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ABSTRACT 

A PROTOCOL TO BUILD TRUST WITH BLACK BOX MODELS 

 

by 

 

Timothy Thielke 

 

The University of Wisconsin-Milwaukee, 2022 

Under the Supervision of Professor Paul Roebber 

 
 

Data scientists are more widely using artificial intelligence and machine learning (ML) 

algorithms today despite the general mistrust associated with them due to the lack of contextual 

understanding of the domain occurring within the algorithm. Of the many types of ML 

algorithms, those that use non-linear activation functions are especially regarded with suspicion 

because of the lack of transparency and intuitive understanding of what is occurring within the 

black box of the algorithm. In this thesis, we set out to create a protocol to delve into the black 

box of an ML algorithm set to predict synoptic severe weather patterns and discover if we can 

more closely observe what is occurring inside the algorithm. In doing so, we prove that despite 

the lack of context considered when creating the algorithm there can be some recognition of key 

synoptic features. This protocol is aided by the introduction of a novel visualization tool that acts 

to peer inside the hidden nodes of an artificial neural network to better diagnose the black box. 

To show that this protocol and tool have merit, we also consider 5 generalized questions that 

should be answered to develop trust with ML algorithms.  
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I. INTRODUCTION 

 

Machine learning (ML) has become increasingly popular across a wide range of scientific 

disciplines, such as medical diagnosis (Bera et al. 2019), sports analytics (Hamilton et al. 2014), 

and financial planning (Camacho-Urriolagoitia et al. 2021). A contributing reason for this is due 

to its ability to predict complex phenomena and identify patterns within massive datasets. ML 

has been formally defined by several researchers since the term was first introduced in the 1950s. 

It is widely considered a subset of artificial intelligence (AI) where AI is a generally a computer 

algorithm that is meant to emulate human intelligence using logic. ML distinguishes itself from 

other AI by performing a given task without being given explicit instructions, but instead uses 

patterns within the dataset to produce an output (Roebber 2022). Further, ML can improve its 

performance for a given task by learning from its experience, narrowly defined, as suggested by 

Mitchell (1997) who states, “a computer program that is said to learn from experience E with 

respect to some class of tasks T and some performance measure P, if its performance on tasks T, 

as measured by P, improves with experience E”.  

 

Considering these ideas, many different types of algorithms used to study a dataset can be 

considered ML. For example, the popular multivariate linear regression (MLR) can be 

considered ML if it is created by the modeler to improve upon a given performance metric 

automatically. Decision tree algorithms are another popular algorithm that can be ML. Decision 

trees are a technique where a set of IF-THEN rules are used to split and categorize the data to 

make a prediction. With these two types of algorithms in mind, it can be a straightforward 

process to understand how and why the model produced the result it did due to their relatively 
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high transparency. It is that transparency that allows the user to build confidence and trust with 

those given models (Barredo et al. 2020). Artificial neural networks are another type of ML 

algorithm which are comprised of a single, or multiple, hidden layer of nodes that can be a mix 

of either linear or non-linear activation functions. The presence of these non-linear activations 

within the hidden layers decreases the model’s transparency and thus makes it difficult to 

understand the ANN model. In these instances, the hidden layers are often referred to as an 

ANN’s black box. In fact, without the inclusion of the non-linear functions, the ANN reduces to 

an MLR. If multiple hidden layers exist, then the ANN can be further classified as a deep neural 

network (DNN) adding more complexity to the model and its interpretation. The tradeoff for 

choosing the ANNs and DNNs more complex and less transparent algorithm is that they are 

more flexible than their simpler linear counterparts (Barredo et al. 2020). Despite this, without 

being able to intuitively delve into the black box of the model they are often labeled 

untrustworthy even if the output of the model is highly accurate and resolves the questions asked 

of the dataset. This problem is further compounded on by the lack of contextual understanding 

by the ANN algorithm. Because these algorithms train in a narrow and closely defined 

framework, they are unable to account for changes in context which does not emulate real world 

predictions. For these reasons, modelers resort to post-hoc model-agnostic approaches to explain 

and understand the ANNs inner workings and from there establish trust with the model. 

   

Attempts at building trust with a black box model are ongoing with a large focus on being 

able to interpret a model’s output, explaining why a model predicted X, and why a model 

predicted X instead of Y (Miller 2019). Barredo et al. (2020) survey the literature of explainable 

AI and state that to properly explain AI for a given audience, AI must “produce details or reasons 
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to make its functioning clear or easy to understand.” There is a large emphasis on the audience 

for AI, or ML model, when attempting to explaining its output because the background 

knowledge of the domain can vary greatly depending on who is interpreting the model. They 

further discuss that there are generally six categories of post-hoc and model-agnostic techniques 

used to explain a more opaque type of ML, such as an ANN: text explanation, visual 

explanation, local explanation, explanations by example, explanations by simplification, and 

feature relevance explanation.  

 

Text explanations are simply the model’s ability to explain its result by generating text 

and symbols to support its output. Local explanations take a less complex localized segment of 

the solution space that is relevant to the whole model and use that to explain the model’s output. 

Explanations by example is the process of extracting examples that relate to the result and show 

the relationships and correlations found by the model. Explanations by simplification represents 

the subset of explanations that require a simpler proxy model that resembles the original model. 

For example, in 2016, Ribeiro et al. (a) created a model-agnostic technique referred to as LIME 

(Local Interpretable Model-Agnostic Explanations) which fits a simple linear model to a set of 

slightly altered predictor values. From there they interpret the simpler model that acts as a proxy 

for the more complicated ANN. Similarly, Craven and Shavlik (1995) develop an algorithm that 

generates a decision tree to approximate the black box of an ANN. These proxy models may 

produce similar results as the ANN they represent, however, they can be unfaithful to that 

original model due to differing relationships and correlations the proxy model uses (Rudin 2019). 

Because of this, proxy models don’t explain precisely how the output was determined which can 
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lead to misleading conclusions but can nonetheless be useful when interpreting a non-linear 

model.   

