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ABSTRACT 

AN ETHERCAT BASED REAL-TIME CONTROL SYSTEM DESIGN FOR 
WHEELCHAIR-MOUNTED 6DOF ASSISTIVE ROBOTIC ARM 

 
by 

Ivan Alexander Rulik Cote 

 

The University of Wisconsin-Milwaukee, 2022 
Under the Supervision of Professor Mohammad Habibur Rahman 

 

 

Numerous assistive robots for individuals with disabilities have been produced over the 

past ten years, but researchers have not completely exploited these robotic technologies to enable 

people with impairments to live independently, especially in respect to activities of daily living. 

(ADLs). For people with impairments, an assistive system can help them fulfill the requirements 

of typical ADLs. Assistive robots can help address future healthcare demands due to a growing 

need for caregivers, a scarcity of them, and an increase in the number of the elderly and people 

with disabilities. Enhancing functional independence while creating a superior human-machine 

interaction is one of the most important considerations in the design of these assistive technologies. 

Current solutions are not considering the new technologies like the EtherCAT field bus that brings 

better response times and modularity allowing to perform a broader range of ADLs. Thus, the 

objective of this research design a Real-Time Control Platform (RTCP) based on EtherCAT while 

integrating multimodal control method for robotic self-assistance that could help individuals with 

disabilities in performing self-care tasks daily. In this research, a control framework using joysticks 
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seamlessly control a wheelchair and a wheelchair-mounted robotic arm. Custom circuitry was 

developed to connect the RTCP with the powered wheelchair. Multiple experiments were 

conducted to test the robotic system. The control method has been tested rigorously, maneuvering 

the robot at different velocities. The round-trip delay we set between the commands while 

controlling the assistive arm was 500 us. Tests performed showed that the proposed control system 

allowed individuals to perform some ADLs such as picking up and placing items with a completion 

time of less than 1 min for each task. 

 

Key words: EtherCAT, real-time, assistive robot, 6DOF, multimodal control, wheelchair, motor 

dysfunction, activities of daily living 
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Chapter 1: Introduction 

1.1 Importance of the Problem 

Stroke, cerebral vascular accident, amyotrophic lateral sclerosis, spinal cord injury (SCI), trauma, 

and industrial injuries are all potential causes (McKee & Daneshvar, 2015). These accidents may 

lead the affected person to lose upper limb capability, limiting functional independence and 

preventing them from doing activities of daily living (ADLs) without external support. These 

limitations often require of assistive robotic arms that could be transported from one place to 

another. The complexity of the assistive robot arms and their work environments creates a need 

for faster communications (Klebbe, Scherzinger, Eicher, & others, 2022) as they allow to perform 

computationally intensive models like numerical solutions for inverse kinematics or Internet of 

Things integration. 

 

1.2 Current Solutions and Their Limitations 

There is a growing demand for assistive robots and technologies that help the elderly and disabled 

live independently. In recent years, wheelchair-mounted robotic arms and other physically 

assistive robotic devices have shown promise in assisting patients with upper limb limitations who 

are unable to do simple daily chores such as eating and drinking a cup of water autonomously 

(Tangcharoensathien, Witthayapipopsakul, Viriyathorn, Patcharanarumol, & others, 2018; Toro-

Hernández et al., 2019; Valk, Mouton, Otten, & Bongers, 2019). However, in order for these 

assistive robots to be effective, they must be simple for their users to operate and have an intuitive 

interface (Craig, Nelson, Li, & Zhang, 2016; Jiang, Wachs, Pendergast, & Duerstock, 2013; 
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Penkert, Baron, Madaus, Huber, & Berthele, 2021; Y Rabhi, Mrabet, & Fnaiech, 2015; Yassine 

Rabhi, Mrabet, Fnaiech, & Gorce, 2013). 

 

As for the technology backend of the assistive robots, recent studies have focused on using the 

EtherCAT field bus, a communication protocol that has a statistically outperforms all the other 

current methods but at the cost of specialized hardware and having complex stacks (Siciliano, 

Khatib, & Kröger, 2008).  Researchers have developed solutions based on the Linux OS with the 

PREEMPT_RT patch (Chuang, Yeh, & Yeh, 2021), Xenomai (Hu, Qu, Li, & Zhao, 2022), QNX 

RTOS (Sygulla et al., 2018), and more recently, in combinations of Windows and Simulink (Cong, 

Hanh, Phuong, & Duy, 2022; Langlois et al., 2018; Wang, Yang, & Geer, 2021).  

As for the software stacks, the most used is commonly Simple Open EtherCAT Master (SOEM) 

(Hu et al., 2022), TwinCAT (Langlois et al., 2018; Wang et al., 2021), IGH Etherlab, and Acontis 

(Sygulla et al., 2018). None of the mentioned studies has considered the need for a light and 

portable computing solution to implement EtherCAT on the go nor apply its technology in assistive 

robotics. 

 

1.3 Proposed Solution 

This research proposes a control system for a 6 Degrees of Freedom (DoF) Wheelchair Mounted 

Assistive Robot for assistance in the Activities of Daily Living (ADLs). The goal is to develop a 

control platform capable of manipulating an EtherCAT based Assistive Robotic Arm capable of 

helping its user in three ranges of ADLs: ground, table, and shelf. Hence, the specific aims of this 

research project are: 
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• Aim 1: Design of a Real-Time Control Platform (RTCP) capable of controlling EtherCAT 

robotic actuators and power wheelchairs. 

• Aim 2: Integration of the control framework to perform joystick control of both assistive 

robotic arm and power wheelchair simultaneously. 

• Aim 3: Validate the performance of the proposed Real-Time Control System for 

Wheelchair-Mounted 6DOF Assistive Robotic arms. 

The proposed control framework must keep a consistent loop time to maintain the EtherCAT 

network. Moreover, it must show that the assistive arm can reach and perform ADLs in the three 

regions. This represents a challenge for the design and validation of the RTCP as it will need to 

perform forward kinematics, inverse kinematics, individual joint control on the top of keeping a 

consistent loop time for the network. An unstable RTCP could go from having all the robot joints 

locked in the error state to an inconsistent displacement of the robot arm compared to the reference 

positions. 

 

1.4 Contribution and Novelties 

The novelty of this study lies in three folds. The development of Real-Time Control Platform 

(RTCP) bringing faster response times and modularity into assistive robotic arms while keeping a 

light computing unit to deploy the system. The integration of validated novel control framework 

with joystick modality (Rulik et al., 2022) with a hundred percent successful completion of ADL. 

And the validation of real-time control over a 6DOF assistive robotic to perform ADLs. 
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1.5 Structure of the Thesis 

Chapter 2: Literature Review presents the pros and cons of control methods and interfaces for 

assistive robots and EtherCAT Technology on the matter while it outlines prior research on the 

subject. It provides the state-of-the-art of assistive robot control to the audience. 

 

Chapter 3: Real Time Control Platform (RTCP) explains in detail the major components of the 

platform and how they are interconnected in the control architecture.  

 

Chapter 4: EtherCAT Robotic Actuators Control goes in detail over the components and 

necessary steps to setup the custom robotic actuators to have them ready for cyclic synchronous 

control with EtherCAT. 

 

Chapter 5: 6DOF Assistive Robotic Arm Modeling and Control presents the forward and 

inverse kinematics calculations used to determine and control the cartesian position of the robot 

end effector. After setting up the arm it explains how the platform integrates with the power-

wheelchair  

 

Chapter 7: Experiments, Results and Discussion this chapter explains the experimental setup to 

test effectiveness of the EtherCAT network, the control of the robotic actuators and the control of 

the 6DOF assistive robotic arm. It goes over the results and further discusses about the 

effectiveness of the control platform. 
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Chapter 8: Conclusions and Future Works summarizes the findings of the study It also 

discusses potential future projects for this research. 
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Chapter 2: Literature Review 

2.1 State of the Art 

Previous studies have investigated adopting control modalities to help people with disabilities 

handle robotic arms. Among those modalities for controlling assistive devices, such as a powered 

wheelchair and robotic arms, a physical joystick is extensively used. It can be purchased, is 

affordable, has a straightforward design, and it can operate the end effector directly (Malkin, Li, 

Harada, Landay, & Bilmes, 2011). It supports two-dimensional control for the x and y axes, the 

biggest drawback of currently available commercial joysticks. Researchers used several designs 

and control strategies to get around this constraint. 

 

Body-machine interface (BMI) was developed in (Ansari, Edla, Dodia, & Kuppili, 2019; Fall et 

al., 2018, 2015; Francis, Umayal, & Kanimozhi, 2021; Penaloza & Nishio, 2018; Thorp et al., 

2015) by utilizing the user's residual motion. The kinematics of the user's neck and shoulder are 

used to extract the user input, which is then used to create a proportionally controlled signal and 

drive the power wheelchair. Based on head tilt estimation and an EMG signal, a body machine 

interface (Baldi, Spagnoletti, Dragusanu, & Prattichizzo, 2017) is displayed. An adaptive head 

motion system in (Rudigkeit & Gebhard, 2019) enables the user to command both an assistive 

robotic arm and a computer's visual user interface. (Solea, Margarit, Cernega, & Serbencu, 2019) 

uses a head pose control algorithm in conjunction with another head gesture detection approach to 

control a power wheelchair.  
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A 3D joystick was created (Jiang et al., 2013) to control a robotic arm used as an assistance device. 

(Y Rabhi et al., 2015) makes a neural network-based proposal for an improved joystick control 

interface. Gesture control is another method of control that employs hand motions near the wrist 

for various commands. It utilized Kinect sensors (Ren, Yuan, Meng, & Zhang, 2013), vision 

sensors (Zhou et al., 2013), ultrasonic sensors (Kalgaonkar & Raj, 2009), etc. for gesture 

recognition. (Perrin, Cassinelli, & Ishikawa, 2004) uses visual sensor fusion to perform assistive 

drinking, while (Try, Schöllmann, Wöhle, & Gebhard, 2021) uses laser-based sensors for 

recognition. This approach uses a variety of algorithms as well as techniques including fuzzy logic 

(Pulikottil et al., 2018), neural networks (Alonso-Martin & Salichs, 2011), hidden Markov models 

(Memon, Motan, Akbar, Hameed, & Hasan, 2016), pattern matching (Nishimori, Saitoh, & 

Konishi, 2007), histograms (Andreasen Struijk, Egsgaard, Lontis, Gaihede, & Bentsen, 2017), and 

graph matching (Hildebrand et al., 2019).  

 

A voice-controlled powered wheelchair system is also designed to control the assistive 

technologies and help physically disabled people (Alonso-Martin & Salichs, 2011; Memon et al., 

2016; Nishimori et al., 2007; Pulikottil et al., 2018). By using voice commands, the user can 

operate the wheelchair. Other alternative control methods such as tongue (Andreasen Struijk et al., 

2017; Hildebrand et al., 2019), eye tracking  (Păsărică, Bozomitu, Cehan, Lupu, & Rotariu, 2015), 

and the combination were used. Patients who use brain-controlled wheelchairs (BCW) can regain 

movement function by controlling their wheelchairs with their mind. With the use of a navigation 

system and a brain-computer interface, this technology will let users operate an electric wheelchair 

(Puanhvuan, Khemmachotikun, Wechakarn, Wijarn, & Wongsawat, 2017). 
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Recent publications in robot arm motion control show the advantages of adopting real-time 

communication technology in the manufacturing field, frequencies of up to 20KHz that allow 

scaling the complexity of the robot system by adding more sensors (G. Zhang, Ni, Li, & Liu, 2018) 

or smart actuators (K. Lee et al., 2018). In other cases, its communication speed allows new control 

methods, as it is kinematic impedance control in the HIWIN commercial robot (Tsai, Tai, Lin, & 

Chan, 2019). 

 

In mobile robotics, EtherCAT and real-time also have made recent breakthroughs. In earlier 

studies, researchers proved that EtherCAT could be used for motion control in wheeled mobile 

robots (Delgado, Kim, You, & Choi, 2016). Following studies built upon it to solve a constant 

problem of the field: having precise control of the speed while transferring massive amounts within 

the network (Delgado & Choi, 2019; Delgado, You, & Choi, 2019).  

 

Other studies take EtherCAT into newer fields as it is the software architecture for rescue robots 

(Y. Lee, Lee, Choi, Park, & Park, 2016), where memory pre-allocation and CPU multi-threading 

allowed the system to have an average task execution of 400 us. This study questioned and brought 

considerations into the network topologies used in EtherCAT; if a slave gets damaged, the 

following actuators in the network will disconnect, an issue that does not happen in CANbus, as 

an example. 

 

The research of (Paprocki & Erwiński, 2022) addresses that most of the literature presents results 

on synchronization between EtherCAT masters and slaves. They focus on synchronization 

mechanisms in EtherCAT (including DC synchronization), Emphasizing servo drives. The authors 
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proved that high-speed synchronization data exchange (100 us or less) could allow moving the 

control systems of the drives into the EtherCAT master bringing new control possibilities. 

(Kang, 2021) did a study on the implementation of the EtherCAT Master using SOEM stack. 

