Session when the student starts his/her degree (= 1, 2, …, N)
Ac 1, if course c has already been taken (e.g., by a transfer student)

0, otherwise
Rc 1, if course c is required for graduation

0, otherwise (binary)
Ec 1, if course c is an elective course

0, otherwise (binary)
EMc 1, if course c is an elective course in the major

0, otherwise (binary)
E Number of elective courses needed for graduation (e.g., 4)
EM Number of elective courses in the major needed for graduation (e.g., 2)
Ocn 1, if course c is offered during session n

0, otherwise (binary)
Pcd 1, if course c is a prerequisite for course d (c < d)

0, otherwise (binary)
Ccd 1, if course c is a corequisite for course d

0, otherwise (binary)
Junior Number courses a student must have completed to be considered a junior
Senior Number courses a student must have completed to be considered a senior
Jc 1, if junior standing is required for course c

0, otherwise (binary)
Sc 1, if senior standing is required for course c

0, otherwise (binary)
LA Semester during which student takes a leave of absence (e.g., to work at a company full time) (= 2, 3,

…S-1)
(= 0 if no leave of absence is taken)

Decision variables
Xcs 1, if the student takes course c during his/her sth semester

0, otherwise (binary)
Ys 1, if the student has not completed his/her degree by the start of his/her sth semester

0, otherwise (binary)
Zs Number of courses student has completed by the beginning of his/her sth semester

10

Mathematical model SCPP is shown below:

Minimize ∑ 𝑌𝑌𝑠𝑠𝑆𝑆
𝑠𝑠=1 (1)

Constraints

Ys+1 ≤ Ys for all s ≤ S – 1 (2)

Xcs ≤ Ys for all c and s (3)

𝐴𝐴𝑐𝑐 + ∑ 𝑋𝑋𝑐𝑐𝑠𝑠𝑆𝑆
𝑠𝑠=1 ≥ Rc for all c (4)

∑ [(𝐴𝐴𝑐𝑐 + ∑ 𝑋𝑋𝑐𝑐𝑠𝑠)𝑆𝑆
𝑠𝑠=1 ∗ (𝐸𝐸𝑐𝑐)] C

c=1 ≥ 𝐸𝐸 (5)

∑ [(𝐴𝐴𝑐𝑐 + ∑ 𝑋𝑋𝑐𝑐𝑠𝑠)𝑆𝑆
𝑠𝑠=1 ∗ (𝐸𝐸𝑀𝑀𝑐𝑐)] C

c=1 ≥ 𝐸𝐸𝑀𝑀 (6)

∑ 𝑋𝑋𝑐𝑐𝑠𝑠𝐶𝐶
𝑐𝑐=1 ≤ Max for all s (7)

Xcs ≤ Oc, ([(s-1) + (Start-1)] mod N) + 1 for all c and s (8)

Ac + ∑ 𝑋𝑋𝑐𝑐𝑠𝑠𝑆𝑆
𝑠𝑠=1 ≤ 1 for all c (9)

∑ 𝑋𝑋𝑑𝑑𝑠𝑠𝑆𝑆
𝑠𝑠=1 ≤ ∑ 𝑋𝑋𝑐𝑐𝑠𝑠𝑆𝑆

𝑠𝑠=1 + 𝐴𝐴𝑐𝑐 for all (c, d) such that Pcd = 1 (10a)

(∑ 𝑠𝑠 ∗ 𝑋𝑋𝑐𝑐𝑠𝑠) + 1𝑆𝑆
𝑠𝑠=1 ≤ (∑ 𝑠𝑠 ∗ 𝑋𝑋𝑑𝑑𝑠𝑠) + (𝑆𝑆 + 1)(1− ∑ 𝑋𝑋𝑑𝑑𝑠𝑠)𝑆𝑆

𝑠𝑠=1
𝑆𝑆
𝑠𝑠=1 for all (c, d) such that Pcd = 1 (10b)

∑ 𝑋𝑋𝑑𝑑𝑠𝑠𝑆𝑆
𝑠𝑠=1 ≤ ∑ 𝑋𝑋𝑐𝑐𝑠𝑠 + 𝐴𝐴𝑐𝑐𝑆𝑆

𝑠𝑠=1 for all (c, d) such that Ccd = 1

(11a)
(∑ 𝑠𝑠 ∗ 𝑋𝑋𝑐𝑐𝑠𝑠) 𝑆𝑆

𝑠𝑠=1 ≤ (∑ 𝑠𝑠 ∗ 𝑋𝑋𝑑𝑑𝑠𝑠) + (𝑆𝑆)(1− ∑ 𝑋𝑋𝑑𝑑𝑠𝑠)𝑆𝑆
𝑠𝑠=1

𝑆𝑆
𝑠𝑠=1 for all (c, d) such that Ccd = 1 (11b)

Zs = ∑ ∑ 𝑋𝑋𝑐𝑐𝑐𝑐𝑠𝑠−1
𝑐𝑐=1

𝐶𝐶
𝑐𝑐=1 + ∑ 𝐴𝐴𝑐𝑐𝐶𝐶

𝑐𝑐=1 for all s (12)

Zs ≥ Junior * 𝑋𝑋𝑐𝑐𝑠𝑠 for all c and s such that Jc = 1 (13)

Zs ≥ Senior ∗ 𝑋𝑋𝑐𝑐𝑠𝑠 for all c and s such that Sc = 1 (14)

∑ 𝑋𝑋𝑐𝑐,𝐿𝐿𝐿𝐿 C
c=1 = 0 If LA ≠ 0 (15)

𝑌𝑌𝐿𝐿𝐿𝐿 = 1 If LA ≠ 0 (16)

In model SCPP, the objective (1) is to minimize the number of semesters needed to

complete the degree. Constraint (2) states that if a student has not completed his/her degree by the

11

beginning of his/her s+1st semester, then he/she also has not completed his/her degree by the start

of his/her sth semester. This constraint ensures the continuity of the student’s degree. Constraint

(3) ensures that if the student takes course c during his/her semester s, the student must not be

finished with his/her degree by the start of semester s. Constraint (4) ensures that each required

course is either taken during the program or has already been taken before the student joins the

program. Constraints (5) and (6) ensure that the student takes the necessary number of elective

courses and elective courses in the major. Constraint (7) ensures that the student does not take

more than Max courses per semester.

Constraint (8) is the course availability constraint. It ensures that the student does not take

course c during his/her sth semester if the course is not offered during that semester. In this

constraint, the expression ([(s-1) +(Start-1)] mod N) +1 converts the semester s into the appropriate

session for given values of Start and N. For example, if Start = 1 and N = 2 (if the student starts in

the fall at a university that has two sessions (fall and spring) each year) then the expression

becomes ([s-1] mod 2) +1, and the expression equals (1, 2, 1, 2, …) when s equals (1, 2, 3, 4, …)

respectively. If Start = 2 and N = 2, then the expression becomes (s mod 2) +1, and the expression

equals (2, 1, 2, 1, …) when s equals (1, 2, 3, 4, …) respectively.

Constraint (9) ensures that each course is taken at most once. Constraints (10a) and (10b)

are the prerequisite constraints; they ensure that if course d is taken and course c is its prerequisite,

then course c must be taken before course d. Constraints (11a) and (11b) are the corequisite

constraints which ensure that if course d is taken and course c is its corequisite, then course c must

be taken either before or during the same semester as course d. Constraint (12) ensures that Zs

equals the number of courses the student has taken by the start of his/her sth semester. Constraints

(13) and (14) ensure that the student already has junior or senior standing by the beginning of

12

semester s if he/she takes a course c that requires junior or senior standing during semester s

respectively. Constraints (15) and (16) ensure that the student does not take any courses during a

leave of absence but that the student is still enrolled in the degree program during a leave of

absence.

1.3.3. Experimental setup

All math models in this chapter were coded into MS Visual C++2017, and IBM ILOG

Concert Technology was used to call IBM ILOG CPLEX 12.9 to solve problem instances

contained in text files. All experiments were run on a desktop PC with a core i7 3.4 GHz processor

and 8 GB of RAM. The CPLEX computation time limit was 600 seconds for all problem instances

in this chapter.

1.3.4. Case study: Industrial Engineering BSE program at UW-Milwaukee

Our first experiment applies model SCPP to the industrial engineering bachelor’s degree

at UW-Milwaukee. The list of requirements for this degree is available online (UW-Milwaukee

Industrial Engineering curriculum, 2021).

Table 2 shows the parameter values for this degree program. Most inputs are matrices of

zeros and ones with different dimensions. The university operates on a semester calendar (N = 2),

and students are normally expected to finish their degree in ten semesters or less (S = 10). A total

of 49 courses are available (C = 49) among which 37 are required and 12 are elective. To complete

the degree, a student must take all required courses and four elective courses—41 courses total.

Eight of the twelve elective courses are elective courses in the major, and a student must complete

at least two elective courses in the major to graduate. Five of the 37 required courses are actually

course categories “Art,” “Humanities,” “Social Sci 1,” “Social Sci 2,” and “Free Elective” for

13

which numerous options are offered each semester, most of which have no prerequisites, no

corequisites, and no requirements for junior or senior standing. Without loss of generality, we

aggregate all options for each category into a single course in the model.

The maximum number of courses that can be taken per semester is 6 (Max = 6), but many

students impose their own limit of five courses per semester (Max = 5). Thus, we consider two

values of Max in our experiments. Thirty-five of the 49 courses are offered in both fall and spring

sessions, and 14 courses—including ten required courses—are offered in one session only. Hence,

84 (14) of the Ocn parameters equal 1 (0). The number of individual course-to-course prerequisite

and corequisite requirements is 44 and 13, respectively. Students who complete 20 (30) courses

are considered juniors (seniors), and a total of 12 (5) courses require junior (senior) standing. The

following subsections discuss the results of three experiments concerning this degree.

Table 2. Experimental setup and assumptions for model SCPP case study (** indicates how many binary terms equal
1)

Parameter Value(s) used in experiment
N 2
C 49
S 10
Max 5 or 6
Start 1 (fall) or 2 (spring)
Ac **[8 elements = 1 (all others = 0)] (Experiment 2 only)
Rc **[37 elements = 1 (all others = 0)]
Ec **[12 elements = 1 (all others = 0)]
EMc **[8 elements = 1 (all others = 0)]
E 4
EM 2
Ocn **[84 elements = 1 (all others = 0)] (98 elements total)
Pcd **[44 elements = 1 (all others = 0)]
Ccd **[13 elements = 1 (all others = 0)]
Junior 20
Senior 30
Jc **[12 elements = 1 (all others = 0)]
Sc **[5 elements = 1 (all others = 0)]
LA 5 (Experiment 2 only)

1.3.5. Experiment 1: Student with no leave of absence and no transfer courses

Our base scenario is that of a student who enters the program directly from high school

(with no transfer courses); does not plan to take a leave of absence; and takes up to 6 courses per

14

semester (Max = 6). Table 3 shows our experimental results for this scenario. The left half of the

table shows five optimal course schedules for a student who starts in fall (Start = 1), and the right

half shows five optimal course schedules for a student who starts in spring (Start = 2). Each of

these optimal solutions is obtained within one second of computation time.

The diverse course schedules shown in Table 3 were obtained by repeatedly solving math

model SCPP, each time with a different, random term [(. 0001)∑ ∑ 𝑊𝑊𝑐𝑐𝑠𝑠𝑋𝑋𝑐𝑐𝑠𝑠𝑆𝑆
𝑠𝑠=1

𝐶𝐶
𝑐𝑐=1] added to the

objective function where each value Wcs is a random integer from 0 to 9. The Wcs values create

arbitrary preferences for taking particular courses in specific semesters, and they are randomly

generated each time the code is run. For example, if W35 is high, there is a preference to not take

course 3 during semester 5. This may result in a different course plan than if W35 is low. In this

paper a judgment is not made as to which course schedule is preferred; it is assumed that the

diverse course schedules shown in Table 3 are equally desirable. Individual students can look at a

variety of course schedules and make their own final decision regarding which course schedule

they prefer.

The results in the left half of Table 3 show that a student who starts in the fall can graduate

in seven semesters. However, the results in the right half of the table show that a student who starts

in the spring needs a minimum of eight semesters to graduate. This asymmetry agrees with the

experience of university students, faculty, and staff members who are familiar with the degree.

Model SCPP was then used to identify the root causes of this asymmetry, and it was found that

there were two causes: the semesters when courses are offered (Ocn) and the prerequisite

requirements (Pcd). If either of these parameters were modified or loosened, both cohorts of

students—those who start in fall and those who start in spring—would be able to graduate in seven

semesters. Modifying Pcd at UW-Milwaukee is a time-consuming process because it needs

15

approval at multiple levels within the university government, so the easier solution is to modify

the course offerings (Ocn). We then considered each of the ten required courses that are offered in

one session only. We swapped the offering session of each of these ten courses one by one to see

if it was possible for all students to graduate in seven semesters. The results indicated that all

students can graduate in seven semesters if the offering session of either of the following courses

is changed: IE 370 or IE 583. Currently both courses are being offered in the fall semester. If the

department offers either course in the spring, all students will be able to finish their degrees in

seven semesters.

Table 3 allows us to make another interesting observation, namely that the courses IE 111

and IE 112—which are intended for first-year students—could be taken during the last two or three

semesters. This is because these courses are not prerequisites or corequisites for other courses.

Based on this observation, we recommend that each of these courses be made a prerequisite for at

least one other required course.

Table 3. Selected optimal solutions for the SCPP case study (Experiment 1)
Start = 1 (fall), Max = 6, no leave of absence and no transfer courses

Semester 1: Semester 1: Semester 1: Semester 1: Semester 1:
 EAS 200 EAS 100 EAS 100 EAS 100 EAS 200
 IE 111 IE 111 IE 111 EAS 200 IE 111
 Math 116 Math 116 Math 116 Math 116 Math 116
 Chem 102 Chem 102 Social Science 1 Chem 102 Chem 102
 Social Science 1 Art Social Science 2 Social Science 1 Social Science 2
 Social Science 2 Social Science 1 Free Elective English 310 Free Elective
Semester 2: Semester 2: Semester 2: Semester 2: Semester 2:
 EAS 100 EAS 200 CompSci 240 CompSci 240 EAS 100
 IE 112 IE 112 Math 231 MatlEng 201 IE 112
 Math 231 MatlEng 201 Chem 102 Math 231 MatlEng 201
 Chem 104 Math 231 Art Chem 104 Math 231
 Humanities Social Science 2 Humanities Humanities Chem 104
 English 310 Free Elective English 310 Social Science 2 Art
Semester 3: Semester 3: Semester 3: Semester 3: Semester 3:
 CompSci 240 CompSci 240 IE 112 IE 111 CompSci 240
 IE 367 IE 350 MatlEng 201 IE 350 IE 350
 Math 232 IE 367 IE 367 IE 367 IE 367
 Physics 209 Math 232 Math 232 Math 232 Math 232
 Free Elective Chem 104 Chem 104 Physics 209 Physics 209
 EAS 001 Physics 209 Physics 209 Art Humanities
Semester 4: Semester 4: Semester 4: Semester 4: Semester 4:
 CivEng 201 CivEng 201 CivEng 201 CivEng 201 CivEng 201
 EE 301 EE 301 EE 301 EE 301 EE 301
 IE 475 IE 475 IE 475 IE 475 IE 475
 Math 233 IE 575 IE 575 IE 575 Math 233
 EE 234 Math 233 Math 233 Math 233 EE 234
 Physics 210 Physics 210 Physics 210 Physics 210 Physics 210
Semester 5: Semester 5: Semester 5: Semester 5: Semester 5:
 CivEng 202 CivEng 202 IE 360 CivEng 202 CivEng 202
 IE 360 IE 360 IE 350 IE 370 IE 360
 IE 370 IE 370 IE 370 IE 455 IE 370
 IE 455 IE 455 IE 455 IE 470 IE 455
 IE 470 EE 234 IE 580 IE 580 IE 470
 IE 580 IE 699 EE 234 EE 234 IE 580
Semester 6: Semester 6: Semester 6: Semester 6: Semester 6:
 MatlEng 201 IE 465 CivEng 202 IE 360 IE 465
 IE 465 IE 571 IE 465 IE 465 IE 571
 IE 571 English 310 IE 571 IE 571 IE 575
 IE 575 IE 590 IE 550 Free Elective Social Science 1
 Art Bus Adm 330 IE 584 IE 572 IE 550
 IE 572 EAS 001 Bus Adm 330 IE 587 IE 584
Semester 7: Semester 7: Semester 7: Semester 7: Semester 7:
 IE 350 IE 470 EAS 200 IE 112 IE 485
 IE 485 IE 485 IE 470 IE 485 IE 583
 IE 583 IE 580 IE 485 IE 583 English 310
 IE 590 IE 583 IE 583 EAS 001 IE 590
 MechEng 301 Humanities MechEng 474 MechEng 301 MechEng 474