 

Visual explanations are considered the best way to represent how input variables interact 

inside the ANN for those who are not familiar with ML modeling, but the process of generating 

such imagery is a difficult task (Barredo et al. 2020). For this reason, visual explanation imagery 

is typically paired with feature relevance techniques which are used to compute a relevance score 

for, and determine output sensitivity to, input variables. Krause et al. (2016) developed a post-

hoc interactable visualization tool that generates a partial dependence biplot designed to show 

the relationship between input variables and can be used on several different types of ML 

models. Several examples of feature relevance techniques can be found in McGovern et al. 

(2019) where they test multiple model interpretation and visualization methods with a specific 

focus on meteorological problems and studies. One such method is impurity importance (Louppe 

et al. 2013; Breiman 2001) which has been applied to an ensemble approach to decision tree 

models, random forest, predicting convective storm mode and winter precipitation type. Impurity 

importance ranks the variables to determine relevance in the model by the average amount of 

times a feature within the dataset splits incorrectly across all the trees in the ensemble (Louppe et 

al. 2013). Permutation importance is another method in which variable importance is determined, 

by measuring how much a model deteriorates when permuting an input variable for all examples. 

The permutation importance measure is determined by comparing the permutation’s performance 

to that of the original model. McGovern uses single-pass (Breiman 2001) and multi-pass 

(Lakshmanan et al. 2015) permutation importance on decision tree models, support-vector 
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machines, and convolutional neural network (CNN) models predicting convective storm mode, 

winter precipitation, and tornadogenesis. 

 

After creating their visualization tool, Krause et al. (2016) interviewed users and 

developed 5 questions that their tool helped to aid. We consider these questions here, but have 

adjusted them to fit a more generalized topic: 

 1. What impact does an input variable have on the output prediction? 

2. Does the model behave correctly on a case-to-case basis? 

3. What are the most important features for a given output prediction? 

4. Why are certain cases not being accurately predicated? 

5. Can we identify high impact actionable features? 

The purpose of this thesis is to create a protocol that, if followed, will answer these questions 

about non-linear black box models and in doing so will build user trust with that model. To 

accomplish this, we consider a simple, single layer ANN and analyze it using established, and 

hybrid adaptations of, feature relevance techniques, alongside a novel visualization method. 

Additionally, we generate a linear model using the same variable inputs as our ANN model for 

comparison. Both models will consider the entire testing dataset as well as a subset of the testing 

dataset that represents the primary mode of a given severe weather event along with the synoptic 

setting as classified by Miller (1972). These aspects will be discussed in greater detail in section 

2. The results of these analysis and studies of specific events where the models did not perform 

well will be presented in section 3. Concluding remarks to follow in section 4.  
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II. METHODOLOGY 

 

MODEL & DOMAIN 

 

The data for this study comes from the ERA 5 reanalysis (Hersbach et al. 2020). 

Considering computational constraints, we selected data points that were spatially located 

between 38-44°N and 97-110°W which we hereafter refer to as the northern plains of the United 

States (Fig. 1). Further, we restricted the period of interests to March-September in 2010 and 

2011. 

 

As in Miller (1972), we will focus on synoptic scale features that promote severe 

convective thunderstorms. Considering this, we start with hourly geopotential height (GP), 

specific humidity (SH), temperature (TP), vertical velocity (WW), and both the U- and V- 

components (UU; VV) of winds at 250, 500, 700, and 850 hPa pressure surfaces as inputs in our 

model. Additionally, we included 2-meter temperature and dewpoint (DP) temperature, mean sea 

level pressure (MP), and 10-meter u- and v- component winds. We limit our study to just these 

input variables because they are the foundations for synoptic features. For example, convective 

available potential energy (CAPE) is an important measure to determine areas of instability and 

it can be calculated from the variables above. Adding additional, derived variables from the 

foundational measures can lead to collinearity and may confound interpretation. After some 

analysis, discussed later in this thesis, we further limited our model to only 14 variables that 

maintained the key features important to our model to simplify interpretation. 
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Using SPC’s archived storm reports, we considered a 24-hour period (00 UTC to 23 

UTC) to be severe if the number and concentration of reports suggested the presence of 

organized convective storms. Although the number of severe days to non-severe days are not 

equally observed, we did filter our data in such a way that half the days were severe and the other 

half were non-severe. We do this because the ratio of severe to non-severe days can vary based 

on geographical location, month, season, etc. and having too many “null” (non-severe) 

exemplars can produce poor training in ML models. However, we will take care to consider the 

possibility that this procedure will produce bias in the predictions. 

 

To remove dimensionality and simplify our inputs to the ANN, we use k-means 

clustering on the complete set of variables collected from the ERA 5 reanalysis. The k-means 

clustering algorithm is another type of ML that is classified as unsupervised because it does not 

require human supervision to identify clusters. The algorithm iteratively finds k-number of mean 

cluster centers, where k is determined by the modeler. The algorithm then optimizes the cluster 

center selection by determining which value has the least amount of error (Likas et al. 2001). 

From here the algorithm measures the distance each data point is from each mean cluster center 

and then allocates the data points to the nearest cluster center. Our criteria for selecting a given 

k-number of clusters for each variable is that each cluster had at least 10 occurrences, the cubic 

clustering criterion (CCC; Sarle 1983) value as a function of k is maximized and had a value 

greater than +2, and all clusters are reasonably compact in 2-D space. The CCC value is 

determined by the within-cluster sum of squares and when maximized the error is minimized. 

When CCC is considered as a function of k, we can determine which k-value of clusters best 

represents the dataset. Occasionally, a CCC value would be maximized, but one or more mean 
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clusters may have less than 10 occurrences. Since we want to make sure that each cluster is 

reasonably represented within or model, we would look at the next highest value of k with a 

CCC still above +2 until all mean clusters had at least 10 occurrences. Finally, once the above 

two criteria are met, we would plot the data by the first two principal components to analyze the 

data to ensure that there were no extreme outliers. This clustering process eliminated several 

variables from consideration. Once this process was complete, each variable field was replaced 

by the mean cluster ID value for each hour of the dataset. For example, temperature at 500 hPa 

for a given time would be assigned a value of 30 if the variable field was closest to cluster 

centroid 30.  

 

Other statistical methods were considered to reduce the dimensionality of our dataset, 

such as principal component analysis (PCA). PCAs represent a fraction of the entire dataset with 

which most of the variance is captured by a select number of eigenvectors while k-means 

clustering finds natural groupings of datapoints. PCAs would theoretically work well as inputs in 

our ANN algorithm, but because clustering highlights the individual synoptic features, while 

PCA does not, we are better able to analyze those features to gain further understanding, and 

therefore more trust, with our ML algorithm. 