Unlike other studies, the real-time performance of the EtherCAT master was measured using a 

network analyzer at the output interface card so that the analysis includes all possible effects from 

the EtherCAT master system. The resulting implementation managed to control the system with a 

20KHz frequency even in stressed conditions. 

 

This study suggests the implementation of a control platform and methodology without including 

more sensors or computing power (EtherCAT aside), which would raise the cost and complexity 

of the system and have other negative effects. It considers both the benefits and drawbacks of the 

preceding alternatives. The learning curve for new users and current users of a system equivalent 

to the proposed solution is kept as short as possible, and the implemented control framework is 

easy to comprehend and integrate with an assistive arm and a wheelchair. 

 

2.2 What is Real-Time Computing 

It is a term used to describe a system, either hardware, software, or both, that has time/event 

constraints, and based on it, the system guarantees a response by the established deadline 

(constrained). The response of this system is currently in the order of microseconds to 

milliseconds.  
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2.3 How to do Real-Time Computing 

Some tools are needed to perform real-time computing and meet its constraints: synchronous 

programming, custom operating systems, and specialized networks. Here we will investigate the 

real-time operating systems; later in this document, we will thoroughly inspect the real-time 

network EtherCAT. 

 

The survey research (Reghenzani, Massari, & Fornaciari, 2019) centered on the PEEMPT_RT 

Linux Patch; its main advantages include simplicity in its setup as it is a patch over the Linux 

kernel rather than the setup of secondary kernels (cokernel), higher maintainability and portability. 

Setting up the PEEMPT_RT patch needs to be done correctly to have realistic latencies and avoid 

erroneous results on the programs meant to run over the system. 

 

2.4 What is CANopen 

Before jumping into the EtherCAT field bus, it is advised to review and understand CANbus, 

specifically CANopen: a standardized embedded network with highly flexible configuration 

capabilities. We will see a top-down approach to understanding CANopen, starting from the 

application interface layer. 

There are three identifiers to consider in CANopen: 

• Node ID to identify a specific node (program); it goes from 1 to 127. 

• Object Dictionary Index and Sub Index used to access process data and configuration data 

(variables of the CAN devices). 
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• Connection Object (COB) ID is used to identify specific messages on the network. To 

identify a communication channel between two or multiple nodes. 

As for the term object, there are a few definitions to have present: 

• Object dictionary that stores the variables and constants of the CAN devices, like a look-

up table. 

• Process Data Objects (PDOs), the messages/variables that contain process data. 

• Services Data Objects (SDOs), the messages/variables that contain configuration/service 

data. 

Object dictionaries are organized collections of entries containing several different types of data. 

The data may be stored in standardized and custom data types (integers, strings, and so), and 

knowing each variable's type is necessary to extract and send it into a CAN network. 

 

Table 1 Data Types of Object Dictionaries (Pfeiffer, Ayre, & Keydel, 2008) 
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Now we consider the first step to set up an actuator (slave) on a CAN network by accessing its 

Object Dictionary using the SDO method. This method is mainly used to set up the configuration 

variables, the modes of operation, the operation limits, and, more importantly, the map of cyclic 

variables when the CAN network becomes operational. In this case, an actuator is a node in the 

network, having its CAN ID and Object Dictionary and acting as a server in which we, as users, 

can request information or changes on its internal variables using the proper Indexes and 

Subindexes. 

 

The map of cyclic variables happens in specific Indexes of the object dictionary where the 

subindex 0 represents the number of variables in the map, and each following subindex stores the 

"address" of the object/variable to be stored (see Fig. 1). 
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Figure 1 PDO mapping example  (Pfeiffer et al., 2008) 

 

After the setup done by SDOs, we move to the PDOs, the optimized and intended method to 

communicate in a CAN-based network. There are two subcategories Transmit PDOs (TPDOs) out 

of the slave and Receive PDOs (RPDOs) into the slave. Examples include TPDOs (current 

position, current velocity) and RPDOs (target position, target velocity). 

 

A clear understanding of the network variables and how they are packaged allows us to move into 

CAN Network Management. It is like a Finite-State Machine. Fig. 2 shows an example CAN state 

machine of a slave (robotic actuator) where each rectangle represents a state, and each arrow 

represents a transition. Some transitions could only be triggered automatically by the slave; for 

example, a motor driver switches to an error state because of an over-current. As other transitions 

are triggered by a message from the master, for this context, we will call it Control Word, an RPDO 

that most CAN slaves have.  
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Figure 2 CANopen slave state machine example  (Pfeiffer et al., 2008) 

To know the current position in the CAN state machine, reading the Status Word, an RPDO will 

return a hex number where each bit represents a different sub-condition.  

 

2.5 What is EtherCAT 

EtherCAT or Ethernet Control Automation Technology is an industrial standard suitable for hard 

and soft real-time requirements. Its principle is that the master of the network sends a telegram 

that passes over each node, where each slave reads the data addressed to it and writes its portion 

as the frame moves out of it. As the data frame is read/written by each slave, the last link in the 

network detects that it has an open port and thus proceeds to send the data frame back to the master 

(see Fig. 3). 
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Figure 3 EtherCAT Network diagram (Jansen & Buttner, 2004) 

One of the significant advantages is the addition of Distributed Clocks for High-Precision 

Synchronization, bringing a high degree of tolerance for jitter in communication. In other words, 

each slave in the network shares its reference clock to identify the propagation delay that the 

network might present during the startup. Ideal applications include multiple servo axes executing 

coordinate movements, which will be part of the aims in the following chapters. 

 

2.6 CAN over EtherCAT (CoE) 

Another significant advantage of EtherCAT is the CoE communication profile with the exact 

mechanisms as the CANopen®-Standard with its: Object Dictionaries, PDO Mapping, SDOs, and 

even Network Management. CoE is essential because all previously mentioned theories and 

structures are reusable and have the same logic for this communication protocol. 

 

2.7 EtherCAT State Machine (ESM) 

This state machine runs on the EtherCAT master; depending on its conditions, multiple functions 

could be or are not available to control a slave in the network. It is through the master that the 
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changes are made. Fig. 4 shows all the traditional states and transitions. We will look at each one 

of the states in detail for a clearer understanding. 

 

 

Figure 4 EtherCAT State Machine (Jansen & Buttner, 2004) 

• Init: After turning the network on, the master and the slaves will be on this state. Process 

Data Communication is not possible at this point. 

• Pre-Operational (Pre-Op): reaching this state validates that the EtherCAT network start 

was correct. At this point, Sync Manager 2 and 3 are initialized, allowing the configuration 

of the PDO mapping of the slaves that allow it on the network. 

• Safe-Operational (Safe-Op): this stage checks if the sync manager channels for process 

data and the distributed clocks are initialized correctly. This state also enables cyclical 

updates of the slave inputs while the outputs are in a safe state.  

• Operational (Op): this transition happens when the master sends valid output data to the 

slaves. Once the systems enter an operational state, the slaves copy the output of the data 

frame sent by the master. 
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Table 2 EtherCAT stack comparison and uses in research 

Stack OS Publications Field 

SOEM Linux, 

Windows 

(Brinkman, Morris, Chen, 

Sheikh, & Warren, 2021; Hu et 

al., 2022; Kang, 2021) 

Aerospace 

TwinCAT Windows (Langlois et al., 2018; K. Lee et 

al., 2018; Paprocki & Erwiński, 

2022; Tsai et al., 2019; Wang et 

al., 2021) 

Cobots, 

industrial robot 

IGH 

EtherLab 

Linux (Delgado & Choi, 2019; Delgado 

et al., 2019) 

Mobile Robots 

Acontis Linux, 

Windows 

(Sygulla et al., 2018; G. Zhang et 

al., 2018) 

Motion 

Planning 
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Chapter 3: Real-Time Control Platform (RTCP) 

Figure 5 shows the network diagram of the study. This chapter cover the first block as it is the 

RTCP. Chapter 4 goes over the setup and control of the EtherCAT slaves and Chapter 5 explains 

the integration of the Permobil Power Wheelchair into the system. 

 

  

Figure 5 Software/Network Architecture Diagram 

3.1 Hardware 

3.1.1 Jetson Nano 

For this approach, a lightweight, inexpensive, and easy-to-deploy processing unit was 

considered. Single-board computers fit this criterion exceptionally well, as the Raspberry Pi 4 

and Jetson Nano development boards do. Ultimately the Jetson Nano (See Fig. 6.) was selected 

for its additional GPU. Here are the specifications of the board:  

• CPU: Quad-core ARM® A57 

• GPU: 128-core NVIDIA Maxwell™ architecture-based GPU 
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• Memory: 4 GB 64-bit LPDDR4; 25.6 gigabytes/second 

• OS: Linux for Tegra® (ARM architecture) 

• Network Connectivity: Gigabit Ethernet 

• Power Supply: 5V - 4A DC 

• Other Connections: 40-pin Header - (3x) I2C, (2x) SPI, UART, I2S, GPIOs 

 
Figure 6 Jetson Nano Dev. Board 

3.1.2 Cubemars Robotic Actuators 

For this study, the Cubemars Custom Hollow DC motor (See Fig. 7) are used. This are servo power 

units equipped with Field-Oriented-Control algorithm, automatic disturbance rejection and online 

parameter identification. This motor-driver set is capable of velocity, angle, and torque control. 

These actuators have a dead weight of 950 gr making them considerably light compared to its 

closest competitor Qrob (2001 gr). Its precision is of 0.001 rad under a load of up to 40 Nm (Lyy, 

Zcx, Twy, Cwk, & Jwj, 2022). Here are some of the main specifications (see Appendix P):  

• Operating Voltage: 24V 

• Maximum continuous current: 20 A 

• Communication ports: EtherCAT and CAN 
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• Resting current: 20 mA 

• Dual Encoder Resolution: 14 Bit 

 

Figure 7 Robotic Actuators (Lyy et al., 2022) 

3.1.3 DIEWU EtherCAT Input Output Box 

This study requires to have digital inputs and outputs to validate that the system is doing real-

time cycles, future studies can use this module to add external input devices as a form of control 

for the robotic actuators (buttons, joysticks and so). Figure 8 shows the DIEWU EtherCAT IO 

Box, with 8 Channels, 16 Input, 16 Output, NPN Input Module, 100Mbps with Dual RJ45 Port, 

AB Phase Encoder. 

 

Figure 8 DIEWU EtherCAT IO Box 

As for the validation of the system response, a Keysight oscilloscope will be used (see Fig. 9) in 

conjunction with the DIEWU EtherCAT IO Box to generate and read digital signals and measure 

the loop time of the EtherCAT program running on the master.  
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Figure 9 Keysight DSOX1204G Oscilloscope  

3.1.4 Permobil M3 Corpus Power Wheelchair  

A Permobil M3 Corpus power wheelchair was used to carry out the experiments in this research 

(Permobil, 2022c) (see Fig. 10a). This powered wheelchair shows a finely tuned product that not 

only allows its users to smoothly transport from point A to B with an intuitive response to the 

user input, but it also brings the commodity of adjusting the seat height and tilt to support the 

needs of its possible users. Thanks to the R-net system used in the wheelchair, multiple modules 

can be added to expand functionality; for this case, an input/output module was used to extract 

the user commands from the joysticks into the control computer. 



 22 

 

Figure 10 Permobil M3 corpus, finger joystick and chin joystick (Rulik et al., 2022) 

3.1.5 Finger Joystick 

The finger joystick used in this research is shown in Fig. 10b. The joystick used in this control 

system, developed by Curtiss- Wright and sold by Permobil (Permobil, 2022b), has advantages by 

offering a two degree of freedom joystick and two control paddles, one on the left to power the 

system and switch the chair operation modes while the right paddle changes the wheelchair 

movement speed. It also has four programable buttons. The system has a program that changes 

between power wheelchair control and assistive arm manipulation through fixed buttons. When 

the system enters the assistive arm mode, the signals from the joystick will change the arm’s 

position only based on presets of dimensions of movement (X-Y or Y-Z planes, for example). 

Using the speed paddle, the user can switch between the six possible modes (X-Y axes, Z-Yaw 

axes, roll-pitch axes, and gripper mode) to manipulate the robot arm and the gripper attached to 

the end of the arm. 
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3.1.6 Chin Joystick 

The chin joystick used in this research is shown in Fig. 10c. Compact chin joysticks (Permobil, 

2022a) are used for chin control, with standard proportional force and thrown in a small package. 

They are also equipped with remote ON/OFF and mode switches. This chin joystick brings the 

same base functionality as the finger joystick but is adjusted for patients with physical limitations 

in their hands and arm. It has two degrees of freedom to address the user’s desire to manipulate 

the power wheelchair and the assistive robotic arm. At the same time, the switches attached to its 

ports allow power ON/OFF the system and move between wheelchair and active arm control. In 

this research both finger and chin joystick will be considered as a joystick module. 

