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ABSTRACT 

PYTHON-BASED ANALYSIS TO SEGMENT BONE AND SOFT TISSUE IN A HEALING CALLUS 

by  

Roberto Lopez 

 
 

The University of Wisconsin-Milwaukee, 2022 
Under the Supervision of Professor Priyatha Premnath 

 

The main objective of this study was to produce a Python script that would help facilitate the 

segmentation process of both bone and soft tissue. The proposed script, in tangent with ImageJ 

and Mimics, was successful in producing viable results when the bone and soft tissue sample was 

placed near hydroxyapatite (HA) phantoms during the image acquisition process. It was 

important to acquire both the HA phantoms and the sample within the same image sequence as 

the script functioned by analyzing the statistical distribution of the different HA regions to locate 

the most ideal thresholding ranges to determine the bone mineral density (BMD) percent 

composition. When the sample and HA phantoms were in the same set of images, they were 

both subject to the same type of noise and attenuation, thus allowing for better results to be 

produced. The script was successful in processing input images and was able to calculate the 

overall volume and surface area of both the bone and soft tissue, as well as determining the 

overall bone mineral density of bone. It was also attempted to process bone and soft tissue 

samples separate of the HA phantoms, but the results were inconclusive. 
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1.  Introduction 

1.1    Overview of Bone Properties 

When dealing with bones, nobody likes a broken one. However, as this is the real world, 

there is roughly a 45% chance of a long bone fracture occurring during one’s life [1, 2]. While the 

healing mechanisms of a fracture are understood well enough, there is still a chance that a 

fracture will never properly heal. When a fracture fails to regenerate it is called a nonunion 

fracture and in 2016, a national team of orthopedic surgeons investigated the health records of 

90.1 million patients with the goal to better describe the epidemiology of fracture nonunions in 

adults [3].   

The researchers determined that nonunion fractures occur at an overall average of 4.93% 

with significant variation from bone to bone. The bones that were more likely to heal were in the 

arms, while the bones that had a higher chance of a nonunion fracture occurring were in the legs. 

With the tibia having a 13.95% chance of a nonunion fracture occurring, trying to gather more 

information regarding the entire healing process of this bone could provide greater insight into 

how to better treat these types of injuries [3].   

Bone tissue is made of a two-phase composite material, which is mostly collagen and 

mineral [4]. Collagen makes up around 90% of the organic content of bone, intertwining to form 

flexible and slightly elastic fibers in the bone. The collagen of mature bones is mixed with a dense 

inorganic filling component called hydroxyapatite that allows for the hardening of bone. Crystals 

from the mineral form a calcium phosphate, that impregnates the collagen matrix within bones 

[5].  
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Along with being on the higher end of the spectrum for the possibility of nonunion 

fractures to occur, tibial fractures are also the third most fractured bone [6]. They are in general 

commonly described by their location (i.e., proximal, middle, distal) and by the fracture 

configuration (i.e., transvers, oblique, spiral, comminuted, or segmental) [7]. They occur when an 

external force transfers energy into the bone that is above the maximum that can be absorbed 

and properly distributed, the bone will break [4].   

The amount of force that enters the bone is not the only component that will determine 

if a bone breaks. The density of trabecular structures also plays an important role in determining 

the quality of the bone, being directly related to bone strength and loading capabilities. It is 

measured as bone mineral density (BMD) and is the index most frequently used to quantify the 

strength of bone, while being defined as bone mass per unit area (g/cm2) or volume (g/cm3) [8]. 

That means if a region of the bone has low BMD, it is already at a greater likelihood of a fracturing 

occurring at a lower limit of excess external force entering the system.  

 

1.2    Healing process of Bone Fractures 

A fracture is defined as a breach in the structural continuity of the bone cortex, also 

resulting in a degree of injury to nearby soft tissue [9]. Hematopoietic and immunological cells 

within the bone marrow work in concert with vascular and skeletal cell precursors that are 

regenerated from the surrounding tissues to aid in the repair of fractures [10]. The healing 

process for bone fractures occurs throughout three progressive stages: 1.) the inflammatory 

phase, 2.) the repairing phase, and 3.) the bone remodeling phase [11].   
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Every healing process begins with the formation of a hematoma during the inflammatory 

phase, with this initial phase being one of the more significant determinants of the healing 

outcome [12, 13]. Following the formation of a hematoma, a specific cytokine pattern is initiated 

that is crucial in guiding and coordinating the cell recruitment, as well as the cellular activity of 

those cells [14]. This cytokine pattern stimulates critical cellular biology at the site and cells (i.e., 

macrophages, lymphocytes, etc.) called upon act together removing injured, necrotic tissue while 

also secreting vascular endothelial growth factors and other cytokines to encourage healing [9].  

The second stage, the repairing phase, can be broken up into two different sections: 2.a) 

the fibrocartilaginous callus formation, and 2.b) the bony callus formation [9]. During the 

formation of the fibrocartilaginous callus, fibroblasts and osteoblasts enter the area to begin the 

reformation of bone. The fibroblasts are there to produce collagen fibers that attach the broken 

bone ends, while the osteoblasts are tasked with the formation of spongy, woven bone [15]. After 

around 11 days since the formation of the fibrocartilaginous callus, this cartilaginous callus begins 

undergoing endochondral ossification and the bone healing process moves to the formation of 

the bony callus [16]. This results in the cartilaginous callus starting to be resorbed and begins to 

calcify, all while the continuation of woven bone being laid down. This woven bone allows for the 

newly developed blood vessels to proliferate, promoting the further migration of mesenchymal 

stem cells [17]. This second stage ends with the formation of a hard, calcified callus of an 

immature bone.  

The third and final stage, the bone remodeling phase, continues with the migration of 

osteoblasts and osteoclasts which allows the hard callus to undergo coupled remodeling [9]. This 

remodeling is essentially a balancing act between the resorption by osteoclasts and the 
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formation of new bone by osteoblasts. The process of bone remodeling lasts many months and 

results in the center of the callus eventually being replaced with compact bone, while the callus 

edges get replaced with lamellar bone [16].   

 

1.3    Role of Soft Tissue during the Repair of a Bone Fracture 

When a fracture occurs, the energy release from a bone breaking gets transferred to the 

muscles, tendons, vascular structures, nerves and other soft tissue that happen to be in close 

proximity to the injury site [18]. Immediately after the fracture occurs, the recruitment, 

multiplication and accumulation of stem cells begins during the development of a soft callus [19]. 

When the fracture healing reaches the hard callus phase, the tissue becomes vascularized due to 

the calcification of cartilage and ossification of newly formed bone [20]. 