 

We use the k-means cluster identification values as categorical inputs in our ANN which 

was created using JMP Pro 16 software. To prevent time correlation within our model, we used 

the first two thirds of our 2010 severe weather season dataset for training and the remaining one 

third of the data for validation. For testing, we consider the whole 2011 severe weather season. 

Because our inputs are categorical, rather than continuous, each input value is assigned a starting 
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weight for each node within the hidden layer. Additionally, the sum of squares, the penalty 

parameter, is set to 0. Next, in an outer iterative loop “a nonzero candidate value of the penalty 

parameter is then chosen, and a univariate line search on the penalty parameter is undertaken” 

(Gotwalt 2011). While the search is being undertaken, the best value of likelihood value for the 

training dataset is recorded by the algorithm. In an inner iterative loop, the likelihood of the 

validation dataset is being recorded. To keep the model from overfitting, when the likelihood 

from the inner iteration no longer improves then the algorithm terminates. The model in which 

the best validation likelihood occurred is kept. 

 

Although our aim was to experiment with techniques to build trust with any black box 

model, we wanted to use a model that performs well. Considering this, we conducted a trial-and-

error process in which over 1,000 models were generated with varying architectures, such as 

altering input variables, the number of hidden nodes, and hidden node activation functions. For 

each model, we calculated the critical success index (CSI) and the squared error for both the 

training and validation datasets. We wanted our CSI value to be at least 0.5 and squared error 

relatively minimized. We selected the simplest model from those that satisfied our criteria for 

this study.  

 

Table 1 denotes the long- and short-hand IDs for 14 input variables selected for the 

model. The selected model had one hidden layer with 6 nodes that all used the hyperbolic 

tangent (TanH) function. The TanH function acts like a step function but is continuously 

differentiable which allows the error backpropagation method to be used to adjust the model 

weights. Each hidden node sums the input variable weights for that given hour and halves that 
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value before applying the TanH function. The resulting value of each hidden node is then applied 

to a logit equation to calculate the probability for severe weather at that time.  

 

DOMAIN EXPERTISE 

 

We compare established literature and concepts within the severe weather forecasting 

domain to our model’s output to better rationalize our model’s predictions and further build trust 

with it. Our first concept is to simply observe the severe weather mode for the day in question. 

For this, we consider archived SPC storm reports and classified each day as either a hail, wind, 

or tornado day depending on which report was most common. In some cases, there were a near 

equal amount of two or more types of reports (e.g., Fig. 2). In this case there were a mix of hail 

and wind reports collected in Nebraska and rather than assigning the day either wind or hail we 

instead classified it as a wind and hail.  

 

The Miller (1972) report outlines five classic synoptic weather patterns that promote 

convective weather. Although they consider multiple variables at several pressure levels, each 

pattern can be connected to specific frontal patterns. With this in mind, we use WPC’s archived 

surface analysis to assign each day to a given pattern. Table 2 briefly describes the frontal 

patterns we consider when assigning a given Miller classification. Not every severe weather day 

in our data fits perfectly into a specific Miller classification. In these cases, we used subjective 

judgement to assign those days to the classification it most closely represented. In both the storm 

mode and Miller classifications, if the day was non-severe then it was classified as a null day.  
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LOGISTIC REGRESSION 

 

Rudin (2019) states that a more complicated a model is not necessarily be more accurate 

one. It is true that in some cases a simple linear model can perform as well as, if not better than, a 

complicated black box model. To ensure that our model does not fall within this category, we 

will also generate a logistic regression model using the same dataset and compare the two 

models using the same methodology and protocol that we will with the ANN model. Further, the 

logistic regression model can also be used as a simplified model to better understand the 

implications of our methods and protocol, similar in concept to the LIME approach. 

 

FEATURE RELEVANCE 

 

Feature relevance, or variable importance, are a suite of techniques that determine which 

input variable, or variables, are most influential in the model’s output. In this thesis, we focus on 

using permutation importance and backward sequential selection, both of which will have single- 

and multi-pass versions. For all techniques, we use a 10,000 bootstrap analysis considering 

confidence intervals of 0.05 and we observe the model’s CSI and squared error. The reason 

behind using several ranking techniques and measures of success is twofold. The first is to gain a 

more holistic understanding of the influence of the variables considered. The second reason can 

be gleamed from McGovern et al. (2019) where they observe the permutation importance 

ranking of a random forest model and support-vector machine model. They note that the two 

models rank variables differently but are statistically similar, and for this reason they can’t rely 
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on one interpretation over the other. Thus, it is important to consider several ranking methods to 

have a higher degree of confidence in the results.  

 

Permutation importance (PI), as explained earlier, is when you randomly permute one 

variable across the whole dataset in a way that retains the original distribution of that variable. 

The reason for doing this is to break the statistical link between the predictor and predictand by 

assigning an improper value to the predictor. We would then compare scores between the two 

models, permuted and unpermuted, and if scores deteriorate drastically then we could reason that 

the variable is important. If the scores do not change by a large enough threshold, then it is either 

unimportant or redundant with another variable or set of variables. When initially proposed by 

Breiman (2001), this feature relevance technique was used with the random forests model, but 

the technique can be applied to many other ML models, including ANNs. PI acts to highlight one 

or more standalone input variables that can introduce uncertainty in our model like other 

sensitivity tests, but it does not answer the question of which variables as a group are important. 

To remedy this, Lakshmanan et al. (2015) adapted a multi-pass version of PI. In their study, they 

found which single variable was most important through permutation and then keeping that 

variable permuted while they conducted another systematic permutation of the remaining 

variables to determine which other variable was second most important and so on. Considering 

the variables in this way shows which set of variables capture most of the dataset and therefore 

have the highest influence on the predicted output.  

 

Sequential selection (Stracuzzi and Utgoff 2004) is another technique that ranks the 

importance of variables by adding or removing input variables to or from a model. In forward 
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sequential selection, one begins with a model that predicts the mean output, adds input variables 

to that model, and observes how the model reacts to determine a given variables influence. 