 

3.1.7 Permobil Input Output Module (IOM) 

A personalized setup for the powered Wheelchair (Permobil M3 Corpus) was made in which an 

I/O Module was used between the joystick and the onboard computer. This module has an Output 

Connector D-Sub 9 Pin (like VGA port) with the following arrangement (see Fig. 11).  
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Figure 11 Input-Output pin layout of the IOM of the power wheelchair (Curtiss-Wright, 2022) 

 

Before moving into the control computer, we needed to program the onboard computer of the 

power wheelchair (Permobil M3 Corpus) using the programmer module and the software R-NET 

in Windows.  

This section shows how the onboard computer of the Wheelchair was programmed (see Fig. 12) 

by creating a robotic arm profile and a mode where the buttons, switches, and joystick will trigger 

diagonal signals in the output pins of the module. In this case, we adjusted the IOM to be on the 

Output 3 Configuration of the software. 

 

 

Figure 12 Permobil's R-net programming software in Windows 
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As a result, we have a custom connection to the I/O Module of the power wheelchair that has 

organized individual pins to read the multiple user-generated signals into the control computer, 

so the next step will be to process that information and control the robotic arm. 

3.2 Software 

3.2.1 Ubuntu Real-Time Patch 

The platform runs on the Linux Operative System, more Specifically Ubuntu desktop 18.04 

(Jetpack) with PREEMPT-RT Patch. To do real-time patch on Ubuntu, the following steps are 

required: 

• Run the command uname -r to know which kernel currently has the PC. 

• Go to https://www.kernel.org/pub/linux/kernel/projects/rt/ and find the closes kernel with 

an RT patch, download the one with extension.tar.gz 

• Based on the RT patch go to https://www.kernel.org/pub/linux/kernel/ and find the same 

kernel as the one in the RT patch and download it. 

• Run the command mkdir ~/kernel/ to create a folder on the home of the user. From there 

copy all the downloaded files into it. 

• Run the command tar -xzvf linux-5.15.79.tar.gz and then cd linux-5.15.79 to expand and 

move into the kernel folder. 

• Run the command gzip -cd ../patch-4.9.115-rt93.patch.gz | patch -p1 –verbose to paste the 

patch into the kernel folder. 

• Run sudo apt-get install libncurses-dev libssl-dev flex bison openssl dkms libelf-dev libpci-

dev libiberty-dev autoconf to install all the dependencies required for compiling the kernel. 

• Run make menuconfig this will show a GUI to create a .config file 
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• Inside of menuconfig go into General Settings -> Preemption Model -> Fully Preemptible 

Kernel (RT) and hit enter. 

• Use the arrows to select the Save button and the bottom bar and press the enter key to select 

it. 

• Select the Exit option from the bottom part until the GUI is closed. 

• Run the command make -j20 

• Then run sudo make modules_install -j20 

• Run sudo make install -j20  

• Finally run cd /boot and then sudo update- grub this will update the available kernels for 

the OS to pick when it is booting up.  
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Chapter 4: EtherCAT Robotic Actuators Control 

4.1 Preparation of the robotic actuators 

4.1.1 Cubemars specific software MotorevoStudio  

The software provided by the manufacturer is Motorevo-Studio, a windows exclusive program 

that uses both the USB serial communication and the CAN communication to talk with the actuator 

drivers and calibrate its encoders and electrical variables. The software can be downloaded from 

the manufacturers GitHub https://github.com/SupremeLyy/Motorevo-Studio/, for this study the 

version 2.1.1 beta was used as the manufacturer advised.   

In Figure 13 we can see the main window with its components. The main window has graphs to 

display the motors current position, velocity, and torque; this window also has a CAN control 

interface to test the response of the motors before fixing them into any system; this tool will not 

be used or covered since the study is centered in EtherCAT control. Over the next sub sections, 

we will explain in detail the tools necessary to setup the actuators.   
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Figure 13 Motorevo-Studio overview 

4.1.2 Actuator connection 

To power on the motors, we used a 24V 60A power supply. If the status buzzer and LED don’t 

show any sign of errors, we connect the motor to a Windows 10 PC using the USB serial port of 

the motor’s driver. Figure 14. shows the back of the actuator with its connectors labeled. 

 

Figure 14 Robotic Actuator connectors 

After a successful connection of the motor, we launch the Motor Parameter Modify, from the Tool 

bar of Motorevo-Studio; this tool allowed to calibrate the motors encoders and electrical 
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parameters. The Figure 15 shows the window with the motor’s parameters which include the 

constants for the two control loops, limits of current, torque, velocity and so. 

 

 

Figure 15 Actuator parameters in Motorevo-Studio 

To validate the correct connection and work of the motor it is needed to click Connect and Read 

Parameters. If the window fills all or most of the fields, it means that the motor is ok, and the 

calibrations steps can be done. The next sub sections will go over the calibration of the motor 

encoder for precise position reading and electrical calibration for a precise control of torque, 

velocity, and position. 

 

4.1.3 Calibration of Encoders 

The calibration of the encoders is a necessary process before doing anything else with the robotic 

actuators since it minimizes the error between a measured position and a real position. Wrong 

calibrated encoders could represent a robot arm breaking its own joints or an electric vehicle 

stopping a few inches or meter after a stop sign. Figure 16. shows visual feedback of the encoder 
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reading while a calibration signal is sent. As advised by the manufacturer the program should take 

the calibration samples for approximately three minutes before uploading the new configuration. 

 

 

Figure 16 Calibration feedback encoders 

4.1.4 Electrical Calibration of the Motor 

The electrical calibration goes over a phase check where the driver determines the which motor 

winding was connected to which pin of the board; based on that result the program reconfigures 

the driver and follows to the next stage. At the calibration stage the program sends a reference 

position and plots the real position of the motor, as seen in Fig. 17. After the calibration stage is 

finished the program writes the new parameters into the motor driver. The manufacturer advised 

to read the parameter again and check that the Electrical Offset Angle changes as this compensates 

for the difference between the reference and the measured signals of the actuator. 

 

 

Figure 17 Calibration feedback motor 
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After a successful calibration, the next step was to prepare the experimental setup to test the 

response of the actuators. 

 

4.2 Experimental Setup 

The experimental setup includes a 24V 60A power supply, the Jetson Nano as EtherCAT Master, 

the EtherCAT IO Box as the first slave and the rest of the calibrated motor as the following slaves. 

Additionally, the experimental setup includes an oscilloscope connected to the digital output of 

the IO Box to measure the cycle time of the whole system. The connection of the oscilloscope took 

an extra step since the output of the IO Box uses a sink logic and thus a 5-volt supply and a 

protection resistor were added to have a measurable read. All the network connections were made 

using regular RS45 cables and connectors. Finally, to program and control the EtherCAT master 

a mouse, keyboard and display were connected to it. Figure 18 shows the experimental setup. 

 

 

Figure 18 Experimental Setup Single Actuator 
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4.3 EtherCAT Network Setup 

In this sub-section we test the network connections and capabilities of the experimental setup and 

from that point we determine the PDO map to be loaded into the network slaves. Finally, we check 

that the PDO map was loaded properly into the system. 

 

4.3.1 EtherCAT Network Test 

To test the EtherCAT network in the experimental setup, a SOEM script is used. The code slave 

info is a built-in program in SOEM library that reads the network and returns a small report of 

each one of the slaves connected. The network report includes: 

• Input Size 

• Output Size 

• State 

• Delay in ns (for the EtherCAT buffer to reach the specific slave) 

When the program slaveinfo is called, an additional switch (-map) can be used to get the current 

PDO maps loaded into the drivers. The next subsection will go into more detail. 

 

4.3.2 EtherCAT PDO Mapping 

The following table shows the current PDO mapping used for all the robotic actuators (Cubemars 

Motors). The PDO mapping table includes all the necessary information required to program and 

load the PDOs using C++ and SOEM. Table 3 shows the PDO variables loaded into the actuators 

of the test bench. 

 



 33 

Table 3 EtherCAT Slave (Drive) PDO Mapping Data. 

Index Size Name Type 

Transmit PDO Map 

0x1600:00 4.0 TPDO map 1 index UINT8 

0x1600:01-n 4.0 TPDO map 1 slot 1 to n UINT32 

0x6040:00 2.0 Control word UINT 16 

0x607A:00 4.0 Target Position INT 32 

0x60FF:00 4.0 Target Velocity INT 32 

0x6077:00 4.0 Target Torque Actual INT 32 

0x6040:00 2.0 Modes of Operation INT 8 

Receive PDO Map 

0x1A00:00 1.0 RPDO map 1 index UINT8 

0x1A00:01-n 4.0 RPDO map 1 slot 1 to n UINT32 

0x6040:00 2.0 Status Word INT 16 

0x6064:00 4.0 Position Actual Value INT 32 

0x606C:00 4.0 Velocity Actual Value INT 32 

0x6077:00 4.0 Torque Actual Value INT 32 

0x6040:00 2.0 Modes of Operation Display INT 8 
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4.4 Real-time Tests with Multiple Modes of Operation 

Cyclic synchronous communication refers to the continuous transmission of messages at fixed 

times, with the master and drive time-synchronized in accordance with a set protocol. 

 

 

Figure 19 Cyclic Synchronous Control Diagram 

The Figure 19 shows the diagram for cyclic synchronous control based on the CAN standard 

(Pfeiffer et al., 2008). The following subsections will go in more detail over each mode used and 

how to use them in an EtherCAT network. 

The steps to set up this mode of operation goes as follows: 

• Set the EtherCAT network into operational mode 

• Set the mode of operation PDO to 0x000A (CST) or 0x0008 (CSP)   

• Set the command word PDO to 0x0080 to remove any error from the target motor 

• Set the command word PDO to 0x0000 to disable the target motor 

• Set the command word PDO to 0x0006 to prepare the target motor to power 

• Set the command word PDO to 0x0007 to switch on the target motor 

• Set the command word PDO to 0x000F to set operational the target motor 
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From this point modifying the target PDO with any positive or negative value will move the motors 

To stop the network set the command word PDO to 0x0007 to return the motor to an idle state 

Finally stop the EtherCAT Network and close the code 

4.4.1 Cyclic Synchronous Torque (CST) Mode 

In this mode the drive closes the torque loop without considering the actual velocity or position 

after receiving a target torque value from the master. Both the maximum torque and the maximum 

motor speed may be set using CST control. For situations where the load varies and real-time servo 

loop gain adjustment is required, the cyclic synchronous torque mode is ideally suited.  

 

4.4.2 Cyclic Synchronous Velocity (CSV) Mode 

the master sends a target velocity to the drive-in accordance with the PDO update cycle, based on 

the actual motor velocity and torque. The output of the velocity control loop is an input for the 

torque control loop, and velocity and torque offsets may also be sent to the drive for feed-forward 

control. With CSV mode, the maximum motor velocity and “quick stop” functions can be defined. 

Cyclic synchronous velocity mode is often used for speed-control applications, such as spindles. 

 

4.4.3 Cyclic Synchronous Position (CSP) Mode 

the master sends a target position to the drive-in accordance with the PDO update cycle, based on 

the actual motor position and, in some cases, velocity and torque as well. The drive closes the 

control loops, which can be simple PID control or cascaded control with position, velocity, and 

torque loops. Limit functions can also be defined in CSP mode to prevent the motor from moving 
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to beyond the intended range. Cyclic synchronous position mode is often used in applications with 

distributed control. 
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Chapter 5: 6 DOFs Assistive Robotic Arm Modeling and Control 

5.1 Denavit-Hartenberg and Link Assignment 

The 6 DOF assistive robotic arm shown here was the result of a collaboration with UW-Milwaukee 

Biorobotics Laboratory. The assistive robotic arm is composed by six active revolute joints 

(Cubemars). Figure 20 shows the Link-frame alignments while Table 4 shows the Modified 

Denavit-Hartenberg (DH) Parameters of the 6 DOF assistive arm. The parameters are used in the 

homogenous transformation matrix (HTM) as it can be seen here: 

 

𝑇!!"# = #

cos 𝜃! −sin 𝜃! 0 𝑎!"#
cos 𝛼!"# sin 𝜃! cos 𝛼!"# cos 𝜃! −sin 𝛼!"# −d$sin 𝛼!"#
sin 𝛼!"# sin 𝜃! sin 𝛼!"# cos 𝜃! cos 𝛼!"# 𝑑! cos 𝛼!"#

0 0 0 1

1 

 

(1) 

 

The term 𝑎!"# is the distance from the X-axis of the frame i to the X-axis of the frame i-

1; 𝛼!"# is the angle between the Z-axis of the frame i and the Z-axis of the frame i-1; 𝑑! 

is the distance from the Z-axis of the frame i to the Z-axis of the frame i-1; and 𝜃! is the 

angle between the X-axis of the frame i and the X-axis of the frame i-1; this definitions  

follow the modified DH convention as presented in (Siciliano et al., 2008).  

 

 

Table 4 Modified Denavit-Hartenberg (DH) Parameters for 6 DOF Assistive Robotic Arm 

i 𝛼!"# 𝑎!"# 𝑑! 𝜃! 

Joint 1 0 0 𝐿# 𝜃# 



 38 

 

 

Table 5 shows the physical dimension of the arm used in the Modified DH parameters where 𝐿! is 

the distance between the current joint (i) and the previous one.  

