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Figure 3.6. 335-K geopotential height (black contours every 300 m), 335-K PV (shaded in PVU 

per the color bar at the right), and 350-to-320–K vertical wind shear (vectors; kt; reference vector 

at lower right) for the (a) Control, (b) PRE, (c) PRE18, (d) Irma, (e) PRE&Irma, and (f) 

PRE&IrmaWS simulations at 0000 UTC 10 September 2017. 
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Figure 3.7. TC Jose forecast center location for the control and five sensitivity simulations given 

in Table 3.1 and the control every six hours from 0600 UTC 9 September to 1200 UTC 16 

September 2017. 
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Figure 3.8. TC Jose forecast (a) minimum Mean Sea Level Pressure (MSLP) in hPa, and (b) 

maximum instantaneous 10 m wind speed in knots every six hours from 0600 UTC 9 September 

to 1200 UTC 16 September 2017 for all sensitivity simulations in Table 3.1 and the control. 
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Figure 3.9. As in Figure 3.6 but at 0000 UTC 11 September 2017. 
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Figure 3.10. As in Figure 3.6 but at 0000 UTC 12 September 2017. 
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Figure 3.11. As in Figure 3.6 but at 0000 UTC 13 September 2017. 
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waveguide following the time of maximum interaction (Table 1.4; Fig. 1.16, bottom right). This 

insight can foster increased forecaster situational awareness during future indirect-interaction 

events that may allow them to make more-skillful secondary-TC intensity forecasts during and 

after the time of maximum interaction. 

Part 2 of this study identifies the physical processes that allow for thunderstorm-scale PV 

anomalies to modify the synoptic-scale flow and can be conceptualized as follows (Fig. 2.14). 

When a thunderstorm initiates within a vertically sheared flow, such as one found on the eastern 

flank of an upstream midlatitude trough, its associated horizontal gradients of microphysical 

heating generate PV anomalies aligned perpendicular to the background vertical wind shear 

vector, with negative PV anomalies to the left of the shear vector and positive PV anomalies to 

the right of the shear vector (Figs. 2.6 and 2.7ab). On the eastern flank of the upstream trough 

and to the north of TC Irma, the large-scale strain field can be approximated as having an axis of 

dilatation oriented from southwest to northeast (Fig. 2.12). This large-scale strain deforms the 

convectively generated PV anomalies, stretching them along the axis of dilatation (Figs. 2.6ac). 

The newly deformed PV anomaly covers a larger area than it did before, such that from the 

circulation theorem its rotation rate must decrease. Due to the alignment of the deformed 

anomaly with the large-scale strain field, a tensile stress is applied to the large-scale strain, thus 

reinforcing the large-scale strain, and adding energy to the large-scale flow (Fig. 2.14). The 

inverse energy cascade is accomplished by the filamentation of the negative PV anomalies (Fig. 

2.14). 

The final part of this study performs a series of sensitivity simulations on the TC-

midlatitude waveguide interaction involving a PRE and TCs Irma and Jose which is studied in 

part 2. Preliminary results suggest that convection inside of the PRE had a negligible impact on 
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the downstream evolution, as limiting convection inside of the PRE over varying time periods 

results in a solution like the Control (Figs. 3.3-3.6a-c, 3.7, 3.8, and 3.9-3.11a-c). The only 

solutions which show meaningful impacts to the downstream flow evolution and TC Jose are 

those in which microphysical heating is neglected with TC Irma (Figs. 3.3-3.6d-f, 3.7, 3.8, and 

3.9-3.11d-f). While these findings suggest that the inverse cascade of energy identified in Section 

2 may not have a meaningful enough impact on the large-scale flow to drastically change the 

evolution of this particular TC-midlatitude waveguide interaction, it does not necessarily mean it 

is negligible for all TC-midlatitude waveguide interactions. 
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Appendix A: Notes on the Calculation of the Ventilation 

Index with Gridded ERA-Interim Data 

As given by equation (1.2), the ventilation index first shown in Tang and Emanuel (2012) is 

given by: 

Λ =
𝑢𝑠ℎ𝑒𝑎𝑟𝜒𝑚

𝑢𝑃𝐼
      (A1) 

where 𝑢𝑠ℎ𝑒𝑎𝑟 = |𝒗𝟖𝟓𝟎 − 𝒗𝟐𝟎𝟎| is the bulk environmental vertical wind shear magnitude between 

