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ABSTRACT  

LEVERAGING BIOMEDICAL ONTOLOGICAL KNOWLEDGE TO IMPROVE 

CLINICAL TERM EMBEDDINGS  

by  

Fuad Abu Zahra  

The University of Wisconsin-Milwaukee, 2023  

Under the Supervision of Dr. Rohit J. Kate  

This research is on obtaining and using word embeddings for natural language processing tasks in 

the biomedical domain. Word embeddings are vector representations of words commonly 

obtained from large text corpora. This research leverages the biomedical ontology of SNOMED 

CT as an alternate source for obtaining embeddings for clinical terms. The existing graph-based 

methods can only give embeddings for concepts (i.e., nodes of the graph) of an ontology, hence 

we developed a novel method to obtain embeddings for clinical words and terms from their 

concept embeddings.  These embeddings were evaluated on benchmark datasets of clinical term 

similarity and on the clinical term normalization task and were found to work better than corpus-

based embeddings.    

However, unlike corpus-based embeddings, the embeddings obtained from SNOMED CT do not 

incorporate linguistic knowledge as the method was not trained on text data. Therefore, we also 

developed two new methods to combine the two resources of embeddings – by generating a 

synthetic corpus out of SNOMED CT ontology and using it for additional training using corpus-

based methods, and by fine-tuning a corpus-based system on SNOMED CT concept embeddings. 

The evaluation showed that the combined embeddings obtained using these methods perform 

better than either type of embeddings.  
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1.1 Problem Statement and Motivation  

In natural language processing, neural networks are rapidly becoming the standard technology. 

Given that neural networks require words presented in numerical form, the distributional 

representation of words, also known as word embedding, is receiving a lot of attention as a result. 

Word embeddings are the vectorial representations of words such that words with similar meanings 

and linguistic properties have similar vectors.  

The most common source of obtaining word embeddings has been large text corpora. Corpus based 

methods derive word embeddings using the fact that similar words would appear in similar 

contexts in text [22][23][31][36]. However, an alternate source for obtaining word embeddings are 

ontologies which have been relatively less explored. As an example, “pneumonia” and 

“pneumoconiosis” are both inflammatory disorders of lungs and hence are similar in meaning. 

This information will be readily available in an ontology of clinical concepts such as SNOMED 

CT. But to learn this similarity through corpus-based methods, these two terms will need to occur 

in similar contexts multiple times in a text corpus which may not always happen. In the general 

natural language processing domain, WordNet [11] is an ontology that arranges words in a 

graphical structure based on their meanings and relations. Recently, WordNet has been 

successfully utilized to obtain word embeddings [23]. In the clinical domain, SNOMED CT is an 

ontology of clinical concepts, and each clinical concept has one or more clinical terms associated 

with it. Unlike words in WordNet, clinical terms in SNOMED CT are typically multi-word, e.g., 

"chronic obstructive pulmonary disease" and "acute respiratory distress syndrome." This makes it 

challenging to obtain word embeddings from the SNOMED CT graph. Another challenge is that 

the graph methods give embeddings for clinical concepts (nodes in the graph) and not clinical 

terms/words.  

In this study, we developed methods for leveraging the biomedical ontology of SNOMED CT as 

an alternate source for obtaining embeddings for clinical terms. The current graph-based methods 



3 

 

provide embeddings for the concepts; we developed a novel method to obtain embeddings for 

clinical words and terms. To the best of our knowledge, this is the first such method. The method 

can also give embeddings for new clinical terms which are not present in SNOMED CT. The 

embeddings obtained by this method were evaluated on clinical term similarity and normalization 

tasks. Although good at capturing ontological knowledge, the SNOMED CT based embeddings do 

not capture linguistic knowledge, for example, knowledge about how the terms and words are used 

in sentences. This is because the method was never trained on sentences in a text corpus. Hence 

we developed two new methods that obtain embeddings by combining the two resources of 

obtaining embeddings. The first method fine-tunes a corpus-based embedding system by using 

concept embeddings as targets and thus incorporates ontological information into corpus-based 

embeddings. The second method generates a synthetic corpus of full sentences out of the 

SNOMED CT ontology which is when used as additional text corpus to train corpus-based method. 

The evaluation showed that the combined embeddings obtained using these methods perform 

better than either type of embeddings.    

1.2 Research Objectives and Questions  

The research questions that we investigated and answered in our research are:   

1. Can the ontological knowledge of clinical concepts in SNOMED CT be utilized to obtain 

embeddings for clinical concepts and terms? How well will they work, and how will they 

compare with embeddings obtained using corpus-based methods?   