 

Table 5 Dimensional parameters of the Assistive Robotic Arm 

Parameter 𝐿# 𝐿$ 𝐿% 𝐿& 𝐿' 

Dimension (mm) 170 440 450 100 140 

 

Joint 2 −𝜋/2	 0 0 𝜃$ − 𝜋/2 

Joint 3 𝜋 𝐿$ 0 𝜃% − 𝜋/2 

Joint 4 −𝜋/2 0 𝐿% + 𝐿& 𝜃& 

Joint 5 −𝜋/2 0 0 𝜃' 

Joint 6 𝜋/2 0 𝐿' 𝜃( 
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Figure 20 Link Assignment for 6-DOF Assistive Robotic Arm 

 

5.2 Direct Kinematics 

Given the angle of each revolute joint, the direct kinematics of the assistive arm computes the end-

effector’s posture (position and orientation). Thus, the HTM can and is concatenated to determine 

the end-effector position and orientation based on all the frames/ joints that came before it, as 

follows: 

𝑇() = 𝑇#) 𝑇$# 𝑇%$ 𝑇&% 𝑇'& 𝑇('  (2) 
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Furthermore, the end-effector’s HTM can be described with the position of the end-effector 𝑃() , 

a column vector, and the orientation matrix 𝑅() , constructed using the Euler angles (𝜃*, 𝜃+, 𝜃,). 

Thus, 𝑇()  represents the direct kinematics of the assistive arm end-effector. 

𝑇() = 3 𝑅() 𝑃()

0 0 0 1
5 = 6

𝑥
𝑅*(𝜃*)𝑅+8𝜃+9𝑅,(𝜃,) 𝑦

𝑧
0 0 0 1

< 

 

(3) 

 

5.3 Inverse Kinematics 

Given the posture of the end-effector 𝑇() , the inverse kinematics can compute the angle of each 

joint. However, this process requires solving a set of non-linear equations that involves several 

trigonometric functions. In literature, many researchers have studied and presented various 

methods to solve the problem, such as numerical approaches (Li et al., 2021; Starke, Hendrich, & 

Zhang, 2018; Yiyang, Xi, Hongfei, Zhining, & Liangliang, 2021), algebraic methods (Fu, Yang, 

& Yang, 2013; Xin, Feng, Bing, & Li, 2007; Zhao et al., 2018), geometrical approaches (Tolani, 

Goswami, & Badler, 2000; J. Zhang, Zhang, & Zhang, 2021), etc. The inverse kinematics for the 

Assistive Arm is as follows: 

𝑃') = 𝑇() 6

0
0
0
1

< − (𝐿' + 𝐿() 𝑇() 6

0
0
1
0

< 
 

(4) 

  

𝜃# = arctanD
𝑃',+)

𝑃',*) E 
(5) 
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𝑃'# = 𝑇("#) 𝑃')  (6) 

  

𝜃$ =
𝜋
2 − arctan D

𝑃',+#

𝑃',*# E − arccos

⎝

⎛𝐿$
$ + 𝑃',*$# + 𝑃',,$# − (𝐿% + 𝐿&)$

2𝐿$L 𝑃',*$# + 𝑃',,$#
⎠

⎞ 

 

(7) 

  

𝑃'$ = 𝑇$"## 𝑃'#  (8) 
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− 𝑃',+$

𝑃',*$ E 
(9) 
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(14) 
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𝜃( = arctan D
𝑃(,+'

𝑃(,*' E 
(15) 

5.4 6DOF Robot Arm Setup 

The figure 21 shows the experimental setup of the assistive robotic arm (left) and the power 

wheelchair with the arm attached to it (right). Recalling chapter 3’s figure 12 of the network 

diagram, we find in this setup the user input devices such as the joystick module. It connects to the 

power wheelchair Permobil M3 Corpus through the R-net system (Curtiss, 2022) for the 

transportation control and status display. Over the input/ output module (IOM) (Curtiss-Wright, 

2022), the R-net system sends and receives control signals from the control computer. The control 

computer (RTCP) is where multiple C++ threads run to coordinate the control of the power 

wheelchair and assistive robotic arm as well, a defining characteristic of this platform is the digital 

input connectors that physically connect the assistive robot arm with the power wheelchair. In 

conclusion, there is a robotic arm section, which takes both power and control signals from the 

computer section and returns the status of the arm. This structure is composed of the brushless DC 

motors with reduction boxes and motor drivers over a EtherCAT communication; the cyclic 

synchronous loop is contained in each driver. 
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Figure 21 6-DOF Robot Arm attached to Permobil Power Wheelchair  

The setup is an interconnected system with custom circuitry (see Fig. 22) and code that seamlessly 

lets the user manipulate a wheelchair and an assistive robot arm. The C++ function for the IO uses 

the dedicated input pins of the DIEWU IO box to control the robot arm based on the user signals 

of the joystick module giving individuals with restricted mobility the possibility of performing 

some ADL. In this diagram VCC is the voltage supply and it comes from the robot supply (24V). 

The configuration uses pull-up resistors because R-net’s IOM has sinking current output pins 

creating the need to have a regulated voltage on the pin to generate/detect a change. 
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Figure 22 Wiring diagram of custom IO circuit  

 

5.5 Control of 6DOF Robot Arm  

Figure 23 displays the flowchart of the function to manipulate the assistive robotic arm’s end-

effector position. Once the user starts the robotic system, it will preload the first operation mode, 

where the assistive arm can be moved on the X–Y axes. Movements along the X–Y axes are 

forward (Fwd), backward (Bwd), left (Lft), and right (Rght), which can be achieved by selecting 

the joystick operation mode in the GUI. The user will change the operation modes to access the 

three- dimensional displacement changing from X–Y to Z direction (up/down), the three rotational 

movements (roll, pitch, and yaw), and the control over the gripper. To change the acxis of control, 

the user needs to either move the speed paddle up (SpUp) or down (SpDwn). 
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Figure 23 Flowchart of 6DOFend-effector control (Rulik et al., 2022)  
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Chapter 6: Simple Open EtherCAT Master (SOEM) Control Code 

Simple Open EtherCAT Master is the preferred EtherCAT Master Stack (SOEM). All its examples 

are written for Linux, its primary target OS. However, because each application is unique, SOEM 

tries not to impose any specific design architecture. Since SOEM runs in user rather than kernel 

space, so it can be executed on a wide range of operating systems and computer architectures. It 

can be used in PREEMPT RT, Xenomai, or general user mode. Additionally, it is relatively easy 

to convert it to various targets. Thus, in this study, it is deployed in a single-board computer 

running Linux for ARM. The developed program runs on a custom open-source C++ library. The 

operating system abstraction layer (OSAL) API is used to create real-time threads. 

The program was written in the C/C++ language. The most relevant structures and functions used 

in the program will be displayed and explained as they can be seen in Fig. 24. 

 

Figure 24 Base Program Structure 

6.1 Variables and Considerations in the Code 

Before going further into the code, there are considerations that need to be mentioned to make the 

code more understandable: 
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• The manufacturers of the robotic actuators have disclosed how their drivers both receive and 

return the network variables as it will be shown (Lyy et al., 2022): 

o Actual Position / Target position: 1*10000[rad] 

o Actual Velocity / Target Velocity: 1*10000[rad/s] 

o Actual Torque / Target Torque: 1*10000[Nm] 

In consequence in multiple parts of the code there will be a conversion as it is more useful for 

the user to read and send rad, rad/sec and Nm values rather than ten thousand times the value. 

• Time control variables like ctime and cycle time are in the microsecond units (us) even thought 

that these variables are converted to nano seconds (ns) to be used with the internal Linux 

functions to measure compare and correct the cycle times of the system. 

• There are three types of global variables that are used across all functions to share data between 

them, and they are: 

o Double arrays: these global variables store either the converted position, velocity, or 

torque of each robot joint; and they are used to store the limits for position, velocity, 

and torque as well. 

o Unsigned Int arrays: this is the type of variables that the raw PDOs of the EtherCAT 

network expect for control and return as feedback. 

o Int and Boolean: both variable types are used as counters or control flags to determine 

if a mode of operation its going. As an example, if the data logger is active there will 

be a global variable equal to TRUE. Another example is the number of loops that has 

occurred since a command has been sent, this is stored in a count variable to guarantee 

a delay without putting the whole system in a halt. 
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6.2 Main Function 

The main function initializes both local and global variables of the system and then it calls a custom 

instance of the Gtk window class (See Appendix A).  

 

6.3 Robot GUI 

This instance handles multiple responsibilities: 

• Starts a window refreshing thread that will update the network variables on the screen each 

second (see Appendix B). 

• Takes the reference of the Network Interface that will be used for EtherCAT (the computer's 

Ethernet port) and launches two threads: EtherCAT Master and runner (see Appendix C). 

• Handles the control of the revolute joints of the robotic arm, allowing to switch modes of 

operation and send target values for the robot to follow (see Appendix D and E). 

• Allow the user to start and stop the data logger function and store the values in a custom comma 

separated values (csv) file (see Appendix M). 

Figure 25 shows the developed GUI, going from left to right we can see the network control 

column that allows us to give the network interface id and the initial control method to be used 

while launching an EtherCAT network with the Start Button. The following column is for joint 

and cartesian control, while displaying the position of each joint in radians it takes the target values 

that the user wants to upload with the Send button. Below is cartesian Mode, it applies forward 

kinematics to the joint positions to find the cartesian position of the end-effector (last joint) of the 

robot, while taking target positions and processing them with inverse kinematics to move the robot 

arm. The last column is the data logger section where the program samples data of the position, 



 49 

velocity, and torque of each joint and stores it into a comma separated value (.csv) file. The user 

interface refreshes automatically the joint and cartesian position values using a dedicated thread. 

 

 

Figure 25 Robot Control GUI 

 

6.4 EtherCAT Check Thread 

The ecatcheck runs an infinite while loop to guarantee control over the EtherCAT State Machine 

(see Appendix L). The thread checks if all the slaves are responding and if the setup sequence has 

triggered the variable inOP. It runs the function ec_readstate() to read the state of each slave state 

machine. From this point, a for loop runs to check if every slave in the network is in the operational 

state; if this is not the case, the code will handle the different situations to keep the network 

operational as they are: 

• The slave is in Safe Operation state and has errors -> ack and move to SafeOp 
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• The slave is in a Safe Operation state -> move to operational 

• The slave is in an unknown state - > reconfigure the slave 

• The slave is lost -> recover sequence for slave 

After this for loop is finished, the thread sleeps for 10 ms and starts again to check the network 

status. 

 

6.5 Real-Time Cycle Aid Functions 

To guarantee real-time cycles in the main control thread of the program, some aid functions were 

used (see Appendix H). Here we can see what they do: 

Runner is the real-time thread that runs an infinite while loop; it takes the loop time in 

microseconds as an argument. It starts by getting the monotonic time of the OS (unmodifiable 

clock) to define an accurate start time for the thread. Then it sends the EtherCAT Buffer to the 

network to start the real-time loop. Inside the loop, it begins by calculating how much time is left 

to start the cycle and waits for it using clock_nanosleep(CLOCK_MONOTONIC, 

TIMER_ABSTIME, &ts, &tleft). When the variable dorun is TRUE, the thread downloads the 

EtherCAT Network Buffer with wkc = ec_receive_processdata(EC_TIMEOUTRET) and sets the 

work counter. Here is where the real-time read/write of the PDOs will happen. From that point, it 

checks if any slave has a Distributed Clock (DC) clock ec_slave[0].hasdc and ec_sync(ec_DCtime, 

cycletime, &toff) and adjusts the clock offset in the OS to make the cycle times match the ones on 

the actuators. Finally, it uploads the EtherCAT Network Buffer and jumps into the next cycle. 
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6.6 Runner Real-Time Thread 

The runner code (see Appendix I) uses the SOEM function ec_init(ifname) to call the network 

interface and start the EtherCAT network; if no connection is made, the code will stop. Then the 

SOEM function ec_config_init(FALSE) is used to list and initialize all the EtherCAT slaves in the 

network; the FALSE argument is because the program does not use a configtable. Here the code 

calls the custom Class Motor and creates an instance for each slave in the network, CubemarsMotor 

cubemars1((uint16) slave1, 1). From this point, we call the built-in functions of the class to do the 

following: 

• PDO mapping of each slave -> cubemars1.ConfigurePDOs() 

• Set all the PDO maps in the network -> CubemarsMotor::ConfigureMotors() 

• Change the mode of operation -> cubemars1.ConfigureProfilePositionMode() 

• Set RPDO values -> cubemars1.SetTargetPosition((int32_t) 4800) 

• Get TPDO values -> cubemars1.GetPositionActualValue() 

• Download the EtherCAT Network Buffer -> CubemarsMotor::ReadEthercat() 

• Modify the Output Buffer/Datagram -> cubemars1.WritingPDOs() 

• Read/decode the Input Buffer/Datagram -> cubemars1.ReadingPDOs() 

• Upload the EtherCAT Network Buffer -> CubemarsMotor::WriteEthercat() 

With the previous functions, the code can configure and operate the network. Now we use 

ec_slave[0].state = EC_STATE_INIT to set the EtherCAT State Machine to the initial state, with 

ec_writestate(0), we send the change to the ecatcheck thread, and thus we change the state of the 

network. Finally, the function ec_close() stops the network and disconnects it from the interface. 
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6.7 Joystick Control Functions 

There are two main functions required to perform the joystick control over the system. The first 

one is the Joystick Detection function (see Appendix J) as it uses a temporal variable to store the 

joystick value from the previous iteration (loop) to determine if there is either a raising or a falling 

edge. After detecting a falling edge from the speed paddle, the code will either increase or decrease 

the joystick mode of operation (0: X-Y, 1: Z-Roll and 2: Pitch-Yaw). As for the rising edges of the 

joystick itself the code will update a global variable (command) based on the direction of the 

joystick. This command variable will be different than 0 until the joystick return to the neutral 

position. 