Start = 2 (spring), Max = 6, no leave of absence and no transfer courses
Semester 1: Semester 1: Semester 1: Semester 1: Semester 1:
 EAS 100 EAS 200 EAS 200 IE 111 IE 111
 EAS 200 Math 116 Math 116 Math 116 Math 116
 Math 116 Chem 102 Chem 102 Chem 102 Chem 102
 Chem 102 Art Humanities Humanities Art
 Art Humanities Social Science 2 English 310 Social Science 1
 Free Elective Social Science 1 Free Elective Free Elective Social Science 2
Semester 2: Semester 2: Semester 2: Semester 2: Semester 1:
 IE 111 IE 112 EAS 100 EAS 100 IE 112
 CompSci 240 CompSci 240 IE 112 EAS 200 CompSci 240
 Math 231 MatlEng 201 CompSci 240 CompSci 240 MatlEng 201
 Chem 104 Math 231 MatlEng 201 MatlEng 201 Math 231
 Social Science 1 Social Science 2 Math 231 Math 231 Chem 104
 EAS 001 Free Elective English 310 Social Science 2 Free Elective
Semester 3: Semester 3: Semester 3: Semester 3: Semester 3:
 IE 112 EAS 100 IE 111 IE 112 EAS 100
 MatlEng 201 IE 111 IE 367 IE 367 EAS 200
 IE 367 IE 367 Math 232 Math 232 IE 367
 Math 232 Math 232 Physics 209 Chem 104 Math 232
 Physics 209 Physics 209 Art Physics 209 Physics 209
 English 310 EAS 001 EAS 001 EAS 001 Humanities
Semester 4: Semester 4: Semester 4: Semester 4: Semester 4:
 CivEng 201 CivEng 201 CivEng 201 CivEng 201 CivEng 201
 EE 301 EE 301 EE 301 EE 301 EE 301
 Math 233 IE 350 IE 350 IE 350 IE 350
 EE 234 Math 233 Math 233 Math 233 Math 233
 Physics 210 EE 234 EE 234 EE 234 EE 234
 Humanities Physics 210 Physics 210 Physics 210 Physics 210
Semester 5: Semester 5: Semester 5: Semester 5: Semester 5:
 CivEng 202 CivEng 202 CivEng 202 CivEng 202 IE 360
 IE 465 IE 465 IE 360 IE 360 IE 465
 IE 475 IE 475 IE 465 IE 465 IE 475
 IE 571 IE 571 IE 475 IE 475 IE 571
 IE 575 IE 575 IE 571 IE 571 IE 575
 IE 584 IE 572 IE 575 IE 575 IE 572
Semester 6: Semester 6: Semester 6: Semester 6: Semester 6:
 IE 360 IE 370 IE 370 IE 370 CivEng 202
 IE 370 IE 455 IE 455 IE 455 IE 370
 IE 455 IE 470 IE 470 IE 470 IE 455
 IE 470 IE 580 IE 580 IE 580 IE 470
 IE 580 English 310 Chem 104 IE 584 IE 580
 IE 590 MechEng 474 MechEng 474 IE 699 IE 584
Semester 7: Semester 7: Semester 7: Semester 7: Semester 7:
 Social Science 2 IE 360 Social Science 1 Art English 310
 MechEng 301 Chem 104 IE 584 Social Science 1 Bus Adm 330
 IE 699 IE 572 MechEng 474
Semester 8: Semester 8: Semester 8: Semester 8: Semester 8:
 IE 350 IE 485 IE 485 IE 485 IE 485
 IE 485 IE 583 IE 583 IE 583 IE 583
 IE 583 IE 582

16

17

1.3.6. Experiment 2: Student with a leave of absence in semester five and eight transfer courses

In this experiment we assume that Max = 6 and we consider a transfer student who has

already taken the following courses at a previous academic institution: Math 116, Math 231, Math

232, Math 233, IE 367, CivEng 201, Chem 102, and Physics 209. Table 4 shows the results for

this student if he/she takes a leave of absence in semester five and starts his/her program in the

spring session (Start = 2). Each column of Table 4 shows a different optimal course schedule that

is obtained by solving math model SCPP with a different, random term added to the objective

function as described in Section 1.3.5. Less than one second of computation time is used to obtain

each of these optimal solutions. Note that this student needs seven semesters—including the leave

of absence—to complete his/her degree.

18

Table 4. Selected optimal solutions for the SCPP case study (Experiment 2)
Start = 2(spring), LA = 5, Max = 6, transferred courses: Math 116, 231, 232, 233, IE 367, CivEng 201, Chem 102, Physics 209
Semester 1: Semester 1: Semester 1: Semester 1: Semester 1:
 EAS 100 EAS 100 EAS 100 EAS 200 EAS 100
 EAS 200 IE 111 IE 111 IE 111 EAS 200
 IE 111 Art Humanities Art Art
 Art Humanities Social Science 1 Humanities Social Science 1
 English 310 Social Science 2 Social Science 2 Social Science 2 Social Science 2
 Free Elective English 310 EAS 001 English 310 English 310
Semester 2: Semester 2: Semester 2: Semester 2: Semester 2:
 IE 112 IE 112 CivEng 202 EAS 100 IE 112
 CompSci 240 CivEng 202 CompSci 240 CompSci 240 CompSci 240
 EE 301 CompSci 240 IE 370 IE 370 EE 301
 IE 370 EE 301 EE 234 EE 234 MatlEng 201
 Chem 104 IE 370 Chem 104 Physics 210 IE 370
 Physics 210 Physics 210 Physics 210 MechEng 301 Physics 210
Semester 3: Semester 3: Semester 3: Semester 3: Semester 3:
 MatlEng 201 MatlEng 201 IE 112 EE 301 IE 111
 IE 465 IE 465 EE 301 IE 465 IE 360
 IE 475 IE 475 MatlEng 201 IE 475 IE 465
 IE 571 IE 571 IE 465 IE 571 IE 475
 EE 234 Social Science 1 IE 475 IE 575 IE 571
 Social Science 1 EAS 001 IE 571 IE 699 IE 575
Semester 4: Semester 4: Semester 4: Semester 4: Semester 4:
 IE 360 IE 360 IE 350 CivEng 202 CivEng 202
 IE 350 IE 350 IE 455 MatlEng 201 IE 350
 IE 455 IE 455 IE 470 IE 455 IE 455
 IE 470 IE 470 IE 580 IE 470 IE 470
 IE 580 IE 580 Art IE 580 IE 580
 Humanities Chem 104 English 310 IE 584 Bus Adm 330
Semester 5: Semester 5: Semester 5: Semester 5: Semester 5:

Semester 6: Semester 6: Semester 6: Semester 6: Semester 6:
 CivEng 202 EAS 200 IE 485 IE 112 IE 485
 IE 485 IE 485 IE 583 IE 350 IE 583
 IE 583 IE 583 Free Elective IE 485 EE 234
 IE 405 Free Elective IE 582 IE 583 Chem 104
 IE 584 IE 405 IE 699 Free Elective Humanities
 IE 590 MechEng 301 Bus Adm 330 MechEng 474 IE 590
Semester 7: Semester 7: Semester 7: Semester 7: Semester 7:
 IE 575 IE 575 EAS 200 IE 360 Free Elective
 Social Science 2 EE 234 IE 360 Chem 104 IE 405
 IE 587 IE 590 IE 575 Social Science 1 IE 584

19

1.3.7. Experiment 3: Leave of absence timing

In this experiment, we explore how the timing of a leave of absence—i.e., the value of

parameter LA—affects a student’s time to graduate. We assume that the student begins from

scratch with no transfer courses, and he/she starts the degree in either fall or spring. Table 5 shows

how LA affects the optimal graduation time when Max = 5, and Table 6 shows how LA affects the

optimal graduation time when Max = 6.

Table 5 shows that, when Max = 5, a leave of absence always delays a student’s graduation

by one semester regardless of the student’s starting session or when the leave of absence is taken.

Indeed, a student needs nine semesters to graduate if he/she does not take a leave of absence

regardless of his/her starting session. Also, a student needs ten semesters to graduate for all values

of LA from 2 to 9 and all values of Start from 1 to 2. These results are hardly surprising.

Table 6 shows a more complex situation when Max = 6. The rows labeled “(none)” show

that, if no leave of absence is taken, a student who starts in fall (spring) can graduate in 7 (8)

semesters (see Table 3). If the student starts in fall and takes a leave of absence in semester six,

his/her graduation will be delayed by one semester, but if the student starts in fall and takes a leave

of absence in any other semester, his/her graduation will be delayed by two semesters. On the other

hand, if the student starts in spring and takes a leave of absence in semester 2, 3, 4, 5, or 7, his/her

graduation will not be delayed. However, if the student starts in spring and takes a leave of absence

in semester 6 or 8, his/her graduation will be delayed by two semesters.

These results show that leaves of absence need to be carefully planned. A poorly planned

leave of absence can add 1–2 semesters to a student’s graduation time compared to a well-planned

leave. Based on these results, we advise that the course offerings (Ocn) and/or degree requirements

20

(Pcd, Ccd) be modified so that students’ graduation time is less sensitive to the semester when they

take a leave of absence. In the meantime, before these modifications are implemented, we

recommend that new students either (1) begin the program in the fall and do not take a leave of

absence; (2) begin the program in the fall and take a leave of absence during semester 6; or (3)

begin the program in the spring and take a leave of absence during semester 2, 3, 4, 5, or 7.

Table 5. Effect of LA on the number of semesters needed to graduate for the SCPP case study when Max = 5
(Experiment 3)

Start =1 (fall)
LA #Semesters

(none) 9

2 10

3 10

4 10

5 10

6 10

7 10

8 10

9 10

Start =2 (spring)
LA #Semesters

(none) 9

2 10

3 10

4 10

5 10

6 10

7 10

8 10

9 10

Table 6. Effect of LA on the number of semesters needed to graduate for the SCPP case study when Max = 6
(Experiment 3)

Start =1 (fall)
LA #Semesters

(none) 7

2 9

3 9

4 9

5 9

6 8

7 9

Start =2 (spring)
LA #Semesters

(none) 8

2 8

3 8

4 8

5 8

6 10

7 8

8 10

21

1.3.8. Experiments on fictional problem instances

We now test model SCPP on 12 fictional problem instances. These instances are

categorized by their size—small, medium, large—with four instances considered for each size. We

gradually tighten the four instances within each size by increasing the number of prerequisites. In

other words, each problem instance within each instance size has more ones in the Pcd matrix

compared to the preceding problem instance. For example, in instance 1 of each problem size, 2%

of the elements in the upper triangle of the Pcd matrix equal one while this number is 5% in instance

4.

Table 7 lists the main inputs and assumptions for the fictional problem instances. For the

sake of simplicity, in all fictional instances we assume that there are no elective courses in the

major (EM = 0) and that Ccd = 0 for all c and d. We set a computation time limit of 600 seconds.

Table 7. Experimental setup and assumptions for model SCPP fictional instances
Small instances Medium-sized instances Large instances

N = 3 N = 4 N = 6

C = 20 C = 50 C = 80
S = 8 S = 10 S = 12
Max = 6 Max = 6 Max = 6
Ac: All elements = 0 Ac: All elements = 0 Ac: All elements = 0
Rc: 12 elements = 1 Rc: 35 elements = 1 Rc: 45 elements = 1
Ec: 8 elements = 1 Ec: 15 elements = 1 Ec: 35 elements = 1
E = 3 E =5 E = 15
EM = 0 EM = 0 EM = 0
15 courses needed for graduation 40 courses needed for graduation 60 courses needed for graduation
Ocn: 47 elements = 1 and all others = 0 Ocn: 174 elements = 1 and all others = 0 Ocn: 365 elements = 1 and all others = 0
Pcd: 2%, 3%, 4%, or 5% of elements = 1 Pcd: 2%, 3%, 4%, or 5% of elements =

1
Pcd: 2%, 3%, 4%, or 5% of elements = 1

Ccd: All elements = 0 Ccd: All elements = 0 Ccd: All elements = 0
Junior = 5 Junior = 20 Junior = 30
Senior = 10 Senior = 30 Senior = 40
Jc: 6 elements = 1 Jc: 14 elements = 1 Jc: 17 elements = 1
Sc: 5 elements = 1 Sc: 8 elements = 1 Sc: 12 elements = 1
No leaves of absence No leaves of absence No leaves of absence

22

Table 8 shows the results of our experiments. Each instance is solved for each possible

value of Start. As can be seen in Table 8, model SCPP produces optimal solutions for all instances

in less than ten seconds. For the small instances, the optimal value is either 3 or 4. For the medium-

sized instances, the optimal value generally increases from 7 to 9 from instance 1 to instance 4.

For the large instances, the optimal value is either 10 or 11 depending on the session when the

student starts his/her degree. Overall, it appears that a direct mathematical programming approach

with default CPLEX settings is effective in solving a variety of small and large instances of the

SCPP.

Table 8. Experimental results for model SCPP fictional instances.
Small instances

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1)

Start 1 2 3 1 2 3 1 2 3 1 2 3

Optimal value 4 3 4 4 3 4 4 3 4 4 3 4

Time elapsed (sec) 1 1 1 1 1 1 1 1 1 1 1 1

Medium-sized instances

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1)

Start 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Optimal value 7 7 7 7 9 8 9 8 9 8 9 8 9 8 9 8

Time elapsed (sec) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Large instances

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1)

Start 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Optimal value 10 10 10 10 10 10 11 10 11 10 11 10 10 10 11 10 10 10 10 11 11 11 11 11

Time elapsed (sec) 7

23

24

1.4. The department course planning problem (DCPP)

We now introduce a second optimization problem called the department course planning

problem (DCPP).

1.4.1. Problem description

Consider an academic department at a university that needs to decide when during the year

it will teach courses that support an academic degree that it offers. The curriculum of this degree

is defined by parameters N, C, S, Max, Rc, Ec, EMc, E, EM, Pcd, Ccd, Junior, Senior, Jc, and Sc as

described in Section 1.3.2. (The discussion of Start, Ac, Ocn, and LA in Section 1.3.2 is also relevant

here, but these are not parameters in the DCPP.)

The department wants to facilitate the timely graduation of regular students who begin the

program from scratch (without any transfer courses) and do not take any leaves of absence. In

other words, the department plans its course offerings assuming that Ac = 0 for all c and LA = 0 for

each student. Students are allowed to begin the degree in any session n (1 ≤ n ≤ N). From historical

data, the department knows that the proportion of students who begin the degree in session n is

Wn. For example, if 70% of students begin their studies in the fall and the university has two

sessions per year—fall and spring—then W1 = 0.7 and W2 = 0.3. Students who begin the degree

during the same session are said to be in the same cohort.

Courses within the degree are taught either by the department or by a unit outside of the

department. Binary parameter Dc equals 1 (0) if course c is taught by (outside of) the department.

Courses taught outside of the department are in good supply, and it can be assumed that every such

course is offered every session. The department, on the other hand, has limited (staff, budgetary)

resources to offer the courses it teaches. In particular, the maximum number of course sections it

25

can offer in a year is CourseLimit. Each course section is equivalent to one course offered during

one session. If the department wishes to offer the same course in two different sessions, two course

sections are needed.

Given the above information, the department wishes to decide the value of binary decision

variable Ocn—which equals 1 (0) if course c is offered during session n—so as to facilitate the

timely graduation of all student cohorts. We assume that Ocn always equals 1 if course c is taught

outside of the department.

If the department is only interested in facilitating the graduation of one student cohort, this

can be done by setting Wn = 1 for that cohort and Wn =0 for all other cohorts. However, if course

offerings are tailored to only one cohort, students in other cohorts may experience unnecessarily

long graduation times. For this reason, our model of the DCPP is designed to consider the

graduation time for all student cohorts simultaneously.

1.4.2. Mathematical models

We develop two closely linked integer programming models of the DCPP. Model DCPP I

minimizes the graduation time for the average student who enters the program, and model DCPP

II minimizes the maximum number of semesters needed for any student cohort to graduate. Table

9 lists the indices, parameters, and decision variables in these models. The elements in these two

models are identical except that model DCPP I has one more parameter (Wn), and one less decision

variable (K), than model DCPP II. We now discuss each model in detail.