2. What are the best methods for obtaining clinical concept embeddings leveraging all aspects 

of the SNOMED CT's ontological graph? Moreover, what are the best methods for 

obtaining and composing clinical term embeddings from clinical concept embeddings? 

Finally, how will these methods compare?   
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3. Can clinical term embeddings obtained using SNOMED CT be combined with embeddings 

obtained using corpus-based methods resulting in better embeddings? What are the best 

ways to combine the embeddings, and how well will they work?  

To address the first question, we developed a method that learns embeddings of clinical terms and 

words from embeddings for medical concepts obtained by graph-based representation learning. 

Then, we evaluate and compared these embeddings with embeddings obtained using corpus-based 

methods. To answer the second question, different methods were used to generate clinical concept 

embeddings from SNOMED CT's ontological graph. To tackle the third question, we used different 

methods for combining the embeddings and developed two new methods. Both contextual (BERT) 

and non-contextual (word2vec) corpus-based embeddings were used to combine with SNOMED 

CT based embeddings and were evaluated. 

1.3 Contributions 

This study presents new methods to leverage the biomedical ontology of SNOMED CT as an 

alternate source for obtaining embeddings for clinical terms. However, the current graph-based 

methods can only provide embeddings for concepts, a novel method was developed to obtain 

embeddings for clinical words and terms. We use both classic intrinsic tasks, such as semantic 

similarity and relatedness, and an extrinsic task to evaluate the resulting word embeddings. We 

also present two new methods to combine the resources of ontology and text data for obtaining 

embeddings to incorporate ontological as well as linguistic knowledge into embeddings.  
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2.1 Semantic space 

The distributional semantic space model of lexical semantics was proposed in the 1950s [3][4], and 

it draws on Wittgenstein's theory that the semantics of a word are determined by the context in 

which it appears [5]. As the other two techniques do, it does not represent the words in a graph but 

rather as vectors in a high-dimensional space. Similar or related words are represented by vectors 

near together, whereas dissimilar and unconnected words are represented by vectors that occupy 

separate regions of the space. For example, some close neighbors of a vector representing a bird 

may include animal, wings, canary, and sparrow vectors, but the distance between a bird and the 

kitchen, computer, or scarf would be far.   

 

Figure 1 Word embeddings are a type of vectorial representation of words. 

An example is the 3-dimensional semantic space schema. The vector representations of the words 

Renal failure and Kidney failure are highly similar (high level of similarity), with the vector of 

Myocardium projected further but not too far away (moderate level of similarity) and the vector of 

Schizophrenia projected in a different area of the space. 

2.2 Ontologies 

Ontologies are the second type of semantic proxy. These are usually structured information bases 

that are curated by specialists and are often targeted at a particular domain (e.g., SNOMED CT 
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[2]). The evidence gathered from the ontology's structure serves as the foundation for object 

comparison.   

Two example ontologies are investigated: an inference-based semantic network (WordNet) and a 

feature-based network (Small World of Words). Words are grouped into synsets, collections of 

synonyms that each define a different notion. Conceptual-semantic and lexical linkages are used 

to link synsets together. Linguists construct such structures; therefore, all existing relationships are 

curated by experts. These make it an influential and trustworthy source of information for users 

looking for a comprehensive online thesaurus, computational linguistics, and natural language 

processing systems. 

 

Figure 2 An example entry from WordNet Source: 

http://www.smallworldofwords.com/new/visualize  

The query word language has produced a subgraph of the Small World of Words. The words 

given as reactions to the cue language make up the network. The edges represent the association 

between the words. If there is an edge between two nodes, one of them was given as a response 

to the other. Source: http://www.smallworldofwords.com/new/visualize 

2.3 Word embeddings  

The goal of embedding, in general, is to project a collection of objects into a vector space while 

preserving their essential features. The general idea is to keep the objects' similarity in terms of 

http://www.smallworldofwords.com/new/visualize
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distance in the embedding space: comparable objects are closer together while different objects are 

further apart. As a result, word embedding aims to project words into a semantic space that 

approximates the distributional semantic space (outlined in Section 2.1) Words (now represented 

as vectors of numbers) can be processed more efficiently with this representation, especially in 

neural network-based systems.  

2.4 Sources for word embeddings  

Multiple research projects have looked into semantic measurements used to compare various 

aspects of language, including words, sentences, entire documents, and ideas described in 

knowledge bases [6]. These measurements examine semantic proxies, from which semantic 

information retrieval will subsequently facilitate object comparison, as the authors of [6] point out. 

Textual corpora and clinical ontologies are two types of semantic proxies. Experts construct 

ontologies that include concepts and their relationships. It makes an influential and trustworthy 

source of information for both users looking for a comprehensive online thesaurus and natural 

language processing systems.   