Both intramembranous and endochondral ossification contribute to the healing of 

fractures [19]. Stem cells go through chondrogenesis during endochondral ossification and create 

an intermediary cartilage structure. The cartilage callus' chondrocytes develop into mature, 

calcified cartilage that serves as a model for bone growth and promotes angiogenesis. 

Osteoblasts differentiate from stem cell precursors directly during intramembranous ossification, 

and bone forms predominantly without the aid of cartilage as a template. It has also recently 

been demonstrated that chondrocytes can transdifferentiate into osteoblasts directly. The 

pathway by which this occurs is still undetermined [21]. 

Recent research has shown that muscle-derived stem cells can develop into cartilage and 

bone, while also actively aiding in the healing of bone fractures [18]. For fractures that are 

connected to periosteal injuries, stem cells derived from muscle specifically play a vital role [22]. 
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Even though evidence suggests that stem cells originating from all sources near the injury site 

contribute during the repair process, one of the primary sources of stem cells does appear to 

come from the periosteal tissue [19]. For these types of injuries, research have been able to 

demonstrate through cell lineage tracing that the precursor cell pool that occurs before the start 

of the fracture healing process is initially accumulated by periosteum-derived stem cells [23]. 

 

1.4    Impact of Image Segmentation during Analysis of Bone Fractures  

Bone fractures, as well as any other injuries or diseases pertaining to bone, require the 

use of medical image capturing devices. Computed tomography (CT), or MicroCT, is commonly 

used to determine values such as bone volume fraction and volumetric BMD, which have been 

found to have a high correlation with bone loading ability and strength [8, 24]. Evaluations to 

determine if a certain region of the bone has either high or low BMD requires the use of a bone-

equivalent material, such as potassium phosphate (K2HPO4) solutions or calcium hydroxyapatite 

(CaHA) mixtures, for calibration during the imaging acquisition process [25]. These bone-

equivalent material contains different concentrations of mineral densities that are used as a 

reference point in conjunction with the CT imaging. By knowing the percent weights of the 

different concentrations within the solution phantoms, the equivalent volumetric BMDs can be 

determined by using image segmentation [26, 27].  

Currently, images produced from CT scans must be processed with either manual or semi-

automatic segmentation to create a bone surface data set where the important information can 

be analyzed [28]. Accurate automatic segmentation is difficult since bone surfaces have 

inconsistent properties (i.e., shape, density, structure, etc.), ambiguous boundaries, and are 
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often accompanied by artifacts and noise requiring more parameter changes depending on the 

structure [29, 30].   

Being able to accurately differentiate between regions with low bone mineral density and 

high bone mineral density has become essential for determining the overall strength and health 

of a bone [31]. The main objective of image segmentation is to transform an input image into 

informative data, thus allowing for the successful analysis of that image. There are a variety of 

segmentation techniques, with most falling under the classification of the following: 1.) contour-

based techniques, 2.) region-based techniques, 3.) feature thresholding, and 4.) clustering [32].   

 

1.5    Current Challenges in Bone and Soft Tissue Image Segmentation 

This thesis set out to create an algorithm that could function as a bridge that connected 

the individually processed image segmentation of bone and individually processed image 

segmentation of soft tissue. As most other studies simply focus on either the image segmentation 

of bone or soft tissue while ignoring the other component, the main objective of this thesis was 

to produce an algorithm capable of segmenting both the bone and the soft tissue [8, 26, 27, 28, 

32, 33, 34, 35]. By reading through literature, it became apparent that one of the leading issues 

of producing viable image segmentation results that included both soft tissue and bone was that 

it struggled with pure automatic segmentation algorithms.  

This becomes even more of an issue when attempting to segment soft tissue along with 

bone as one of the major disadvantages of CT imaging is that there is inferior soft tissue contrast 

when compared to the results produced from a magnetic resonance imaging (MRI) machine [33]. 

That is also why most image segmentation studies that focus solely on soft tissue deal with 
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images produced from an MRI machine as the contrast is better and allows for better automatic 

segmentation [34]. As segmentation is the process of dividing an input image into regions with 

similar properties (i.e., gray level, color, brightness, etc.), analyzing and partitioning the different 

regions accurately is much more complicated when two or more of the regions of interest have 

similar characteristics. Thus, to accurately segment a sample so that both bone and soft tissue 

are clearly defined requires some combination of manual and automatic segmentation. 

Manual segmentation can be avoided with the help of artificial intelligence (AI) based 

segmentation by using machine learning [33, 36]. The way this would function is that a large 

enough dataset would be generated that consisted of many similar image files. This dataset 

would provide the basis to train the AI based segmentation algorithm on, where it would be 

capable of processing all the available data presented. Once the analyzing step had concluded, it 

would have built a pathway where an input image, like the images found on the initial dataset, 

would be processed and the output produced would be the fully segmented image. This type of 

segmentation, while being one of the most advanced segmentation techniques capable of 

producing some of the best results, was not applicable in this study due to time constraints and 

unavailability of a larger data set. 

1.6    Proposed Design 

Modern image segmentation methods mostly focus solely on analyzing bone in the callus, 

while neglecting the soft tissue area surrounding the injury. Most US images are prone to speckle 

noise, unusual artifacts and pixel intensity value inconsistencies that come from the specific 

imaging machine’s settings [28]. The unusual artifacts that tend to appear in these images seems 
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to have pixel values that can be very similar in value to that of the pixel values of soft tissue. That 

means that most automatic image segmentation processes, will struggle without some manual 

image processing.  

In this study, the focus was on not only the image segmentation of bone tissue, as it has 

been discussed already in great depth by numerous other authors, but to also perform image 

segmentation on the soft tissue surrounding a bone fracture and include it in the final output. As 

the biomechanics behind the healing process of fractures has been studied and analyzed to great 

depth, the focus was on developing a pipeline that would be able to take the input image data 

generated by a MicroCT scanner and run it through various software and Python scripts. The 

algorithm would be capable of determining not only the total surface area of bone, total volume 

of bone, portions of the bone that has low BMD/ medium BMD/ high BMD, as well as being able 

to calculate the total surface area of soft tissue and the total volume of the soft tissue present. 