850 and 200 hPa, 𝑢𝑃𝐼 is the maximum potential intensity (MPI), and 𝜒𝑚 is the nondimensional 

entropy deficit. The entropy deficit 𝜒𝑚  is defined as: 

                                                                    𝜒𝑚 =  
𝑠𝑚
∗ − 𝑠𝑚

𝑠𝑆𝑆𝑇
∗ − 𝑠𝑏

                                                            (A2) 

where 𝑠𝑚
∗  is the saturation entropy at 600 hPa in the TCs inner core, 𝑠𝑚 is the environmental 

entropy at 600 hPa, 𝑠𝑆𝑆𝑇
∗  is the saturation entropy at the sea-surface temperature (SST), and 𝑠𝑏 is 

the entropy of the boundary layer. The calculation used for the MPI follows Bister and Emanuel 

(2002), 

𝑉𝑚
2 = 𝑐𝑝(𝑇𝑠 − 𝑇0)

𝑇𝑠

𝑇0

𝐶𝑘

𝐶𝑑
(𝑙𝑛𝜃𝑒

∗ − 𝑙𝑛𝜃𝑒)|𝑚            (A3) 

where 𝑉𝑚 is the maximum gradient wind speed, 𝑐𝑝 is the heat capacity at constant pressure, 𝑇𝑠 is 

the ocean temperature, 𝑇0 is the mean outflow temperature, 𝐶𝑘 the exchange coefficient for 

enthalpy, 𝐶𝐷 the drag coefficient, 𝜃𝑒
∗ the saturation equivalent potential temperature at the ocean 

surface, and 𝜃𝑒 the boundary layer equivalent potential temperature. The last factor of (A3) is 

calculated at the radius of maximum winds. 

 In Tang and Emanuel (2010), the 600 hPa saturation entropy is calculated as an average 

within a 100 km annulus of the best-track TC center, and the midlevel entropy is averaged over a 
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100-300 km annulus of the best-track TC center. These averages output a single number, while 

we are interested in viewing the ventilation index in a spatial sense. To match the methodology 

of Tang and Emanuel (2010) as closely as possible, for each grid point, a running spatial mean is 

performed, with a radius of one grid point for the saturation entropy, and a radius of one to four 

grid points for the midlevel entropy. A major drawback of working with a coarse-resolution 

reanalysis dataset such as the ERA-Interim, is the poor representation of TCs, particularly those 

which are small and intense, thus, even with the averaging performed above, it is important to 

note the likely misrepresentation of the saturation entropy. Additionally, given that the focus in 

these calculations is on the average downstream impact in the vicinity of the secondary TC far 

away from the primary TC, impacts from the TCs primary and secondary circulations to these 

quantities are retained for simplicity. 

 Finally, in Tang and Emanuel (2010) the MPI is calculated at the future location of the 

TC of interest. But given that we are again interested in a gridded calculation of the ventilation 

index, the MPI is simply calculated at every grid point, independent of where the TC is at a 

particular time. This leads to an MPI signal which is likely largely driven by sea-surface 

temperature anomalies in the vicinity of the TC caused by upwelling (Figs. A1 and A2). 

Therefore, much of the signal immediately surrounding the initial TC in the ventilation index in 

section 2 is largely driven by this upwelling signal, yet further away from the initial TC, this 

signal fades and the environmental characteristics become more apparent (Figs. A1 and A2). 
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Figure A1. Composite SST anomaly (in K; per the color bar on the bottom) over the 26 identified 

indirect interactions in the North Atlantic basin. The blue square denotes the average location of 

the primary storms at the time of maximum interaction between the primary TCs and the 

midlatitude waveguide. 
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Figure A2. Same as in Figure A1, except averaged over the 56 identified indirect TC interaction 

events in the western North Pacific basin.  
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Appendix B: Derivation of the Fully Three-Dimensional PV 

Tendency Equation in Isentropic Coordinates 

To obtain the fully three-dimensional PV tendency equation in isentropic coordinates, 

following Lackmann (2011), we first start with the isentropic horizontal momentum equations, 

(
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝜃̇

𝜕

𝜕𝜃
)𝑢 − 𝑓𝑣 +

𝜕𝑀

𝜕𝑥
− 𝐹𝑥 = 0 and,      (B1) 

(
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝜃̇

𝜕

𝜕𝜃
) 𝑣 + 𝑓𝑢 +

𝜕𝑀

𝜕𝑦
− 𝐹𝑦 = 0   (B2) 

where 𝑢 and 𝑣 are the zonal and meridional wind components, respectively, 𝐹𝑥 and 𝐹𝑦  denote the 

frictional force components in the zonal and meridional directions, respectively, 𝜃̇ =  
𝜕𝜃

𝜕𝑡
, 𝑓 is the 

Coriolis parameter, and M is the Montgomery streamfunction, given as, 

𝑀 = 𝑔𝑍 + 𝐶𝑝𝑇         (B3) 

where 𝑔 is gravity, 𝑍 is the geopotential height of the isentropic surface, 𝐶𝑝 is the specific heat at 

constant pressure for dry air, and 𝑇 is the temperature on the isentropic surface.  