The second code is the Joystick Send Command (see Appendix K). This function takes the 

command extracted from the joystick and while it is different than 0 it will maintain a constant 

increment on the robot actual position based on the inclination of the joystick and the mode of 

operation. After updating the cartesian position of the robot, the function generates the inverse 

kinematics for the arm and upload it into a global variable. 

 

6.8 Limit Protection Functions 

It is security layer on the program to avoid the collision of the system with the environment or 

the user itself. This function achieves said protection by: 

• Comparing stored limit values for position, velocity, and torque with current values. 

• In the case of position, both joint and the end effector (coordinate axis), if their target 

position is within the limits of the system, then the robot will move. As if the joints try to 

turn beyond the positive or negative limit, they will be restricted to stop or change the 
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direction (see Appendix N). These limits are manually tuned to avoid the area where both 

user and power wheelchair exist. 

• In the case of velocity and torque if a peak value is read for more than 5 cycles of the 

program, the robot will be immobilized automatically by changing its EtherCAT state into 

pre-operational (see Appendix O). 

• The user GUI possess extra fields to grab both lower and upper limit of this variables in 

case the user wants to override the current setup. 

 
6.9 SOEM Control Summary 

This chapter presented in detail the main functions that compose the SOEM program running in 

the RTCP. Moreover, it has shown how the functions integrate with one another. Now we present 

a flowchart that summarizes how this program translates processes and translates signals into the 

real world. 

 Figure 26 the Data flowchart of the SOEM code. The figure starts from the left by determining 

which mode (M: 0,1,2) would be used, as the following column will show how the code handles 

each operation. For example, the Joystick Control generates a command based on the current 

Joystick mode; then the program takes the current values of the joints and computes the forward 

kinematics to find the cartesian position of the end effector. Based on the actual position of the 

end-effector the joystick command is added to the respective component (linear or rotational X, 

Y, Z) and then the inverse kinematics is calculated. If the inverse kinematics finds a solution with 

no singularities the code will proceed to check if both joint and cartesian positions are within the 

limits of range of operation. If the target values meet the limits criteria the target will be uploaded 

into the EtherCAT PDOs. After uploading the PDOs the program will take the RTCP internal clock 
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and will request the motors distributed clock to perform and comparison and adjust any possible 

offset to guarantee the loop time. From that point the program will request the system PDOs back. 

Based on the returned PDOs the system will check if either the velocity or the torque of the moving 

motors is crossing the limits, if that happens the operation will be paused for the user to debug the 

cause of it. Otherwise, it will continue to calculate the inverse kinematics and display the network 

variables into the GUI. 

 

Figure 26 Data Flow Across SOEM Code 
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Chapter 7: Experiments, Results and Discussions 

This chapter presents experiments performed to validate the proposed control system and assistive 

robotic arm. The first experiments are meant to confirm that the RTCP can run a proper EtherCAT 

network while keeping a consistent real-time loop, this is vital as an unstable EtherCAT Master 

will be unable to control the robotic actuators or worse it could trigger unforeseen responses like 

robot joints crashing over the setup. The next experiments go over the robotic actuator internal 

control to confirm not only they perform as advertised but that the RTCP can send control signals 

and retrieve sensor data as it is necessary for the rest of the study. The next experiments built on 

the top of previous ones as it is meant to test the forward and inverse kinematics to validate that 

the mathematical models do control the assistive robot arm properly in the real world. The last 

experiment uses the joystick control based on the flowchart of Figure 23 to validate that the system 

can be controlled properly and be used in ADLs. 

7.1 Test of real time cycles using Digital I/O of the actuators 

 

Figure 27 Oscilloscope Read of Real-Time with Multiple Actuators 
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All the EtherCAT network time delay measures shown in the Table 6. are the mean value over 5 

measures done in two computing platforms: Jetson Nano, and RT-PC with i7 and Ubuntu 22.04. 

 

Table 6 EtherCAT Network time delays 

Slave Number Measured Delay Time (ns) 

Single Act. Multiple Act. Robot 

1 0 0 0 

2 880 840 820 

3 - 1680 1660 

4 - 2520 2500 

5 - 3340 3320 

6 - 4030 4160 

7 - 4960 5020 

 

The results seen on Table 7 are measures of the program’s loop time. The measures were taken 

using a Keysight Oscilloscope for the multiple configurations of the experimental setup. 

 

Table 7 Real-Time Thread Cycle Time Measures 

Target Cycle 

Time (us) 

Measured Cycle Time (us) 

Single Act. Multiple Act. Robot 

300 260 250 256 

400 360 350 354 
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500 450 460 460 

600 560 550 570 

700 660 660 650 

800 750 760 750 

900 860 870 872 

1000 980 960 953 

2000 1940 1920 1922 

 

Table 7 contains the results of the tests. The oscilloscope measurements revealed a pattern. Figures 

27 and 28 show the Target Cycle Time result from a Multiple Actuator experiment test 

configuration, yet they diverge on the falling edge time making the Cycle Time be in a consistent 

off set of 25 to 50 microseconds. In other words. This showed the need for a more accurate 

calculation of the loop times.  

  

Figure 28 Oscilloscope capture fluctuation 
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Using the functionality of the oscilloscope to export comma separated values (csv) files, a test run 

was made to gather some files further analysis. 

Based on the readings we can compute the overall Accuracy and Precision of the System with 

respect to Real-Time Cycles with a target of 200	𝜇𝑠. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑣𝑎𝑙𝑢𝑒 =
𝑠𝑢𝑚	𝑜𝑓𝑑𝑎𝑡𝑎

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑚𝑒𝑛𝑡𝑠 
(16) 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝑒𝑟𝑟𝑜𝑟 =
𝑡𝑎𝑟𝑔𝑒𝑡	𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝑣𝑎𝑙𝑢𝑒

𝑡𝑎𝑟𝑔𝑒𝑡	𝑣𝑎𝑙𝑢𝑒 ∗ 100 
(17) 

 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝑣𝑎𝑙𝑢𝑒 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑣𝑎𝑙𝑢𝑒 (18) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑆𝑢𝑚	𝑜𝑓	𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 	 

(19) 

 

Using the previous equations, a Matlab code was developed to open and process the csv files and 

extract the statistics quickly. From a capture of a thousand samples, it was found that the average 

deviation is: 218.1	𝜇𝑠 ± 21.4	𝜇𝑠 with a percent error of 9%. 

More experimental data was recorded, and the following table shows its results. 

 

Table 8 Real-Time Thread Cycle Stats 
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Target Cycle 

Time (us) 

Average 

Value (us) 

Average 

Deviation (us) 

Percent 

Error (%) 

300 274 23 8.6 

400 372 39 7 

500 463 46 7.4 

600 558 67 7 

700 654 40 6.57 

800 758 42 6.5 

900 843 56 6.33 

1000 940 60 6 

2000 1879 120 6.04 

 

One possible reason for the accuracy of this system could be related to the electrical components 

of the EtherCAT IO Box since it has optocouplers for protection, that added layer to activate and 

deactivate the Outputs of the system can introduce potential delays as it would be for this case. 

Another possible reason is the fact that the study uses soft real-time because of how the shared 

resources are used over the code, allowing to have small offsets in the timing of the cycles. 

Following experiments should consider using a different EtherCAT IO slave and a different real-

time implementation like Xenomai to confirm or deny this. 

 

7.2 Tests of Arm Cyclic Synchronous Position 

The following tests were performed to the robotic actuators to validate their capabilities and check 

that computational, electrical, and mechanical components are performing as expected. The 
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following figure shows the readings of cyclic synchronous position control applied to the robotic 

actuator. The reference value is a square signal with a magnitude of 1.35 radians. The velocity 

limit is of 0.2 radians per second   

 

Figure 29 Angular position of single robotic actuator with CSP 

From Figure 29 the motor’s position has a settling time of 6 seconds and a steady state error 0.0007 

radians which is under the precision mentioned in (Lyy et al., 2022). 

 

7.3 Tests of Arm Inverse Kinematics 

The following tests were performed to the assistive robotic arm to determine its capabilities and 

check that computational, electrical, and mechanical components are performing as expected. The 

following Figure 30 shows the readings of inverse kinematics control applied to the robot arm. 
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Figure 30 Angular position, torque, and speed of 200 by 200 mm box along the X-Y axis 

 

 

Figure 31 Cartesian trajectory of a 200 by 200 mm box along the X-Y axis 

From the recorded data of the assistive arm, the joint angles, torque, and velocity were extracted 

and shown in Figure 31 for tracing a square over the X-Y axis and Figure 33 for tracing a square 
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over the Y-Z axis. Both figures have some differences, as the elapsed time is 33% less to draw the 

square in the Y-Z axis; as for the torques, the last 5 seconds of each trajectory shows how the 

inverse kinematics assigns more rotations on the joint 1 to do a displacement in the Y axis while 

the joint 3 has more rotations when a displacement along the Z axis is performed. Moreover, the 

trajectory of the square in the Y-Z axis shows an increased torque in the joint 2 and 3 since that 

joint is holding the weight of the following joints and perform most of the actuation as the robot 

get further away from its origin axis. 

 

 

Figure 32 Angular position, torque, and speed of 200 by 200 mm box along the Y-Z axis 
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Figure 33 Cartesian trajectory of a 200 by 200 mm box along the Y-Z axis 

Based on the shown results it was clear that we could move forward to the experiments using the 

joystick module as it will work applying inverse kinematics over small steps that will be updated 

cyclically.  

 

7.4 Tests of Joystick Control 

This research presents pick and place tasks from three different locations: ground, table, and shelf. 

Two studies were approved by the UWM IRB (21.306. UWM and 21.309. UWM) to determine 

the performance of the implemented finger joystick and chin joystick system in a previous 

publication (Rulik et al., 2022).  

 

Figure 21 shows the final setup of the system. The power wheelchair with the assistive robotic arm 

is mounted on the left side rail. Two user inputs control the robotic arm and the powered 
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wheelchair. Joystick control is done with a two-axis joystick. There is a toggle switch to change 

the control between the wheelchair and the Assistive Arm. 

 

For safety measures, the robot arm’s active workspace is reduced to avoid any contact with the 

user. As daily living tasks, picking and placing items from the ground, a table and shelf were 

selected due to their change in height. The data from the robotic arm was gathered for the joystick 

experiments allowing to display of the trajectory of the robot end-effector. In the ADL tasks the 

highest item was 0.8 m above the ground, and the furthest away object horizontally was 0.692 m. 

In these tasks, the Cartesian mode allows manipulating the robotic arm based on the theory seen 

in Chapter 4 and 5 by updating the target position using the joysticks. Figure 35a shows the 

trajectory followed by the robot gripper for the joystick to pick an object from the table. The dotted 

blue line is the trajectory using the joystick, and the dotted red line represents the target position 

sent. Likewise, Figure 35c shows the end-effector path to picking an object from the ground. And 

8c the trajectory to pick and object from a shelf. 
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Figure 34 Angular position, torque, and speed of pick form table ADL  

 

Figure 35 Cartesian trajectory of picking an item from (a) table, (b) ground and (c) shelf 
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7.5 Tests of Computing Resource Utilization 

After performing an adequate control over the 6DOF robot arm and power wheelchair system. 

Measuring and comparing the computing resource utilization of the RTCP, the jetson nano, its 

desired since it can demonstrate the capabilities of the control platform to perform over long 

periods of time. As a reference we used a Dell OptiPlex computer paired with an Intel i7 8th 

generation and 16 gb of RAM to run the software simultaneously. 

 

 

Figure 36 Resource Utilization of Reference Platform, before running the program (left) and while running (right) 

On the other hand, the jetson nano showed the results found in figure 35. The performance of the 

jetson nano does take more CPU resources to run the program. 
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Figure 37 Resource Utilization of RTCP Platform, before running the program (left) and while running (right) 

Form comparing figures 36 and 37 we can see that there is not a considerable difference between 

the system resources utilization since: average CPU usage before running the program is around 

10% and when running the program, it is 20%. The memory and network components are not 

displaying a change worth to be mentioned. As for the jetson nano its average CPU usage is around 

20% before running the program and then it goes around 30% while running the program even 

thought that it presents spikes in its CPU core utilization. 