26

Table 9. Indices, parameters, and decision variables in mathematical models DCPP I and DCPP II
Indices
n Session (n = 1, 2……. N)
c, d Course (c, d = 1, 2, …., C)
s, t Semester; a measure of how long a student has been pursuing his/her degree (s, t = 1, 2, …… S)
Parameters
N Number of sessions per year (e.g., 2)
C Number of available courses (e.g., 40)
S Number of semesters available for completing a degree (e.g., 10)
Max Maximum number of courses student can take per semester (e.g., 6)
Rc 1, if course c is required for graduation

0, otherwise (binary)
Ec 1, if course c is an elective course

0, otherwise (binary)
EMc 1, if course c is an elective course in the major

0, otherwise (binary)
E Number of elective courses needed for graduation (e.g., 4)
EM Number of elective courses in the major needed for graduation (e.g., 2)
Pcd 1, if course c is a prerequisite for course d (c < d)

0, otherwise (binary)
Ccd 1, if course c is a corequisite for course d

0, otherwise (binary)
Junior Number courses a student needs to pass to be considered a junior
Senior Number courses a student needs to pass to be considered a senior
Jc 1, if junior standing is required for course c

0, otherwise (binary)
Sc 1, if senior standing is required for course c

0, otherwise (binary)
Dc 1, if course c is taught by the department

0, otherwise (binary)
CourseLimit Maximum number of course sections the department can offer in a year
Wn Weight for the graduation time of a student who starts in session n (∑ 𝑊𝑊𝑛𝑛

𝑁𝑁
𝑛𝑛=1 = 1)

(Model DCPP I only)
Decision variables
Xncs 1, if a student who starts his/her degree in session n takes course c during his/her sth semester

0, otherwise (binary)
Yns 1, if a student who starts his/her degree in session n has not completed his/her degree by the start

of his/her sth semester
0, otherwise (binary)

Zns Number of courses a student who started his/her degree in session n has completed by the
beginning of his/her sth semester

Ocn 1, if course c is offered during session n
0, otherwise (binary)

K The greatest number of semesters any student needs to graduate (model DCPP II only)

1.4.3. Model DCPP I

All parameters in model DCPP I except Dc, CourseLimit, and Wn are identical to those in

model SCPP. Model DCPP I has four sets of decision variables. The first three are identical to the

decision variables in model SCPP except that a new dimension corresponding to the session n has

27

been added. By adding this new dimension, the model can generate results for all student cohorts

at the same time. For example, binary variable Xncs equals 1 (0) if students who begin their degree

in session n take course c during their sth semester. Binary variables Yns and Zns have a similar

relationship to variables Ys and Zs in model SCPP. The fourth decision variable, Ocn, is the focus

of the DCPP. It equals 1 (0) if course c is offered during session n. This was a parameter in the

SCPP. Model DCPP I is shown below:

Minimize ∑ ∑ 𝑊𝑊𝑛𝑛 ∗ 𝑌𝑌𝑛𝑛𝑠𝑠𝑆𝑆
𝑠𝑠=1

𝑁𝑁
𝑛𝑛=1 (17)

Constraints
Yn,s+1 ≤ Yns for all n and s ≤ S – 1 (18)

Xncs ≤ Yns for all n, c, and s (19)

∑ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠𝑆𝑆
𝑠𝑠=1 ≥ Rc for all c and n (20)

∑ ∑ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠 ∗ 𝐸𝐸𝑐𝑐S
s=1

C
c=1 ≥ 𝐸𝐸 for all n (21)

∑ ∑ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠S
s=1

C
c=1 ∗ 𝐸𝐸𝑀𝑀𝑐𝑐 ≥ 𝐸𝐸𝑀𝑀 for all n (22)

∑ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠𝐶𝐶
𝑐𝑐=1 ≤ Max for all s and n (23)

Xncs ≤ Oc, ([(s-1) + (n-1)] mod N) + 1 for all n, c, and s (24)

∑ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠𝑆𝑆
𝑠𝑠=1 ≤ 1 for all c and n (25)

∑ 𝑋𝑋𝑛𝑛𝑑𝑑𝑠𝑠𝑆𝑆
𝑠𝑠=1 ≤ ∑ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠𝑆𝑆

𝑠𝑠=1 for all (n, c, d) such that Pcd = 1 (26a)

(∑ 𝑠𝑠 ∗ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠) + 1𝑆𝑆
𝑠𝑠=1 ≤ (∑ 𝑠𝑠 ∗ 𝑋𝑋𝑛𝑛𝑑𝑑𝑠𝑠) + (𝑆𝑆 + 1)(1− ∑ 𝑋𝑋𝑛𝑛𝑑𝑑𝑠𝑠)𝑆𝑆

𝑠𝑠=1
𝑆𝑆
𝑠𝑠=1 for all (n, c, d) such that Pcd = 1 (26b)

∑ 𝑋𝑋𝑛𝑛𝑑𝑑𝑠𝑠𝑆𝑆
𝑠𝑠=1 ≤ ∑ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠𝑆𝑆

𝑠𝑠=1 for all (n, c, d) such that Ccd = 1 (27b)

(∑ 𝑠𝑠 ∗ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠) 𝑆𝑆
𝑠𝑠=1 ≤ (∑ 𝑠𝑠 ∗ 𝑋𝑋𝑛𝑛𝑑𝑑𝑠𝑠) + (𝑆𝑆)(1− ∑ 𝑋𝑋𝑛𝑛𝑑𝑑𝑠𝑠)𝑆𝑆

𝑠𝑠=1
𝑆𝑆
𝑠𝑠=1 for all (n, c, d) such that Pcd = 1 (27b)

Zns = ∑ ∑ 𝑋𝑋𝑛𝑛𝑐𝑐𝑐𝑐𝐶𝐶
𝑐𝑐=1

𝑠𝑠−1
𝑐𝑐=1 for all n and s (28)

Zns ≥ Junior * 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠 for all n, c, and s such that Jc = 1 (29)

Zns ≥ Senior ∗ 𝑋𝑋𝑛𝑛𝑐𝑐𝑠𝑠 for all n, c, and s such that Sc = 1 (30)

∑ ∑ 𝐷𝐷𝑐𝑐 ∗ 𝑂𝑂𝑐𝑐𝑛𝑛𝐶𝐶
𝑐𝑐=1

𝑁𝑁
𝑛𝑛=1 ≤ CourseLimit (31)

28

In model DCPP I, the objective (17) is to minimize the weighted total number of semesters

needed by all cohorts to graduate. There are 14 constraints. Constraints (18)-(30) are identical to

constraints (2)-(14) in model SCPP except that the new dimension n has been added to the decision

variables. Importantly, Ocn is a decision variable in constraint (24) but was a parameter in

constraint (8) in model SCPP. Constraint (31) is a new constraint which ensures that the department

offers no more than CourseLimit course sections each year. Note that this constraint only restricts

the value of Ocn if Dc = 1, i.e., if the department teaches course c. If Dc = 0—if the department

does not teach course c—then the value of Ocn is assumed to be 1 for all n.

1.4.4. Model DCPP II

Model DCPP II is identical to model DCPP I except that it focuses on a different objective:

minimizing the maximum time needed for any student to graduate, regardless of when he/she

begins the degree. This model has one less parameter (Wn), and one more decision variable (K),

than model DCPP I. Decision variable K represents the greatest number of semesters any student

cohort takes to graduate. Overall, DCPP I minimizes the time for an average student to graduate

while DCPP II minimizes the maximum time taken by any student to graduate. Math model DCPP

II is shown below:

Minimize K (32)

Constraints

Subject to (18) – (31)

K ≥ ∑ 𝑌𝑌𝑛𝑛𝑠𝑠𝑆𝑆
𝑠𝑠=1 for all n (33)

In model DCPP II, the objective (32) is to minimize decision variable K. There are 15

constraints, including all constraints from model DCPP I and a new constraint (33) which ensures

29

that K is an upper bound for the graduation time of a student who begins the degree in session n

for all n.

1.4.5. Case study revisited: Industrial Engineering BSE program at UW-Milwaukee

Models DCPP I and DCPP II were deployed to gain additional insight into the case study

from Sections 1.3.4-1.3.7 which considered the Industrial Engineering BSE program at UW-

Milwaukee. This degree is managed by the UW-Milwaukee Department of Industrial &

Manufacturing Engineering which teaches 23 courses to support it. In other words, Dc is an array

with 49 binary elements, 23 (26) of which equal 1 (0).

In our first experiment, we use models DCPP I and DCPP II to see how the department

should plan its course offerings assuming CourseLimit = 27, which represents the current (staff,

budgetary) resources available to the department. We consider two values of Max—5 and 6—and

three values of Wn—[0.9, 0.1], [0.7, 0.3], and [0.5, 0.5]—for model DCPP I. The experimental

results indicate that, when Max = 5, courses can be offered so that both student cohorts are able to

graduate in 9 semesters (regardless of Wn). Also, when Max = 6, courses can be offered so that

both student cohorts are able to graduate in 7 semesters (regardless of Wn). These results are hardly

surprising given that a total of 41 courses must be taken to complete the degree which means that

9 (7) semesters is a lower bound on the time needed to complete the degree when Max = 5 (6). In

this case study, models DCPP I and DCPP II obtained the same results but in other cases they

might be different. The decision of which model to choose depends on the department and its

policy.

In our second experiment, we gradually reduce CourseLimit to identify the minimum value

of CourseLimit for which students’ graduation time is the same as when CourseLimit = 27. Table

30

10 shows the results of this experiment which considers the same values of Max and Wn as the

previous experiment. The results show that, in all cases, CourseLimit can be reduced to 17 without

lengthening students’ time in the program. This is a very small number considering that the

department teaches 14 required courses, each of which must be offered at least once a year. These

results show that some required courses such as IE 111 and IE 112 need not be offered in both fall

and spring semesters, and that the faculty teaching load—which is currently four courses per

year—could likely be reduced to three courses per year without lengthening students’ time in the

program.

Table 10. Effect of Max and Wn on results for model DCPP I and DCPP II case study
 Max = 5 Max = 6

Model Optimal value Minimum
CourseLimit Optimal value Minimum

CourseLimit
DCPP I (Wn = [0.9, 0.1]) 9 17 7 17

DCPP I (Wn = [0.7, 0.3]) 9 17 7 17

DCPP I (Wn = [0.5, 0.5]) 9 17 7 17

DCPP II 9 17 7 17

1.4.6. Experiments on fictional problem instances

Models DCPP I and DCPP II were also tested on 12 fictional instances that are based on

the instances from Section 1.3.8. Table 11 summarizes the parameter values in these instances. In

all instances, the values of all parameters besides Dc, CourseLimit, and Wn equal those in the SCPP

stances from Section 1.3.8. Note that the value of CourseLimit—which is (20, 40, 60) for the

(small, medium-sized, large) instances respectively—is noticeably less than the number of unique

course sections that theoretically exist each year which is (3*10, 4*25, 6*40) respectively. Thus,

the value of CourseLimit places meaningful restrictions on the department in all instances.

31

Table 11. Experimental setup and assumptions for model DCPP I and DCPP II fictional instances
Small instances Medium-sized instances Large instances

All parameters except those below are
identical to the SCPP instances.

All parameters except those below are
identical to the SCPP instances.

All parameters except those below are
identical to the SCPP instances.

Dc has 20 elements, 10 of which
equal one.

Dc has 50 elements, 25 of which
equal one.

Dc has 80 elements, 40 of which
equal one.

CourseLimit = 20 CourseLimit = 40 CourseLimit = 60

Wn = [0.7, 0.2, 0.1]
(Model DCPP I only)

Wn = [0.5, 0.3, 0.15, 0.05]
(Model DCPP I only)

Wn = [0.35, 0.25, 0.2, 0.1, 0.07, 0.03]
(Model DCPP I only)

The experimental results for model DCPP I (DCPP II) are displayed in Tables 12 and 13.

Note that optimal values are obtained within 20 s for all small and medium-sized instances. For

model DCPP I, we see that the optimal value is not an integer for medium-sized instances 2, 3, and

4. This is because of the weights allocated to each session and the number of semesters taken to

graduate for each session. In these instances, students who start the degree in session 1—half of

all students—need eight semesters to graduate and students who start the degree in other sessions

need only seven semesters to graduate.

For large problem sizes, CPLEX identifies optimal solutions for the first three instances

within 600 s. Note that the runtime gradually increases from instance 1 to instance 3. For instance

4, a feasible solution with an optimality gap of 8.33% was identified within 600 s when model

DCPP II is used, but no feasible solution was found within 600 s when model DCPP I is used.

Overall, a direct mathematical programming approach with default CPLEX settings is effective in

solving all but the largest and most highly constrained DCPP instance that we consider.

Table 12. Experimental results for model DCPP I fictional instances
Small instances

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1)

Final objective value 3 3 3 3

Semesters of enrollment (3, 3, 3) (3, 3, 3) (3, 3, 3) (3, 3, 3)

Time elapsed (sec) 4 4 4 4

Medium-sized instances

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1)

Final objective value 7 7.5 7.5 7.5

Semesters of enrollment (7, 7, 7, 7) (8, 7, 7, 7) (8, 7, 7, 7) (8, 7, 7, 7)

Time elapsed (sec) 9 9 9 10

Large instances

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1)

Final objective value 10 10 10 unknown

Semesters of enrollment (10, 10, 10, 10, 10, 10) (10, 10, 10, 10, 10, 10) (10, 10, 10, 10, 10, 10) unknown

Time elapsed (sec) 76 113 297 600

32

Table 13. Experimental results for model DCPP II fictional instances.
Small instances

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1)

Final objective value 3 3 3 3

Time elapsed (sec) 4 4 4 4

Medium-sized instances

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1)

Final objective value 7 8 8 8

Time elapsed (sec) 10 10 9 11

Large instances

 Instance 1 (Pcd: 2% of elements = 1) Instance 2 (Pcd: 3% of elements = 1) Instance 3 (Pcd: 4% of elements = 1) Instance 4 (Pcd: 5% of elements = 1)

Final objective value 10 10 10 12 (feasible; gap = 8.33%)

Time elapsed (sec) 233 248 258 600

33

34

1.5. Conclusion

This research introduced two university course planning problems. In the student course

planning problem (SCPP), a student needs to design a course plan that allows him/her to graduate

in a timely manner. In the department course planning problem (DCPP), an academic department

needs to decide which courses to offer in which semester to facilitate students’ timely graduation.

Three closely linked integer programming models of these problems were developed, coded in

C++, and solved with IBM ILOG CPLEX. Experiments on small, medium, and large real-world

and fictional instances showed that these models provide swift insight into a university degree

program and help identify ways to modify a program to better meet the needs of students and

faculty. Future work might consider other objectives such as minimizing the number of courses

taken per semester while achieving a specified a graduation date (e.g., allowing students to work

full- or part-time while taking courses). More experiments that consider additional scenarios could

also be conducted. In addition, it might be possible to develop math models and/or heuristic

methods for planning course offerings within a college that houses several departments. Finally,

the analysis might be taken one step further to develop models and methods for course planning

from the perspective of an entire academic institution with multiple colleges.

35

Chapter 1 References

Almeida, B. F., Correia, I., & Saldanha‐da‐Gama, F. (2019). Modeling frameworks for the multi‐

skill resource‐constrained project scheduling problem: a theoretical and empirical comparison.

International Transactions in Operational Research, 26(3), 946-967.

Araujo, J. A., Santos, H. G., Gendron, B., Jena, S. D., Brito, S. S., & Souza, D. S. (2020). Strong

bounds for resource constrained project scheduling: Preprocessing and cutting planes. Computers

& Operations Research, 113, 104782.

Besikci, U., Bilge, Ü., & Ulusoy, G. (2015). Multi-mode resource constrained multi-project

scheduling and resource portfolio problem. European Journal of Operation Research, 240, 22-31.

Brucker, P., Knust, S., Schoo, A., & Thiele, O. (1998). A branch and bound algorithm for the

resource-constrained project scheduling problem. European Journal of Operational Research,

107(2), 272-288.

Chakrabortty, R. K., Sarker, R. A., & Essam, D. L. (2018). Single mode resource constrained

project scheduling with unreliable resources. Operational Research, 1-35.

Elloumi, S., & Fortemps, P. (2010). A hybrid rank-based evolutionary algorithm applied to multi-

mode resource-constrained project scheduling problem. European Journal of Operational

Research, 205(1), 31-41.

Esteban, A., Zafra, A., & Romero, C. (2020). Helping university students to choose elective

courses by using a hybrid multi-criteria recommendation system with genetic optimization.

Knowledge-Based Systems, 194, 105385.

36

Khamechian, M., & Petering, M. E. H. (2022). A mathematical modeling approach to university

course planning. Computers & Industrial Engineering, 168, 107855.

Mitchell, M., Leachman, M., & Masterson, K. (2016). Funding down, tuition up: State cuts to

higher education threaten quality and affordability at public colleges. Washington, DC. Report by

the Center of Budget and Public Priorities.

Mohamed, A. (2015). A decision support model for long-term course planning. Decision Support

Systems, 74, 33-45.

Morrow, T., Hurson, A. R., & Sarvestani, S. S. (2017). A multi-stage approach to personalized

course selection and scheduling. IEEE International Conference on Information Reuse and

Integration (pp. 253-262).

Myszkowski, P. B., & Siemieński, J. J. (2016). GRASP applied to multi–skill resource–

constrained project scheduling problem. International Conference on Computational Collective

Intelligence.

Myszkowski, P. B., Skowroński, M. E., & Podlodowski, Ł. (2013). Novel heuristic solutions for

multi-skill resource-constrained project scheduling problem. 2013 Federated Conference on

Computer Science and Information Systems.

Shakhsi‐Niaei, M., & Abuei‐Mehrizi, H. (2020). An optimization‐based decision support system

for students' personalized long‐term course planning. Computer Applications in Engineering

Education, 28(5), 1247-1264.

37

Skowroński, M. E., Myszkowski, P. B., Adamski, M., & Kwiatek, P. (2013). Tabu search approach

for multi-skill resource-constrained project scheduling problem. 2013 Federated Conference on

Computer Science and Information Systems.

Smith, W. C., Fraser, P., Chykina, V., Ikoma, S., Levitan, J., Liu, J., & Mahfouz, J. (2017). Global

citizenship and the importance of education in a globally integrated world. Globalisation, Societies

and Education, 15(5), 648-665.

Sowter, B. (2017). How to claim a place amongst the top 1% of world universities?

https://www.qs.com/claim-place-amongst-top-1-world-universities/, website accessed September

22, 2021.

UW-Milwaukee Industrial Engineering Curriculum. (2021). https://catalog.uwm.edu/engineering-

applied-science/industrial-manufacturing-engineering/industrial-engineering-

bse/#requirementstext, website accessed September 22, 2021.