However, this method does not fit well with our process. Instead, we will consider the opposite 

version, backward sequential selection (BSS), where we start with our original model and 

sequentially remove variables from consideration and observe how the model scores fluctuate. 

Like PI, we consider both the BSS scores individually, single-pass, and as a group, multi-pass.  

 

NOVEL IMAGERY 

 

As previously stated, for those who are not familiar with ML models, visual explanations 

are a preferred method to determine how variables interact (Barredo et al. 2020). Considering 

this, we developed a novel visualization tool that will help diagnose and highlight variables 

within each hidden node to understand what is occurring. This tool can be used across the entire 

dataset but is most effective in local examples. Additionally, this tool can be used as a qualitative 

source to understand variable importance instead of the quantitative approach discussed earlier. 

However, it works best when paired with the variable importance techniques we apply in this 

thesis.  

 

This tool has an external view of the hidden nodes (Fig. 18) and an internal view for each 

hidden node (Figs. 19-21). The external view is meant to highlight which of the 6 hidden nodes 

are influencing the final output and the internal views allow a look inside the hidden node to 

determine which variables are most important to that hidden node. In our given algorithm hidden 

nodes 1, 5, and 6 are assigned the heaviest weights (Table 3) and therefore those 3 nodes 
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dominate the forecast in most cases. Further, combinations of which hidden nodes are active are 

important to consider. For example, when hidden nodes 5 and 6 agree on a deterministic forecast 

then the forecast will always align with those nodes, but if hidden nodes 5 and 6 disagree then 

whichever hidden node 1 agrees with will dictate the output. Additionally, the sign of the weight 

is important. In this algorithm, negative values increase severe probability. Therefore, if the 

result of the hidden node activation (through TanH function) is negative and the weight assigned 

to the hidden node is positive then the total value acts to increase severe probability. Once the 

inside view has been analyzed, one can investigate the important variables individually and 

conduct a sanity test to understand what is happening with the algorithm.    

 

PROTOCOL 

 

First, we need to ensure that our model is skillful and that it is a better choice than the 

logistic regression model. Following this, we want to get a base line understanding of each 

variable’s importance across the entire model. From there, we want to determine if the algorithm 

is highlighting key features within our domain despite the lack of context. For this, we can 

investigate the Miller (1972) classifications as well as the severe mode. Further, it is important to 

also consider the null events to have complete understanding of the algorithm. We will then 

breakdown the influential variables to understand what features within those variables are 

influencing the algorithm most. Additionally, while considering subsections of our domain, we 

will also identify several case studies to gain insight into why the model may have performed 

well or poorly for those settings using the novel imagery previously discussed. This will give us 

the ability to perform sanity checks and further investigate variable inputs on an individual basis. 
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Finally, we will consider the 5 questions presented earlier to determine if our protocol and 

analyses are useful.  

 

III. RESULTS 

 

LOGISTIC REGRESSION 

 

The logistic regression (LogReg) model that was generated using the same dataset as the 

ANN model suffered from extreme overfitting of the training dataset producing a model with no 

meaningful skill. The most probably reason for this is that we have too many extraneous 

variables for the LogReg model to effectively work. To remedy this, we reduced the number of 

input variables and tested each combination until we found the best performing LogReg model, 

(variables used for this model are shown in Fig. 3). With these adjustments, the LogReg CSI was 

0.3787 compared to 0.4916 for the ANN model on the testing dataset.  

 

MODEL-AGNOSTIC ANALYSIS 

 

The LogReg model is a linear model so we can directly observe the weights assigned to 

each input. When comparing those weights to the ranking of BSS (Fig. 3) it becomes clear that 

they share the same order of importance as we would expect. There is also a difference between 

the two ranking methods supporting the idea of conducting several variable importance 

techniques. PI is meant to break the statistical link between the predictor and predictand allowing 
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it to resemble a sensitivity test and in so doing suggests that only 500hPa specific humidity and 

850hPa v-wind are important in the LogReg model.  

 

Comparing the different measures of importance and skill for single-pass PI and BSS 

(Fig. 4) we see 250hPa geopotential height and surface v-wind occurring in the top four in every 

example (the order of importance varies slightly). We see other variables (e.g., 850hPa 

geopotential height, 500 hPa temperature, and surface dew point temperature) alternate with the 

top variables. However, on an individual basis, most variables do add skill to the model. In 

contrast to that, variables such as 500hPa specific humidity and mean sea level pressure appear 

to detract from the overall model performance. Further, there is inconsistency between the 

rankings for several variables. For example, 250hPa v-wind adds skill to probabilistic forecasts, 

but harms deterministic forecasts in both BSS and PI. This suggests general unimportance since 

it can improve probability but not enough to overcome the threshold between severe and non-

severe. Perhaps the most surprising contrast between the BSS and PI rankings is that of surface 

temperature. BSS ranks surface temperature amongst the least influential variables, but PI 

suggests it does provide influence. The likely cause of this is that surface temperature is 

correlated with another input variable (e.g., 700hPa temperature) since it decreases in value as 

surface temperature increases.  

 

Additionally, we can speculate further by considering the differences between the two 

methods. BSS shows the direct relationship to the testing dataset while PI measures a perturbed 

version of the testing dataset. Therefore, it is possible that the model has a misplaced high 
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amount of importance on surface temperature features when surface temperatures do not play a 

significant role in the testing dataset. 

 

Meteorologically, we can understand that model is placing importance on the strength 

and position of synoptic cyclones, or anticyclones, as well as if there is cooling or warming 

occurring in the mid-level. Because meridional winds at the surface are important and the region 

of interest is the northern plains, one can reason that the model is accounting for the role of 

temperature and moisture advection. However, the effects of these are complex which we will 

consider later in this analysis. 

 

The first two variables of the multi-pass BSS ranking for the LogReg model are agreed 

upon by the single-pass version (Fig. 5), but in the third pass 500hPa specific humidity becomes 

more important. This change means that when combined with 500hPa geopotential height and 

250hPa u-wind 500hPa specific humidity has the most important information of the remaining 

variables despite being less important by itself. PI, on the other hand, agrees entirely with the 

single-pass version as to the order of ranking. Single- and multi-pass also agree on importance 

considering the increase in model skill after second pass.  