The image segmentation algorithm utilizes region-based and feature thresholding techniques, in 

combination with edge detection, pixel intensity detection, and a variety of other image 

processing algorithms. The intention of this study was to shine a light on an area that might not 

have so much current focus on it, as well as demonstrating a method that would allow for the 

image segmentation of soft tissue that could be further expanded upon in the future.  
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1.7    Research Aims 

Objectives  

The primary objective was to develop an algorithm that could calculate the total volume 

and surface area of both the bone and soft tissue regions, as well as determine the BMD 

distribution of bone. This was achieved through the following specific aims: 

Specific Aim 1: Develop algorithm to segment and analyze bone and soft tissue 

Specific Aim 2: Develop and validate algorithm to determine BMD of bone 

Contributions 

The work done in this study will cause further advancements in science and engineering, 

as well as having a broader impact in the healthcare field. By developing a method to accurately 

segment bone and soft tissue samples, future novel healing strategies might be possible to 

develop with the information provided in this thesis showcase a viable image segmentation 

strategy. 
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2. Materials and Methods  

2.1    Materials 

2.1.1  Input images 

Two multi-image TIF files that contained visible bone and soft tissue were chosen to be 

processed. Both image files were acquired through a MicroCT machine, and the acquisition 

parameters can be seen in figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The first file, also referred to as image_1, had a total of 1002 images and the second file, 

also referred to as image_2, had a total of 1008 images. As the bone and soft tissue samples were 

(i) 

Figure 1: MicroCT bone and soft tissue sample parameters; image_1 (i) and image_2 (ii) 

(ii) 
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scanned along with the HA phantoms being captured in the same TIF file, this ended up resulting 

in roughly 2/3 of all thousand image slices containing mostly the x-ray scans of the bone and soft 

tissue sample. The remaining 1/3 image slices from the original image stack contained the HA 

phantoms that would be used to determine BMD. 

For the image slices within image_1, each image slice was composed of a 1000x1024 pixel 

array and for the image slices within image_2, each image slice was composed of a 984x1024 

pixel array. Both image files were initially converted into grayscale 8-bit files to speed up the 

processing speed of the Python script developed would take too long to interpret and analyzed 

the input files. As 8-bit files, the pixel values within the images were scaled down where the fully 

black pixels found in an image slices would be interpreted as having a value of zero, while fully 

white pixels would be interpreted as having a value of 255. The remaining various different levels 

of gray pixels would each have their own unique value somewhere within the range of 1 – 254, 

where the lower value pixels are darker and the higher valued pixels would be brighter.  

 

2.1.2 Hydroxyapatite Phantom 

Initially, it was decided that the original image files provided would be used to develop 

the Python script. Once the script had been completed, then new bone and soft tissue samples 

would be analyzed along with a new phantom that contained three distinct HA levels. However 

upon initial examination of the HA phantom provided, it became apparent that it was different 

than the one used to develop the algorithm. As can be seen by comparing figure 2 (iii) and figure 

2 (iv), it was clear that the three different HA regions that would be used to determine BMD from 

the HA phantom provided were much farther apart than the HA phantoms used to develop the 
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image segmentation algorithm. The location of the cylindrical HA-containing rods of the new 

phantom was positioned in such a manner that by acquiring an image with 4x magnification, 

there was no manner to acquire all three regions in the same set of image slices. As the recipe 

provided that was used in the acquisition of the initial image files from which the image 

segmentation algorithm was developed from used 4x magnification, it was important to keep the 

image acquisition parameters as similar as possible. 

 

 

 

 

 

 

 

 

 

 

However, not only was there an issue with the location of the cylindrical HA-containing 

rods on the new HA phantom, but there was also the issue that there was no apparatus as can 

be seen on the right side of figure 1 that could be used to hold the HA phantom, as well as the 

bone and soft tissue sample in such a manner that would allow for the image acquisition to 

capture both the phantom and the sample. Attempts were made to recreate the HA phantom 

Figure 2: UWM MicroCT machine outside (i), inside (ii); HA phantoms provided (iii),  
  HA phantoms found on the provided image files using 4x magnification (iv) 

(i) (ii) 

(iii) (iv) 
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plus bone and soft tissue sample holder in such a way that would still allow for the best scanned 

images to be produced and figure 3 demonstrates the final holder developed. 

 

 

 

 

 

 

 

While the HA phantom plus sample holder was able to produce results that were much 

better than scans produced of only the HA phantom or the sample, the different HA regions were 

still simply too far apart, and three different scans had to be taken with different HA regions being 

rotated above the bone and soft tissue sample. The image files produced in this manner still had 

discrepancies between the overall brightness and as such, were not included. 

Before realizing the importance of producing scans that would also include the HA 

phantom along with the bone and soft tissue sample in the same set of image slices, a couple 

scans were produced simply containing the bone and soft tissue sample. While it was eventually 

determined that the only way to properly test if the algorithm functioned as intended on a new 

set of scanned image slices where the three different HA regions were all within the same image 

file, some of the first scanned images only contained the bone and soft tissue sample. These 

Figure 3: Only bone and soft tissue sample (i), Styrofoam was placed on a paperclip (ii),  
  HA phantom was placed on Styrofoam to be directly above sample (iii) 
 

(i) (ii) (iii) 
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scanned images were captured using the same MicroCT recipe used when producing the image 

files from which the image segmentation algorithm  was developed. From the individually 

scanned bone and soft tissue sample, the data provided by them was used in determining the 

pixel-to-length conversion rate. 

The HA phantoms were provided by Pure Imaging Phantoms, a 4 centimeter (cm) long 

cylindrical phantom with a radius of 1.5 cm was used during the imaging process. It had the 

capacity to contain up to five different densities of CaHA densities within cylindrical inserts [37]. 

For this thesis, 3 of the cylindrical tubes were filled with the density values of 50 mgHA/cm3, 200 

mgHA/cm3, and 1200 mgHA/cm3. Unfortunately, no viable images were able to be produced of 

the HA phantoms. 

 

2.1.3 Mouse Samples    

C57Bl/6 mice purchased from Charles River were used in this study. All procedures were 

in accordance with the International Animal Care and Use Committee (IACUC) guidelines. Mice 

were first administered with buprenorphine. They were then placed under isoflurane and a 

three-point bending injury or burr-hole injury was performed. Mice were checked for fracture 

and placed back in their cages. They were allowed to ambulate freely. In the case of three-point 

bending injury, they were administered one more dose of buprenorphine 8 hours post injury and 

18 hours post injury. For burr-holes, mice were sacrificed at 7 days post injury. For three-point 

bending, mice were sacrificed two weeks post injury and the tibiae were dissected. The tibiae 

were fixed in NBF and then immersed in 75% ethanol. Although the images produced from three-
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point bending injury mouse samples were excluded, they did provide the valuable pixel-to-length 

conversion that was used in the last stages of the code. 