2.4.1 Textual corpora  

The semantic metrics based on textual corpora utilize natural language distributional 

characteristics, assuming that semantically relevant terms co-occur together. It captures a sense of 

relatedness between words. Because the words ‘coffee’ and ‘cup’ regularly co-occur in corpora, 

we can assume they are more semantically connected than, say, ' coffee’ and ‘volcano,' which are 

unlikely to occur near together. Words found in similar contexts are also deemed similar (e.g., 

word2vec type methods [22]). The words 'coffee' and 'tea' are semantically related hence will be 

found in text in similar contexts, i.e., surrounded by similar words.   

2.4.2 Clinical ontologies  

Ontologies are structured information bases that are curated by specialists and are often targeted at 

a specific domain (e.g., SNOMED CT [2] in the clinical domain). The evidence gathered from the 
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ontology's structure serves as the foundation for object comparison. In this study, the ontology 

investigated is SNOMED CT [2]. Systemized Nomenclature of Medicine—Clinical Terms 

(SNOMED CT) is a standardized representation of clinical concepts whose extensiveness and 

expressivity make it suitable for precisely encoding clinical phrases. Next is an example of the 

SNOMED Ct concept. The following figure shows the design of SNOMED CT.  

 

Figure 3 SNOMED CT content and structure [42] 

SNOMED CT is a core clinical healthcare terminology that contains concepts with unique 

meanings and formal logic-based definitions organized into hierarchies. [35] SNOMED CT [2] is 

the world's most comprehensive clinical oncology, with over a quarter million concepts and more 

than one and a half million relationships. Its design is a description logic framework [30], allowing 

automated reasoning. Furthermore, because concepts in SNOMED CT are in their relationships 

with other concepts, simply recognizing a concept in this ontology can reveal a lot about it, both 

explicitly stated and implicitly inferred relations. 
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2.4.3 Relationships and concepts  

Every concept in SNOMED CT represents a distinct medical concept and has its own identifier and 

a few synonym names (AKA descriptions). Although it may not be the clinically chosen term for 

the notion, one of these is a full-specified name, straightforward design, stable across many 

contexts, and optimally understood [33]. SNOMED CT has descriptions in various languages, but 

we exclusively used English descriptions for our study. Each idea also has a semantic type from 

one of SNOMED CT's nineteen top-level hierarchies, including disorder, finding, and body 

structure. A concept's semantic type appears inside parenthesis next to its fully described name. 

The clinical concept of viral meningitis, whose unique identity is 58170007, the fully-specified 

name is "viral meningitis," semantic type is a disorder, and two alternative descriptions are 

"abacterial meningitis" and "aseptic meningitis, viral," is depicted in the diagram below.  

 

Figure 4 SNOMED CT concepts representation and their relationships [32] 

SNOMED CT concepts represent in terms of their relationships with other concepts.  

Figure 4 shows a clinical concept called “viral meningitis”, it is an infectious disease, caused by 

virus, its unique identifier is 58170007, fully-specified name is “viral meningitis”, semantic type 

is “disorder”, and two other descriptions are “Abacterial meningitis” and “Aseptic meningitis, 

viral”. 
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2.5 Contextual embeddings 

BERT is a contextual language representation model built on bidirectional transformer encoders  

[44]. Training a BERT model needs pretraining with vast amount of data to minimize losses for 

the Masked Language Modelling (MLM) which used to predict the randomly masked tokens and 

the Next Sentence Prediction (NSP) is used to anticipate the next sentence. Also, the fine-tuning 

training use moderate number of field specific data and a few epochs for training. The training 

input sequence starts with a special token [CLS] and uses a [SEP] special token to separate between 

the sentences in the corpus [43]. The model design involves multiple consecutive layers of an 

identical architecture; the main component is the multi-head self-attention which computes a 

contextual hidden representation of each token. This component allows to attend over all positions 

in the input sequence every position in the decoder, the tokens’ embeddings from the last layer can 

be used as the input of a downstream task [44]. BERT computes different embeddings for the two 

occurrences of “bank” in the following sentence “the bank robber was seen on the riverbank”, 

unlike the non-contextual model that is biased towards the most frequent meaning in the corpus. 

[43] 

2.6 Related Work 

2.6.1 Word embeddings based on textual corpora  

Bengio et al. advocated employing neural networks to develop a statistical language model while 

simultaneously training word embeddings with textual corpora. The authors presented a 

feedforward neural network comprising an input and projection layer, one hidden and output layer, 

and one hidden layer. The network was trained and assessed on a language modeling task using a 

variety of corpora, demonstrating that it outperformed the best available n-gram models. The 

model, however, was computationally expensive because of the hidden layer's large number of 

trainable parameters and the SoftMax function's computation.  
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Because of the word2vec model [22], [23], neural word embeddings have received much traction. 