 

As one might expect, most input variables rank similarly to the way they did in the 

single-pass version (Fig. 6). This supports the idea that each input variable provides a small but 

statistically significant amount of important information to the model. One exception is that the 

surface v-winds appear to be less important or redundant in the multi-pass PI analysis. As with 
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surface dew point temperature, it appears the drop in rank may be associated with the increase in 

rank for surface temperatures.  

 

We can consider this in more depth by observing how a specific variable behaves 

throughout the multi-pass (Figs. 7-9). Surface dewpoint temperature exhibits a general linear 

decline in importance with each pass for PI-Error and a drastic decrease in importance in the 

second and third pass in PI-CSI (Fig. 7). Despite this, surface dew point temperature largely 

remains influential in the model. In both cases, the most drastic decrease in importance is 

associated with 850hPa geopotential height and 250hPa temperature. Similarly, surface v-winds 

also show a drastic decrease in importance when associated with those variables in both PI-CSI 

and PI-Error (Fig. 8). The connection between surface dew point and surface v-wind makes 

meteorological sense (moisture advection) and the inclusion of 850hPa geopotential height can 

be explained by connecting the two surface variables to a synoptic scale pressure system. The 

connection to 250hPa temperature is less clear (we speculate that this value might represent a 

synoptic system’s strength and location). Surface temperature is ranked the fourth most 

important variable in multi-pass for PI and we see that both the surface v-wind and surface dew 

point only marginally improve the model after inclusion. With this, we conclude that the surface 

variables are connected but still provide useful information when considered individually. 

 

PI and BSS disagree on how 250hPa temperature influences the model (Fig. 9). BSS 

suggests this variable becomes important eventually, but because we are consistently removing 

variables, its importance is likely the result of being one of the few variables remaining. PI, on 

the other hand, suggests that 250hPa temperature quickly loses importance after a given pass. 
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Further investigation reveals that if 500hPa temperature is included, 250hPa temperature does 

not provide substantial additional information.  

 

HAIL 

 

For hail, the LogReg model provided no additional insight (Figs. 3 and 5). For the ANN 

model, there is an increase of importance for both the surface v-wind and 500hPa temperature 

fields (Figs. 10 and 11). Meteorologically, this connects with knowing that hail growth is 

dependent upon cold temperatures in the mid-levels. Further, the inclusion of moisture and 

temperature advection at the surface can also be connected to convective updraft strength, which 

also plays a critical role in hailstone growth. Otherwise, we see that variables that were important 

across the whole model (e.g., 250hPa geopotential height) remain influential while uninfluential 

variables (500hPa specific humidity and surface mean sea level pressure) stay that way as well.  

 

To support the above explanations, one can look further into surface v-wind and 500hPa 

temperature by observing the BSS change for both CSI and squared error on an individual cluster 

level to determine if the algorithm is identifying key features for hail growth. 

 

Although surface v-wind and 500hPa temperature are important and one can assume that 

the key features mentioned early are in fact playing a role in the algorithm’s output, we can’t be 

certain. To verify if this is the case, we conducted another BSS analysis (single-cluster BSS) 

considering only 500hPa temperature (or surface v-wind, respectively). Rather than removing the 

entire variable across the whole column, we remove only a single cluster from the given variable 
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and retain the rest to determine what single cluster is the most influential for the given variable. 

For the 500hPa temperature field (Figs. 12-14), the three most influential clusters (34, 21, and 

48) have regions of relatively cold air in the mid-levels supporting our cold core as a key feature 

theory. Surface v-wind (Figs. 15-17) results are harder to interpret. Each pattern could explain a 

frontal boundary based on the reversal of wind direction, but the more surprising feature is that 

clusters 9 and 17 are associated with a core of relatively strong northerly flow. This suggests that 

rather than warm air and moisture advection, the algorithm considers synoptic scale cold air 

advection to be a key feature for hail growth. 

 

Consider a specific case. On July 28, 2011, a shortwave trough passed through central 

North Dakota and into northeastern South Dakota during the mid to late afternoon (20-23 UTC) 

generating several discrete convective storms that produced scattered severe hail and isolated 

severe wind risks. As mentioned previously, hidden nodes 1, 5, and 6 have the heaviest weights 

and each supports a severe forecast for the given time (Fig. 18). Meanwhile, hidden nodes 2, 3, 

and 4 show mixed results, but because they have low weights in the final output the mixed 

results do not present in the final forecast. Focusing on the most influential hidden nodes (Figs. 

19-21), 500hPa temperature plays an important role, as we would expect, by supporting a severe 

forecast in each hidden node. Of note, surface v-wind is not helpful in this case. In hidden node 5 

(Fig. 20) it supports a severe forecast, but in hidden node 6 (Fig. 21) it opposes a severe forecast. 

We speculate that this is due to the lack of frontal boundary associated with this case. This 

conflict turns out to be a moot point because the result of the total weights supports a severe 

forecast for both nodes. For this specific case, the 500hPa temperature cluster that has such a 

high influence on the forecast is cluster 34 (Fig. 12). As we noted before, cluster 34 is amongst 
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the most influential individual clusters for hail forecasts and it depicts a cold core as a key 

feature giving the final output some meteorological support for trustworthiness.  

 

MILLER TYPE B SYNOTPCI SETTING 

 

Of the 5 synoptic settings presented by Miller (1972) the type B setting represents the 

frontal patterns subset. Typically associated with this synoptic setting is a strong surface low 

pressure center with warm and cold frontal boundaries and strong cold air advection occurring 

behind the cold front. A warm low level jet transports moisture from the south and there is a 

well-defined dry intrusion in the mid-levels. With this setting, frontal, and pre-frontal, squall 

lines typically form along and ahead of the cold front.  