 

From this experiment we can conclude that the Dell OptiPlex platform performs better, but more 

over we can conclude that the jetson nano platform performs adequately to hold the whole load of 

the program as it is using less than 30% of its available resources. A point to be made is that while 
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performing this experiment the jetson nano presented more fluctuations on the resource utilization 

window while browsing the file system and launching the screen capture programs. 
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Chapter 8: Conclusions and Future works 

This study aimed to develop a Real Time Control Platform (RTCP) and integrate it with a 

multimodal control system to assist individuals with restricted mobility in performing ADL while 

having control over their mobility and environment. The wheelchair and a wheelchair-mounted 

robotic arm are considered, combined, and then translated the control commands to control 

manually in Cartesian mode to accomplish this task. The proposed control system was put to the 

test with computed trajectories using the GUI and manual trajectories given by the joystick. The 

analytical solution of the inverse kinematics proved to be useful to control the robotic arm. For 

safety measures, the assistive robot arm workspace was limited to avoid contact with the user. 

Experiments results guarantee that the proposed control framework can suitably be used to 

maneuver both a powered wheelchair and an assistive robot for ADL assistance using the 

integrated wheelchair joysticks. This research thus contributes to significant technological 

advancement that has yielded a novel portable control platform with the implementation of a 

control framework that uses a joystick. Note that the developed control framework requires 

validation with healthy participants with a successful completion of ADL tasks as the perquisite 

before testing the system with individuals with upper extremity dysfunctions. The comparison 

between the joystick and reference operations in ADLs is also demonstrated. The distribution of 

the task completion time indicates that the joystick operation was more time-consuming than 

computed trajectory.  

 

The following steps for this research include expanding the user input devices, perform 

experiments with healthy individuals and add a wider range of ADLs to test. All to conduct future 

experiments with wheelchair users having limited or no upper limb movements. 
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Appendix A: Main Function 

int main (int argc, char *argv[])  
{ 
    Main kit(argc, argv); 
    GTKRobot GTKRobot; 
    Main::run(GTKRobot); 
    return 0; 
    printf("non reach");  
} 
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Appendix B: GUI Refresh Thread 

void backgroundRefresh() 
    { 
    while(STOP_ECAT==FALSE) 
      { 
        std::string pos1 = std::to_string(theta[0]); 
        std::string pos2 = std::to_string(theta[1]); 
        std::string pos3 = std::to_string(theta[2]); 
        std::string pos4 = std::to_string(theta[3]); 
        std::string pos5 = std::to_string(theta[4]); 
        std::string pos6 = std::to_string(theta[5]); 
        Robot.ForwardKinematics( theta, FW ); 
        std::string dx = std::to_string(FW[0]); 
        std::string dy = std::to_string(FW[1]); 
        std::string dz = std::to_string(FW[2]); 
        std::string rx = std::to_string(FW[3]); 
        std::string ry = std::to_string(FW[4]); 
        std::string rz = std::to_string(FW[5]); 
        entryActualValue1.set_text(pos1); 
        entryActualValue2.set_text(pos2); 
        entryActualValue3.set_text(pos3); 
        entryActualValue4.set_text(pos4); 
        entryActualValue5.set_text(pos5); 
        entryActualValue6.set_text(pos6); 
        entryActualDX.set_text(dx); 
        entryActualDY.set_text(dy); 
        entryActualDZ.set_text(dz); 
        entryActualRX.set_text(rx); 
        entryActualRY.set_text(ry); 
        entryActualRZ.set_text(rz); 
        if(checkButtonDataLogger.get_active()) 
        { 
            recordData = TRUE; 
            logFileName = entryDataLogger.get_text(); 
            std::string logCount = std::to_string(logCounter); 
            entryDataLoggerCurrent.set_text(logCount); 
        } 
        else 
        { 
            recordData = FALSE; 
            entryDataLoggerCurrent.set_text("0"); 
        } 
        ik_sent = FALSE; 
        sleep(1); 
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        cout.flush(); 
      }  
    } 
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Appendix C: GUI Start and Stop Network Buttons 

protected: void buttonStartETCClicked() 
    { 
        string networkI = entryNetworkInterface.get_text(); 
        ifname= networkI.c_str(); // IMPORTANT 
        string modeOfOperation = comboBoxModeofOp.get_active_text(); 
        if (modeOfOperation == "CSP") 
        { 
            modeGUI = 1; 
        } 
        else if (modeOfOperation == "Cartesian") 
        { 
            modeGUI = 2; 
        } 
        else if (modeOfOperation == "Joystick") 
        { 
            modeGUI = 3; 
        } 
        else 
        { 
            throw runtime_error("Unrecognized mode of operation!"); 
        } 
        int ctime = 5000; // cycletime in microseconds 
        STOP_ECAT = FALSE; 
        osal_thread_create(&thread2, 128000, &ecatcheck, NULL); 
        osal_thread_create_rt(&thread1, 128000, &runner, (void*) &ctime); 
        Glib::Thread::create(sigc::mem_fun(*this, &GTKRobot::backgroundRefresh), true); 
        printf("EtherCAT Network Launched"); 
    } 
 
protected: void buttonStopETCClicked() 
    { 
        STOP_ECAT = TRUE; 
        printf("EtherCAT Network Stop\n"); 
    } 
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Appendix D: GUI Mode of Operation Button 

protected: void buttonModeofOpClicked() 
    { 
        string modeOfOperation = comboBoxModeofOp.get_active_text(); 
        if (modeOfOperation == "CSP") 
        { 
            modeGUI = 1; 
        } 
        else if (modeOfOperation == "Cartesian") 
        { 
            modeGUI = 2; 
        } 
        else if (modeOfOperation == "Joystick") 
        { 
            modeGUI = 3; 
            jsMode = 0; 
        } 
        else 
        { 
            throw runtime_error("Unrecognized mode of operation!"); 
        } 
    } 
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Appendix E: GUI Send Joint and Cartesian Target Position Buttons 

protected: void buttonSendTargetClicked() 
    { 
        string target1 = entryTargetValue1.get_text(); 
        string target2 = entryTargetValue2.get_text(); 
        string target3 = entryTargetValue3.get_text(); 
        string target4 = entryTargetValue4.get_text(); 
        string target5 = entryTargetValue5.get_text(); 
        string target6 = entryTargetValue6.get_text(); 
        targetJointVal[0] = stod(target1); 
        targetJointVal[1] = stod(target2); 
        targetJointVal[2] = stod(target3); 
        targetJointVal[3] = stod(target4); 
        targetJointVal[4] = stod(target5); 
        targetJointVal[5] = stod(target6); 
        robot_targetJointVal[0] = int(targetJointVal[0]*10000); 
        robot_targetJointVal[1] = int(targetJointVal[1]*10000); 
        robot_targetJointVal[2] = int(targetJointVal[2]*10000); 
        robot_targetJointVal[3] = int(targetJointVal[3]*10000); 
        robot_targetJointVal[4] = int(targetJointVal[4]*10000); 
        robot_targetJointVal[5] = int(targetJointVal[5]*10000); 
    } 
 
protected: void buttonSendCartesianClicked() 
    { 
        string target1 = entryTargetDX.get_text(); 
        string target2 = entryTargetDY.get_text(); 
        string target3 = entryTargetDZ.get_text(); 
        string target4 = entryTargetRX.get_text(); 
        string target5 = entryTargetRY.get_text(); 
        string target6 = entryTargetRZ.get_text(); 
        cartesianTarget[0] = stod(target1); 
        cartesianTarget[1] = stod(target2); 
        cartesianTarget[2] = stod(target3); 
        cartesianTarget[3] = stod(target4); 
        cartesianTarget[4] = stod(target5); 
        cartesianTarget[5] = stod(target6); 
        valid_ik = Robot.InverseKinematics( cartesianTarget, theta_ik ); 
        robot_theta_ik[0] = int(theta_ik[0]*10000);  
        robot_theta_ik[1] = int(theta_ik[1]*10000); 
        robot_theta_ik[2] = int(theta_ik[2]*10000); 
        robot_theta_ik[3] = int(theta_ik[3]*10000); 
        robot_theta_ik[4] = int(theta_ik[4]*10000); 
        robot_theta_ik[5] = int(theta_ik[5]*10000); 
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        std::string response = (valid_ik)? "Yes" : "No"; 
        ik_sent = TRUE; 
        cout<<"Inverse kinematics ok? "<<response<<endl; 
        cout<<"GUI "<<theta_ik[0]<<" "<<theta_ik[1]<<" "<<theta_ik[2]<<" 
"<<theta_ik[3]<<" "<<theta_ik[4]<<" "<<theta_ik[5]<<endl; 
    } 
 
protected: void buttonTestCartesianClicked() 
    { 
        valid_ik = Robot.InverseKinematics( FW, theta_ik ); 
        std::string response = (valid_ik)? "Yes" : "No"; 
        cout<<"Inverse kinematics ok? "<<response<<endl; 
        cout<<"GUI "<<theta_ik[0]<<" "<<theta_ik[1]<<" "<<theta_ik[2]<<" 
"<<theta_ik[3]<<" "<<theta_ik[4]<<" "<<theta_ik[5]<<endl; 
    } 
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Appendix F: GUI Send Joint Position Limits Button 

protected: void buttonLimitsTargetClicked() 
    { 
        string j1n = entryLimitNJ1.get_text(); 
        string j2n = entryLimitNJ2.get_text(); 
        string j3n = entryLimitNJ3.get_text(); 
        string j4n = entryLimitNJ4.get_text(); 
        string j5n = entryLimitNJ5.get_text(); 
        string j6n = entryLimitNJ6.get_text(); 
        string j1p = entryLimitPJ1.get_text(); 
        string j2p = entryLimitPJ2.get_text(); 
        string j3p = entryLimitPJ3.get_text(); 
        string j4p = entryLimitPJ4.get_text(); 
        string j5p = entryLimitPJ5.get_text(); 
        string j6p = entryLimitPJ6.get_text(); 
        lowPosLim[0] = stod(j1n); 
        lowPosLim[1] = stod(j2n); 
        lowPosLim[2] = stod(j3n); 
        lowPosLim[3] = stod(j4n); 
        lowPosLim[4] = stod(j5n); 
        lowPosLim[5] = stod(j6n); 
        upPosLim[0] = stod(j1p); 
        upPosLim[1] = stod(j2p); 
        upPosLim[2] = stod(j3p); 
        upPosLim[3] = stod(j4p); 
        upPosLim[4] = stod(j5p); 
        upPosLim[5] = stod(j6p); 
        printf("Sending Limits...\n"); 
    } 
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Appendix G: GUI Send Cartesian Position Limits Button 

protected: void buttonLimitsCartesianClicked() 
    { 
        string dxn = entryLimitNDX.get_text(); 
        string dyn = entryLimitNDY.get_text(); 
        string dzn = entryLimitNDZ.get_text(); 
        string rxn = entryLimitNRX.get_text(); 
        string ryn = entryLimitNRY.get_text(); 
        string rzn = entryLimitNRZ.get_text(); 
        string dxp = entryLimitPDX.get_text(); 
        string dyp = entryLimitPDY.get_text(); 
        string dzp = entryLimitPDZ.get_text(); 
        string rxp = entryLimitPRX.get_text(); 
        string ryp = entryLimitPRY.get_text(); 
        string rzp = entryLimitPRZ.get_text(); 
        lowCPosLim[0] = stod(dxn); 
        lowCPosLim[1] = stod(dyn); 
        lowCPosLim[2] = stod(dzn); 
        lowCPosLim[3] = stod(rxn); 
        lowCPosLim[4] = stod(ryn); 
        lowCPosLim[5] = stod(rzn); 
        upCPosLim[0] = stod(dxp); 
        upCPosLim[1] = stod(dyp); 
        upCPosLim[2] = stod(dzp); 
        upCPosLim[3] = stod(rxp); 
        upCPosLim[4] = stod(ryp); 
        upCPosLim[5] = stod(rzp); 
        printf("Sending Limits...\n"); 
    } 
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Appendix H: SOEM RT Runner Aid Functions 

void add_timespec(struct timespec *ts, int64 addtime) 
{ 
   int64 sec, nsec; 
   nsec = addtime % NSEC_PER_SEC; 
   sec = (addtime - nsec) / NSEC_PER_SEC; 
   ts->tv_sec += sec; 
   ts->tv_nsec += nsec; 
   if ( ts->tv_nsec >= NSEC_PER_SEC ) 
   { 
      nsec = ts->tv_nsec % NSEC_PER_SEC; 
      ts->tv_sec += (ts->tv_nsec - nsec) / NSEC_PER_SEC; 
      ts->tv_nsec = nsec; 
   } 
} 
 
void ec_sync(int64 reftime, int64 cycletime , int64 *offsettime) 
{ 
   static int64 integral = 0; 
   int64 delta; 
   /* set linux sync point 50us later than DC sync, just as example */ 
   delta = (reftime - 50000) % cycletime; 
   if(delta> (cycletime / 2)) { delta= delta - cycletime; } 
   if(delta>0){ integral++; } 
   if(delta<0){ integral--; } 
   *offsettime = -(delta / 100) - (integral / 20); 
   gl_delta = delta; 
} 
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Appendix I: SOEM RT Runner Thread 