Winters, J. V. (2011). Human capital, higher education institutions, and quality of life. Regional

Science and Urban Economics, 41(5), 446-454.

Yannibelli, V., & Amandi, A. (2013). Hybridizing a multi-objective simulated annealing algorithm

with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling

problem. Expert Systems with Applications, 40(7), 2421-2434.

Zapata, J. C., Hodge, B. M., & Reklaitis, G. V. (2008). The multimode resource constrained

multiproject scheduling problem: Alternative formulations. AIChE Journal, 54(8), 2101-2119.

https://catalog.uwm.edu/engineering-applied-science/industrial-manufacturing-engineering/industrial-engineering-bse/#requirementstext
https://catalog.uwm.edu/engineering-applied-science/industrial-manufacturing-engineering/industrial-engineering-bse/#requirementstext
https://catalog.uwm.edu/engineering-applied-science/industrial-manufacturing-engineering/industrial-engineering-bse/#requirementstext

38

Chapter 2: University course scheduling during a pandemic

2.1. Introduction

Education is one of the most important aspects of human life in a modern society.

Universities and educational institutes play a vital role in this regard. In late 2019 a new

coronavirus named SARS-CoV-2 (i.e., COVID-19) was identified in China which quickly became

a pandemic and affected the whole world and has killed more than 900,000 people in the United

States and 6.2 million people worldwide (Dong et al., 2020). Before facing the pandemic, the latest

research on education shows the importance of in-person classroom environments that facilitate

discussions to enhance critical thinking and communication skills (Freeman et al., 2014).

However, having students physically in classrooms to engage with their instructor and peers is in

direct conflict with the research on the COVID-19 pandemic, which has shown that transmission

of the coronavirus is highest when people are sitting indoors for a long period and talking (de

Oliveira et al., 2021).

Around the world, governments have taken drastic steps to slow the spread of the virus by

closing most of the organizations which require face-to-face interaction. Although universities and

academic institutions require face-to-face interaction, closing universities altogether was not an

option, so universities had to re-think how they offered their courses. The main problem was that

classroom capacities suddenly decreased by about six fold because students had to socially

distance to meet the U.S. Centers for Disease Control and Prevention (CDC) guidelines. Most

universities responded to this situation by offering courses in three formats (with 0 or 1 classrooms

assigned to a course): (a) online, (b) hybrid, and (c) in-person. Each format has its own

disadvantages. With an online format, there is little student interaction. A hybrid format has

multiple cons such as low classroom utilization, health risks, and/or overworked teaching staff. An

39

in-person format, on the other hand, poses health risks if social distancing is not enforced or is

limited to low-enrollment courses being scheduled in large classrooms if social distancing is

enforced.

This research proposes an alternate framework for offering university courses during a

pandemic in which multiple classrooms may be assigned to the same course. In this approach,

students in the same course gather for a limited number of socially distanced, in-person meetings

called face-to-face meetings (i.e., f2f meetings) each semester. During each f2f meeting, all

students in the course simultaneously spread out across multiple classrooms in a socially distanced

manner. The instructor teaches in one classroom, and a video of the instructor is displayed in all

rooms simultaneously. Alternatively, an exam could be scheduled during a f2f meeting, in which

case one or more proctors are present to monitor the exam in each classroom.

In this chapter we introduce this alternative framework for university course scheduling

during a pandemic. We develop a mathematical model of the problem and compare two methods

for solving it, exact and heuristic. In the exact method, we use the IBM ILOG CPLEX solver to

solve problem instances. We also develop a heuristic approach which uses simulated annealing

principles to get a high quality solution using a reasonable amount of computation time. Both

methods are coded in C++. Experiments on small, medium-sized, and large fictional instances

show promising results.

2.2. Literature review

This research relates to the general area of educational timetabling. In the previous chapter

we discussed four problems that relate to educational timetabling (Figure 2). Whereas Chapter 1

focused on the resource-constrained project scheduling problem (RCPSP), student course planning

40

problem (SCPP), and department course planning problem (DCPP), this chapter deals with the

university course scheduling problem (UCSP).

Figure 1: Branches of educational timetabling

Figure 2. Research related to course planning and scheduling.

The university course scheduling problem (UCSP) is a well-known and highly constrained

real-world problem. It is a timetabling problem that deals with scheduling a predetermined number

of courses to time slots and resources (i.e., resources) considering several constraints (Chiarandini

et al., 2006; Imran Hossain et al., 2019; Mencía et al., 2016; Tang et al., 2018). The goal of the

UCSP is to assign all university lectures and laboratory sessions to rooms and timeslots (and

possibly instructors) considering each room’s maximum capacity, the expected number of students

enrolled in each course, and other related facility related issues (Feizi-Derakhshi et al., 2012; Naji

Azimi, 2005). The UCSP is an NP-complete problem, meaning that approaches that are guaranteed

to provide an optimal solution are often too time-consuming, so heuristic and metaheuristic

approaches are often utilized (Goh et al., 2017). Hard and soft constraints may vary from institution

Educational
Timetabling

University Course Scheduling Problem (UCSP)

Resource Constrained Project Scheduling
Problem (RCPSP)

Student Course Planning Problem (SCPP)

Department Course Planning Problem (DCPP)

41

to institution based on their resources and facilities. Typical hard constraints in the UCSP require

that at most one lecture or laboratory session be assigned to each classroom during each timeslot

and that students attend at most one course at any time. As an example of a soft constraint, Shiau

(2011) solved a UCSP in which instructors and students indicate their course preferences, along

with their preferred days and times for attending courses.

Articles on the UCSP consider either a prior-enrollment or post-enrollment perspective.

The prior-enrollment perspective groups students according to their study curriculum and student

grade; hence it is also named curriculum-based scheduling (Jamal, 2020). This approach consists

of the weekly scheduling of the lectures for several university courses within a given number of

rooms and time periods, where conflicts between courses are set according to the curriculum

published by the university and not based on enrollment data. In post-enrollment course

scheduling, course times and locations are decided after students have enrolled in courses. This

type of scheduling considers individual students and faculty members, and the main goal is to

schedule courses so that all students can feasibly attend the courses in which they have enrolled.

(Bettinelli et al., 2015).

Many methods for addressing the prior-enrollment UCSP have been proposed including

integer programing formulations (da Fonseca et al., 2017) and heuristics such as simulated

annealing (Abramson, 1991), local search (da Fonseca et al., 2016), harmony search algorithms

(Al-Betar & Khader, 2012), genetic algorithms (Lewis & Paechter, 2005), and adaptive tabu search

algorithms (Lü & Hao, 2010). Other researchers have used swarm intelligence optimization

methods such as ant colony optimization (Ayob & Jaradat, 2009), honey-bee mating optimization

(Sabar et al., 2012), and particle swarm algorithms (Imran Hossain et al., 2019). Chiarandini et al.

42

(2006) compares the performance of various metaheuristic algorithms for the prior-enrollment

UCSP including simulated annealing, variable neighborhood descent, and tabu search.

A different approach is post-enrollment scheduling, in which individual students’

enrollment is explicitly accounted for. In post-enrollment course scheduling, course times and

locations are decided after students have enrolled in courses. An important constraint is that no

student may attend more than one event at the same time. The objective is typically to minimize

the penalty for undesirable situations in which a student has a single class on a day, more than two

classes in a row, or a class in the last time slot of a day (Jat & Yang, 2011). Méndez-Díaz et al.

(2016) propose an integer programming formulation that is heuristically solved to produce high-

quality solutions. Goh et al. (2017) solve a post-enrollment UCSP by combining two different

search algorithms into an iterative two-stage procedure. In stage 1, tabu search with sampling and

perturbation generates feasible solutions. In stage 2, simulated annealing with reheating is used to

improve the quality of feasible solutions. Gonzalez et al. (2018) explain that advances in integer

programming solvers such as CPLEX have made exact approaches possible.

Recently, due to room capacity constraints, the question of assigning students to courses

has sparked interesting work in mechanism design (Budish et al., 2017). For instance, Atef Yekta

& Day (2020) introduced five new algorithms for course allocation problem using various

combinations of existing methods such as matching algorithms.

As we mentioned before, the recent pandemic has opened a new window of research

opportunities to optimally utilize university classroom seats. During the pandemic, classroom

capacities have decreased by a factor of about six to comply with CDC guidelines, and the effective

utilization of scarce classroom space has become more important than ever.

43

To our knowledge, there are only three published works that consider university course

scheduling during a pandemic. Barnhart et al. (2021) propose a unified model for university course

scheduling under a two-stage framework. They use integer optimization combined with enrollment

data from thousands of past students in the MIT Sloan School of Business. Their model’s objective

is to maximize the number of courses that students can take, with a preference for an on-campus

experience. Notable assumptions in their study are as follows:

- A four-fold reduction in classroom capacity

- A maximum of two classrooms can be used for the same course

- Some courses’ preferred format is fully online

Johnson & Wilson (2022) propose a multi-objective assignment model for scheduling

classrooms during COVID-19 at the Spears School of Business at Oklahoma State University. The

authors surveyed students, faculty, and staff to learn about their preferences and concerns. The

results indicated that a majority of students wished to return to campus. In their model, instead of

allowing simultaneous teachings, they used rotations. For example, in a Tuesday-Thursday class,

half of the students might attend physically on Tuesday, whereas the other half might attend

physically on Thursday. In this example, there are two rotations. Students might attend remotely

or learn other online modules during their off-rotation days. Their model has three objectives: (1)

maximize the number of courses that meet f2f with (two or more) rotations; (2) minimize the

number of f2f courses that have three or more rotations; and (3) maximize the number of courses

that stay in the same classroom.

44

Navabi-Shirazi et al. (2022) propose an integer programming model for simultaneously

assigning course modes and classrooms to class sections when classroom capacities are reduced

by 75-80%. They define four possible teaching modes:

• Residential: The section is held in-person with all students attending every class.

• Hybrid Split: The section is simultaneously taught online and in-person with students

attending in-person on a rotating basis.

• Hybrid Touch Point: Most class delivery takes place online, but a few f2f meetings are

scheduled each semester, so students can touch base with the instructor

• Remote: The section is fully online

 Their work assumes that at most one classroom is assigned to a course section and all course

sections are delivered in their previously assigned time slots due to existing registrations and ease

of administrative implementation. They use hierarchical optimization to handle multiple

optimization criteria according to priorities.

This chapter presents an alternate approach to university course scheduling during a

pandemic in which multiple classrooms may be assigned to a course and all courses—even the

largest—have one or more f2f meetings each semester. Our approach has the following desirable

features.

• Practical: To the authors’ best knowledge, no one has solved this problem in a way that

guarantees that all courses—even the largest—have an in-person component. The

aforementioned methods from the literature generally assign the largest courses to a fully

online teaching mode so their classrooms can be used for smaller courses.

45

• Flexible: Our approach is flexible and always provides a high-quality feasible solution. The

preferred timing of a course’s f2f meetings for each course can be customized. If the

preferred timing of f2f meetings cannot be perfectly satisfied, our approach recommends

other nearby timeslots for the course’s f2f meetings. Additionally, the model can be used

to schedule a minimum number of f2f meetings for each course.

• Multi-criteria: Our approach considers seven different objectives that are weighted to

reflect changing priorities identified by faculty members and university administrators.

• Scalable: Our approach can handle small and large problem instances. Our smallest

problem instance has 40 courses, 10 classrooms, 4 weeks, and 15 timeslots per week, and

our largest problem instance has 600 courses, 60 classrooms, 16 weeks, and 15 timeslots

per week.

2.3. Problem description

We call our problem the university course scheduling problem during a pandemic

(UCSPDP). Consider a university that wants schedule face-to-face (f2f) lectures (i.e., meetings)

for a set of courses that it offers during a pandemic. All classrooms have a lower capacity than

usual to be able to practice social distancing as recommended by the CDC or other public health

organization. Although classroom capacity is limited, the university still wants students in all

courses—even the largest—to have a limited number of socially distanced f2f meetings during the

semester when all students in the course meet in person (in one or more rooms) simultaneously.

We assume the university is not interested in splitting a course into separate groups that meet at

separate times.

The university wishes to decide when and where all of the coming semester’s f2f meetings

will take place. It makes these decisions based on the following information. There are total of R

46

rooms available to be assigned. The parameter Cr indicates the (reduced) capacity of room r with

social distancing guidelines in place. There are total of C courses (i.e., course sections) that need

to be scheduled. The parameter Sc indicates the number of students enrolled in (or expected to be

enrolled in) course c. Parameters W and T refer to the total number of weeks and timeslots that are

being used in the schedule, respectively. Each time slot refers to a different continuous time period

during the week when a f2f meeting can take place. For example, if the university wants to assign

classrooms to courses for a 16-week semester and there are five business days each week and five

2-hour timeslots beginning at 08:00, 10:00, 12:00, 14:00, and 16:00 each day, then W = 16 and T

= 25.

Instructors must inform the university about how many f2f meetings (including in-person

exam sessions) they want during each week. Parameter DNcw indicates the number of f2f meetings

for course c that are desired to take place during week w. Parameter CuDNcw indicates the

cumulative number of f2f meetings for course c that are desired to take place during weeks 1–w

combined. For example, if the number of desired f2f meetings for course 3 during an 8-week

semester is DN3w = [0, 1, 0, 2, 0, 3, 0, 1], then CuDN3w = [0, 1, 1, 3, 3, 6, 6, 7]. Parameters DNcw

and CuDNcw reflect what the instructor of course c desires which may deviate from what is

possible. If all course instructors desire many f2f meetings, it will not be possible to schedule all

such meetings. However, if instructors desire roughly one f2f meeting every six class sessions then

it will likely be possible to schedule most such meetings (assuming that classroom capacities are

reduced by a factor of no more than six).

 Parameter Distrs is the distance between classrooms r and s, and parameter DistOffcr is the

distance between the office of the professor who teaches course c and room r. These parameters

are implemented to reflect the difficulty of traveling from one room to another which may differ

47

greatly from the actual distance (in meters) between the centroids of the rooms. Binary parameter

Jcr equals 1 if course c is eligible to be scheduled in room r and equals 0 otherwise. Binary

parameter Ict equals 1 if course c is eligible to have a f2f meeting during time slot t and equals 0

otherwise. Parameters Jcr and Ict are resource availability parameters. Parameter MaxTSc is the

maximum number of weekly time slots that can be associated with course c in the timetable

published by the university.

The goal of the UCSPDP is to schedule f2f meetings for each course (a) in a set of rooms

that do not violate Jcr that have enough combined seats to host the selected course; (b) during

weeks when the meetings are desired as specified by DNcw; (c) during time slots that agree with

Ict; and (d) so that two courses do not use the same classroom during the same time slot in the same

week. Additional goals of the UCSPDP are to (e) minimize the distance between rooms assigned

to a course (Distrs); (f) minimize the distance from the office of the professor who teaches a course

and the classrooms used for the course (DistOffcr); (g) minimize the number of rooms assigned to

a course; and (h) schedule as many f2f meetings as possible for each course regardless of when

they take place. The UCSPDP is a highly constrained, nontrivial optimization problem with

multiple objectives. Advanced methods are therefore needed to address this challenging problem.

2.4. Exact solution approach using a mathematical model

We propose two methods to solve this problem. The first method is to develop a

mathematical model—in particular an integer programming model—and then call the IBM ILOG

CPLEX solver to solve it for various problem instances. The second method, described in Section

2.5, is a heuristic algorithm aimed at obtaining good solutions quickly.

48

Table 14 lists the indices, parameters, and decision variables in our integer programming

(IP) formulation of the problem. The integer program, which we call model UCSPDP, has four

categories of indices. Indices r and s represent classrooms. Two indices are needed to be able to

represent the distance between rooms. Index c refers to the courses. Indices w and k refer to weeks.

Index t refers to the time slots within each week.