We then subtract the y-derivative of (B1) from the x-derivative of (B2) to obtain the 

isentropic vorticity equation, 

𝜕𝜁𝑎𝜃

𝜕𝑡
+

𝜕

𝜕𝑥
[𝑢𝜁𝑎𝜃 + 𝜃̇

𝜕𝑣

𝜕𝜃
− 𝐹𝑦] +

𝜕

𝜕𝑦
[𝑣𝜁𝑎𝜃 + 𝜃̇

𝜕𝑢

𝜕𝜃
− 𝐹𝑥] = 0    (B4) 

where 𝜁𝑎𝜃 is the absolute vorticity on an isentropic surface. The vector form of (B4) is given by: 

𝜕𝜁𝑎𝜃

𝜕𝑡
+ ∇ ∙ (𝑉⃗ 𝜁𝑎𝜃) + 𝑘̂ ∙ ∇𝜃 × (𝐹 − 𝜃̇

𝜕𝑉⃗⃗ 

𝜕𝜃
) = 0    (B5) 

Where 𝑉⃑⃗ = (𝑢, 𝑣, 0) represents the horizontal wind on an isentropic surface, ∇ = (𝜕𝑥, 𝜕𝑦 , 0) 

represents the horizontal gradient operator on an isentropic surface, 𝑘 = (0,0,1) represents the 

unit vector perpendicular to an isentropic surface. 
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(B5) can be rewritten, such that 

𝑗 = (𝑢𝜁𝑎𝜃 , 𝑣𝜁𝑎𝜃 , 0) + (𝜃̇
𝜕𝑣

𝜕𝜃
, −𝜃̇

𝜕𝑢

𝜕𝜃
, 0) + (−𝐹𝑦 , 𝐹𝑥, 0)  (B6) 

where, 

𝜕𝜁𝑎𝜃

𝜕𝑡
+ ∇ ∙ 𝑗 = 0          (B7) 

with (B7) stating that the only way to locally change absolute vorticity on an isentropic surface 

are through divergence of the vector 𝑗 .  

 We then write a general relation for the mixing ratio of an arbitrary quantity 𝑞 such that, 

𝜕(𝜎𝑞)

𝜕𝑡
+ ∇ ∙ 𝑗 = 𝜎𝑆          (B8) 

where S represents all sources and sinks of 𝑞, and 𝜎 is the isentropic density defined as, 

𝜎 = −
1

𝑔

𝜕𝑝

𝜕𝜃
      (B9) 

and, 

𝑗 𝑛𝑒𝑤 = (𝑢𝜎𝑞, 𝑣𝜎𝑞, 𝜃̇𝜎𝑞) + (−𝐹𝑦 , 𝐹𝑥, 0)         (B10) 

If we let 𝑞 represent the dry-air mixing ratio (equal to 1) and neglect friction and sources or 

sinks, then (B8) becomes the isentropic continuity equation, 

𝜕𝜎

𝜕𝑡
+ ∇ ∙ (𝜎𝑉⃗ ) +

𝜕

𝜕𝜃
(𝜎𝜃̇) = 0    (B11) 

When drawing comparisons between (B8) and (B10) with (B6) and (B7), we get, 

𝑞 =
𝜁𝑎𝜃

𝜎
           (B12) 

which we can rewrite as, 

𝑞 = −𝑔
𝜕𝜃

𝜕𝑝
𝜁𝑎𝜃 = 𝑃𝑉         (B13) 

where 𝑃𝑉 is the Rossby-Ertel potential vorticity.  