The authors proposed two new architectures (CBOW and Skip-gram). The training tasks in the two 

architectures are different: instead of language modeling (predicting the next word given the n 

preceding context words), the CBOW model tries to predict the middle word given n context words 

on the left and right, whereas the Skip-gram model tries to predict the context words given the 

middle one.  

In addition, the authors offered additional model optimizations in [23]. One of them is negative 

sampling, which replaces the hierarchical SoftMax function (which is an approximation of the full 

SoftMax). This method saves time and money by avoiding the time-consuming computation of the 

probability distribution over the vocabulary. Instead, k negative examples are created for each 

training sample (by randomly selecting words from the vocabulary or using some preset 

probabilities), and the error is backpropagated just to the weights of those words, not throughout 

the entire lexicon. Another optimization is frequent word subsampling, which minimizes the 

quantity of generated training data while reducing the bias towards frequent terms.  

These strategies sped up the training process significantly and produced higher-quality embeddings 

than the model [21]. The cosine similarity of the various vectors is a standard method to compute 

the similarity of the words in such models, using the formula:  

 

a and b are vectors, and ai is the value of vector a's ith coordinate. Thus, the cosine similarity of 

two vectors oriented in the same direction is 1, and orthogonal vectors are 0, while vectors oriented 

in opposite directions have a similarity of -1.  
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Table 1 The most similar words to the word ‘language’ [1] 

The most similar terms to the word language use the vector similarity in the GloVe embedding 

model [1]. The previous table shows an example word and the ten most similar words (based on 

the cosine similarity of the corresponding vectors).  

It is worth mentioning that training such models with just a substantial textual sample. This method 

has several advantages over using ontologies, one of which is that the corpus does not require any 

form of labeling next section. Furthermore, by feeding the model with additional training corpora, 

these models can continuously capture the changes in meaning in the language.  

It is also worth noting that all terms in the corpora are handled as ambiguous, meaning that no 

differentiation exists between multiple interpretations of the same word. The resulting vector 

representations are frequently dominated by a single (most frequent) meaning because the models 

rely on the statistical properties of word co-occurrences. 

2.6.2 Conversion from semantic ontologies to semantic spaces 

Related work on obtaining embeddings from ontology is relatively recent. For example, [12] looked 

into retrofitting to refine distributional representations using relational information, and [13] looked 

into refining word embeddings using lexical knowledge. However, neither of these papers 

addressed the goal of obtaining semantic spaces solely based on semantic networks, as we do here.   
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That is also the goal of recent work like [14], which uses the local, one edge relations of each 

relevant term in the WordNet network to improve embeddings created from data sets of selected 

Wikipedia articles. Other recent research worth mentioning includes [15], which used order 

embeddings to maintain distance and/or directionality under the relevant semantic relations, but 

not distance and/or directionality under the relevant semantic relations. [16] that used the Poincaré 

ball model to compute embeddings in hyperbolic space rather than Euclidean space.   

In contrast, [17] provides an example of the stability of wnet2vec when plugged into neural models 

and its implementation in a downstream task, where these embeddings facilitate neural network-

based brain activation prediction. There has also been a long legacy of study on learning vector 

embeddings from multi-relational data, with references to [18][19][20]. Though these are, to a 

significant degree, generic ways for a graph to vector conversion, the focus here has been on testing 

these models' capacity to complete missing relations in knowledge bases rather than on natural 

language processing and lexical semantics.   

De Deyne et al. and Goikoetxea et al. are two other comparable approaches worth mentioning. 

While both use the identical iterative conversion technique, the first focuses on converting a piece 

of the lexicon represented using a feature-based approach into a semantic space rather than a 

semantic network. The second resorts to a lossy intermediate "textual" representation: it generates 

sequences of words by concatenating words visited by random walks over the WordNet; this 

"artificial text" is a partial and contingent reflection of the semantic network and is used to obtain 

distributional vectors by resorting to traditional text-based word embedding techniques.  

They used skip-gram to train word and idea embeddings, then fine-tuned with a transformer-based 

BERT architecture in the two-sentence input mode with a classification aim that captures MeSH 

pair co-occurrence in [7]. Finally, they employed concept correlations to improve static biomedical 

word embeddings utilizing a transformer architecture that was previously used to generate dynamic 

embeddings.  
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Using graph-based representation learning methods on SNOMED-CT, Agarwal et al. [8] proposed 

learning embeddings for medical ideas. It resulted in a 5-6x increase in "idea similarity" and a 6-

20% increase in patient diagnosis. The researchers used the Node2vec, Metapath2vec, and Poincare 

algorithms to create embeddings. For the patient state prediction models and capturing the node 

types, Poincaré-based embeddings learned from hierarchical relations were found to work well.  