OSAL_THREAD_FUNC_RT runner(void *ptr) 
{ 
    if (ec_init(ifname)) 
    { 
      if ( ec_config_init(FALSE) > 0 ) 
      { 
        int jsRet = 0; 
        boolean STOP_runner = FALSE; 
        // Motor initialization 
        CubemarsMotor cubemars1((uint16) 2,(int) 2); 
        CubemarsMotor cubemars2((uint16) 3,(int) 3); 
        CubemarsMotor cubemars3((uint16) 4,(int) 4); 
        CubemarsMotor cubemars4((uint16) 5,(int) 5); 
        CubemarsMotor cubemars5((uint16) 6,(int) 6); 
        CubemarsMotor cubemars6((uint16) 7,(int) 7); 
        cubemars1.ConfigurePDOs(); 
        cubemars2.ConfigurePDOs(); 
        cubemars3.ConfigurePDOs(); 
        cubemars4.ConfigurePDOs(); 
        cubemars5.ConfigurePDOs(); 
        cubemars6.ConfigurePDOs(); 
        CubemarsMotor::ConfigureMotors(); 
        dorun = 1; 
        int i = 1; 
        int j = 1; 
        int moveCounter= 0; 
        // RT loop time control setup 
        struct timespec   ts, tleft; 
        int ht; 
        int64 cycletime; 
        int flip = 0; 
        clock_gettime(CLOCK_MONOTONIC, &ts); 
        ht = (ts.tv_nsec / 1000000) + 1; /* round to nearest ms */ 
        ts.tv_nsec = ht * 1000000; 
        if (ts.tv_nsec >= NSEC_PER_SEC) { 
            ts.tv_sec++; 
            ts.tv_nsec -= NSEC_PER_SEC; 
        } 
        cycletime = *(int*)ptr * 1000; /* cycletime in ns */ 
        toff = 0; 
        while(STOP_runner == FALSE) 
        { 
            i++; 
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            /* calculate next cycle start */ 
            add_timespec(&ts, cycletime + toff); 
            /* wait to cycle start */ 
            clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &ts, &tleft); 
            wkc = ec_receive_processdata(EC_TIMEOUTRET); 
            if(wkc >= expectedWKC) 
            { 
                cubemars1.WritingPDOs(); 
                cubemars2.WritingPDOs(); 
                cubemars3.WritingPDOs(); 
                cubemars4.WritingPDOs(); 
                cubemars5.WritingPDOs(); 
                cubemars6.WritingPDOs(); 
                cubemars1.ReadingPDOs(); 
                cubemars2.ReadingPDOs(); 
                cubemars3.ReadingPDOs(); 
                cubemars4.ReadingPDOs(); 
                cubemars5.ReadingPDOs(); 
                cubemars6.ReadingPDOs(); 
                if(STOP_ECAT == TRUE) 
                { 
                    cubemars1.SetTargetVelocity((int32_t) 0); 
                    cubemars2.SetTargetVelocity((int32_t) 0); 
                    cubemars3.SetTargetVelocity((int32_t) 0); 
                    cubemars4.SetTargetVelocity((int32_t) 0); 
                    cubemars5.SetTargetVelocity((int32_t) 0); 
                    cubemars6.SetTargetVelocity((int32_t) 0); 
                    cubemars1.SetControlWord((uint16_t) 0x07); 
                    cubemars2.SetControlWord((uint16_t) 0x07); 
                    cubemars3.SetControlWord((uint16_t) 0x07); 
                    cubemars4.SetControlWord((uint16_t) 0x07); 
                    cubemars5.SetControlWord((uint16_t) 0x07); 
                    cubemars6.SetControlWord((uint16_t) 0x07); 
                    j++; 
                } 
                if(j >50){ 
                    STOP_runner = TRUE; 
                } 
                if(i >= 100 && i <=140) 
                { 
                    cubemars1.SetControlWord((uint16_t) 0x07); 
                    cubemars2.SetControlWord((uint16_t) 0x07); 
                    cubemars3.SetControlWord((uint16_t) 0x07); 
                    cubemars4.SetControlWord((uint16_t) 0x07); 
                    cubemars5.SetControlWord((uint16_t) 0x07); 
                    cubemars6.SetControlWord((uint16_t) 0x07); 
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                    cubemars1.SetModeOfOperation((int8_t) 0x08); 
                    cubemars2.SetModeOfOperation((int8_t) 0x08); 
                    cubemars3.SetModeOfOperation((int8_t) 0x08); 
                    cubemars4.SetModeOfOperation((int8_t) 0x08); 
                    cubemars5.SetModeOfOperation((int8_t) 0x08); 
                    cubemars6.SetModeOfOperation((int8_t) 0x08); 
                    cubemars1.SetTargetPosition((int32_t) robot_targetJointVal[0]); 
                    cubemars2.SetTargetPosition((int32_t) robot_targetJointVal[1]); 
                    cubemars3.SetTargetPosition((int32_t) robot_targetJointVal[2]); 
                    cubemars4.SetTargetPosition((int32_t) robot_targetJointVal[3]); 
                    cubemars5.SetTargetPosition((int32_t) robot_targetJointVal[4]); 
                    cubemars6.SetTargetPosition((int32_t) robot_targetJointVal[5]); 
                    cubemars1.SetTargetVelocity((int32_t) 2000); 
                    cubemars2.SetTargetVelocity((int32_t) 2000); 
                    cubemars3.SetTargetVelocity((int32_t) 2000); 
                    cubemars4.SetTargetVelocity((int32_t) 2000); 
                    cubemars5.SetTargetVelocity((int32_t) 2000); 
                    cubemars6.SetTargetVelocity((int32_t) 2000); 
                } 
 
                if(i >= 150 && i <= 170) 
                { 
                    cubemars1.SetControlWord((uint16_t) 0x1f); 
                    cubemars2.SetControlWord((uint16_t) 0x1f); 
                    cubemars3.SetControlWord((uint16_t) 0x1f); 
                    cubemars4.SetControlWord((uint16_t) 0x1f); 
                    cubemars5.SetControlWord((uint16_t) 0x1f); 
                    cubemars6.SetControlWord((uint16_t) 0x1f); 
                } 
             
                if(i>200) 
                { 
                    if(modeGUI == 1) // GUI Joint Mode 
                    { 
                        if(posLimit(targetJointVal)) 
                        { 
                            cubemars1.SetTargetPosition((int32_t) robot_targetJointVal[0]); 
                            cubemars2.SetTargetPosition((int32_t) robot_targetJointVal[1]); 
                            cubemars3.SetTargetPosition((int32_t) robot_targetJointVal[2]); 
                            cubemars4.SetTargetPosition((int32_t) robot_targetJointVal[3]); 
                            cubemars5.SetTargetPosition((int32_t) robot_targetJointVal[4]); 
                            cubemars6.SetTargetPosition((int32_t) robot_targetJointVal[5]); 
                        } 
                    } 
                    else if(modeGUI == 2) // GUI Cartesian Mode 
                    { 
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                        if(posLimit(theta_ik)) 
                        { 
                            if(valid_ik == TRUE && ik_sent == TRUE) 
                            { 
                                cubemars1.SetTargetPosition((int32_t)robot_theta_ik[0]); 
                                cubemars2.SetTargetPosition((int32_t)robot_theta_ik[1]); 
                                cubemars3.SetTargetPosition((int32_t)robot_theta_ik[2]); 
                                cubemars4.SetTargetPosition((int32_t)robot_theta_ik[3]); 
                                cubemars5.SetTargetPosition((int32_t)robot_theta_ik[4]); 
                                cubemars6.SetTargetPosition((int32_t)robot_theta_ik[5]); 
                                ik_sent = FALSE; 
                            } 
                            else 
                            { 
                                command = "ERROR: Singularity Triggered"; 
                            } 
                        } 
                    } 
                    else if(modeGUI == 3) // JS Mode 
                    { 
                        jsReadPast = jsRead; 
                        jsRead = 0; 
                        get_input_int8((int) 1, (uint8_t) 0,&jsRead); 
                        if(moveCounter >3) // Delay 3 till next command 
                        { 
                            moveCounter = 0; 
                        } 
                        if (moveCounter == 0) 
                        { 
                            jsModeControl(jsReadPast,jsRead); 
                            jsRet=jsUpdatePos(jsCommand); 
                        } 
                        if(posLimit(jsIK)) 
                        { 
                            if(jsRet==1 && moveCounter == 0) 
                            { 
                                cubemars1.SetTargetPosition((int32_t)robot_theta_ik[0]); 
                                cubemars2.SetTargetPosition((int32_t)robot_theta_ik[1]); 
                                cubemars3.SetTargetPosition((int32_t)robot_theta_ik[2]); 
                                cubemars4.SetTargetPosition((int32_t)robot_theta_ik[3]); 
                                cubemars5.SetTargetPosition((int32_t)robot_theta_ik[4]); 
                                cubemars6.SetTargetPosition((int32_t)robot_theta_ik[5]); 
                                moveCounter = 1; 
                            } 
                        } 
                        if (moveCounter >= 1) 
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                        { 
                            moveCounter++; 
                        } 
                        jsRet = 0; 
                    } 
                } 
                theta[0]=cubemars1.GetPositionActualValue()/10000.0; 
                theta[1]=cubemars2.GetPositionActualValue()/10000.0; 
                theta[2]=cubemars3.GetPositionActualValue()/10000.0; 
                theta[3]=cubemars4.GetPositionActualValue()/10000.0; 
                theta[4]=cubemars5.GetPositionActualValue()/10000.0; 
                theta[5]=cubemars6.GetPositionActualValue()/10000.0; 
                thetaD[0]=cubemars1.GetVelocityActualValue()/10000.0; 
                thetaD[1]=cubemars2.GetVelocityActualValue()/10000.0; 
                thetaD[2]=cubemars3.GetVelocityActualValue()/10000.0; 
                thetaD[3]=cubemars4.GetVelocityActualValue()/10000.0; 
                thetaD[4]=cubemars5.GetVelocityActualValue()/10000.0; 
                thetaD[5]=cubemars6.GetVelocityActualValue()/10000.0; 
                torque[0]=cubemars1.GetTorqueActualValue()/10000.0; 
                torque[1]=cubemars2.GetTorqueActualValue()/10000.0; 
                torque[2]=cubemars3.GetTorqueActualValue()/10000.0; 
                torque[3]=cubemars4.GetTorqueActualValue()/10000.0; 
                torque[4]=cubemars5.GetTorqueActualValue()/10000.0; 
                torque[5]=cubemars6.GetTorqueActualValue()/10000.0; 
                velTorLimit(thetaD,torque); 
                dataRecorder(); 
                needlf = TRUE; 
            } 
            if (ec_slave[0].hasdc) 
            { 
                /* calulate toff to get linux time and DC synced */ 
                ec_sync(ec_DCtime, cycletime, &toff); 
            } 
            ec_send_processdata(); 
        } 
         ec_slave[0].state = EC_STATE_INIT; 
         ec_writestate(0); // request INIT state for all slaves  
         ec_close(); // closes the network 
         STOP_ECAT = TRUE; 
    } 
   } 
   else 
   { 
      printf("No socket connection on %s\nExecute as root\n",ifname); 
   } 
} 
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Appendix J: Joystick Control 

void jsModeControl(int jsPast, int jsPres) 
{ 
    if(jsPast == 63 && jsPres != 63) // motion tracking 
    { 
        jsCommand = 0; 
        if(jsRead == 62) //Fwd 
        { 
            jsCommand = 1; 
        } 
        else if(jsRead == 61) //Bwd 
        { 
            jsCommand = 2; 
        } 
        if(jsRead == 59) //Lft 
        { 
            jsCommand = 3; 
        } 
        else if(jsRead == 55) //Rght 
        { 
            jsCommand = 4; 
        } 
    } 
    if (jsPres==63) // change mode 
    { 
        jsCommand = 0; 
        if(jsPast == 47) //spUp 
        { 
            jsMode ++; 
            printf("jsRead: %d\n",jsRead); 
            printf("jsMode: %d\n",jsMode); 
        } 
        else if(jsPast == 31) //spDown 
        { 
            jsMode --; 
            printf("jsRead: %d\n",jsRead); 
            printf("jsMode: %d\n",jsMode); 
        } 
        if(jsMode>2) 
        { 
            jsMode = 0; 
            printf("jsMode: %d\n",jsMode); 
        } 
        else if (jsMode< 0) 
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        { 
            jsMode = 2; 
            printf("jsMode: %d\n",jsMode); 
        } 
    } 
} 
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Appendix K: Joystick Send Command 

int jsUpdatePos(int command) 
{ 
    if (command !=0) 
    { 
        Robot.ForwardKinematics( theta, jsFW ); 
        printf("Continuous Movement Active %d\n",command); 
        if(command == 1) //fwd tilt 
        { 
            if(jsMode == 0) 
            { 
                printf("moving forward\n"); 
                jsFW[0] = jsFW[0] + linStepSize; 
            } 
            else if(jsMode == 1) 
            { 
                jsFW[2] = jsFW[2] - linStepSize; 
            } 
            else if(jsMode == 2) 
            { 
                jsFW[3] = jsFW[3] + rotStepSize; 
            } 
        } 
        else if(command == 2) //bwd tilt 
        { 
            if(jsMode == 0) 
            { 
                jsFW[0] = jsFW[0] - linStepSize; 
            } 
            else if(jsMode == 1) 
            { 
                printf("moving up\n"); 
                jsFW[2] = jsFW[2] + linStepSize; 
            } 
            else if(jsMode == 2) 
            { 
                jsFW[3] = jsFW[3] - rotStepSize; 
            } 
        } 
        else if(command == 3) //lft tilt 
        { 
            if(jsMode == 0) 
            { 
                jsFW[1] = jsFW[1] + linStepSize; 
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            } 
            else if(jsMode == 1) 
            { 
                jsFW[5] = jsFW[5] + rotStepSize; 
            } 
            else if(jsMode == 2) 
            { 
                jsFW[4] = jsFW[4] + rotStepSize; 
            } 
        } 
        else if(command == 4) //rght tilt  
        { 
            if(jsMode == 0) 
            { 
                jsFW[1] = jsFW[1] - linStepSize; 
            } 
            else if(jsMode == 1) 
            { 
                jsFW[5] = jsFW[5] - rotStepSize; 
 