To obtain a tendency equation for 𝑃𝑉 we will utilize (B8), with 𝑞 = 𝑃𝑉. This gives, 
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𝜕𝜎𝑃𝑉

𝜕𝑡
+

𝜕

𝜕𝑥
[𝑢𝜎𝑃𝑉 + 𝜃̇

𝜕𝑣

𝜕𝜃
− 𝐹𝑦] +

𝜕

𝜕𝑦
[𝑣𝜎𝑃𝑉 − 𝜃̇

𝜕𝑢

𝜕𝜃
+ 𝐹𝑥] = 0 (B14) 

which can be rewritten to, 

𝑑𝑃𝑉

𝑑𝑡
= −𝑔

𝜕𝜃

𝜕𝑝
𝜁𝑎𝜃

𝜕𝜃̇

𝜕𝜃
+ 𝑔

𝜕𝜃

𝜕𝑝
[
𝜕𝜃̇

𝜕𝑥

𝜕𝑣

𝜕𝜃
−

𝜕𝐹𝑦

𝜕𝑥
−

𝜕𝜃̇

𝜕𝑦

𝜕𝑢

𝜕𝜃
+

𝜕𝐹𝑥

𝜕𝑥
]      (B15) 

excluding friction simplifies to, 

𝑑𝑃𝑉

𝑑𝑡
= −𝑔

𝜕𝜃

𝜕𝑝
𝜁𝑎𝜃

𝜕𝜃̇

𝜕𝜃
+ 𝑔

𝜕𝜃

𝜕𝑝
[
𝜕𝜃̇

𝜕𝑥

𝜕𝑣

𝜕𝜃
−

𝜕𝜃̇

𝜕𝑦

𝜕𝑢

𝜕𝜃
]          (B16) 

which, when expanded into the local and advective components, and written in vector form, 

results in equation (2.3). 

 As noted in Section 2.2.3, 𝜃̇ in WRF is made up of several terms, 

𝜃̇ = 𝜃̇𝑟𝑎𝑑 + 𝜃̇𝑠ℎ𝑎𝑙𝑙𝑜𝑤 𝑐𝑢. + 𝜃̇𝑐𝑢. + 𝜃̇𝑝𝑏𝑙 + 𝜃̇𝑚𝑝           (B17) 

where 𝜃̇𝑟𝑎𝑑 is the total contribution to the potential temperature tendency from the radiation 

parameterization 𝜃̇𝑠ℎ𝑎𝑙𝑙𝑜𝑤 𝑐𝑢. is the contribution to the potential temperature tendency from the 

shallow cumulus parameterization, 𝜃̇𝑐𝑢. is the contribution to the potential temperature tendency 

from the cumulus parameterization, 𝜃̇𝑝𝑏𝑙  is the contribution to the potential temperature tendency 

from the planetary boundary layer parameterization, and 𝜃̇𝑚𝑝 is the contribution to the potential 

temperature tendency from the microphysical parameterization. Given that the numerical 

simulations are performed at convection-permitting grid spacings with no cumulus 

parameterization, contributions from the two cumulus terms are zero. Additionally, when 

calculating the PV tendency in (B16), the focus is primarily on the middle- to upper-troposphere, 

where turbulent vertical mixing is quite small, making contributions from the turbulent vertical 

mixing scheme orders of magnitude less than other terms on the right-hand side of (B17), thus it 

can be neglected. Finally, contributions from the radiation parameterizations are several orders of 

magnitude weaker than the microphysical heating (not shown), resulting in the approximation: 



 

 139 

𝜃̇ ≅  𝜃̇𝑚𝑝.       (B18)  



 

 140 

Appendix C: Notes on the Calculation of the Horizontal 

Spectral Kinetic Energy Budget 

Following Peng et al. (2014) and Menchaca and Durran (2019), the horizontal kinetic 

energy of the flow can be represented as, 

𝐾𝐸ℎ =
1

2
𝜌𝒖2      (C1) 

where 𝒖 = (𝑢, 𝑣) is the horizontal wind vector and 𝜌 is the density. If we perform a Fourier 

transform to transform from physical to wavenumber space, (C1) becomes, 

𝐾𝐸ℎ(𝒌) =  
1

2
𝜌̅𝒖̂∗(𝒌) ∙ 𝒖̂(𝒌)                (C2) 

where 𝒌 = 𝑘𝑥𝑖, with a hat denoting a Fourier-transformed variable, an asterisk denoting the 

complex conjugate, and 𝜌̅ representing a horizontally uniform background density profile. The 

time rate of change of (C2) is given by: 