The paper shows 1) how to build the initial large corpus of texts to train the word2vec models, 2) 

how to use this vector space model to create final SNOMED2Vec vector space model, and 3) how 

to use the cosine similarity distance to find the most similar concepts, grouping by  

SNOMED-CT hierarchies. Furthermore, like a vector space model, they employ word embedding 

to express the descriptive words of the SNOMED Concepts (SNOMED2Vec).  

Finally, they propose a collection of concepts to the human specialist to build a tool for codifying 

clinical reports.  

Schultz et al. [9] artificially generated a few large-scale medical term similarity datasets, and show 

that an annotation analysis with doctors confirms their high quality. Existing datasets for medical 

term similarity have been proven to be too small to discover significant performance differences 

between embeddings and similarity metrics used for embedding. On the other hand, significant 

disparities are shown utilizing their new large-scale datasets. Furthermore, the new datasets reveal 

how difficult it is for current embeddings to forecast the similarity of non-obvious term pairs, such 

as semantically similar but lexically distinct phrases and vice versa.  

In this study, the obtained embeddings for clinical terms directly from SNOMED CT ontology 

outperformed on corpus-based methods using the five benchmark datasets mentioned earlier.  

The node2vec algorithmic framework for learning continuous feature representations for nodes in 

networks is proposed [10]. It shows that node2vec outperforms existing state-of-the-art algorithms 

on multi-label categorization and link prediction in various real-world networks. Furthermore, they 

discovered that breadth-first search (BFS) could only explore a limited number of neighborhoods. 
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As a result, breadth-first search BFS is well suited to describing structural equivalences in networks 

that rely on nodes' immediate local structure. Depth-first search (DFS), on the other hand, can freely 

explore network neighborhoods, which helps identify homophilous communities at the expense of 

significant variation.  

Saedi et al. [11] offer a methodology for converting semantic networks into semantic spaces using 

WordNet, and the performance of the resulting embeddings in a prevalent semantic similarity task 

outperformed word embeddings obtained using corpus-based word2vec method using vast 

collections of texts.  

2.6.3 Word embeddings based on lexical ontologies. 

Lexical ontologies are graph representations that nodes represent lexical units (e.g., words or 

synsets in WordNet) and edges represent semantic relationship between them. As a result, 

extracting network node embeddings from ontologies is the only way to get word embeddings. [24] 

gave a detailed assessment of graph embedding methods in a recent paper. The authors present a 

method taxonomy (based on problem setting, i.e., the algorithm's type of input and output) and an 

outline of five significant graph categories embedding techniques. This research focuses on three 

of the most popular node-embedding algorithms: 1) matrix factorization, 2) random walk, and 3) 

edge reconstruction. These approaches represent the graph in various ways, impacting how 

attributes are retained in the embedded space. In the following sections, we will go over these three 

approaches. 

2.6.4 Matrix factorization-based methods 

These methods use a matrix to represent the graph attributes, which are then factorized to provide 

node embeddings. The critical distinction is how the input matrix is built (e.g., adjacency matrix, 

node proximity matrix) and the objective function to be optimized. The Katz index approach 

represents matrix factorization-based methods ([25], Eq. 7.63).  
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The idea behind this metric is that the greater the number of pathways connecting two nodes, the 

closer they are. As a result, we want to count all paths between two nodes. Raise the adjacency 

matrix m to the power of p to get a matrix with each cell mij representing the number of pathways 

of length p between nodes i and j. As a result, we can iteratively acquire these counts:  

 

Where i is an identity matrix and α is a decay factor (between 0 and 1), allowing for down- weighing 

the influence of long paths. Interestingly, if we extend this formula to an infinite sum, following 

[17], we can rewrite it in the following way:  

 

This method enables the simulation of paths of any length on the network using only the adjacency 

matrix but at the cost of a matrix inversion, which is a computationally expensive operation, 

especially for larger graphs.  

We chose a method from this subgroup as a sample of the matrix factorization models since it was 

successfully applied to WordNet, where the authors demonstrated that the generated embeddings 

beat the mainstream text-based embeddings in the semantic similarity challenge [26]. 

2.6.5 Random-walk-based methods. 

These methods describe the graph as a set of random walk paths sampled from the graph, which 

are then used to extract node embeddings using a deep learning algorithm—for example, training 

a Skip-Gram model across a synthetic corpus or employing recurrent neural networks, such as 

those based on Long-Short-Term Memory (LSTM) units.  