49

Table 14. Indices, parameters, and decision variables in mathematical model UCSPDP
Indices

r, s Rooms
c Courses (i.e., course sections)

w, k Weeks
t Time slots

Parameters
R Total number of available rooms
Cr Capacity of room r (during COVID-19)
C Number of courses for which at least one f2f meeting is desired
W Total number of weeks in the semester (e.g., 16)
T Number of unique time slots when a f2f meeting can occur within a week (e.g., 15)
Sc Number of students enrolled in (or expected to be enrolled in) course c

DNcw Number of f2f meetings for course c that are desired to take place during week w
CuDNcw Cumulative number of f2f meetings for course c that are desired to take place during weeks 1-w

combined
Distrs Distance between rooms r and s

DistOffcr Distance between office of professor who teaches course c and room r
Jcr = 1 if course c is eligible to be scheduled in room r

= 0 otherwise (binary)
Ict = 1 if course c is eligible to be scheduled during time slot t

= 0 otherwise (binary)
MaxTSc Maximum number of weekly time slots that can be associated with course c in the timetable

published by the university
α1, α2… α7 Weights for objective function components (real, > 0)

Decision variables
Xctw = 1 if course c has a f2f meeting during time slot t in week w

= 0 otherwise (binary)
Ycr = 1 if room r is used for course c

= 0 otherwise (binary)
Zcrtw = 1 if course c has a f2f meeting in room r during time slot t in week w

= 0 otherwise
Uc

 = 1 if at least one f2f meeting is scheduled for course c during the semester
= 0 otherwise (binary)

Vct = 1 if the university’s published timetable states that course c has f2f meetings during time slot t
= 0 otherwise (binary)

ANcw Actual number of f2f meetings for course c that are scheduled to take place during week w (integer, ≥
0)

CuANcw Cumulative number of f2f meetings for course c that are scheduled to take place during weeks 1-w
combined (integer, ≥ 0)

Diffcw Deviation between the actual and desired number of f2f meetings for course c that are scheduled to
take place during weeks 1-w combined (integer, ≥ 0)

NumRmc Number of rooms assigned to course c (integer, ≥ 1)
WastedSeatsc Number of empty seats in course c’s room assignment (integer, ≥ 0)

Mc Maximum distance between rooms assigned to course c (real, ≥ 0)
Nc Maximum distance between office of professor who teaches course c and any room assigned to

course c (real, ≥ 0)

50

The model has twelve sets of decision variables. Binary variable Xctw equals 1 (0) if course

c has (does not have) a f2f meeting during time slot t in week w. Binary variable Ycr equals 1 (0)

if room r is used (is not used) for course c’s f2f meetings. Binary variable Zcrtw equals 1 (0) if

course c has (does not have) a f2f meeting in room r during time slot t in week w. Binary variable

Uc equals 1 if at least one f2f meeting is scheduled for course c during the semester. Binary variable

Vct equals 1 (0) if the university’s published timetable states that course c has f2f meetings during

time slot t. Integer variable ANcw equals the actual number of f2f meetings for course c that are

scheduled to take place during week w. Integer variable CuANcw equals the cumulative number of

f2f meetings for course c that are scheduled to take place during weeks 1–w combined. Integer

variable Diffcw equals the deviation between the actual and desired number of f2f meetings for

course c that are scheduled to take place during weeks 1-w combined. Integer variables NumRmc

and WastedSeatsc equal the number of rooms assigned to course c and the number of empty seats

that course c’s room assignment, respectively. Real variables Mc and Nc equal the maximum

distance between rooms assigned to course c and the maximum distance between the office of the

professor who teaches course c and a room assigned to course c, respectively. Our integer

programming model is shown below.

Minimize :

(α1) * (∑ 𝑆𝑆𝑐𝑐 ∗𝐶𝐶

𝑐𝑐=1 NumRmc) +

(α2) * (∑ 𝑆𝑆𝑐𝑐 ∗C
𝑐𝑐=1 Mc) +

(α3) * (∑ 𝑆𝑆𝑐𝑐 ∗C
𝑐𝑐=1 Nc) +

(α4) * (∑ 𝑆𝑆𝑐𝑐 ∗𝐶𝐶
𝑐𝑐=1 WastedSeatsc) +

(α5) * (∑ 𝑆𝑆𝑐𝑐 ∗𝐶𝐶
𝑐𝑐=1 (CuDNcW – CuANcW)) +

(α6) * (∑ ∑ 𝑆𝑆𝑐𝑐 ∗𝑊𝑊
𝑤𝑤=1

𝐶𝐶
𝑐𝑐=1 Diffcw) +

(α7) * (∑ 𝑆𝑆𝑐𝑐 ∗𝐶𝐶
𝑐𝑐=1 (1 – Uc))

(34)

51

Constraints:

∑ 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑤𝑤𝐶𝐶
𝑐𝑐=1 ≤ 1

for all r, t, and w (35)

∑ 𝐶𝐶𝑐𝑐 ∗ 𝑌𝑌𝑐𝑐𝑐𝑐𝑅𝑅
𝑐𝑐=1 ≥ 𝑆𝑆𝑐𝑐

for all c (36)

Vct ≤ Ict

for all c and t (37)

Xctw ≤ Vct

for all c, t, and w (38)

Ycr ≤ Jcr

for all c and r (39)

Zcrtw ≤ Ycr

for all c, r, t, and w (40)

Zcrtw ≤ Xctw

for all c, r, t, and w (41)

Zcrtw ≥ Ycr + Xctw - 1

for all c, r, t, and w (42)

∑ 𝐴𝐴𝑁𝑁𝑐𝑐𝑤𝑤𝑊𝑊
𝑤𝑤=1 ≤ ∑ 𝐷𝐷𝑁𝑁𝑐𝑐𝑤𝑤𝑊𝑊

𝑤𝑤=1 for all c (43)

Distrs ≤ Mc + (BigM)*(2 - Ycr - Ycs) for all c, r, and s (44)

Diffcw ≥ CuDNcw – CuANcw

for all c and w (45)

Diffcw ≥ CuANcw – CuDNcw

for all c and w (46)

∑ 𝑋𝑋𝑐𝑐𝑐𝑐𝑤𝑤𝑇𝑇
𝑐𝑐=1 = ANcw

for all c and w (47)

CuANcw = ∑ 𝐴𝐴𝑁𝑁𝑐𝑐𝑐𝑐𝑤𝑤
𝑐𝑐=1 for all c and w (48)

∑ 𝑉𝑉𝑐𝑐𝑐𝑐𝑇𝑇
𝑐𝑐=1 ≤ MaxTSc for all c (49)

Zcrtw ≤ Vct for all c, r, t, and w (50)

DistOffcr ≤ Nc + (BigM)*(1 - Ycr) for all c and r (51)

Uc ≤ ∑ ∑ 𝑋𝑋𝑐𝑐𝑐𝑐𝑤𝑤𝑊𝑊
𝑤𝑤=1

𝑇𝑇
𝑐𝑐=1 for all c (52)

NumRmc = ∑ 𝑌𝑌𝑐𝑐𝑐𝑐𝑅𝑅
𝑐𝑐=1 for all c (53)

WastedSeatsc = (∑ 𝐶𝐶𝑐𝑐 ∗ 𝑌𝑌𝑐𝑐𝑐𝑐𝑅𝑅
𝑐𝑐=1) - Sc for all c (54)

52

The objective function (34) has seven parts that are weighted by positive values α1 to α7.

Weights can be modified based on the importance of the objectives in different applications. Each

part of the objective function is a sum of C individual penalty values, one for each course. The

penalty value for course c is weighted by the number of students in the course, Sc. The seven main

parts of the objective function emphasize the following goals respectively.

1. Minimize the number of rooms used for a course.

2. Minimize the maximum distance between rooms assigned to a course.

3. Minimize the maximum distance between the office of the instructor who teaches a course and

any room assigned to the course.

4. Minimize the number of wasted seats in a course’s room assignment.

5. Minimize the difference between the total number of f2f meetings scheduled for a course and

total the number of f2f meetings that were desired.

6. Optimize the timing when f2f meetings are held. In other words, minimize the sum of Diffcw

over all w for each course c (more details are provided in the paragraph below).

7. Minimize the number of courses with no f2f meetings scheduled

We now provide a few examples to illustrate these goals. Regarding goals 2 and 3, consider

a set of three rooms assigned to a course with the pairwise distances, and distances from the

instructor’s office to each room, shown below on the left and right, respectively.

Distrs = �
0 536 445

536 0 653
445 653 0

�
DistOffcr = [456 214 785]

According to the above values, the maximum distance between rooms assigned to the course is

653 and the maximum distance between the office of the professor who teaches the course and a

53

room assigned to it is 785. Regarding goal 4, consider a course with 45 students (Sc = 45) that is

assigned to three rooms with capacities of 23, 18, and 10. In this case the number of wasted seats

for this course is 6 (= 23 + 18 + 10 – 45). Goal 4 is to assign each course to a set of rooms in a

way that minimizes the number of wasted seats. To explain goals 5 and 6, consider an 8-week

scenario with the following values for parameters DNcw and CuDNcw and decision variables ANcw

and CuANcw for a particular course c:

DNcw: 0 1 0 2 1 0 3 1 CuDNcw: 0 1 1 3 4 4 7 8

ANcw: 0 1 0 1 1 0 2 0 CuANcw: 0 1 1 2 3 3 5 5

 Diffcw: 0 0 0 1 1 1 2 3

Goal 5 is to minimize the difference between the total number of f2f meetings scheduled

and the number of f2f meetings that were desired. For the above data this difference is 3 (= 8 – 5).

Goal 6 is to optimize the timing of a course’s f2f meetings. The timing of the meetings is evaluated

by computing Diffcw (shown above) which is the absolute value of the difference between CuDNcw

and CuANcw for each week w. The Diffcw values for all w are then summed. In the above case, the

sum of the Diffcw values is 8 (= 0 + 0 + 0 + 1 + 1 +1 + 2 + 3) which is the total amount of deviation

in the timing of courses c’s actual, scheduled f2f meetings compared to the timing that was desired.

We now discuss the constraints of the math model in detail. Constraint 35 ensures that no

more than one course meets in the same room at the same time. Constraint 36 is a capacity

constraint that ensures that the combined capacity of all rooms assigned to a course is greater than

the number of students in that course. In other words, it ensures that each course is assigned to

rooms with enough combined capacity to host it. Constraint 37 ensures that the university’s

published timetable may state that course c has f2f meetigns during time slot t only if Ict = 1.

54

Constraint 38 ensures that all f2f meetings for course c are scheduled during timeslots that agree

with the university’s published timetable. Constraint 39 ensures that course c can only be

scheduled in room r if Jcr = 1. Constraints 40, 41, and 42 ensure that the values of the Z variables

agree with those of the Y and X variables. If either the Y or X variable is zero, the Z variable must

be zero (constraints 40 – 41). If the Y and X variables are both 1, the Z variable must be 1 (constraint

42). Constraint 43 ensures that the total number of actual, scheduled f2f meetings for course c does

not exceed the total number that is desired. Constraint 44 ensures that variable Mc is properly

computed. In particular, if course c is scheduled in both rooms r and s, this constraint ensures that

Mc is greater than or equal to the distance between rooms r and s. If course c is not scheduled in

both rooms r and s, this constraint does not restrict any decision variables because the “BigM” is

multiplied by a nonzero value on the right side. Constraints 45 and 46 make sure that Diffcw is

properly computed. In particular, they ensure that Diffcw is greater than or equal to the deviation

between the cumulative actual and cumulative desired number of f2f meetings for coure c during

weeks 1-w. For all c and w, constraint 47 ensures that ANcw is properly computed based on Xctw.

Constraint 48 ensures that CuANcw is properly computed based on ANcw. Constraint 49 ensures that

MaxTSc is the maximum number of weekly time slots that can be allocated to course c in the

timetable published by the university. Constraint 50 ensures that the values of the Z variables agree

with the values of the V variables. Constraint 51 ensures that Nc is properly computed. In particular,

if course c is assigned to room r, then the distance between the office of the instructor who teaches

course c and room r is less than or equal to Nc. Constraint 52 ensures that Uc is correctly computed

based upon the Xctw variables. Constraint 53 ensures that NumRmc is correctly computed.

Constraint 54 ensures that WastedSeatsc is properly computed.

55

2.5. Heuristic method

The experimental results in Section 2.6.2 show that directly applying the mathematical

model to instances of the UCSPDP is not effective. In particular, the IBM ILOG CPLEX solver

fails to obtain satisfactory solutions to large instances of the UCSPDP within an hour. Thus, a

heuristic method was developed for addressing the UCSPDP.

2.5.1. Overall structure of the heuristic method

Figure 3 shows the overall procedure of our heuristic. The sections that follow describe

various steps in detail.

Figure 3. Heuristic pseudocode

Overall heuristic method for the UCSPDP:
1 For each course c, use an exact or heuristic method to generate a set of potential room assignments

(PRAs) (i.e., sets of rooms where the course could feasibly be held) that have good values for

NumRmc, WastedSeatsc, Mc, and Nc.

2 Create an initial schedule for all courses in which as many f2f meetings as possible are scheduled,

assuming that each course’s first PRA is used. This is the current solution.

3 Compute the objective value of the current solution

4 If the time limit has been reached, STOP and display the best solution that was found. If not, go

to step 5.

5 Create a neighboring solution by (a) removing all f2f meetings for a subset of courses from the

current solution, (b) selecting a new, random PRA for each such course, (c) forming a waitlist of

one or more unscheduled f2f meetings, and (d) placing as many of the waitlisted f2f meetings as

possible back into the schedule.

6 Compute the objective value difference between the neighboring and current solutions.

Use simulated annealing principles to decide if the neighboring solution replaces the

current solution. Go to step 3.

56

2.5.2. Step 1: Generate potential room assignments (exact method)

The first step in the heuristic method is to generate different room combinations for each

course that are able to host all students in the course. We develop two methods to automatically

generate these potential room assignments (PRAs). In first method, we use a mathematical model

to generate different room combinations ranked from best to worst. The model runs several times,

and the result of each run is the best room assignment that has not yet been generated. We set a

limit on how many different room combinations are computed. Table 15 lists the indices,

parameters, and decision variables in the mini math model that generates the PRAs.

Table 15. Indices, parameters, and decision variables in the mini math model that generates room possibilities for each
course
Indices

r, s Rooms
Parameters

R Total number of available rooms
S Number of students enrolled in (or expected to be enrolled in) the course at hand
Cr Capacity of room r (during COVID-19)

MaxM Maximum allowed value of the decision variable M
MaxN Maximum allowed value of the decision variable N
Distrs Distance between rooms r and s

DistOffr Distance between room r and office of instructor who teaches the course at hand
Jr = 1 if the course on hand is eligible to be scheduled in room r

= 0 otherwise (binary)
α1, α2, α3, α4 Weights for parts of the objective function (real, ≥ 0)

Decision variables
Yr = 1 if room r is used for the course at hand

= 0 otherwise (binary)
M Maximum distance between rooms assigned to the course at hand
N Maximum distance between the office of the professor who teaches the course and a room

assigned to it
WastedSeats Number of empty seats in course c’s room assignment (integer, ≥ 0)

Most of the indices, parameters, and decision variables are similar to elements in Table 14.

The model is applied to each course individually. Hence, the course index c is removed. Our

integer programming model is shown below.

57

Minimize: (α1) * (∑ 𝑌𝑌𝑐𝑐𝑅𝑅
r=1) + (α2) * M + (α3) * N + (α4) * WastedSeats (55)

Constraints:

�𝐶𝐶𝑐𝑐 ∗ 𝑌𝑌𝑐𝑐

𝑅𝑅

𝑐𝑐=1

≥ 𝑆𝑆 (56)

DistOffr ≤ N +(BigM) * (1 - Yr) for all r (57)

Yr ≤ Jr for all r (58)

Distrs ≤ M + (BigM) * (2 - Yr - Ys) for all r and s (59)

M ≤ MaxM (60)

N ≤ MaxN (61)

WastedSeats = (∑ 𝐶𝐶𝑐𝑐 ∗ 𝑌𝑌𝑐𝑐𝑅𝑅
𝑐𝑐=1) - S (62)

This model has four objectives that are weighted by nonnegative values α1, α2, α3, and α4

respectively:

1. Minimize the number of rooms used for the course

2. Minimize the distance between rooms assigned to the course

3. Minimize the distance between the office of the professor who teaches the course

and any room used for the course

4. Minimize the total number of wasted seats in the course’s room assignment

Constraint 56 is a capacity constraint that ensures that the combined capacity of all rooms

assigned to the course is greater than the number of students enrolled in the course. Constraint 57

ensures that N is an upper bound on the distance between the office of the instructor who teaches

58

the course and any room assigned to it. Constraint 58 ensures that room r may only be used for the

course if room r is compatible with the course. Constraint 59 ensures that M is an upper bound on

the distance between any two rooms assigned to the course. Constraints 60 and 61 make sure that

M and N are less than MaxM and MaxN, respectively. Constraint 62 ensures that WastedSeats is

properly computed.

The model is applied to each course separately. For each individual course, the model is

solved many times. Each time an optimal solution is identified, one additional constraint is added

to the model to forbid that solution from appearing when the model is solved again. Let the

parameter NumRooms equal the number of rooms used (e.g., 4) in the optimal solution that was

most recently generated when the model was solved, and let Ri be the ith room used in the most

recently generated solution. Then the new constraint that is added to the model each time is:

∑ 𝑌𝑌𝑅𝑅𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠
𝑖𝑖=1 ≤ NumRooms – 1.

(63)

This constraint states that no more than NumRooms – 1 of the NumRooms that were used

in the most recently generated optimal solution may be used in the next optimal solution. In other

words, constraint 63 ensures that the most recently generated optimal solution is no longer feasible

the next time the model is solved. A constraint of this type is added to the model each time we

run the model. For example, if 20 PRAs are to be generated, a constraint of this type is added a

total of 19 times to the model to make sure that each previously generated solution is never

generated again.

59

2.5.3. Step 1: Generate potential room assignments (heuristic method)

Using an exact method for generating PRAs has its own advantages and disadvantages.

The main advantage is the quality of the generated PRAs. In other words, the exact method

generates high quality PRAs, but the disadvantage of this method is the run time. When developing

our heuristic approach to solve the UCSPDP (Figure 3), we aimed to allocate at most 1/3 of the

total computation time for generating PRAs (i.e., for performing step 1 in Figure 3). With this

restriction, only a limited number of PRAs could be generated for each course if they were

generated using the mini math model. Therefore, we also developed a heuristic approach to

generate PRAs. Figure 4 shows the logic of this heuristic. The heuristic is guided by the values of

five input parameters: PRA_limit, MaxRoom, MaxM, MaxN, and MaxWS.