 

Like the hail analysis, the LogReg model did not provide new insight when considering 

only days where a type B synoptic setting occurred. The ANN, on the other hand, highlighted a 

few changes to which variables were most important (Figs. 22-23). Unlike the hail and full 

dataset analyses, there is a greater separation between the most influential variables and the 

lesser and uninfluential variables which can be seen in all the graphs other than the BSS multi-

pass analyses. While 250hPa geopotential height may have the greatest influence (Fig. 22), BSS 

suggests that surface dew point temperature is the next most important variable and PI indicates 

that 500hPa geopotential height is more influential. Both the BSS and PI analysis may be right if 

we consider the importance of the strong low-pressure center and low-level moisture needed for 

this synoptic setting. Of interest, the multi-pass PI analysis greatly increases the influence of 

500hPa specific humidity which could be an attempt to highlight the mid-level dry intrusion. We 
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conducted a single-cluster BSS on 250hPa geopotential height and found that both zonal patterns 

(Fig. 24) and patterns of approaching upper-level troughs (Fig. 25) are important. We conducted 

the single-cluster BSS analysis on other important variables (e.g., 500hPa temperature in Fig. 26, 

500hPa geopotential height in Fig. 27) and see similar, but more defined, features which support 

what we know typically occurs with a Miller (1972) type B synoptic setting.  

 

On June 25th, 2011, a cold front moves across North Dakota forming a squall line at 2100 

UTC. As the front and squall line cross the region it gains intensity at 0000 UTC on the 26th of 

June and becomes severe, producing a mix of severe hail and wind reports. Unlike the hail case, 

our ANN did not perform well on this day (Fig. 29). Hidden node 1 and 5 appear to be consistent 

in indicating that severe weather is not likely while hidden node 6 provides a more mixed 

indication. This results from the 250 hPa geopotential height (Figs. 30-32). As previously noted, 

250hPa geopotential height is in general an influential variable. This can be understood by noting 

the weight differential between 250hPa geopotential height and the other variables. At 1900 

UTC, 250hPa geopotential height changes from cluster 13 (Fig. 33) to cluster 55 (Fig. 34), which 

lowers the weight in both hidden node 1 and 5 and explains why the forecast changed for those 

nodes. In hidden node 6 the change acts to increase severe probability, but not enough to change 

the hidden nodes output to severe. By comparing the 250hPa geopotential height cluster 55 to 13, 

it makes sense that change would decrease severe probability, as it did in hidden nodes 1 and 5, 

because there is an increase in geopotential height between the two clusters. Unfortunately, the 

other variables were not weighted in a way to maintain a severe forecast after this change. 

 

NULL FORECASTS 
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It is also important to understand what features the algorithm indicates are influential in a 

non-severe forecast. As with hail and Miller type B synoptic settings, we restrict our data to only 

days that are categorized as non-severe for this portion of the analysis. Because our deterministic 

score requires a correct positive forecast (hit) we only consider the probabilistic score here rather 

than change the metrics we have used up to this point.  

 

Somewhat surprisingly, we find that there is a reversal of importance in this context. This 

is particularly the case with the single-pass methods for surface temperature (Fig. 35), which was 

considered an uninfluential variable in all the previous analyses. Similarly, 250hPa geopotential 

height decreases in ranking and importance to the point where it is an unimportant variable when 

considering the PI method. On the other hand, we see that some of “mixed importance” 

variables, such as 850hPa geopotential height, remain that way. Given this, it is likely that 

certain variables drastically increase or decrease severe probability. Originally, one would expect 

surface temperature to be an important variable for severe convective weather, but the algorithm 

reversed the role and has it decreasing severe probability. For the multi-pass (Fig. 36), the BSS is 

similar to that seen in the single pass, while PI focuses on the same top 3 before a drop in 

influence of the other remaining variables.  

 

Of all surface temperature clusters, cluster 49 (Fig. 37) ranks as the most influential for 

decreasing severe probability in our null cases. Unfortunately, cluster 49 resembles many of the 

other mean cluster stamps with relatively cold temperatures to the west and relatively warm 

temperatures to the east giving the appearance of a frontal boundary. Since most surface 



  
  

24 

temperature clusters look similar, this may also explain why this variable was not selected to 

increase severe probability. To understand why cluster 49 stands out, we took the differences 

between cluster 49 and the mean surface temperature field from the dataset (Fig. 38), and it 

becomes clear that this cluster has a weaker temperature gradient across the entire field. Despite 

many of the clusters resembling each other, our algorithm did distinguish the slight differences in 

the surface temperature fields to assign appropriate weights for the severe probability.  

 

On June 4th, 2011, a high-pressure system was established over the northern plains behind 

a cold front that has passed through the region the day before (producing several severe wind 

risks). Despite this transition, the algorithm has trouble switching from the severe risk of the day 

before (Fig. 39). This is due to the conflicting indications from hidden nodes 5 and 6, with the 

former suggesting a severe forecast and the latter suggesting a non-severe forecast. Because of 

the way the nodes are weighted this allows hidden node 1 to drive the result, which is an 

incorrect positive (false alarm). It is not until hidden node 5 changes to a non-severe forecast that 

the algorithm is corrected. With hidden node 5 (Fig. 40), the variable weights are more balanced 

then in previous figures, but the variable change that corrected the forecast for hidden node 5 

was surface temperature. At the time of interest, the surface temperature transitioned from cluster 

26 to cluster 35. In Figure 41, we can see that this change acted to weaken the surface 

temperature gradient and decrease severe probability.  

 

IV. CONCLUSION AND DISCUSSION 
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ANNs with non-linear activation functions are considered untrustworthy due to the lack 

of transparency and intuitive understanding of what is occurring within the black box, but also 

because there is no contextual understanding occurring within the algorithm. In this thesis, we set 

out create a protocol to delve into the black box and discover if we could more closely observe 

what is occurring inside the algorithm. In doing so, we hoped to prove that despite the lack of 

context considered when creating the algorithm there can be some recognition of context that 

comes in the shape of highlighting key features. Our protocol and associated use of the novel 

visualization technique introduced here helped to accomplish this task by identifying key 

variables and associated features in the domain that are important to specific synoptic settings 

and highlight areas within the model’s hidden nodes that can be investigated to explain the 

model’s success or failure on a case-to-case basis.  