Perozzi el al. presented Deep Walk; a Skip-Gram based approach of embedding nodes in a graph 

that was used to learn latent representations in social networks. It was further generalized by [27], 
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who used biasing the random walk to achieve a more flexible notion of the neighborhood between 

the nodes.  

Goikoetxea et al. used a similar strategy to extract word embeddings from WordNet that 

outperformed or performed comparably to text-based ones on the semantic similarity challenge. 

The authors also show that combining text- and graph-based embeddings improves the results, 

implying that the two models contain different semantic information in the embeddings. 

2.6.6 Clinical Term Normalization 

Sometimes the clinical notes contain nonstandard clinical terms (terms exist in the ontologies).  

Some physicians use alternative clinical terms, synonyms, or acronyms in their clinical notes. 

Which makes it necessary to map the nonstandard terms to their standard form while doing 

semantic analysis [40]. For example, the medical term "diffuse inflammatory reaction" may 

relate to the Unified Medical Language System (UMLS) ‘diffuse inflammation’ clinical 

concept or the “inflammation diffuse” clinical concept. Also, the term “allergy to ferrous 

sulphate," is not a found in the UMLS terms and their synonyms, but the closest term exists in 

the UMLS is “allergy to ferrous sulfate" [40].  

Kate [55,56] utilizes the MCN corpus to build the clinical term normalization system which 

transforms the clinical terms into their normalized forms using the edit patterns. The former 

method uses the UMLS synonyms to learn common variations using Levenshtein edit distance 

and sequence of edits between any two terms. Different normalization components are used, 

like exact matching, learned edit patterns, sub-concept matching and disambiguation for 

multiple concepts. The results shown in section 4.7 use only the exact matching in the clinical 

term normalization in the clinical embedding evaluation. 

2.6.7 Contextual embeddings 

Over the last few years, ELMo [57] and BERT [58] have presented strong solutions that can 

provide contextualized word representations. BioBERT [59] trains a BERT model over a 
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corpus of biomedical research articles sourced from PubMed article abstracts and PubMed 

Central article full texts[68]. On clinical text, [60] uses a general domain pretrained ELMo 

model towards the task of clinical text de-identification. [61], released in late February 2019, 

train a clinical note corpus BERT language model and uses complex task-specific models to 

yield improvements over both traditional embeddings and ELMo embeddings. 
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3 Methods  
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3.1 SNOMED CT matrix factorization embeddings generator 

As mentioned in the introduction, this research aims to create clinical term embeddings from 

SNOMED CT ontology of clinical concepts. Our completed work consists of two parts. The first 

part is generating embeddings of clinical concepts and clinical terms from SNOMED CT and the 

second part is to evaluate those embeddings.   

The embedding generator program generates embeddings by reading all the SNOMED CT active 

concepts and relationships into an adjacency matrix of size 365,000 X 365,000, since there are  

365,000 concepts in SNOMED CT ontology.   

The next figure shows the adjacency matrix for the graph of concepts A, B, C and D. When two 

concepts are related in the left graph, it will be represented by 1 otherwise 0 in the matrix M in the 

right side. 

 

Figure 5 Example of adjacency matrix of a graph 

Then M2 represents paths of length 2 and so on. 𝑀𝐺 = 𝐼 + 𝛼 𝑀 + 𝛼2 𝑀2 + 𝛼3 𝑀3 + ..  counts all 

paths weighing down their lengths by a decay factor α (< 1). We found that up to the fifth power 

of M was sufficient for our purpose.   

After that, we reduce the dimensionality of the matrix to different sizes (e.g., 200, 300, 850) using 

truncated singular value decomposition (SVD). The transformation of data from a high dimensional 

space into a low-dimensional space so that the low-dimensional representation retains some 

meaningful properties of the original data. Each row becomes the concept embedding with 200, 

300, or 850 dimensions, making it easier to handle and train in the downstream applications. 
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3.2 SNOMED CT random walk embeddings generator  

The second method is based on the premise of similar terms will have similar “contexts” in the 

graph, it has been previously used on WordNet [36] and it has been previously applied to SNOMED 

CT [8] but they did not obtain clinical term embeddings or evaluate them for clinical term 

similarity. Figure 6 shows an artificial “corpus” by simulating random walks on the graph.  

 

Figure 6 Example of a random walk of a graph 

After the artificial corpus of random walk “sentences” has been created, corpus-based methods are 

used to obtain embeddings of the concepts in the graph. [6]. 

 In this chapter, we will present this method for generating relationships embeddings for SCOMED 

CT medical ontology. Figure [7] shows the overall process to our proposed method using March 

2022 SNOMED CT files which include concepts file “sct2_Concept_Full_ US1000124_20220301 

.txt” and the relations file “sct2_Relationship_Full_US1000124_20220301 .txt” and the 

descriptions file “sct2_Description_Full-en_US1000124_20220301.txt”. 