 

2.2 Software 

2.2.1 Mimics  

Mimics was designed to import 2D medical image data and segment the anatomy to 

generate accurate 3D models. While most of the segmentation for the bone was done via a 

combination of different Python scripts and with ImageJ, the soft tissue segmentation required 

a part of it to be done with the assistance of Mimics. Since the manner in which soft tissue regions 

end up getting processed results in the pixel value of the soft tissue being similar with the pixel 

values of the background and/or noise, it can cause auto-segmentation methods to produce non-

accurate 3D models of the segmented soft tissue. As seen in figure 4, some of the random noise 

in the background does appear to be similar in pixel value to that of the soft tissue region.  

 

 

 

 

 

 

 

Figure 4: Sample input file, the blue arrow shows the soft tissue region  
    and the orange arrow shows random noise 
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The Mimics software allows for the combination of auto segmentation and manual 

segmentation. First, the software allows the user to define a threshold to separate the soft tissue, 

along with some artifacts/noise unfortunately. Then, the software allows for the manual 

segmentation of multiple slices at a time. This combination of auto segmentation and manual 

segmentation allows for creating new input data where the soft tissue has been segmented as 

accurately as possible. As seen in figure 5, the automatic segmentation was able to remove a 

good amount of the background noise, however manual segmentation was still required as a lot 

of pixels that were not actually soft tissue got included during the automatic segmentation. 

 

 

 

 

 

 

 

2.2.2 ImageJ 

ImageJ allows users to do basic image processing and manipulation. Drawbacks of ImageJ 

are that it lacks in selecting specific objects within the image due to the researcher having to 

manually choose polygon, oval, rectangular or freehand sections [32]. This in turn can affect the 

Figure 5: Sample input image (i) and the soft tissue outcome post automatic segmentation (ii) 
 

(i) (ii) 
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accuracy of object selection, thus causing the segmentation process to not be as effective when 

only using ImageJ.  

While ImageJ was not used so much for segmentation, it still proved useful for a variety 

of its morphological operators and noise removal. The morphological operators that were called 

upon were threshold, close, median, dilate, erode, and fill holes [38]. Threshold was used to 

convert the input grayscale image into a binary image by setting a lower and an upper limit to 

remove any pixels not within that specified ranged. Median was used to reduce noise in the 

image by replacing each pixel with the median of the neighboring pixel values, defined by a pre-

specified radius. Erode removes pixels from the edge of objects in binary images, while dilate 

adds pixels to the edges of objects. Close performs a dilation operation, followed by an erosion 

operation. This smooths the image object, as well as removing any isolated pixels. 

The noise removal functions that were applied and used through this software where 

despeckle and remove outliers [38]. Despeckle calls upon a median filter to pass over the entire 

image and replaces each pixel with the median value in its 3x3 neighborhood. This type of filter 

was good at removing some of the salt and pepper noise. Remove outliers replaced a pixel by the 

median of the pixels in the surrounding if it deviates from the median by more than a certain 

value. It required an input radius (r) that was used to determine the area used to determine the 

median and was used to help remove any pixels that the despeckle function failed to get. 

 

2.2.3 Python 

Version 3.7.6 of Python through the Spyder IDE and Anaconda Navigator was used as it 

is a language that is widely used to access raw data produced by X-ray detectors [39, 40].  It was 
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used to calculate the surface area and volume of both the bone and soft tissue samples 

analyzed, the statistical analysis of the different HA regions within the phantoms, and to use 

the values determined from the statistical analysis to segment the varying BMD regions of the 

bone sample accordingly. 

Calculating the total volume of both the bone and the soft tissue was done in the same 

manner. The main function that was used during this step was the measure.regionprops function 

from the scikit-image ecosystem within Python [41]. The input image files were batch processed 

using the glob module and the data was stored into a pandas data frame [42, 43]. Regionprops 

functions as a form of Boolean algebra, which simply works by setting X to be an arbitrary non-

empty set and let Ƥ(X) (the power set of X) be the class of all subsets of X [44]. The way of 

introducing a Boolean structure into Ƥ(X) is as follows, where the distinguished elements are 

defined by: 

0 = false value    1 = true value, 

And, if P and Q are subsets of X, then, 

P + Q = (P ⋂ Q’)  ⋃ (P ‘ ⋂ Q)  and   PQ = P ⋂ Q 

Where the ⋃, ⋂, and ‘  imply union, intersection, and complement. The true values were 

defined as pixel having a value of 255 and the false values were any of the remaining pixels that 

did not have a value equal to 255. This allowed the measure.regionprops function to count all the 

true values and return the number of pixels that were either soft tissue or bone, respectively. 

This was done for every individual image slice, with the total area (i.e., number of true values) 

being stored into a data frame and once the area had been calculated for each individual image, 
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the values were summed up to determine the total sum of the surface areas of either the bone 

or soft tissue regions. The total sum of surface areas was then later used to determine the total 

volume of either the bone or soft tissue regions using the following equation: 

𝑉𝑜𝑙𝑢𝑚𝑒 (µ𝑚3) = ∑ 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 (𝑝𝑖𝑥𝑒𝑙2) ∗
𝐴𝑟𝑒𝑎 (µ𝑚2)

𝑝𝑖𝑥𝑒𝑙2
∗ [# 𝑖𝑚𝑎𝑔𝑒 𝑠𝑙𝑖𝑐𝑒𝑠 ∗ 𝑝𝑖𝑥𝑒𝑙 𝑙𝑒𝑛𝑔𝑡ℎ (µ𝑚)] 

Calculating the total surface area for either the bone or soft tissue was done in a similar 

fashion, but before running the image slices through the measure.regionprops function the input 

images were first processed through a bilateral filter. Through the means of a nonlinear 

combination of nearby image pixel values, bilateral filtering smooths an image while also 

preserving its edges [45]. This filter is simply a weighted average of the nearby local samples, 

where the weights are determined by the radiometric and temporal distances between the 

central pixel and the surrounding pixels [46, 47]. 

After being processed through the bilateral filter, the processed image files were run 

through a canny edge detection algorithm using OpenCV. This algorithm operates in the following 

order:  

1.) smooth the image using a Gaussian filter,  

𝐺(𝑥, 𝑦) =  
1

2𝜋𝜎2
𝑒

−𝑥2+𝑦2

2𝜎2  

2.) compute the gradient magnitude and orientation utilizing finite-difference 

approximations for the partial derivatives,  

𝐺 =  √𝐺𝑥
2 + 𝐺𝑦

2                                         𝜃 = arctan (
𝐺𝑦

𝐺𝑥
) 
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3.) apply nonmaximal suppression to the gradient magnitude, plus use the double 

thresholding algorithm to detect and link edges [48, 49]. The pixel is designated as an 

edge pixel if the amplitude of the pixel position exceeds the high threshold. The pixel is 

excluded if the position’s amplitude is below the high threshold. If the pixel has an 

amplitude between the two thresholds, the pixel is saved only when directly next to a 

pixel with a value higher than the high threshold. 