            } 
            else if(jsMode == 2) 
            { 
                jsFW[4] = jsFW[4] - rotStepSize; 
            } 
        } 
        valid_ik = Robot.InverseKinematics( jsFW, jsIK ); 
        if(valid_ik) 
        { 
            robot_theta_ik[0] = int(jsIK[0]*10000); 
            robot_theta_ik[1] = int(jsIK[1]*10000); 
            robot_theta_ik[2] = int(jsIK[2]*10000); 
            robot_theta_ik[3] = int(jsIK[3]*10000); 
            robot_theta_ik[4] = int(jsIK[4]*10000); 
            robot_theta_ik[5] = int(jsIK[5]*10000); 
            return 1; 
        } 
        return 0; 
         
    } 
} 
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Appendix L: EtherCAT Check 

OSAL_THREAD_FUNC ecatcheck(void *ptr) 
{ 
    int slave; 
    printf("Thread on\n"); 
    while(STOP_ECAT == FALSE) 
    { 
        if( inOP && ((wkc < expectedWKC) || ec_group[currentgroup].docheckstate)) 
        { 
            if (needlf) 
            { 
               needlf = FALSE; 
               printf("\n"); 
            } 
            /* one ore more slaves are not responding */ 
            ec_group[currentgroup].docheckstate = FALSE; 
            ec_readstate(); 
            for (slave = 1; slave <= ec_slavecount; slave++) 
            { 
               if ((ec_slave[slave].group == currentgroup) && (ec_slave[slave].state != 
EC_STATE_OPERATIONAL)) 
               { 
                  ec_group[currentgroup].docheckstate = TRUE; 
                  if (ec_slave[slave].state == (EC_STATE_SAFE_OP + EC_STATE_ERROR)) 
                  { 
                     printf("ERROR : slave %d is in SAFE_OP + ERROR, attempting ack.\n", slave); 
                     ec_slave[slave].state = (EC_STATE_SAFE_OP + EC_STATE_ACK); 
                     ec_writestate(slave); 
                  } 
                  else if(ec_slave[slave].state == EC_STATE_SAFE_OP) 
                  { 
                     printf("WARNING : slave %d is in SAFE_OP, change to OPERATIONAL.\n", 
slave); 
                     ec_slave[slave].state = EC_STATE_OPERATIONAL; 
                     ec_writestate(slave); 
                  } 
                  else if(ec_slave[slave].state > EC_STATE_NONE) 
                  { 
                     if (ec_reconfig_slave(slave, EC_TIMEOUTMON)) 
                     { 
                        ec_slave[slave].islost = FALSE; 
                        printf("MESSAGE : slave %d reconfigured\n",slave); 
                     } 
                  } 
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                  else if(!ec_slave[slave].islost) 
                  { 
                     /* re-check state */ 
                     ec_statecheck(slave, EC_STATE_OPERATIONAL, EC_TIMEOUTRET); 
                     if (ec_slave[slave].state == EC_STATE_NONE) 
                     { 
                        ec_slave[slave].islost = TRUE; 
                        printf("ERROR : slave %d lost\n",slave); 
                     } 
                  } 
               } 
               if (ec_slave[slave].islost) 
               { 
                  if(ec_slave[slave].state == EC_STATE_NONE) 
                  { 
                     if (ec_recover_slave(slave, EC_TIMEOUTMON)) 
                     { 
                        ec_slave[slave].islost = FALSE; 
                        printf("MESSAGE : slave %d recovered\n",slave); 
                     } 
                  } 
                  else 
                  { 
                     ec_slave[slave].islost = FALSE; 
                     printf("MESSAGE : slave %d found\n",slave); 
                  } 
               } 
            } 
            if(!ec_group[currentgroup].docheckstate) 
               printf("OK : all slaves resumed OPERATIONAL.\n"); 
        } 
        osal_usleep(10000); 
    } 
} 
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Appendix M: Data Logger 

void dataRecorder() 
{ 
    if(recordData)  
   { 
        counter4Counter++; 
    } 
    else  
    { 
        logCounter = 0; 
        counter4Counter = 0; 
    } 
    if(counter4Counter>=sampleFactor) 
    { 
        logCounter++; 
        counter4Counter = 0 ; 
        if(logCounter == 1) 
        { 
            printf("started logging %d \n",logCounter); 
            csvfile csv(logFileName,false); // throws exceptions! 
            // Hearer 
            csv <<"Time" << "J1_pos" << "J2_pos" << "J3_pos" << "J4_pos" << "J5_pos" << 
"J6_pos" << "J1_vel" << "J2_vel" << "J3_vel" << "J4_vel" << "J5_vel" << "J6_vel" << 
"J1_tor" << "J2_tor" << "J3_tor" << "J4_tor" << "J5_tor" << "J6_tor" << "J1_tpos" << 
"J2_tpos" << "J3_tpos" << "J4_tpos" << "J5_tpos" << "J6_tpos" << endrow; 
            logCounter++; 
        } 
        else if(logCounter>1) 
        { 
            csvfile csv(logFileName,true); // throws exceptions! 
            // Hearer 
            if(modeGUI == 1) 
            { 
                csv <<logCounter*timeFactor <<  theta[0]  << theta[1]   << theta[2]     << theta[3]  
<< theta[4]   << theta[5]  <<  thetaD[0] << thetaD[1]  << thetaD[2]    << thetaD[3] << 
thetaD[4]  << thetaD[5] << torque[0] << torque[1]  << torque[2]    << torque[3] << torque[4]  
<< torque[5] <<  targetJointVal[0] << targetJointVal[1] << targetJointVal[2] << 
targetJointVal[3] << targetJointVal[4] << targetJointVal[5] <<  endrow; 
            } 
            else if(modeGUI == 2) 
            { 
                csv <<logCounter*timeFactor <<  theta[0]    << theta[1]     << theta[2]     << 
theta[3]     << theta[4]     << theta[5]     <<  thetaD[0]   << thetaD[1]    << thetaD[2]    << 
thetaD[3]    << thetaD[4]    << thetaD[5]    << torque[0]   << torque[1]    << torque[2]    << 
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torque[3]    << torque[4]    << torque[5]    <<  theta_ik[0] << theta_ik[1]  << theta_ik[2]  << 
theta_ik[3]  << theta_ik[4]  << theta_ik[5]  <<  endrow; 
            } 
            else if(modeGUI == 3) 
            { 
                csv <<logCounter*timeFactor <<  theta[0]  << theta[1]   << theta[2]     << theta[3]  
<< theta[4]   << theta[5]  <<  thetaD[0] << thetaD[1]  << thetaD[2]    << thetaD[3] << 
thetaD[4]  << thetaD[5] << torque[0] << torque[1]  << torque[2]    << torque[3] << torque[4]  
<< torque[5] <<  jsIK[0] << jsIK[1]  << jsIK[2]  << jsIK[3]  << jsIK[4]  << jsIK[5]  <<  
endrow; 
            } 
        } 
    } 
} 
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Appendix N: Angular and Cartesian Limit Protection 

int posLimit(double posR[6]) 
{ 
    double cPos[6]; 
    if(posR[0]<lowPosLim[0] || posR[0]>upPosLim[0] || 
       posR[1]<lowPosLim[1] || posR[1]>upPosLim[1] || 
       posR[2]<lowPosLim[2] || posR[2]>upPosLim[2] || 
       posR[3]<lowPosLim[3] || posR[3]>upPosLim[3] || 
       posR[4]<lowPosLim[4] || posR[4]>upPosLim[4] || 
       posR[5]<lowPosLim[5] || posR[5]>upPosLim[5]) 
    { 
        return 0; 
    } 
    Robot.ForwardKinematics( posR, cPos ); 
    else if(cPos[0]<lowCPosLim[0] || cPos[0]>upCPosLim[0] || 
            cPos[1]<lowCPosLim[1] || cPos[1]>upCPosLim[1] || 
            cPos[2]<lowCPosLim[2] || cPos[2]>upCPosLim[2] || 
            cPos[3]<lowCPosLim[3] || cPos[3]>upCPosLim[3] || 
            cPos[4]<lowCPosLim[4] || cPos[4]>upCPosLim[4] || 
            cPos[5]<lowCPosLim[5] || cPos[5]>upCPosLim[5]) 
    { 
        return 0; 
    } 
    else  
    { 
        return 1; 
    } 
} 
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Appendix O: Velocity and Torque Limit Protection 

void velTorLimit(double velR[6],double torR[6]) 
{ 
    if(velR[0]<lowVelLim[0] || velR[0]>upVelLim[0] || 
       velR[1]<lowVelLim[1] || velR[1]>upVelLim[1] || 
       velR[2]<lowVelLim[2] || velR[2]>upVelLim[2] || 
       velR[3]<lowVelLim[3] || velR[3]>upVelLim[3] || 
       velR[4]<lowVelLim[4] || velR[4]>upVelLim[4] || 
       velR[5]<lowVelLim[5] || velR[5]>upVelLim[5]) 
    { 
        limCounter++; 
                if(limCounter >=10) 
                { 
            STOP_ECAT = TRUE; 
        } 
    } 
    else if(torR[0]<lowTorLim[0] || torR[0]>upTorLim[0] || 
            torR[1]<lowTorLim[1] || torR[1]>upTorLim[1] || 
            torR[2]<lowTorLim[2] || torR[2]>upTorLim[2] || 
            torR[3]<lowTorLim[3] || torR[3]>upTorLim[3] || 
            torR[4]<lowTorLim[4] || torR[4]>upTorLim[4] || 
            torR[5]<lowTorLim[5] || torR[5]>upTorLim[5]) 
    { 
        limCounter++; 
                if(limCounter >=10) 
                { 
            STOP_ECAT = TRUE; 
        } 
    } 
    else  
    { 
        limCounter = 0; 
    } 
} 
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Appendix P: Cubemars Motors ORH Parameters 

  

Model ORH 40(RR40) ORH50(RR50) ORH60(RR60) ORH70(RR70)
OD (mm) 56mm 68.4mm 81mm 86mm
Length 62.4mm 63.1mm 61.2mm 73mm

Hollow Shaft dia (mm) 9mm 11mm 12.5mm 14mm
Weight (g) 335g 500g 650g 720g

Hollow Encoder  14bit 14 bit 14bit 14bit

Continuous Torque (Nm) 0.32 0.5 0.75 0.9
Peak Torque (Nm) 0.95 1.5 2.3 2.6

KV (RPM/V) 180 180 115 100
Kt (Nm/A) 0.025408 0.0397 0.083 0.09
Ke (V/RPM) 0.005555556 0.005555556 0.008695652 0.01

Rated Current (Amp) 8 12.5 9 10
Peak Current (Amp) 23 37 28 30
Input Voltage (V) 48 48 48 48

Number of Pole‐Pair 12 14 14 21
Gear Ratio (GR) 100 100 100 100

Rated Torque @2000 RPM (Nm) with GR 100 5.4 16 28 40
Maximum allowable torque (Nm) at start and stop 19 37 57 82

Instantaneous allowable maximum torque 35 71 95 147
Maximum allowable average load torque (Nm)  7.7 27 34 49

Maximum allowable Input Speed 8000 rpm 7000 rpm 6000 rpm 6000 rpm
Allowable Average  Input Speed 3500 rpm 3500 rpm 3500 rpm 3500 rpm

Precission 10 ≤ Arc Sec 10≤ Arc Sec 10 ≤ Arc Sec 10 ≤ Arc Sec
Projected Life Span 15000 hr 15000 hr 15000 hr 15000hr

Input Voltage 48V 48V 48V 48V
EtherCat yes yes yes yes

Hollow Shaft dia (mm) 11 11 12.5 14
Synchronus position control, velocity control, and torque 

control yes yes yes yes

EtherCat Ports  In and out yes yes yes yes
Power Ports (90 deg radail, horiontal) In and Out no yes yes yes

Basic Data

Expandable 17 bit Encoder for Output shaft
Motor Parameters

Motor Driver

PARAMTERS
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