In this approach, we build four main dictionaries: 1- active_concepts, 2- active_descriptions, 3- 

adjacents_concepts, 4- random_walks. 
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Figure 7 SNOMED CT Embeddings Generator using Random Walk  

3.3 Clinical Term Embeddings Generator  

The methods described in the previous sections can obtain only clinical concept embeddings, 

however, for NLP applications one needs embeddings for words as well as clinical terms. In this 

section, we present a new method for obtaining embeddings for both words and new terms from 

concept embeddings. We train a deep neural network to predict the concept embeddings from 

clinical terms. It is a recurrent neural network with two layers of GRU [45]. The neural network 

diagram in figure 8 below uses concept embeddings as learned by matrix factorization method or 

random walk method as targets; and uses the corresponding clinical terms listed in SNOMED CT 

as well as their UMLS synonyms as inputs. The embedding layer learns the embedding for words 

and can be read off from a trained network. The trained network can then also predict embeddings 

for new clinical terms as shown in figure 9. 
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Figure 8 The Clinical Term Embeddings Generator. A deep Neural Network use Random Walk 

embeddings as an input for the SNOMED CT concept’s Descriptions 

 

Figure 9 Predicting a new medical term using the Clinical Term Embeddings Generator 
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3.4 Clinical term normalization  

In this task we evaluated clinical term embeddings obtained from SNOMED CT is the clinical term 

normalization task [53]. In this task, given a clinical term, it is to be mapped to its concept 

(identified by an identifier) in a medical terminology, typically in UMLS Metathesaurus [54]. As 

shown in figure 10: 

 

Figure 10: Clinical Term mapped to its concepts in a medical terminology. 

For our experiments, we used the benchmark MCN dataset [34] which has been used extensively 

for evaluating normalization methods [53]. This dataset has 6,684 clinical terms for training and 

6,925 clinical terms for testing. In the entire dataset, 2.7% of clinical terms are “CUI-less”, that is, 

they do not correspond to any concept in UMLS, while others are paired with their correct concept 

unique identifiers (CUIs).  

To normalize a clinical term, our method first tries to exactly match it in UMLS as well as in the 

training examples. If it exactly matches, then the concept corresponding to that term is given as 

the output. In case it matches multiple clinical terms corresponding to multiple concepts then a 

method described later is used to disambiguate the clinical term. If the clinical term does not match 

exactly either in the training data or in UMLS, then the method first obtains embedding of the 

clinical term using the model described earlier. It then computes cosine similarity of this 

embedding with the embedding of every clinical term in UMLS and determines the closest clinical 

term. The concept corresponding to this closest clinical term is then given as the output. For 

efficiency, the embeddings of all the clinical terms in UMLS are pre-computed using the model. 

Through pilot experiments we found that besides cosine similarity, including the fraction of the 

words common between the two clinical terms is also useful, especially when the terms have rare 
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words in common for which good embeddings may not have been learned by the model. We define 

similarity between two clinical terms as weighted similarity with 90% weight of the cosine 

similarity and 10% weight of the fraction of the words common between them. 

We observed a limitation of the embeddings obtained from SNOMED CT which is also a limitation 

of corpus-based methods. The model learns very similar embeddings for words with opposite 

meanings, for example, “left” and “right”, or “acute” and “chronic”. In addition, it learns similar 

embeddings for words with analogous meanings but that completely change the meaning of a 

clinical term, for example, “primary” and “secondary”, or “cervical” and “thoracic”. This happens 

because the clinical terms with opposite or analogous meanings will have their concepts in very 

similar positions in the ontological graph. As a result, our model tends to learn very similar 

embeddings for such words even though they change the meanings of clinical terms. Corpus-based 

embeddings also suffer from this limitation because words with opposite or analogous meanings 

are often found in similar contexts in text. 

Another limitation we observed was that the model sometimes would learn different embeddings 

for words with similar meanings which could be synonyms or sometimes spelled differently, for 

example, “ultrasonography” and “ultrasound”, or “edema” and “oedema”, or “bilateral” and “left 

and right”. Because the method considers each word separately, it may not learn the same 

embeddings for them. This affects normalization when the given term is, for example, “left and 

right kidneys” which then may not normalize to “bilateral kidneys”. This limitation also affects 

corpus-based embeddings unless they see these words in similar contexts frequently enough.  