Once the canny edge detection algorithm has generated new image slices where only the 

perimeter pixels of either the bone or soft tissue are left with a value of 255, they were processed 

through the measure.regionprops to determine the number of pixels that had a true value. After 

the number of pixels were counted that would be defined as the perimeter of the individual 

images, all the values were stored in a data frame before being added up to determine the total 

sum of the perimeter for either the bone or soft tissue regions. The total sum of perimeter was 

then later used to determine the total surface area of either the bone or soft tissue regions using 

the following equation:  

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 (µ𝑚2) = ∑ 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 (𝑝𝑖𝑥𝑒𝑙) ∗
𝑙𝑒𝑛𝑔𝑡ℎ (µ𝑚)

𝑝𝑖𝑥𝑒𝑙
∗ [# 𝑖𝑚𝑎𝑔𝑒 𝑠𝑙𝑖𝑐𝑒𝑠 ∗ 𝑝𝑖𝑥𝑒𝑙 𝑙𝑒𝑛𝑔𝑡ℎ (µ𝑚)] 

The pixel-to-length conversion was provided by the scanning output produced from two 

good scans acquired using the same recipe that generated the image files from which the 

algorithm was developed. The two good scans only contained the bone and soft tissue sample, 

thus were eventually excluded as processing new scans through the algorithm required a 

different HA phantom. As the original files did not contain the pixel to length conversion rate, the 

values determined from the good scans were used instead as the same recipe was used (fig. 6).  
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 Following the conversion from pixel3 and pixel2 into cubic micronmeters and 

micronmeters squared for the volume and surface area, the units were converted into cubic 

centimeter and centimeter squared. This was done to match the values provided from the 

manufacture for the HA phantom and the conversion rate is as follows:  

1 𝜇𝑚3 = 1.0 ∗ 10−12 𝑐𝑚3                                    1𝜇𝑚2 = 1.0 ∗  10−8 𝑐𝑚2 

The statistical analysis of the phantom was done by analyzing the distribution of the pixel 

intensity of the three BMD regions. From this analysis, the thresholding limits for the three 

unique regions were determined and used to segment the bone accordingly. The percent BMD 

of the overall bone was calculated by dividing the amount per region by the total bone volume 

determined previously and is as follows: 

% 𝐵𝑀𝐷 =  
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑜𝑛𝑒 𝐵𝑀𝐷 𝑟𝑒𝑔𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑜𝑛𝑒
 

Figure 6: Pixel-to-length sample conversion rate 
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2.3 Block Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7: Block Diagram demonstrating flow of algorithm. 
Input image (i), bone thresholded surface area region (ii), 
bone canny edge detection perimeter region (iii); input soft 
tissue mask (iv), soft tissue thresholded surface area region 
(v), soft tissue canny edge detection perimeter region (vi); 
BMD regions (vii), BMD statistical analysis (viii); BMD 
segmentation (ix), BMD region percentages (x); bone and 
soft tissue segmentation (xi) 

 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

(x) 

(xi) 
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3 Results 

3.1 Range for Image Segmentation 

When image segmentation is used to determine the bone characteristics, such as volume 

or BMD, selecting a certain range of image slices to segment does not necessarily impact the 

accuracy of the results. However, when analyzing the soft tissue segments still attached to the 

bone sample, the pixel intensity of this material does have a similarity in pixel value to that of the 

background, noise and/or attenuation pixels that also appear within the image. Thus a specific 

range of image slices must be specified to get the most accurate results. 

 

 

 

 

 

 

 

 

The first 50 image slices from both files were not selected to run through the Python 

script, as the overall image was darker (fig. 6: i, iv). When the intensity of pixels is used to 

determine what a certain region is for multiple image slices, having the overall brightness be 

consistent results in producing better output image files. 

Figure 8: image_1 – image slice number 0000 (i), 0187 (ii), 0550 (iii) 
   image_2 – image slice number 0000 (iv), 0361 (v), 0568 (vi) 
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The files, image_1 and image_2, were acquired with a HA phantom placed next to it 

during the image acquisition process. The advantage to acquiring an image in this manner is that 

all the image slices that are produced have an overall similar texture. The disadvantage of this 

technique is that the images can produce excess noise during the transition phase between the 

sample and the HA phantoms. As shown in figure 6 (ii, iii, v, vi), the orange arrows point to regions 

where soft tissue is still attached to the bone. The red arrows point to the noise that starts to 

appear in the images during that transition. The final selection for the input image slices of both 

files was 0050 – 00499, for a total of 450 image slices. 

 

3.2 Calculating Volume and Surface Area 

The core concept behind how this part of the script functions is that by utilizing the 

skimage.measure library on Python, the regionprops function can be used to process a binary 

image (i.e., black pixels having a value of 0 and white pixels having a value of 255) to determine 

the total number of white pixels found on that image. By being able to take the summation of 

either all the surface areas or all the perimeter values from the different image slices, the total 

volume or surface area of an object can be determined if one knows the pixel-to-length 

conversion.  

 

3.2.1 Soft tissue 

The process of thresholding the input image slices to fit the requirements so that the soft 

tissue regions could be processed and analyzed required multiple steps. Both files were initially 

processed through the Mimics software, generating a mask that highlighted the soft tissue 
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regions. Setting the threshold limits to so a small, specific range produced the best results. Once 

the mask was generated on Mimics, the file was exported and processed through ImageJ where 

an appropriate threshold was found where the mask could be properly thresholded. Following 

that there was a serious of image manipulation steps that occurred to better calculate the total 

volume and total surface area. The sequence of events is described in table 1.  

 Mimics ImageJ 

image_1 Threshold: lower = 130 and upper = 140. 
Removed extra noise manually. 

Threshold: L=183, U=184 → remove outliers (r=1)              
.           → close → median (r=2) → dilate → fill holes 

image_2 Threshold: lower = 139 and upper =148. 
Removed extra noise manually. 

Threshold: L=183, U=184 → remove outliers (r=2)           
.           → close → median (r=2) → dilate → fill holes 

 

 

Once the segmentation masks for the soft tissue had been generated, the binary files 

were put through a Python script that utilized the regionprops function. This was how the sum of 

all of the image slice’s surface area was calculated, which was later used to determine the total 

volume of the soft tissue. 