60

Heuristically generating PRAs
For each course c

1 Create a list of rooms available for course c based on the room availability matrix (Jcr)

2 Let #AvailRooms equal the number of rooms in the list

3 Let #PRAsMade = 0, #RoomsUsed = 0, and AllRecentlyMadePRAsRedundant = false

4 While (#PRAsMade < PRA_limit & #RoomsUsed < MaxRoom & AllRecentlyMadePRAsRedundant = false)

5 #RoomsUsed ++

6 Let #PossibitiesWithThisNumRooms = choose(#AvailRooms, #RoomsUsed)

7 Let iterator = 0

8 Let AllRecentlyMadePRAsRedundant = true

9 While (iterator < #PossibitiesWithThisNumRooms & #PRAsMade < PRA_limit)

10 ** Generate the next PRA in the sequence **

11 Iterator ++

12 If (total seats in PRA < Sc)

13 AllRecentlyMadePRAsAreRedundant = false

14 Else

15 If the PRA still has enough seats to accommodate course c even if one of its rooms is removed from it

16 PRAisRedundant = true

17 Else

18 PRAisRedundant = false

19 Compute the values of M, N, and WastedSeats for this PRA as defined in Table 15

20 If (PRAisRedundant = false & M ≤ MaxM & N ≤ MaxN & WastedSeats ≤ MaxWS)

21 The current PRA is approved and joins the list of the PRAs generated for course c

22 #PRAsMade ++

23 AllRecentlyMadePRAsRedundant = false

Figure 4. Pseudocode for heuristically generating PRAs

The method generates PRAs exhaustively beginning with those with the fewest rooms.

Only PRAs that have enough seats to accommodate the course are considered. Among these PRAs,

only non-redundant PRAs that do not have enough seats to accommodate a course if any room is

removed from the PRA are considered. Among these PRAs, only those with values of M, N, and

WastedSeats (as defined in Table 15) that are below MaxM, MaxN, and MaxWS, respectively, are

approved for use in the heuristic shown in Figure 3. The method terminates when then number of

61

approved PRAs reaches PRA_limit; all PRAs have been exhaustively considered; or all PRAs in

the most recent PRA cohort (i.e., all PRAs with a given number of rooms) are determined to be

redundant.

For example, consider a case in which only 3 rooms may be used for a course (according

to Jcr). First, the method starts with room combinations with just 1 room. Then it computes total

number of possible combinations consisting of just one room as (3 choose 1) which is 3. It starts

with the first combination to be just {room1}. Then it increases the room number to reach the total

number of possible combinations of just one room which is 3. Now we have three room

combinations of {room1}, {room2}, and {room3}. Then so far possible room combinations are

{1},{2}, and {3}. Then while number of PRAs and the number of rooms considered in each

combination are within their threshold and the number of rooms considered in each combination

is less than available rooms, it increases the number of rooms considered in each combination by

1. Then by incrementing each value in each combination, other combinations are being created.

For each room combination M1, N1, and WastedSeats are computed to check it’s within the limit.

If not, this combination will not be considered. Also, it checks for redundancy in each combination

as well by comparing each room capacity in each combination with number of students enrolled

in the course. If there is a room with enough capacity for all student in the course in room

combinations with two or more rooms, then this combination is redundant.

It should be mentioned that we considered two main approaches for heuristically

generating the PRAs. In the first approach, we divide campus into quadrants, each with roughly

the same supply of classroom seats and the same total demand for seating during the semester. We

then require that a demand in one quadrant must be satisfied by the available classrooms in the

same quadrant. The second method is to not divide the campus to quadrants. Depending on which

62

method is used, the room availability matrix Jcr (see line 1 in Figure 4) is modified to check the

availabilities in each quadrant separately or for the entire campus. Preliminary experiments

indicated that the quadrant approach was inferior to the non-quadrant approach, so the quadrant

approach was abandoned.

2.5.4. Step 2: Create an initial schedule

Once the PRAs are created, the next step is to create an initial feasible solution. The initial

feasible solution is constructed one f2f meeting at a time, not one course at a time. We first build

a giant list of all desired f2f meetings (for all courses), each specified by a course number and

week number. The week number for each desired f2f meeting comes from parameter DNcw. The

list is then randomly scrambled. We then proceed sequentially through the list and attempt to

schedule each f2f meeting one at a time, during the week when it is desired, using the first PRA

for the course that is associated with the f2f meeting. All eligible timeslots (indicated by Ict) within

the week at hand and for the course at hand are considered. If any timeslot works, the f2f meeting

is placed in the schedule. If no timeslots work, the f2f meeting is not placed in the schedule. After

considering all f2f meetings in such manner, we then revisit those which were not placed in the

schedule, and we try to place each of them, one at a time, in the schedule one week before or after

the f2f meeting’s desired week. After considering all f2f meetings in this manner, we then revisit

those not in the schedule, and we try to place each of them, one at a time, in the schedule two

weeks before or two weeks after the f2f meeting’s desired week. This process continues until all

of the f2f meetings are scheduled or no more f2f meetings can be feasibly scheduled in any week.

63

2.5.5. Step 5: Create neighboring solution

Steps 3 and 4 of the heuristic (see Figure 3) are self explanatory. The next step (step 5) is

to create a neighboring solution by (a) removing all f2f meetings for a subset of courses from the

current solution, (b) selecting a new, random PRA for each such course, (c) forming a waitlist of

one or more unscheduled f2f meetings, and (d) placing as many of the waitlisted f2f meetings as

possible back into the schedule.

In (a), we define three options for deciding how many courses’ f2f meetings should be

removed from the current schedule:

1. A certain percentage of courses

2. A certain number of courses

3. All courses

In (a) we also need to decide which courses’ f2f meetings to remove from schedule. We

define six options for doing this.

1. The N courses with the greatest number of unscheduled f2f meetings (ties broken in favor

of removing larger courses’ f2f meetings)

2. The N courses with the lowest fraction of f2f meetings scheduled (ties broken in favor of

removing larger courses’ f2f meetings)

3. The N largest courses that have at least one unscheduled f2f meeting

4. The N courses whose scheduled f2f meeting timing has the highest total deviation from

desired

64

5. The N courses whose scheduled f2f meeting timing has the highest average deviation from

desired

6. N random courses

In step (c), we define three options for deciding which unscheduled f2f meetings are added

to the waitlist.

1. All unscheduled f2f meetings

2. Only the unscheduled f2f meetings related to the course(s) removed from the schedule in

step (a)

3. Only the unscheduled f2f meetings related to the course(s) with no f2f meetings scheduled

right now

Step (d) proceeds very much like the creation of the initial feasible solution in step 2 of

Figure 3. First, we randomly scramble the (unscheduled) f2f meetings in the waitlist. We then

proceed sequentially through the waitlist and attempt to schedule each f2f meeting, one at a time,

during the week when it is desired, using the PRA that was most recently selected for the course

that is associated with the f2f meeting. As before, all eligible timeslots within the week at hand are

considered. After considering all f2f meetings in such a manner, we revisit those that were not

placed in the schedule, and we try to place each of them, one at a time, in the schedule one week

before or after the f2f meeting’s desired week. If any f2f meetings in the waitlist are still not

scheduled, we revisit those f2f meetings, and we try to place each of them, one at a time, in the

schedule two weeks before or two weeks after the f2f meeting’s desired week. The process

continues until all waitlisted f2f meetings are scheduled or no more waitlisted f2f meetings can be

scheduled in any week.

65

2.5.6. Step 6: Decide if neighboring solution replaces current solution

In step 6, we compare the neighboring solution’s objective value to the current solution’s

objective value. If the neighboring solution has a lower objective value or its objective value is

within the simulated annealing (SA) acceptance range, the neighboring solution is accepted, and

the neighboring solution replaces the current solution. The procedure then returns to step 3. This

process continues until the time limit is reached. When the time limit is reached, the best solution

that was found in displayed. Figure 5 shows the pseudocode for the heuristic with the simulated

annealing steps shown. Two input parameters—StartTemp and TempFactor—are used in the

procedure.

Perform steps 1 and 2 in Figure 3

Let SCurrent = initial feasible soloution and ObjCurrent = initial objective value

Let SBest = SCurrent and Let ObjBest = ObjCurrent

Let T = StartTemp

Let Iter = 0

While (time has not yet expired)

Perform step 5: Generate neighboring solution (SNext, ObjNext)

If (ObjNext < ObjCurrent) then

 SCurrent = SNext, ObjCurrent = ObjNext

Else

Let Rand be a random real number between 0 and 1

Let ∆ = 𝑂𝑂𝑂𝑂𝑗𝑗𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐 − 𝑂𝑂𝑂𝑂𝑗𝑗𝐶𝐶𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑛𝑛𝑐𝑐

If (Rand < 𝑒𝑒−∆/𝑇𝑇)

SCurrent = SNext, ObjCurrent = ObjNext

If (ObjCurrent < ObjBest) then

SBest = SCurrent, ObjBest = ObjCurrent

Iter = Iter + 1

 T = T * TempFactor

Return SBest and ObjBest

Figure 5. Heuristic pseudocode with simulated annealing steps shown

2.6. Experimental setup, results, and discussion

The math model and heuristic method were tested on a variety of problem instances. In this

section we describe the experimental setup, present the results, and discuss their significance.

66

2.6.1. General experimental setup

The math model and heuristic method were coded into MS Visual C++ 2015, and IBM

ILOG Concert Technology was used to call IBM ILOG CPLEX 12.10 to solve instances of the

math model contained in text files. All experiments were run on a desktop PC with an 11th

generation intel core i7 (3.00 GHz) processor and 32 GB of RAM. Random cartesian (X, Y)

coordinates ranging from 0 to 800 were generated to define the location of each classroom and the

office of the professor who teaches each course, and the Euclidean distance formula is used to

calculate the distance between each pair of rooms (Distrs) and the distance between each room and

each professor’s office (DistOffcr).

For testing our approaches, we created 135 instances. These instances are categorized by

their size—small, medium, large—based on the total available supply of seat-timeslots during the

semester as computed in equation 64. All small (medium; large) instances have a seat-timeslot

supply ranging from 6000-9000 (55,000-70,000; 370,000-420,000) for the entire semester. Each

problem size is divided into three categories based on the room and time slot availability – 100%,

75%, 50% – which indicates the percentage of Jcr and Ict values that are 1. Each category is further

divided into to three subcategories, each with a different demand level: low demand (LD), medium

demand (MD), and high demand (HD). For the purposes of computing the demand level, we define

the Supply and Demand in a problem instance as follows.

Supply = (∑ 𝐶𝐶𝑟𝑟) ∗ 𝑊𝑊 ∗ 𝑇𝑇𝑅𝑅
𝑟𝑟=1 (64)

Demand = (∑ 𝑆𝑆𝑐𝑐 ∗ 𝐶𝐶𝐶𝐶𝐷𝐷𝑁𝑁𝑐𝑐𝑊𝑊
𝐶𝐶
𝑐𝑐=1) (65)

67

The value of Demand/Supply in all LD (MD, HD) problem instances falls within the range

0.45-0.6 (0.65-0.8, 0.85-1). The three problem sizes, three availability levels, and three demand

levels create 27 subcategories of problem instances. Five instances are created for each

subcategory, making 135 instances altogether. It should be noted that set of Ict and Jcr values that

equal 1 in each instance with 50% availability is a strict subset of the set of Ict and Jcr values that

equal 1 in one of the instances with 75% availability.

Table 16 shows the values of the main input parameters—including R, Cr, C, W, T, and

Sc—that define the problem instances. In this table, “DU” refers to the discrete uniform

distribution. The expression “X, Y = DU(0,800)" means that each classroom and professor’s office

was given an X, Y coordinate ranging from 0 to 800, and parameters Distrs and DistOffcr were

computed as the straight line distance between two points. Also, the expression “P(DNcw) = [.7,

.15, .1, .05]” means that, for each course in all problem instances, the number of desired f2f

meetings in any given week has a 70% chance being of 0, 15% chance of being 1, 10% chance of

being 2, and 5% chance of being 3. Thus, the average number of f2f meetings desired per week is

0.5 (=0.7*0 + 0.15*1 + 0.1*2 + 0.05*3) for each course in all problem instances.

For example, each of the five “Large–100%–HD” instances (see the bottom-left portion of

Table 16) has 60 rooms (R), classroom capacities generated from the DU(5, 50) distribution, 600

courses (C), 16 weeks (W), 15 time slots per week (T), and DU(10, 140) students in each course.

In experiments testing the math model and heuristic, we set a computation time limit of 300, 1200,

and 3600 seconds for small, medium, and large instances, respectively.

In all experiments, the values of α1, α2, α3, α4, α5, α6, and α7, were set to 10, 0.01, 0.01, 10,

100, 10, and 100000, respectively (see equation 34).

68

Table 16. Experimental setup and assumptions for the problem instances
Small (supply = 6000 - 9000 seat timeslots)

Jcr & Ict: 100% Jcr & Ict: 75% Jcr & Ict: 50%
LD: 45-60% MD: 65-80% HD: 85-100% LD: 45-60% MD: 65-80% HD: 85-100% LD: 45-60% MD: 65-80% HD: 85-100%

R = 10 R = 10 R = 10 R = 10 R = 10 R = 10 R = 10 R = 10 R = 10

Cr = DU (5,20) Cr = DU (5,20) Cr = DU (5,20) Cr = DU (5,20) Cr = DU (5,20) Cr = DU (5,20) Cr = DU (5,20) Cr = DU (5,20) Cr = DU (5,20)

C = 40 C = 55 C = 70 C = 40 C = 55 C = 70 C = 40 C = 55 C = 70

W = 4 W = 4 W = 4 W = 4 W = 4 W = 4 W = 4 W = 4 W = 4

T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15

Sc = DU (10,80) Sc = DU (10,80) Sc = DU (10,80) Sc = DU (10,80) Sc = DU (10,80) Sc = DU (10,80) Sc = DU (10,80) Sc = DU (10,80) Sc = DU (10,80)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

Medium (supply = 55,000 – 70,000 seat timeslots)

Jcr & Ict: 100% Jcr & Ict: 75% Jcr & Ict: 50%
LD: 45-60% MD: 65-80% HD: 85-100% LD: 45-60% MD: 65-80% HD: 85-100% LD: 45-60% MD: 65-80% HD: 85-100%

R = 30 R = 30 R = 30 R = 30 R = 30 R = 30 R = 30 R = 30 R = 30

Cr = DU (5,30) Cr = DU (5,30) Cr = DU (5,30) Cr = DU (5,30) Cr = DU (5,30) Cr = DU (5,30) Cr = DU (5,30) Cr = DU (5,30) Cr = DU (5,30)

C = 140 C = 190 C = 240 C = 140 C = 190 C = 240 C = 140 C = 190 C = 240

W = 8 W = 8 W = 8 W = 8 W = 8 W = 8 W = 8 W = 8 W = 8

T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15

Sc = DU (10,110) Sc = DU (10,110) Sc = DU (10,110) Sc = DU (10,110) Sc = DU (10,110) Sc = DU (10,110) Sc = DU (10,110) Sc = DU (10,110) Sc = DU (10,110)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

Large (supply = 370,000 – 420,000 seat timeslots)

Jcr & Ict: 100% Jcr & Ict: 75% Jcr & Ict: 50%
LD: 45-60% MD: 65-80% HD: 85-100% LD: 45-60% MD: 65-80% HD: 85-100% LD: 45-60% MD: 65-80% HD: 85-100%

R = 60 R = 60 R = 60 R = 60 R = 60 R = 60 R = 60 R = 60 R = 60

Cr = DU (5,50) Cr = DU (5,50) Cr = DU (5,50) Cr = DU (5,50) Cr = DU (5,50) Cr = DU (5,50) Cr = DU (5,50) Cr = DU (5,50) Cr = DU (5,50)

C = 340 C = 470 C = 600 C = 340 C = 470 C = 600 C = 340 C = 470 C = 600

W = 16 W = 16 W = 16 W = 16 W = 16 W = 16 W = 16 W = 16 W = 16

T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15 T = 15

Sc = DU (10,140) Sc = DU (10,140) Sc = DU (10,140) Sc = DU (10,140) Sc = DU (10,140) Sc = DU (10,140) Sc = DU (10,140) Sc = DU (10,140) Sc = DU (10,140)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

X,Y=
DU (0, 800)

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

P(DNcw) =
[.7, .15, .1, .05]

69

2.6.2. Math model experimental setup, results, and discussion

The math model was tested on all problem instances in which the size is small (S) or large

(L), the availability is 100% or 50%, and the demand level is low (LD) or high (HD). Thus, the

math model was tested on all instances in eight problem subcategories (40 instances total). The

CPLEX computation time limit for small and large problem sizes was set to 300 and 3600 seconds,

respectively, and the node parameter was set to 3 to minimize the likelihood of CPLEX reaching

an out-of-memory status.

 Before discussing the results, it is important to mention that we divide courses into four

groups based on how well their f2f meetings are scheduled in the best solution identified by

CPLEX.

1. Unscheduled courses (UC): Courses with no scheduled f2f meetings.

2. Partially scheduled courses (PSC): Courses in which the total number of scheduled f2f

meetings is less than the desired number of f2f meetings.

3. Fully scheduled courses (FSC): Courses in which all desired f2f meetings are scheduled

but not all in the desired weeks.