 

Outside the scope of this thesis, but still important to consider, is a more in-depth analysis 

of correlation between variables. We theorized several correlations by observing single- and 

multi-pass behaviors, but a more complete analysis into the correlations would be beneficial. In 

meteorology, many variables are interconnected to each other as can be observed through 

physical equations and principles, such as the Law of Thermodynamics and the quasi-

geostrophic equations. For one to trust if a non-linear black box algorithm can pick up on 

contextual clues of the synoptic setting, we would want to believe that these correlations existed 

in the algorithm too. Additionally, it could prove to be beneficial to test this protocol on an 

algorithm that was trained and tested on a synthetic dataset, like created by Mamalakis et. al 

(2022). By using a dataset where the ground truth is known a priori we could determine if the 

algorithm correctly picks up on key features. Finally, this is a highly simplified algorithm and it 
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would be beneficial to test it on deep neural networks or different black models (e.g., random 

tree forest). Despite all of this, our protocol and tool shows promise as a base for modelers to use 

in order to develop and build trust with a black box model.  
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V. FIGURES 

 
Figure 1. Northern plains region set between 38 N to 44 N latitude and 97W to 110W longitude.  

 

 
Figure 2. Archived SPC report of July 11, 2010 depicting a mix of hail and wind reports over 

Nebraska warranting a unique classifier code for a mix of severe hail and wind. Collected from 

https://www.spc.noaa.gov/climo/reports/100711_rpts.html  
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Figure 3. Comparison of single-pass rankings of CSI for both permutation importance (bottom) 

and backward sequential selection (top) for all LogReg input variables. Values are the difference 

between the original model score and the score of the model after the change to the input 

variable with negative values indicating importance and positive values indicating unimportance. 

Error bars show the 5th and 95th percentiles for 10,000 bootstrap replicates of the testing dataset.   
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Figure 4. Comparison of single-pass rankings of CSI (left) and squared error (right) for both 

permutation importance (bottom) and backward sequential selection (top) for all ANN input 

variables. Values and error bars are the same as they are for Fig. 3.  
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Figure 5. Comparison of multi-pass rankings of CSI for both permutation importance (bottom) 

and backward sequential selection (top) for all logistic regression input variables. Values are the 

successive loss in skill as each variable is removed or perturbed. Input variables are altered in 

order of importance such that early variable removals result in a greater loss of skill. Error bars 

show the 5th and 95th percentiles for 10,000 bootstrap replicates of the testing dataset. 
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Figure 6. Comparison of multi-pass rankings of CSI (left) and squared error (right) for both 

permutation importance (bottom) and backward sequential selection (top) for all ANN input 

variables. Values and error bars are the same as they are for Fig. 5. 
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Figure 7. Comparison of surface dew point temperature difference values for multi-pass CSI 

(top) and squared error (bottom). Values are the difference between the model score of the 

current pass and the previous pass for BSS (blue) and PI (orange). Negative values suggests the 

variable is important and positive values means the value is unimportant. Shading represents the 

5th and 95th percentiles for 10,000 bootstrap replicates of the testing dataset. 

 

 
Figure 8. Comparison of surface meridional wind difference values for multi-pass CSI (top) and 

squared error (bottom). Values, colors, and error as the same as Fig. 7.  
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Figure 9. Comparison of 250hPa temperature difference values for multi-pass CSI (top) and 

squared error (bottom). Values, colors, and error as the same as Fig. 7.  

 

 

 
Figure 10. Comparison of single-pass rankings of CSI (left) and squared error (right) for both 

permutation importance (bottom) and backward sequential selection (top) for all severe hail 

days. Values and error bars are the same as they are for Fig. 3. 
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Figure 11. Comparison of multi-pass rankings of CSI (left) and squared error (right) for both 

permutation importance (bottom) and backward sequential selection (top) for all severe hail 

days. Values and error bars are the same as they are for Fig. 5. 
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Figure 12. The composite image of 500hPa temperature fields associated with the cluster 

centroid 34. Temperature is measured in units kelvin (K). 
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Figure 13. The composite image of 500hPa temperature fields associated with the cluster 

centroid 21. Temperature is measured in units kelvin (K). 
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Figure 14. The composite image of 500hPa temperature fields associated with the cluster 

centroid 48. Temperature is measured in units kelvin (K). 
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Figure 15. The composite image of surface v-wind fields associated with the cluster centroid 17. 

Positive values represent south to north flow and negative values represent north to south flow. 

Velocity is measured in ms-1. 
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Figure 16. The composite image of surface v-wind fields associated with the cluster centroid 9. 

Positive values represent south to north flow and negative values represent north to south flow. 

Velocity is measured in ms-1. 
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Figure 17. The composite image of surface v-wind fields associated with the cluster centroid 22. 

Positive values represent south to north flow and negative values represent north to south flow. 

Velocity is measured in ms-1. 
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Figure 18. A map depicting the values of the hyperbolic tangent activation functions for each of 

the six hidden nodes (left) and the forecast contingency (right) for July 28, 2011, from 00 UTC 

(bottom) to 23 UTC (top). In the left diagram, shades of red are negative outputs of the function 

and shades of blue are positive outputs of the function. A weight, seen in Table 3, is assigned to 

the function output. If the total value of the function multiplied by the weight of the hidden node 

is negative, then severe probability increases and vice versa for positive values. In the right 

diagram, green represents a correct positive forecast (hit), red represents an incorrect negative 

forecast (miss), pink represents and incorrect positive forecast (false alarm), and blue represents 

a correct negative forecast (correct negative). 
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Figure 19. A map depicting the values of each variable within hidden node 1 (left) and value of 

the hyperbolic tangent activation function for hidden node 1 (right) for July 28, 2011, from 00 

UTC (bottom) to 23 UTC (top). In the left diagram, shades of red are negative values and shades 

of blue are positive values. The scale of the color bar is determined by finding the heaviest 

weight and setting that as the max and min values. Note that the sign of the weight applied in the 

logit equation determines if the influence of a variable is to increase severe probability (negative) 

or decrease severe probability (positive). Hidden node weights can be determined in the Table 3. 

The right diagram is as it is in the left diagram in Fig. 17.  

 

 
Figure 20. A map depicting the values of each variable within hidden node 5 (left) and value of 

the hyperbolic tangent activation function for hidden node 5 (right) for July 28, 2011, from 00 

UTC (bottom) to 23 UTC (top). The colors of the left and right diagrams are as they are in Fig. 

18, but the color scale is relative to this figure. 



  
  

43 

 
Figure 21. A map depicting the values of each variable within hidden node 6 (left) and value of 

the hyperbolic tangent activation function for hidden node 6 (right) for July 28, 2011, from 00 

UTC (bottom) to 23 UTC (top). The colors of the left and right diagrams are as they are in Fig. 

18, but the color scale is relative to this figure. 