 

  

 

 

 

 

 

Table 1: Soft tissue image processing steps 

Figure 9: image_1 input (i), soft tissue mask (ii), threshold (iii), canny edge detection (iv) 
   image_2 input (v), soft tissue mask (vi), threshold (vii), canny edge detection (viii) 
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To determine the total surface area of the soft tissue, the binary images were first put 

through a canny edge detection utilizing cv2 library. Once the only pixels remaining were the 

edge ones of the soft tissue, the regionprops function was able to determine the perimeter of 

each individual image slice. Then all the individual image slice’s perimeter data was added up to 

calculate the total sum of the perimeter, which was then used to calculate the total surface area 

of the soft tissue in pixels. Figure 9 illustrates the outputs from the different steps of this process 

and table 2 shows the results.  

   Σ Surface Area (pixel2)  Σ Perimeter (pixel)  

image_1     11,398,194.00      3,823,203.00   

image_2       5,565,704.00      1,849,178.00   

 

 

3.2.2 Bone 

Determining the total volume and the total surface area of the bone was done in a similar 

fashion as to the way soft tissue was calculated, just without the use of the Mimics software. As 

the pixel values of bone are much different than all the other pixels in the image, the thresholding 

was possible to accomplish effectively on ImageJ. Once thresholded, the image slices were 

processed through noise removal functions to remove any outliers. The process can be found in 

table 3. 

 Threshold Range Noise Removal 

image_1 155 - 255 despeckle → remove outliers (r=2) 

image_2 160 - 255 despeckle → remove outliers (r=2) 

 

 

 

Table 2: Calculated sum of soft tissue surface area and sum of perimeter data 

Table 3: Bone threshold range and noise removal process 
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Once the binary image slices had been developed, they were processed on Python to 

determine total bone volume. The edge detection script was used again to determine the 

perimeter values of each image slice before being used to determine the total surface area of the 

bone samples. Table 4 illustrates the calculated sum of surface area and sum of perimeter results, 

while figure 10 shows the output images during the various steps. 

 

 

 

 

 

 

 

 

 

 

 Σ Surface Area (pixel2)  Σ Perimeter (pixel)  

image_1 35,911,474.00 4,919,876.00 

image_2 18,350,921.00 2,183,359.00 

 

 

 

(v) (vi) 

Figure 10: image_1 input (i), threshold (ii), canny edge detection (iii) 
   image_2 input (iv), threshold (v), canny edge detection (vi) 

Table 4: Calculated sum of bone surface area and perimeter data 
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3.3 Calculating Bone Mineral Density 

The process of determining the overall percent BMD composition of the bone samples was 

done by analyzing the pixel intensity and distribution of the HA phantoms located towards the 

end of the image stacks. As this step required the input image slices to be as clear and free of 

random noise, a selection of 200 images sequential images containing the three regions of 

interest was selected. From that subset of images, three 100x100 pixel blocks were cropped from 

the three different regions that contained the different levels of HA (fig. 11). This provided a total 

of two million different sample pixels to perform a statistical analysis and in doing so, would 

produce a viable thresholding limits, shown as follows: 

(200 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑥 [100𝑥100 𝑝𝑖𝑥𝑒𝑙𝑠]) = 2,000,000 𝑝𝑖𝑥𝑒𝑙𝑠 

 

 

 

 

 

 

 

For image_2, partitioning a 100x100 pixel region from the bottom left side was impossible 

due to the initial image file that was captured resulted in that area being extremely narrow. Thus, 

two 70x70 pixel regions were taken from the that specific region to keep the number of pixels 

Figure 11: image_1 (i) and image_2 (ii) different HA regions, where the green arrow  
    is for the low BMD region, the blue arrow is for the medium BMD region  
   and the red arrow is for the high BMD region 
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being analyzed from the different regions the same. As the script processed 200 HA input image 

regions, two 70x70 pixel regions could generate enough sample pixels to analyze that would be 

in similar in size to the 100x100 pixel blocks also being analyzed, shown as follows:  

(200 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑥 [70𝑥70 𝑝𝑖𝑥𝑒𝑙𝑠]) + (200 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑥 [70𝑥70 𝑝𝑖𝑥𝑒𝑙𝑠]) = 1,960,000 𝑝𝑖𝑥𝑒𝑙𝑠 

The three different image stacks regions were processed with a Python script that could 

determine the average pixel value, the average lower quartile and the average upper quartile 

(50- and 90- percentile range), as well as the correlating standard deviation for each individual 

BMD regions (table 5).  

   50 Percentile  90 Percentile 

         
  Average Lower 

(L = 25) 
Upper 

(U = 75) 
 Lower 

(L = 5) 
Upper 

(U = 95) 
Standard 
deviation 

image_1 TOP 126.73 118.82 134.26  108.29 146.07 11.80 

 RIGHT 161.03 148.68 172.85  132.81 190.94 18.01 

 LEFT 168.67 156.97 180.12  141.32 196.77 17.20 

         

image_2 TOP 142.32 134.80 149.49  124.92 160.74 11.21 

 RIGHT 176.97 164.60 188.75  149.05 206.93 18.05 

 LEFT 188.54 177.87 199.15  163.44 213.93 15.77 

 

 

The results from the statistical analysis were graphed and a gaussian curve was applied 

to the average pixel values to better determine the appropriate thresholding limits for the 

different BMD regions (fig. 12). 

After the statistical analysis was completed, the original input images were processed 

with Python to determine the percent amount from each of the three regions. Taking into 

consideration the initial thresholding values used to calculate the total volume of bone and the 

values produced through the statistical analysis of the three different BMD regions, the final 

Table 5: Statistical analysis of the three different BMD regions 



30 
 

limits for thresholding were decided upon (table 6). The discussion section will elaborate on how 

the final limits were decided upon. 

 

 

 

 

 

 

‘ 

 

 

 Thresholding Limits for the Different HA Regions 

image_1 Nonbone < 155 < TOP < 160 < RIGHT < 190 < LEFT 

Image_2 Nonbone < 160 < TOP < 165 < RIGHT < 190 < LEFT 

 

Once the thresholding limits had been determined, the original input files were processed 

through Python. The script first assigned each of the pixels from the respective regions a certain 

color value (green for the low BMD region, blue for the medium BMD region, and red for the high 

BMD region) as shown in figure 13. All the newly created RBG image slices were then split by 

their respective colors using the cv2.split function. Once all the appropriate pixels from the three 

different regions had been separated into their own image, the function regionprops was applied 

to each image slice and the different regions had all the pixels counted to calculate their 

Figure 12: The 50 and 90 percentile distributions of the average pixel intensity per image slice 

Table 6: BMD segmentation thresholding limits 
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Figure 13: Bone mineral density segmentation output for image_1 (top) and image_2 (bottom), 
respectively:   
  Image slice - 50 (i), 99 (ii), 149 (iii), 199 (iv), 249 (v), 299 (vi), 349 (vii), 399 (viii), 449 (ix), 499 (x) 

         

respective surface area. After every image slice had been processed, the volume was determined 

through the summation of all the surface area values (table 7). 