𝜕𝑡𝐾𝐸ℎ(𝒌) =
𝜌̅

2
[(𝒖, 𝜕𝑡𝒖)𝒌 + 𝑐. 𝑐. ]     (C3) 

where (𝒂, 𝒃)𝒌 =  𝒂̂∗(𝒌) ∙ 𝒃̂(𝒌), and the 𝑐. 𝑐. denotes the complex conjugate of whatever term 

comes before the “𝑐. 𝑐. ", which, in the case of (C3) would be the complex conjugate of 

(𝒖, 𝜕𝑡𝒖)𝒌. If we let ∇ = (
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
, 0), the horizontal momentum equation in physical space can be 

written as, 

𝜕𝑡𝒖 =  −𝒖 ∙ ∇𝒖 − 𝑤𝜕𝑧𝒖 − 𝑐𝑝𝜃̅∇𝜋′ + 𝑭ℎ        (C4) 

where 𝑭ℎ is the turbulent subgrid-scale diffusivity, 𝑤 is the vertical velocity, 𝑐𝑝 is the specific 

heat capacity for dry air at constant pressure, 𝜃̅(𝑧) is a vertically varying approximation to the 

full 𝜃(𝑥, 𝑦, 𝑧, 𝑡), and 𝜋 is the Exner function, which is comprised of a horizontally uniform 
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component 𝜋̅(𝑧), where the overbar denotes a spatial average of the domain of interest, that is in 

hydrostatic balance with 𝜃̅(𝑧) and the remainder 𝜋′(𝑥, 𝑦, 𝑧, 𝑡), where 𝜋′ = 𝜋 − 𝜋̅. 

Substituting (C4) into (C3), we obtain: 

𝜕𝑡𝐾𝐸ℎ(𝒌) =
𝜌̅

2
[(𝒖,−𝒖 ∙ ∇𝒖 − 𝑤𝜕𝑧𝒖 − 𝑐𝑝𝜃̅∇𝜋′ + 𝑭ℎ)𝒌

+ 𝑐. 𝑐. ]          (C5) 

which can split into three separate terms. It should be noted that the 𝑐. 𝑐. is distributed to the 

terms inside of the preceding parentheses in (C5), and the leading 
𝜌̅

2
 is distributed to the terms 

inside of the bracket. Additionally, the negative leading sign in some terms is due to the reverse 

distribution of a negative sign. The first term of the distributed form of (C5) is the tendency 

arising from advection, 

𝐴(𝒌) = −
𝜌̅

2
[(𝒖,𝒖 ∙ ∇𝒖 + 𝑤𝜕𝑧𝒖)𝒌 + 𝑐. 𝑐. ]          (C6) 

the second term is the tendency arising from the pressure gradient force, 

𝑃(𝒌) = −
𝜌̅

2
𝑐𝑝𝜃̅[(𝒖, ∇𝜋′)𝒌 + 𝑐. 𝑐. ]            (C7) 

and the final term is the tendency due to dissipation, 

𝐷(𝒌) =  
𝜌̅

2
(𝒖, 𝑭ℎ)𝒌 + 𝑐. 𝑐.      (C8) 

 The advective tendency in (C6) can be further decomposed into, 

𝐴(𝒌) = 𝑇(𝒌) + 𝑉𝑎(𝒌) + 𝜀1(𝒌)           (C9) 

where, 

𝑇(𝑘) =  −𝜌̅ {[𝒖, 𝒖 ∙ ∇𝐮 +
1

2
𝒖(∇ ∙ 𝒖)]

𝑘
−

1

2
(𝜕𝑧𝒖,𝑤𝒖)𝑘 +

1

2
(𝒖, 𝑤𝜕𝑧𝒖)𝑘} + c.c.   (C10) 

is the conservative transfer of energy between wavenumbers,  

𝑉𝑎(𝒌) =  −
1

2
𝜕𝑧[𝜌̅(𝒖,𝑤𝒖)𝒌] + 𝑐. 𝑐.         (C11) 

is the divergence of the vertical advective energy flux, and 
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𝜀1(𝒌) =
𝜌̅

2
{[𝒖,𝒖(∇ ∙ 𝒖 + 𝜕𝑧𝑤]𝒌 + 𝜕𝑧ln (𝜌̅)(𝒖,𝑤𝒖)𝒌} + 𝑐. 𝑐.    (C12) 

with (C12) representing the component of the advective tendency which is nonzero when the 

anelastic continuity equation is not satisfied. Although our model is not anelastic (similar to 

Menchaca and Durran (2019)), they note that (C12) is quite small, so we neglect (C12) as they 

did in their study.  