 

 
Figure 22. Comparison of single-pass rankings of CSI (left) and squared error (right) for both 

permutation importance (bottom) and backward sequential selection (top) for all Miller Type B 

synoptic settings. Values and error bars are the same as they are for Fig. 3. 
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Figure 23. Comparison of multi-pass rankings of CSI (left) and squared error (right) for both 

permutation importance (bottom) and backward sequential selection (top) for all Miller Type B 

synoptic settings. Values and error bars are the same as they are for Fig. 5. 
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Figure 24. The composite image of 250hPa geopotential height fields associated with the cluster 

centroid 15. Height is measured in m. 
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Figure 25. The composite image of 250hPa geopotential height fields associated with the cluster 

centroid 40. Height is measured in m. 
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Figure 26. The composite image of 500hPa temperature fields associated with the cluster 

centroid 42. Temperature is measured in units kelvin (K). 
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Figure 27. The composite image of 500hPa geopotential height fields associated with the cluster 

centroid 56. Height is measured in m. 
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Figure 28. The composite image of surface v-wind fields associated with the cluster centroid 37. 

Positive values represent south to north flow and negative values represent north to south flow. 

Velocity is measured in ms-1. 
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Figure 29. A map depicting the values of the hyperbolic tangent activation functions for each of 

the six hidden nodes (left) and the forecast contingency (right) from June 25th, 2011 at 12 UTC 

(bottom) to June 26th, 2011 at 12 UTC (top). Shades and values are as they are in Fig. 17.  

 

 

 
Figure 30. A map depicting the values of each variable within hidden node 1 (left) and value of 

the hyperbolic tangent activation function for hidden node 1 (right) from June 25th, 2011 at 12 

UTC (bottom) to June 26th, 2011 at 12 UTC (top). The colors of the left and right diagrams are as 

they are in Fig. 18, but the color scale is relative to this figure. 
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Figure 31. A map depicting the values of each variable within hidden node 5 (left) and value of 

the hyperbolic tangent activation function for hidden node 5 (right) from June 25th, 2011 at 12 

UTC (bottom) to June 26th, 2011 at 12 UTC (top). The colors of the left and right diagrams are as 

they are in Fig. 18, but the color scale is relative to this figure. 

 

 
Figure 32. A map depicting the values of each variable within hidden node 6 (left) and value of 

the hyperbolic tangent activation function for hidden node 6 (right) from June 25th, 2011 at 12 

UTC (bottom) to June 26th, 2011 at 12 UTC (top). The colors of the left and right diagrams are as 

they are in Fig. 18, but the color scale is relative to this figure. 
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Figure 33. The composite image of 250hPa geopotential height fields associated with the cluster 

centroid 13. Height is measured in m. 
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Figure 34. The composite image of 250hPa geopotential height fields associated with the cluster 

centroid 55. Height is measured in m. 
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Figure 35. Comparison of single-pass rankings of squared error for both permutation importance 

(bottom) and backward sequential selection (top) for all null forecasts. Values and error bars are 

the same as they are for Fig. 3. 

 

 

 

 



  
  

55 

 
Figure 36. Comparison of multi-pass rankings of squared error for both permutation importance 

(bottom) and backward sequential selection (top) for all null forecast. Values and error bars are 

the same as they are for Fig. 5. 
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Figure 37. The composite image of surface temperature fields associated with the cluster centroid 

49. Temperature is measured in units kelvin (K). 
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Figure 38. The difference between surface temperature fields associated with the cluster centroid 

49 and the mean surface temperature field. 
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Figure 39. A map depicting the values of the hyperbolic tangent activation functions for each of 

the six hidden nodes (left) and the forecast contingency (right) for June 4, 2011, from 00 UTC 

(bottom) to 23 UTC (top). Shades and values are as they are in Fig. 17. 

 

 
Figure 40. A map depicting the values of each variable within hidden node 5 (left) and value of 

the hyperbolic tangent activation function for hidden node 5 (right) for June 4, 2011, from 00 

UTC (bottom) to 23 UTC (top). The colors of the left and right diagrams are as they are in Fig. 

18, but the color scale is relative to this figure. 
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Figure 41. The difference between surface temperature fields associated with the cluster centroid 

35 and cluster centroid 26. 
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VI. TABLES 

 

Short Form ID Long Form ID Units 

250GP 250hPa Geopotential Height m 

250TP 250hPa Temperature K 

250UU 250hPa Zonal Wind m s-1 

250VV 250hPa Meridional Wind m s-1 

500GP 500hPa Geopotential Height m 

500SH 500hPa Specific Humidity kg kg-1 

500TP 500hPa Temperature K 

700TP 700hPa Temperature K 

850GP 850hPa Geopotential Height m 

850VV 850hPa Meridional Wind m s-1 

SfcMP Mean Sea Level Pressure Pa 

SfcTP Surface Temperature K 

SfcDP Surface Dew Point Temperature K 

SfcVV Surface Meridional Wind m s-1 

Table 1: Short- and long-hand variable identifiers and units of measurements. ERA5 data 

collected from https://cds.climate.copernicus.eu/cdsapp#!/home.  

 

Miller Classification Main Identifier 

Type A Along Dry Line 

Type B Ahead of Cold Front 

Type C Along Stationary Front 

Type D 500hPa “Cold Core” Temperatures 

Type E Ahead of Warm Front 

Table 2: Key features used to identify and classify Miller synoptic convective weather patterns. 

More details can be collected from 

https://www.weather.gov/media/zhu/ZHU_Training_Page/thunderstorm_stuff/thunderstorms_tut

orial/Thunderstorms.pdf.  

 

 

Hidden Node Weight 

Node 1 0.1288 

Node 2 0.0218 

Node 3 0.0204 

Node 4 -0.0590 

Node 5 -0.2928 

Node 6 -0.2601 

Table 3: Weights assigned to each hidden node.  

  

https://cds.climate.copernicus.eu/cdsapp#!/home
https://www.weather.gov/media/zhu/ZHU_Training_Page/thunderstorm_stuff/thunderstorms_tutorial/Thunderstorms.pdf
https://www.weather.gov/media/zhu/ZHU_Training_Page/thunderstorm_stuff/thunderstorms_tutorial/Thunderstorms.pdf
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