  Σ Surface Area (pixel2)  Percent of Bone Percent Error 

image_1 TOP 1,766,996.00  4.92%  

 RIGHT 10,996,927.00  30.62%  

 LEFT 26,189,378.00  72.93%  

 Total Sum 38,955,301.00  108.47% 8.47% 

      

image_2 TOP 617,214.00  3.36%  

 RIGHT 6,980,672.00  38.03%  

 LEFT 11,040,397.00  60.16%  

 Total Sum 18,638,283.00  101.57% 1.57% 

 

The percent error was calculated by taking the sum of the three different regions volumes 

and comparing it with the value calculated for total bone volume initially as follows: 

 

 

 

 

 

 

 

 

 

Table 7: Bone mineral density segmentation results 
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Figure 14: Bone and soft tissue segmentation for image_1, input (top) and output (bottom):   

  Image slices 50 (i), 99 (ii), 149 (iii), 199 (iv), 249 (v), 299 (vi), 349 (vii), 399 (viii), 449 (ix), 499 (x) 
         

The last part from the analysis section was to convert the values from pixel form into unit 

length form. Table 8 shows the results from this section. 

 Total Soft 

Tissue 

Volume 

Total Soft 

Tissue 

Surface 

Area 

Total 

Bone 

Volume 

Total Bone 

Surface 

Area 

Low BMD 

(green) 

Volume 

Medium 

BMD 

(blue) 

Volume 

High BMD 

(red) 

Volume 

image_1 0.520 cm3 373.42 cm2 1.638 cm3 480.53 cm2 0.081 cm3 0.502 cm3 1.194 cm3 

image_2 0.254 cm3 180.62 cm2 0.837 cm3 213.25 cm2 0.028 cm3 0.318 cm3 0.504 cm3 

 

 

3.4 Bone and Soft Tissue Segmentation 

The  final step took the individually segmented soft tissue segments and combined them 

with the segmented BMD images to produce the final output result (fig. 14 and fig. 15). 

 

 

 

 

 

 

 

 

 

Table 8: Total volume and total surface area calculations 
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Figure 15: Bone and soft tissue segmentation for image_2, input (top) and output (bottom):   

  Image slices 50 (i), 99 (ii), 149 (iii), 199 (iv), 249 (v), 299 (vi), 349 (vii), 399 (viii), 449 (ix), 499 (x) 
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4 Discussion 

The primary objective of this thesis was to develop an algorithm that would be able to 

segment both bone and soft tissue sections, while being able to differentiate between three 

unique BMD regions. The algorithm was successfully developed and could complete the primary 

objective. However, it was developed in a manner that it would only function correctly and 

accurately when the input image file included the three unique HA regions along with the bone 

and soft tissue sample. It was still capable of segmenting the total volume and surface area of 

both the bone and soft tissue but would produce inaccurate threshold measurements for 

defining the different BMD regions. This was due to the slight attenuation and brightness 

difference that occurred when attempting to image the BMD regions through three individual 

scans. 

 

4.1 Image Acquisition  

The preliminary scans that only captured the bone and soft tissue samples unfortunately 

could not be processed. Figure 16 (i) shows the type of image used to develop the algorithm, 

while Figure 16 (ii, iii, iv) show example images of some of the initial scans that were produced. 

 

 

 

 

 
Figure 16: image used to develop algorithm (i), images acquired using 0.4x magnification (ii, iii, iv) 

(i) (ii) (iii) (iv) 
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 The initial bone and soft tissue samples had excess soft tissue still attached to the bone. 

While one of the primary objectives was to segment soft tissue along with bone, these samples 

had excess of muscle tissue as well. When using the 4x magnification it proved near impossible 

to know where exactly the X-ray source was aiming at. Figure 16 (iii) and Figure 16 (iv) both show 

a 0.4x magnification, however Figure 16 (iv) was processed after some of the excess soft tissue 

was removed. 

 The preliminary attempts at trying to produce separate, viable scans of the three different 

HA regions on the phantom also ran into some complications. Figure 17 (i) shows the way the HA 

regions were attempted to be acquired. Figures 17 (ii, iii, and iv) show the supposed three 

different HA regions; where the green arrow is pointing to what should be the low HA region, the 

blue arrow is pointing to what should be the medium HA region, and the red arrow is pointing to 

the high HA region. 

 

 

 

 

 

 

 

Figure 17: initial attempt to process the three different HA regions (i), supposed low HA region (ii),  
    supposed medium HA region (iii), and supposed high HA region (iv) 

(i) (ii) (iii) (iv) 
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 The idea behind this attempt was to keep the phantom horizontal and then turn off the 

rotation mechanism of the MicroCT machine. This, in theory, would capture the three unique 

regions which would then be processed through the statistical analysis Python script to 

determine the appropriate thresholding limits for the BMD. However, it is observed that Figure 

17 (iii) is darker overall than that of Figures 17 (ii and iv). This region was supposed to have mid-

range pixel intensity distribution but ended up having the lowest thresholding limits. When 

Figures 17 (ii and iv) were analyzed, the pixel distribution produced no viable data and this is 

mostly likely a result of the streaks of white pixels and streaks of black pixels. Figure 18 shows 

the type of image that was used to develop the algorithm and just the stark contrasts between 

the quality of the images produced versus provided. 

 

 

 

 

 

 

 

 

 The secondary attempts at producing viable scanned images of the individual bone and 

soft tissue improved after excess soft tissue was removed. Figures 19 (i and ii) show that once 

the bone and soft tissue sample had some of the extra soft tissue removed, the MicroCT recipe 

Figure 18: Sample image used to develop BMD  
    segmentation part of algorithm 



37 
 

provided initially could produce good results. These results were initially analyzed to determine 

the total volume and surface area of both the bone and soft tissue regions. However, it was 

apparent that the algorithm would only properly function and produce accurate results if the 

input image file also contained the three different phantom regions along with the sample. 

 

 

 

 

 

 

 

 

The secondary attempts to produce viable scan results of the HA phantom did attempt to 

include the HA regions along with the bone and soft tissue sample in output image file. Figure 20 

(i) shows the type of holder that was used during the image acquisition of the images used during 

the development of the algorithm. Figure 20 (ii) shows how the bone and soft tissue sample were 

placed perpendicular to the HA phantom. In the first trial, the sample was placed horizontal to 

the phantom as shown in Figure 20 (iii). Not only did placing the sample in this orientation fail to 

produce viable scans of the bone and soft tissue regions, but ultimately it also still failed at even 

targeting the right HA region. The output produced is shown in Figure 20 (iv). 