4. Perfectly scheduled courses (PeSC): Courses in which all desired f2f meetings are

scheduled and they are scheduled in the desired weeks.

Table 17 shows the results of the experiments that tested the math model. Each row in the

table refers to a different problem subcategory, and the results in each row are average results for

five problem instances. Table 17 has 21 columns. The first column refers to the demand density

of the problem instance which equals Demand/Supply as computed in equations 64-65. The next

70

two columns show the number of binary variables and constraints in the IP formulation that

remains after CPLEX finishes preprocessing the initial IP formulation shown in equations 34-54.

The next four columns show the time needed to solve the IP’s LP relaxation, CPLEX gap for the

best solution identified by CPLEX, number of wasted seats for all courses combined in the best

solution identified by CPLEX, and density of the best solution found by CPLEX, respectively. The

density equals the total number of seat time slots used divided by the total number of seat time

slots available. The next column, “Density Gap,” shows the difference between the instance

density and the best solution density. The next four columns show the average number of

unscheduled, partially scheduled, fully scheduled, and perfectly scheduled courses, respectively,

in the best solution identified by CPLEX. The next seven columns show the values of the seven

parts of the objective function (described in Section 2.4) in the best solution identified by CPLEX.

The second to the last column shows the overall objective value which is the summation of the

values in the previous seven columns. Finally, last column shows the objective value without

objective 4 which is related to the wasted seats. The reason we added this column is that

minimizing the number of wasted seats is an intermediate priority that is generally less important

than other objectives such as the number of meetings lacking.

Table 17. Math model results

Instance
density

(%)

#Binary
vars

Const

LP relax
Soln
Time
(sec)

Cplex
Gap
(%)

Wasted
seats

Best
Soln

Density
(%)

Density
Gap
(%)

#UC #PSC #FSC #PeSC Obj1 Obj2 Obj3 Obj4 Obj5 Obj6 Obj7 Best
OV

Best
OV
w/o

Obj 4

S-100%-LD 54.14 26816 75165 0.4 14.12 19 54.14 0 0 0 2.2 37.8 63776 7897 9659 7730 0 1490 0 90552 82822

S-100%-HD 94.00 47087 131215 0.9 93.26 42 61.92 32.08 2.2 25.6 2 40.2 109656 16489 16672 18728 283640 70422 13080000 13595606 13576878

S-50%-LD 54.14 4973 12085 0.17 0.03 86 54.14 0 0 0 3 37 66370 9380 10690 39168 0 1412 0 127020 87852

S-50%-HD 94.00 11070 27769 0.95 54.43 193 76.91 17.09 0.2 16.6 12.4 40.8 115712 18282 18047 94896 151340 46366 1540000 1984763 1889747

L-100%-LD 52.77 Failed to generate feasible solution because of out-of-memory status in 3 out of 5 instances

L-100%-HD 92.44 8820710 27057756 2770 100 4670 0 92.44 600 0 0 0 170666

306005 286482 2748198 37093800 31609188 4570260000 4644010336 4641262138

L-50%-LD 52.77 1266371 3834490 38 99.76 1202 20.67 32.10 53.4 205.8 12 68.8 665132 88596 104580 942372 12683960 10965900 519160000 544610541 543668169

L-50%-HD 92.44 2257226 6819602 75 99.96 3496 11.35 81.09 325.8 216 17.2 41 121383

187636 214015 2716758 32554960 27841382 2916980000 2981708585 2978991827

71

72

As Table 17 shows, the math model performs well on small instances with low demand

(with 100% or 50% availability). However, performance drastically worsens when the problem

size or demand level increases. Within the same instance size and demand level, the number of

binary variables and constraints in the math model decreases when availability decreases from

100% to 50%. This happens due to having fewer room and timeslot options to check. The average

CPLEX gap and density gap (gap between the best solution density and instance density) for all

small cases is 40.46% and 12.29% respectively. The average time to solve the LP relaxation of the

integer program is less than one second for all small instances. Even though we expect the math

model to solve all small instances to optimality, the math model generates non-optimal feasible

solutions with 0.6 unscheduled courses on average per small instance.

In large instances with 100% availability and low demand (L-100%-LD), CPLEX reached

an out-of-memory status in 3 out of 5 instances. In the other three subcategories of large instances,

the math model did not generate acceptable results. Indeed, the average CPLEX gap and density

gap is 100% and 68.4% for those instances, respectively. Interestingly, for the HD instances, the

time needed to solve the LP relaxation dramatically increases (from 75 seconds to 2770 seconds)

when the room and timeslot availability increases from 50% to 100%. Overall, CPLEX does a

terrible job solving the large problem instances, leaving more than half of the courses unscheduled

on average.

The results in Table 17 verify the absolute need for a heuristic approach than can generate

high quality solutions within a reasonable amount of time. This is especially the case for large

instances with a large number of binary variables and constraints which are similar in size to real-

life problems.

73

2.6.3. Heuristic method experimental setup, results, and discussion

A significant number of preliminary experiments were performed to determine the best

way to generate PRAs in step 1 of the heuristic (Figure 3). Results overwhelmingly showed that

heuristically generating PRAs (Section 2.5.3) was better than using the mini math model (Section

2.5.2) because less computation time was used. Regarding step 5 of the heuristic (Section 2.5.5),

preliminary experiments revealed the following.

• Options 1 and 3 for deciding how many courses’ f2f meetings to remove from the current

schedule do not help to create better solutions, and they slow down the algorithm. We

decided to ignore these options and just use option 2 which is to remove all f2f meetings

for a certain number of courses. The number of courses is random integer from 1 to 7.

• Options 1-6 for deciding which courses’ f2f meetings to remove from the schedule were

all beneficial. Based on the results of preliminary runs, the likelihood of selecting option

(1, 2, 3, 4, 5, 6) when generating a neighboring solution was (15%, 25%, 3%, 7%, 15%,

35%).

• Options 1-3 for deciding which unscheduled f2f meetings are added to the waitlist were

all beneficial. Based on preliminary experiments, the likelihood of selecting option (1,

2, 3) was selected to be (40%, 30%, 30%).

A start temperature (StartTemp) of 30,000 and temperature factor (TempFactor) of 0.99999 were

used in all experiments. In all experiments the parameter PRA_limit (see Figure 4) was set to

infinity; there was no predefined limit on the number of PRAs generated for each course.

74

Tables 18-24 show the results for the heuristic algorithm on all 135 problem instances.

Table 18 shows the settings and quality of the initial feasible solutions that were generated in the

experiments on the small (S) problem instances. Table 19 shows the quality of the best feasible

solutions that were found in the experiments on the small instances. Tables 20-21 are analogous

to Tables 18-19 and show the results of the experiments on the medium-sized (M) instances. Tables

22-23 are analogous to Tables 18-19 and show the results of the experiments on the large (L)

instances. Table 24 shows a detailed breakdown of the objective value on a “per course” basis for

all instances. Each row in each table is the average result for five instances within the same

subcategory. For each instance subcategory, the values of the parameters MaxM, MaxN, MaxWS,

and MaxRoom (Figure 4) are modified to be able to generate at least one PRA for each course in

all 5 instances within each subcategory.

 Tables 18, 20, and 22 have nine columns with the same headers. The first two columns

show the problem instance demand density and computation time limit. The next column refers to

the settings used to generate the PRAs (Figure 4). The setting components are MaxM, MaxN,

MaxWS, and MaxRoom. The next column shows the time elapsed to generate the initial feasible

solution. The next three columns show the number of unscheduled courses, density, and number

of wasted seats in the initial feasible solution, respectively. The density equals the total number of

seat time slots used divided by the total number of seat time slots available. The second to the last

column shows the objective value of the initial feasible solution. Finally, the last column shows

the total number of PRAs generated for all courses combined (in the procedure shown in Figure

4).

Tables 19, 21, and 23 have 20 columns with the same headers. The first three columns

show the total number of iterations, iterations in which the neighboring solution is accepted, and

75

iterations in which a neighboring solution with a better objective value is accepted, respectively.

The next three columns show the number of wasted seats, best solution density, and density gap

(i.e., difference between the demand density of the problem instance and the best solution density),

respectively. The next four columns show the average number of unscheduled, partially scheduled,

fully scheduled, and perfectly scheduled courses, respectively. The next seven columns show the

values of the seven parts of the objective function in the best solution identified by the heuristic.

The next two columns show the overall objective value (which is the summation of the values in

the previous seven columns) and objective value improvement compared to the initial feasible

solution. Finally, the last column shows the objective value without objective 4 which is related to

the wasted seats. Minimizing the number of wasted seats is an intermediate priority that is

generally less important than other objectives. The last column shows the overall objective value

without considering the number of wasted seats in each course’s room assignment.

Table 24 shows how the objective value breaks down on a “per course” basis for all

problem instances. Each column in the table refers to a different objective function component

(objectives 1-7). The values in the table are computed by dividing the objective values in columns

Obj1, Obj2, Obj3, Obj4, Obj5, Obj6, and Obj7 in Tables 19, 21, and 23 by their weights (α1 – α7),

then dividing the result by the number of courses, and lastly dividing the result by the average

number of students in a course. For example, the values in row “M-100%-LD” are computed by

first dividing the corresponding values in Table 21 by the appropriate weight (α1 – α7), then

dividing the result by 140 (the number of courses), and finally dividing the result by 60 (the average

number of students per course which is the expectation of the DU(10,110) distribution). The values

in this row of the table are interpreted as follows.

76

• Objective 1 is 3.56 which means each course occupies about 3.56 rooms on average.

• Objective 2 is 303.63 which means that the maximum distance between rooms assigned

to each course is about 303.63 meters on average (in a campus measuring 800m x 800m.)

• Objective 3 is 474.21 which means that the maximum distance between the office of the

professor who teaches a course and any room assigned to it is about 474.21 meters on

average.

• Objective 4 is 0.24 which means that about 0.24 seats are wasted in each course’s

assignment on average.

• Objective 5 is 0 which means that all desired f2f meetings have been scheduled for all

courses in all instances in this problem subcategory.

• Objective 6 is 0.07 which means that the deviation between when f2f sessions are desired

and when they are scheduled is about 0.07 on average. In other words, the average course

has one f2f meeting that is scheduled 0.07 weeks away from when it is desired, and all

other f2f meetings are scheduled in the exact weeks when desired.

• Objective 7 is 0 which means that there are no unscheduled courses in any instance in this

problem subcategory.

Tables 18-24 show that the heuristic performs well across all subcategories of problem

instances. The values in column “UC” in Tables 19, 21, and 23 shows that, in all instances, the

heuristic is able to schedule one or more socially distanced, in-person meetings each semester

(when all students in a course gather in multiple rooms simultaneously) for each course. As

expected, within the same instance size and availability, when the demand level increases, the gap

between the best solution density and the instance density increases. For the small, medium, and

77

large instances–across all availability levels and demand levels–the average gap between the best

solution density and the instance density is 4.04%, 6.99%, and 5.98%, respectively. The 5.98%

gap for the large instances indicates that the heuristic approach works very well for large instances

(which are closest to real-life problems) if seat-timeslot utilization is the main goal. The average

seat-timeslot utilization across all HD instances (shown in column “Best Soln Density” in Tables

19, 21, and 23) is 78.1%. Across all instance sizes, on average the objective value of the best

solution is 99.31% better than that of the initial feasible solution.

Table 24 shows that, in all problem subcategories, courses are scheduled in two to four

rooms on average (Obj1). The values of Mc and Nc (Obj2 and Obj3) vary due to different settings

used in each scenario but are generally low considering that the university campus is assumed to

be an 800x800 square (with diagonal length 1131 = 800√2) and classrooms are randomly scattered

within the campus. As expected, the number of wasted seats (Obj4), number of meetings lacking

(Obj5), and timing deviation (Obj6) generally increase as the demand increases (from LD to MD

to HD). The most important information in this table which verifies the power of the heuristic is

shown in the third-last and last columns. The last column shows that, in all instances, there are no

unscheduled courses. In other words, there are no courses without any f2f meetings scheduled. The

third-last column shows that, in 24 of the 27 problem subcategories, the average number of f2f

meetings lacking per course is less than 1. A comparison of columns “Best OV” and “Best OV

w/o Obj4” in Tables 17, 19, and 23 shows that the heuristic clearly outperforms CPLEX across all

problem subcategories.

Table 18. Heuristic method results for small instances: settings and initial feasible solution

Instance
density

(%)

Allowed
time
(sec)

Heuristic settings
[MaxM, MaxN,

MaxWS, MaxRoom]

IFS
time elapsed

(sec)

IFS
Unscheduled

courses

IFS
density

(%)

IFS
 # Wasted

seats

IFS
OV Total # PRA Generated

S-100%-LD 54.14 300 [700, 9999, 10, 6] 0 5.8 34.20 171 27,227,560 2779

S-100%-MD 71.08 300 [700, 9999, 10, 6] 0 14.6 35.87 215 62,468,020 2779

S-100%-HD 94.00 300 [400, 9999, 10, 5] 0 24.4 34.66 156 112,312,140 4112

S-75%-LD 54.14 300 [900, 9999, 15, 6] 0 3.2 41.93 244 17,615,560 1333.4

S-75%-MD 71.08 300 [900, 9999, 15, 6] 0 6.4 44.70 364 34,352,100 1627

S-75%-HD 94.00 300 [900, 9999, 20, 6] 0 20 45.23 261 92,605,939 2102

S-50%-LD 54.14 300 [1000, 9999, 15, 6] 0 1 46.92 308 8,029,595 294

S-50%-MD 71.08 300 [900, 9999, 20, 6] 0 5 50.24 533 26,872,443 363

S-50%-HD 54.14 300 [1000, 9999, 20, 6] 0 11 53.57 453 64,269,011 724

Table 19. Heuristic method results for small instances: best solution obtained

Iter

Acp

Better

Wasted
seats

Best
soln

density
(%)

Density
Gap
(%)

#UC #PSC #FSC #PeSC Obj1 Obj2 Obj3 Obj4 Obj5 Obj6 Obj7 Best
OV

OV
improve

(%)

Best
OV
w/o
Obj4

S-100%-LD 801555 161965 78268 23 54.14 0 0 0 0.8 39.2 63192 7609 9665 1866 0 510 0 82842 99.62 80976

S-100%-MD 521276 65709 31918 135 70.28 0.80 0 1.2 8.6 38.6 73108 11297 13087 18192 35040 5670 0 168394 99.73 138202

S-100%-HD 612313 32374 15169 252 84.72 9.28 0 10.4 24.4 35.2 114990 16178 17486 39226 83280 22360 0 293532 99.73 254294

S-75%-LD 805394 156346 73069 50 54.14 0 0 0 0.6 39.4 65776 8437 10,059 7256 0 513 0 87955 99.39 84682

S-75%-MD 556176 70198 31677 234 71.08 0 0 0 12.2 42.8 90608 13602 14298 42296 0 10274 0 171077 99.44 128781

S-75%-HD 584931 52248 20245 298 83.5 10.5 0 12 26 32 117602 18659 18242 57008 92680 21914 0 324105 99.65 269096

S-50%-LD 672253 213453 73687 218 54.14 0 0 0 2.6 37.4 66402 9430 10725 39892 0 1478 0 125598 84.86 88035

S-50%-MD 626090 188602 42926 507 68.98 2.1 0 2 15 37 92452 14607 14893 97682 17360 12180 0 249174 99.05 151492

S-50%-HD 601765 116729 28398 487 80.3 13.7 0 12 22 36 117242 18326 18300 102802 117800 16624 0 391094 99.34 288292

78

Table 20. Heuristic method results for medium-sized instances: settings and initial feasible solution

Instance
density

(%)

Allowed
time
(sec)

Heuristic settings
[MaxM, MaxN,

MaxWS, MaxRoom]

IFS
time elapsed

(sec)

IFS
#Unscheduled

courses

IFS
Density

 (%)

IFS
#Wasted

seats

IFS
OV Total # PRA Generated

M-100%-LD 53.58 1200 [400, 9999, 5, 5] 3.6 23.2 24.17 456 166,798,280 39336

M-100%-MD 74.97 1200 [400, 9999, 5, 5] 4 63 20.98 506 422,917,400 41753

M-100%-HD 90.42 1200 [400, 9999, 5, 5] 5.8 90.2 25.10 652 598,762,800 49634

M-75%-LD 53.58 1200 [500, 9999, 5, 5] 1 16 30.46 593 112,315,400 35061

M-75%-MD 74.97 1200 [500, 9999, 5, 5] 2 44.2 28.79 723 303,847,600 41390

M-75%-HD 90.42 1200 [500, 9999, 5, 5] 2 64 31.60 865 448,614,400 46968

M-50%-LD 53.58 1200 [800, 9999, 5, 6] 1 9 36.04 699 68,933,300 75982

M-50%-MD 74.97 1200 [800, 9999, 5, 6] 1 25 38.42 931 186,538,200 120880

M-50%-HD 90.42 1200 [800, 9999, 5, 6] 1 45 38.28 967 327,108,600 120145

Table 21. Heuristic method results for medium-sized instances: best solution obtained

 Iter

Acp

Better

Wasted
seats

Best
soln

density
(%)

Density
Gap
(%)