To attain the buoyancy and full vertical advective flux terms in (2.10), we first write out 

the vertical component of the pressure gradient force using the pseudo-incompressible 

approximation, 

𝑃𝑣(𝒌) = 𝑐𝑝𝜌̅𝜃̅(𝑤, 𝜕𝑧𝜋
′)𝒌 − 𝑐𝑝𝜕𝑧[𝜌̅𝜃̅(𝑤, 𝜋′)𝒌] + 𝑐. 𝑐.        (C13) 

Under the hydrostatic approximation, 𝜕𝑧𝜋
′ is proportional to 𝜃′. 

The first term in (C13) represents buoyancy forcing, which can be written as: 

𝐵(𝒌) = 𝑐𝑝𝜌̅𝜃̅(𝑤, 𝜕𝑧𝜋
′)𝒌 + 𝑐. 𝑐.        (C14) 

whereas the second term in (C13) represents the divergence of the vertical flux of energy due to 

pressure work(or pressure-volume work), which can be physically represented by the expansion 

of an air parcel as it rises, and can be combined with (C11) to obtain the total vertical energy flux 

divergence, 

𝑉(𝒌) = −
1

2
𝜕𝑧[𝜌̅(𝒖,𝑤𝒖)𝒌] − 𝑐𝑝𝜕𝑧[𝜌̅𝜃̅(𝑤, 𝜋′)𝒌] + 𝑐. 𝑐.  (C15) 

 The expression for 𝑭𝒉 in (C8) is, 

𝐾ℎ∇
2𝒖 + 𝐾𝑣

𝜕2𝒖

𝜕𝑧2         (C16) 

where 𝐾ℎ is the horizontal eddy viscosity computed in WRF-ARW as a function of the 

horizontal deformation and 𝐾𝑣 is the vertical eddy viscosity computed from the planetary 

boundary layer parameterization.  
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Appendix D: Modifications to the WRF Code 

In the WRF-ARW model, after the microphysics parameterization has been called to calculate 

updated microphysical species and their concentrations, the microphysical potential-temperature 

tendency is calculated and then applied to the perturbation potential temperature field. This is 

accomplished by first calculating the dry perturbation potential temperature, 

∆𝜃𝑑𝑟𝑦 = 𝜃𝑑𝑟𝑦,𝑛𝑒𝑤 − 𝜃𝑑𝑟𝑦,𝑜𝑙𝑑     (D1) 

where 𝜃𝑑𝑟𝑦
𝑛𝑒𝑤  is the new perturbation potential temperature field after the microphysical 

parameterization is called and 𝜃𝑑𝑟𝑦
𝑜𝑙𝑑  is the perturbation potential temperature field before the 

microphysical parameterization is called. The full perturbation moist potential temperature field 

is then, 

𝜃𝑚𝑜𝑖𝑠𝑡,𝑛𝑒𝑤
′ = 𝜃𝑑𝑟𝑦,𝑜𝑙𝑑 ∗ [1 + (

𝑅𝑣

𝑅𝑑
) ∗ 𝑞𝑣,𝑜𝑙𝑑] + ∆𝜃𝑑𝑟𝑦 ∗ [1 + (

𝑅𝑣

𝑅𝑑
) ∗ 𝑞𝑣,𝑛𝑒𝑤] + [(

𝑅𝑣

𝑅𝑑
) ∗ ∆𝑞𝑣 ∗

𝜃𝑑𝑟𝑦,𝑛𝑒𝑤] − 𝑇0      (D2) 

where 𝑅𝑣 = 461 𝐽𝐾−1𝑘𝑔−1 and 𝑅𝑑 = 287 𝐽𝐾−1𝑘𝑔−1 are the gas constants for moist and dry air 

respectively; 𝑞𝑣,𝑜𝑙𝑑 and 𝑞𝑣,𝑛𝑒𝑤 are the vapor mixing ratio before and after applying the updated 

microphysical tendencies, respectively; ∆𝑞𝑣 = 𝑞𝑣,𝑛𝑒𝑤 − 𝑞𝑣,𝑜𝑙𝑑; and 𝑇0 = 300 𝐾 is the base-state 

temperature which is subtracted to get the perturbation. In all sensitivity simulations performed, 

term two on the right-hand side of (D2) is made to be zero over all vertical levels, effectively 

negating any contributions from the microphysical parameterization to the simulated potential-

temperature field while still allowing the hydrometeors to evolve naturally. 
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