 

 

Figure 19: Good scan outputs of only the bone and soft tissue sample 
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 The tertiary attempt at producing viable results attempted to recreate the phantom plus 

sample holder that could produce results like the ones used to construct the algorithm as exact 

as possible. It was determined that it was essential for the sample to be perpendicular to the 

phantom. The only way to achieve this was to place the sample in the metal holder so that it 

would be straight up and then setting the phantom right above it as seen in Figure 20 (ii).  

Eventually a holder as shown in Figures 21 (i, ii, and iii) was developed that could produce 

the best results given that the three different HA regions were far apart. Figure 21 (i) shows the 

bone and soft tissue sample placed in the metal holder so that it was vertical. It also shows a 

small paper clip being supported by some tape and this was placed here so that a piece of 

Styrofoam could be placed on top of it. As Styrofoam does not appear in CT images, this was a 

viable material that could be used to hold the phantom directly above the bone sample. Figure 

21 (ii) shows the Styrofoam placed above the paperclip and Figure 21 (iii) shows the phantom 

placed above the sample.  

Figure 20: Holder used in the image acquisition of the initial images used to develop the algorithm (i),  
    the orientation of the bone and soft tissue sample in regard to the HA phantom (ii), initial  
   attempt to recreate holder (iii), and output of initial attempts to recreate holder (iv) 
 

(i) 
(ii) (iii) (iv) 
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Figure 21 (iv) shows the initial output produced from this scan. While it was overall too 

gray to be processed, the results did demonstrate that with more precision and further 

manipulation of the MicroCT parameters, viable results could be obtained. Several attempts were 

made using different MicroCT parameters. The final results are shown in Figure 22. 

 While the images do clearly show the different HA regions as well as the bone and soft 

tissue sample, Figure 22 (iii) does appear to just be an overall darker image. As this image 

segmentation algorithm functions by analyzing the pixel intensities from the different HA regions 

on the phantom to determine the appropriate thresholding levels, these type of brightness 

discrepancies between the three images would have likely resulted in inaccurate results and thus 

were also excluded from the study. 

 

 

 

Figure 21: Bone and soft tissue sample in metal holder with paper clip near base (i), Styrofoam holder  
    that would sit on the paper clip and be capable of holding the HA phantom directly above  
    the sample (ii and iii); initial output (iv) 

(i) (ii) (iii) (iv) 
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Figure 22: Individually scanned HA regions, along with the bone and soft tissue sample;  
    low HA region and sample (i), medium HA region and sample (ii), high HA  
   region and sample (iii) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 BMD Threshold Limits 

The final limits for the BMD segmentation were decided upon by taking into consideration 

the initial thresholding limits used to eventually determine the total bone volume and the values 

produced from the statistical analysis from the three unique BMD regions. The bone section of 

image_1 was set to only include pixel values above 155 and for image_2 it was set for pixel values 

above 160. These were the values that captured the most amount of bone pixels from both input 

images, while also not thresholding as much random background noise. 

Low HA Region      | Medium HA Region |    High HA Region 

(i) (ii) (iii) 
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Referencing figure 12, the distribution for the pixel values from the region with low BMD 

(green parts) was shown to be mostly concentrated below the pre-defined threshold limit used 

to determine the total volume of bone. When the thresholding limits for the low BMD region 

(green) were set to parameters like the one found in the 50-percentile range, the image would 

threshold too many additional pixels that were clearly not bone as seen on Figure 23. Thus, it was 

determined that the lowest thresholding value for the BMD segmentation had to be the value 

used to first determine the bone total volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: The 50 and 90 percentile distributions of the average pixel intensity per image slice 
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The output files generated from the code were capable of being uploaded into Mimics to 

create a 3D model showcasing the different regions as seen on Figure 24. Viewing the output in 

such a manner allowed for the different segmented regions to be properly visualized. 

 

 

 

 

 

 

 

 

 

  

Figure 23: Failed attempt at initially defining BMD segmentation  

Figure 24: image_1 (i), high BMD region (ii), soft tissue region (iii), high BMD and soft tissue region (iv) 
   image_2 (v), low and high BMD region (vi), medium BMD region (vii) 
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5 Conclusion 

The code developed for the main objective of this thesis functions well and delivers the 

results expected from producing a Python Script that would help facilitate the image 

segmentation process of both bone and soft tissue; however, the code was constructed to work 

under very specific parameters to function as originally intended. Efforts are underway to 

recreate similar image acquisition parameters. 

Although the code was unable to process the new scans completely, it did demonstrate 

its efficiency in successfully segmenting and analyzing samples where bone and phantom were 

imaged together. The final percent error produced from the two images fully processed shows 

that there was not a significant difference between the original number of pixels used to 

determine the total volume of bone and the total sum of the number of pixels from the three 

unique BMD regions.  

This thesis set out to provide a manner to acquire more information about the soft tissue 

in relation to a bone fracture and it was successful in doing that. Future work is needed to develop 

a code that can use the information from multiple different image sources and still be capable of 

producing viable results. More work could be done in creating a method to better differentiate 

between the medium BMD region and the High BMD region, as there was overlap observed when 

analyzing the statistical distribution of pixel intensities from the two regions. 
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6 Future Work 

As the thesis progressed and more knowledge pertaining to coding was acquired, it 

became apparent that most of the image morphological changes that were applied through 

ImageJ could have also been included in the final Python script. Further work in developing the 

Python script to include the image morphological manipulation techniques from ImageJ could 

potentially produce better results. This is because ImageJ applies a standard 3x3 kernel to the 

entire image and it’s much harder to alter the perimeters on ImageJ. On Python, the user has a 

lot more flexibility and can better define the size of kernel to apply, as well as being able to 

manipulate the other parameters to their liking. 

 Besides improving the Python script, a new HA phantom could be used where the three 

different HA-containing cylinders are closer together. This, along with a better developed 

phantom plus sample holder could be produced to allow it to be as close as possible to the bone 

and soft tissue sample.  

 Lastly, future work could be done in the development of an image segmentation process 

that also utilizes machine learning. As only two image files containing the bone, the soft tissue 

and the three unique HA regions were provided, developing an image segmentation process that 

could use machine learning was difficult due to the lack of datapoints that could be used to train 

a model. If the code were to be improved so that the ImageJ parts could be done effectively on 

Python and if provided with a more files that contained both the sample and the three different 

HA regions in the same image stack, it should be possible to train a model using machine learning 
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that would be able to more accurately and much more quickly process an input image to produce 

the results one would expect. 
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