#UC #PSC #FSC #PeSC Obj1 Obj2 Obj3 Obj 4 Obj5 Obj6 Obj7 Best
OV

OV
improve

(%)

Best
OV
w/o

Obj4

M-100%-LD 583283 98053 47596 178 53.58 0 0 0 7.2 132.8 298670 25505 39833 19878 0 6012 0 389,898 99.73 370,021

M-100%-MD 619978 25309 12372 794 71.62 3.33 0 19.8 79 91.2 456588 34097 57447 108646 212580 205176 0 1,054,535 99.75 1,027,689

M-100%-HD 669318 15351 9238 1196 77.98 12.44 0 65 75.6 99.4 539976 42357 72348 181246 788500 259564 0 1,883,990 99.67 1,702,745

M-75%-LD 571465 85238 41133 204 53.58 0 0 0 23.6 116.4 301952 30293 42251 20280 0 21564 0 416,340 99.47 396,060

M-75%-MD 643528 25145 18000 848 69.97 4.99 0 29.4 76.4 84.2 438464 42232 59364 120190 318040 222320 0 1,200,610 99.60 1,080,421

M-75%-HD 679675 17500 7293 1131 76.37 14.04 0 71.4 71.4 97.2 541116 52815 74827 177810 892400 269142 0 2,008,108 99.54 1,830,300

M-50%-LD 448555 58813 28372 328 53.45 0.13 0 0.4 48 91.6 315368 44805 47645 39236 8140 62522 0 498,951 98.91 478,480

M-50%-MD 688482 23135 11369 996 66.85 8.12 0 41 64.8 82.2 453156 66150 54567 141182 519880 234668 0 1,481,603 99.20 1,328,421

M-50%-HD 580797 18052 8947 1280 70.58 19.84 0 79.4 74.4 86.2 557606 82341 84601 200798 1261240 239238 0 2,425,818 99.24 2,225,026

79

Table 22. Heuristic method results for large instances: settings and initial feasible solution

Instance
density (%)

Allowed
time (sec)

Heuristic settings
[MaxM, MaxN,

MaxWS, MaxRoom]

IFS
time elapsed

(sec)

IFS
#Unscheduled

courses

IFS
density

(%)

IFS
#Wasted

seats

IFS
OV Total # PRA Generated

L-100%-LD 52.77 3600 [200, 9999, 5, 4] 23.2 40.6 20.24 2740 373,467,800 26519

L-100%-MD 69.39 3600 [200, 9999, 5, 4] 29.6 57.4 25.74 3644 483,591,200 31967

L-100%-HD 92.44 3600 [200, 9999, 5, 4] 37.8 145.2 22.62 2897 1,338,280,200 35560

L-75%-LD 52.77 3600 [200, 9999, 15, 4] 7 40.8 21.75 6064 352,080,080 24878

L-75%-MD 69.39 3600 [200, 9999, 15, 4] 12.2 69 25.57 7332 525,608,600 29821

L-75%-HD 92.44 3600 [200, 9999, 15, 4] 14.2 136 25.54 8242 1,137,623,800 33413

L-50%-LD 52.77 3600 [500, 9999, 15, 4] 4.4 30.8 22.27 6279 286,841,400 247128

L-50%-MD 69.39 3600 [500, 9999, 15, 4] 5 55.8 24.40 6625 482,577,600 305907

L-50%-HD 92.44 3600 [500, 9999, 15, 4] 6.2 100.8 28.27 8487 880,899,000 363502

Table 23. Heuristic method results for large instances: best solution obtained

Iter

Acp

Better

Wasted
seats

Best
soln

density
(%)

Density
Gap
(%)

#UC #PSC #FSC #PeSC Obj1 Obj2 Obj3 Obj4 Obj5 Obj6 Obj7 Best
OV

OV
improve

(%)

Best
OV
w/o

Obj4

L-100%-LD 346051 70576 33652 2944 52.77 0 0 0 79.4 260.6 624,776 37,056 112,137 222,946 0 94,206 0 1,242,602 99.60 868,175

L-100%-MD 266169 26862 13183 7041 69.39 0 0 0 333.6 136.4 1,043,274 50,958 162,091 611,366 0 1,123,814 0 2,991,504 99.33 2,380,137

L-100%-HD 361659 7551 4507 8898 80.36 12.08 0 187.6 286.4 126 1,372,894 66,307 208,137 903,750 4,777,720 2,717,692 0 10,046,492 99.10 9,142,749

L-75%-LD 316298 47758 23282 5669 52.77 0 0 0 143.2 196.8 778,684 38,146 113,422 429,210 0 205,758 0 1,565,222 99.31 1,136,010

L-75%-MD 353957 17195 8467 13911 68.89 0.50 0 15.6 344 110.4 1,049,352 50,743 161,550 1,168,472 193,180 1,553,148 0 4,176,444 99.17 3,007,973

L-75%-HD 409893 12373 5182 16132 77.30 15.15 0 215.2 282.6 102.2 1,380,914 66,555 211,486 1,586,878 6,020,060 2,777,112 0 12,043,040 98.84 10,456,126

L-50%-LD 283006 66823 13100 8158 52.73 0.04 0 0.4 277.8 61.8 816,846 93,646 133,027 660,914 13,160 987,986 0 2,705,576 99.01 2,044,665

L-50%-MD 464032 12451 6278 13608 64.09 5.30 0 99.6 274.2 96.2 1,078,406 124,002 183,581 1,248,738 2,118,900 2,036,384 0 6,790,010 98.48 5,541,273

L-50%-HD 351107 10244 5244 17105 71.66 20.79 0 268.4 272.2 59.4 1,420,294 165,715 239,038 1,697,154 8,271,600 2,941,906 0 14,735,700 98.28 13,038,553

80

81

Table 24. Detailed objective value breakdown
Obj1:
Num

rooms

Obj2:
Mc

(meters)

Obj3:
Nc

(meters)

Obj4:
Wasted
seats

Obj5:
Meetings
lacking

Obj6:
Timing

deviation

Obj7:
Unscheduled

courses

S-100%-LD 3.51 422.72 536.94 0.10 0.00 0.03 0.00
S-100%-MD 2.95 456.45 528.76 0.74 0.14 0.23 0.00

S-100%-HD 3.65 513.58 555.11 1.25 0.26 0.71 0.00

S-75%-LD 3.62 463.00 548.04 0.38 0.00 0.03 0.00

S-75%-MD 3.66 549.56 577.68 1.71 0.00 0.42 0.00

S-75%-HD 3.73 592.34 579.10 1.81 0.29 0.70 0.00

S-50%-LD 3.67 527.05 589.18 2.39 0.00 0.06 0.00

S-50%-MD 3.74 590.19 601.74 3.95 0.07 0.49 0.00

S-50%-HD 3.72 581.79 580.94 3.26 0.37 0.53 0.00

M-100%-LD 3.56 303.63 474.21 0.24 0.00 0.07 0.00

M-100%-MD 4.01 299.10 503.92 0.95 0.19 1.80 0.00

M-100%-HD 3.75 294.15 502.42 1.26 0.55 1.80 0.00

M-75%-LD 3.59 360.63 502.99 0.24 0.00 0.26 0.00

M-75%-MD 3.85 370.46 520.74 1.05 0.28 1.95 0.00

M-75%-HD 3.76 366.77 519.63 1.23 0.62 1.87 0.00

M-50%-LD 3.75 533.39 567.21 0.47 0.01 0.74 0.00

M-50%-MD 3.98 580.27 478.66 1.24 0.46 2.06 0.00

M-50%-HD 3.87 571.81 587.51 1.39 0.88 1.66 0.00

L-100%-LD 2.45 145.32 439.75 0.87 0.00 0.37 0.00

L-100%-MD 2.96 144.56 459.83 1.73 0.00 3.19 0.00

L-100%-HD 3.05 147.35 462.53 2.01 1.06 6.04 0.00

L-75%-LD 3.05 149.59 444.79 1.68 0.00 0.81 0.00

L-75%-MD 2.98 143.95 458.30 3.31 0.05 4.41 0.00

L-75%-HD 3.07 147.90 469.97 3.53 1.34 6.17 0.00

L-50%-LD 3.20 367.24 521.67 2.59 0.01 3.87 0.00

L-50%-MD 3.06 351.78 520.80 3.54 0.60 5.78 0.00

L-50%-HD 3.16 368.26 531.20 3.77 1.84 6.54 0.00

82

2.7. Conclusion

In response to the COVID-19 pandemic, academic institutions offered courses in three

formats: in-person, online, and hybrid. In each format, no more than one classroom could be

assigned to a course. However, we believe that a more sophisticated course format is needed. In

this chapter, we propose a method for university course scheduling during a pandemic in which

multiple classrooms may be assigned to each course. The goal is for all courses to have limited

number of socially distanced, face-to-face (f2f) meetings each semester when all students in the

course simultaneously spread out across multiple classrooms. We develop a mathematical model

that can be used to schedule such face-to-face meetings for all courses. The model considers

COVID-19-reduced classroom capacities, the number of students enrolled in each course,

distances between rooms, and other practical constraints. Seven optimization criteria are

considered including the timing of f2f meetings, distances of classrooms from instructor offices,

and the distances between classrooms assigned to the same course. A heuristic algorithm is also

developed. The heuristic method significantly outperforms a direct approach in which the math

model is solved using standard integer programming software. The heuristic obtains excellent

results on life-sized instances (with up to 600 courses and 60 classrooms), allowing all courses—

even the largest—to have one or more socially distanced, in-person meetings each semester in

which all students in the course simultaneously gather in multiple rooms.

Future work might consider applying the methods proposed in this chapter to real-life

settings to help real universities prepare for future pandemics. More experiments that consider

additional scenarios could also be conducted. Design-of-experiment methods (such as Taguchi

methods) could also be applied to find the best settings for the heuristic.

83

Chapter 2 References

Abramson, D. (1991). Constructing school timetables using simulated annealing: Sequential and

parallel algorithms. Management Science, 37(1), 98–113.

Al-Betar, M. A., & Khader, A. T. (2012). A harmony search algorithm for university course

timetabling. Annals of Operations Research, 194(1), 3–31.

Atef Yekta, H., & Day, R. (2020). Optimization-based mechanisms for the course allocation

Problem. INFORMS Journal on Computing, 32(3), 641–660.

Ayob, M., & Jaradat, G. (2009). Hybrid ant colony systems for course timetabling problems.

2009 2nd Conference on Data Mining and Optimization, 120–126.

Barnhart, C., Bertsimas, D., Delarue, A., & Yan, J. (2021). Course scheduling under sudden

scarcity: Applications to pandemic planning. Manufacturing & Service Operations

Management, 24(2), 727–745.

Bettinelli, A., Cacchiani, V., Roberti, R., & Toth, P. (2015). An overview of curriculum-based

course timetabling. TOP, 23(2), 313–349.

Budish, E., Cachon, G. P., Kessler, J. B., & Othman, A. (2017). Course Match: A large-scale

implementation of approximate competitive equilibrium from equal incomes for

combinatorial allocation. Operations Research, 65(2), 314–336.

Chiarandini, M., Birattari, M., Socha, K., & Rossi-Doria, O. (2006). An effective hybrid

algorithm for university course timetabling. Journal of Scheduling, 9(5), 403–432.

84

da Fonseca, G. H. G., Santos, H. G., Toffolo, T. Â. M., Brito, S. S., & Souza, M. J. F. (2016).

GOAL solver: a hybrid local search-based solver for high school timetabling. Annals of

Operations Research, 239(1), 77–97.

da Fonseca, G. H. G., Santos, H. G., Carrano, E. G., & Stidsen, T. J. R. (2017). Integer

programming techniques for educational timetabling. European Journal of Operational

Research, 262(1), 28–39.

de Oliveira, P. M., Mesquita, L. C. C., Gkantonas, S., Giusti, A., & Mastorakos, E. (2021).

Evolution of spray and aerosol from respiratory releases: theoretical estimates for insight on

viral transmission. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 477(2245), 20200584.

Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19

in real time. The Lancet Infectious Diseases, 20(5), 533–534.

Feizi-Derakhshi, M.-R., Babaei, H., & Heidarzadeh, J. (2012). A survey of approaches for

university course timetabling problem. Proceedings of 8th International Symposium on

Intelligent and Manufacturing Systems, Sakarya University Department of Industrial

Engineering, Adrasan, Antalya, Turkey, 307–321.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., &

Wenderoth, M. P. (2014). Active learning increases student performance in science,

engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23),

8410–8415.

85

Goh, S. L., Kendall, G., & Sabar, N. R. (2017). Improved local search approaches to solve the

post enrolment course timetabling problem. European Journal of Operational Research,

261(1), 17–29.

Gonzalez, G., Richards, C., & Newman, A. (2018). Optimal course scheduling for United States

Air Force academy cadets. Interfaces, 48(3), 217–234.

Imran Hossain, Sk., Akhand, M. A. H., Shuvo, M. I. R., Siddique, N., & Adeli, H. (2019).

Optimization of university course scheduling problem using particle swarm optimization

with selective search. Expert Systems with Applications, 127, 9–24.

Jamal, A. (2020). Global optimization using local search approach for course scheduling

problem. In Scheduling Problems - New Applications and Trends. IntechOpen.

Jat, S. N., & Yang, S. (2011). A hybrid genetic algorithm and tabu search approach for post

enrolment course timetabling. Journal of Scheduling, 14(6), 617–637.

Johnson, C., & Wilson, R. L. (2022). Practice summary: A multiobjective assignment model for

optimal socially distanced classrooms for the Spears School of Business at Oklahoma State

University. INFORMS Journal on Applied Analytics, 52(3), 295–300.

Lewis, R., & Paechter, B. (2005). Application of the grouping genetic algorithm to university

course timetabling (pp. 144–153).

Lü, Z., & Hao, J.-K. (2010). Adaptive tabu search for course timetabling. European Journal of

Operational Research, 200(1), 235–244.

86

Mencía, R., Sierra, M. R., Mencía, C., & Varela, R. (2016). Genetic algorithms for the

scheduling problem with arbitrary precedence relations and skilled operators. Integrated

Computer-Aided Engineering, 23(3), 269–285.

Méndez-Díaz, I., Zabala, P., & Miranda-Bront, J. J. (2016). An ILP based heuristic for a

generalization of the post-enrollment course timetabling problem. Computers & Operations

Research, 76, 195–207.

Naji Azimi, Z. (2005). Hybrid heuristics for examination timetabling problem. Applied

Mathematics and Computation, 163(2), 705–733.

Navabi-Shirazi, M., El Tonbari, M., Boland, N., Nazzal, D., & Steimle, L. N. (2022).

Multicriteria course mode selection and classroom assignment under sudden space scarcity.

Manufacturing & Service Operations Management.

https://doi.org/10.1287/msom.2022.1131

Sabar, N. R., Ayob, M., Kendall, G., & Qu, R. (2012). A honey-bee mating optimization

algorithm for educational timetabling problems. European Journal of Operational

Research, 216(3), 533–543.

Shiau, D.-F. (2011). A hybrid particle swarm optimization for a university course scheduling

problem with flexible preferences. Expert Systems with Applications, 38(1), 235–248.

Tang, Y., Liu, R., Wang, F., Sun, Q., & Kandil, A. A. (2018). Scheduling optimization of linear

schedule with constraint programming. Computer-Aided Civil and Infrastructure

Engineering, 33(2), 124–151.

	University Course Scheduling During a Pandemic and University Course Planning: Math Models and Heuristic Algorithms
	Recommended Citation

	Chapter 1: A mathematical modeling approach to university course planning
	1.1. Introduction
	1.2. Literature review
	1.3. The student course planning problem (SCPP)
	1.3.1. Problem description
	1.3.2. Mathematical model
	1.3.3. Experimental setup
	1.3.4. Case study: Industrial Engineering BSE program at UW-Milwaukee
	1.3.5. Experiment 1: Student with no leave of absence and no transfer courses
	1.3.6. Experiment 2: Student with a leave of absence in semester five and eight transfer courses
	1.3.7. Experiment 3: Leave of absence timing
	1.3.8. Experiments on fictional problem instances

	1.4. The department course planning problem (DCPP)
	1.4.1. Problem description
	1.4.2. Mathematical models
	1.4.3. Model DCPP I
	1.4.4. Model DCPP II
	1.4.5. Case study revisited: Industrial Engineering BSE program at UW-Milwaukee
	1.4.6. Experiments on fictional problem instances

	1.5. Conclusion
	Chapter 1 References
	Chapter 2: University course scheduling during a pandemic
	2.1. Introduction
	2.2. Literature review
	2.3. Problem description
	2.4. Exact solution approach using a mathematical model
	2.5. Heuristic method
	2.5.1. Overall structure of the heuristic method
	2.5.2. Step 1: Generate potential room assignments (exact method)
	2.5.3. Step 1: Generate potential room assignments (heuristic method)
	2.5.4. Step 2: Create an initial schedule
	2.5.5. Step 5: Create neighboring solution
	2.5.6. Step 6: Decide if neighboring solution replaces current solution

	2.6. Experimental setup, results, and discussion
	2.6.1. General experimental setup
	2.6.2. Math model experimental setup, results, and discussion
	2.6.3. Heuristic method experimental setup, results, and discussion

	2.7. Conclusion
	Chapter 2 References
	Chapter 2 References
	Chapter 2 References
	Chapter 2 References