To counter the above limitations, we augmented our normalization method with some patterns 

which were automatically learned from UMLS. In the next section, we include results of an 

ablation study that shows how much they contributed to the normalization task. A pattern is derived 

from two clinical terms and consists of two parts. The first part consists of words which are present 

in the first clinical term but not in the second clinical term, and the second part consists of the vice-
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versa. For example, given the terms “primary neoplasm” and “secondary neoplasm”, the pattern 

derived from them will be “primary-secondary”. The two parts of the pattern (shown separate by 

“-”) are considered inter-changeable when being applied. One of the parts could also be empty 

which would capture whether presence of an extra word changes the meaning or not. For example, 

presence of “nos” (not specified) does not change the meaning, but presence of “infected” changes 

the meaning.   

Our pattern learning method efficiently considers every two clinical terms in UMLS and 

determines all the patterns and their number of positive and negative matches. If a pattern matches 

two clinical terms which share the same concept, then it is considered a positive match, otherwise 

it is considered a negative match implying that the clinical terms mean different things. Ambiguous 

clinical terms (that are associated with more than one concept) are not included in this learning 

process. To make the process efficient, only those pair of clinical terms are considered which have 

at least half the words in common. To avoid large patterns that may not match often, the patterns 

were restricted to have the combined length of the two parts to be less than five. We call the patterns 

negative patterns if they have more than 5 negatives and 10 times more negatives than positives. 

As an example, “anterior-posterior” is a negative pattern. Similarly, we call the patterns positive 

patterns if they have more than 5 positives and 10 times more positives than negatives. As an 

example, “bilateral-left and right” is a positive pattern. These patterns are different from patterns 

from past work [55,40], because those patterns were meant to generate a new clinical term with 

the same meaning and could not handle clinical terms with opposite or analogous meanings. In 

contrast, these patterns are meant to determine if two clinical terms represent the same concept or 

different concepts.   

These learned patterns are used in the normalization method as follows. In the first step of 

normalization, if the clinical term exactly matches multiple clinical terms in UMLS corresponding 

to multiple concepts then the patterns are used to disambiguate from these candidate concepts. If 
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a negative pattern matches the pair of the given clinical term and any clinical term corresponding 

to one of the candidate concepts, then that concept is removed as a candidate. On the other hand, 

if a positive pattern matches then that concept is given as the output (unless the same happens with 

another candidate concept). If after applying the patterns, more than one concepts remain then the 

average similarity between the given clinical term and all the clinical terms in UMLS 

corresponding to that concept is computed and the concept with the highest similarity is given as 

the output.   

If the clinical term does not exactly match in UMLS, then all clinical terms in UMLS are 

considered. If a positive pattern matches a clinical term (paired with the given clinical term) then 

the concept corresponding to it is given as the output (unless there are more than one such concept) 

with the similarity score of 1. But if a negative pattern matches then that concept can never be the 

output. If no positive pattern matches, then similarity is computed with all the clinical terms. The 

most similar term is given as the output. However, if the difference between the similarity of the 

top concepts is too close (less than 0.001) then the average similarity with all the clinical terms in 

UMLS corresponding to the top concepts are considered and used to determine the most similar 

concept. If no clinical term is found in UMLS with more than 0.9 similarity, then “CUI-less” is 

given as the output. 

3.5 Combined Embeddings 

3.5.1 Concatenate Embeddings 

The first method we used for combining SNOMED CT based embeddings with corpus-based 

embeddings was by simply concatenating them. In this method, we tried to improve our 

embeddings capabilities by adding extra information from general purpose sources like 

GoogleNews medical terms or the medical words used in Wiki documents. Tomas Mikolov 

created it at Google in 2013 to make neural network-based embedding training more efficient; 

ever since it seems to be everyone’s favorite pre-trained word embedding. The Google News 



29 

 

dataset was used to train Word2Vec (about 100 billion words!). This repository hosts the 

word2vec pre-trained Google News corpus (3 billion running words) word vector model (3 

million 300-dimension English word vectors). In [10], Wang et. al. used Google new as 

benchmark dataset for their method which was depending mainly on the general-purpose 

embeddings.  

3.5.2 SNOMED CT corpus generator 

We created a new medical corpus from SNOMED CT ontology based on the concept descriptions 

and relation types of Figures 11. We used the context free grammars CFG from Natural Language 

Toolkit NLTK library which is often used to find possible syntactic structures for sentences. The 

CFG class is used to encode context free grammar. Each CFG consists of a start symbol and a set 

of productions. The “start symbol” specifies the root node value for parse trees. We used part of 

the relation types, we created more than 1.6M sentences which are used for training a pretrained 

BERT model and corpus-based model (word2vec). 

 

Figure 11 SNOMED corpus Generator 
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Table 2 Context Free Grammars (CFG)  

 

Table 3 SNOMED CT generated corpus Sample 

3.5.3 Merging Clinical corpus and SNOMED CT generated corpus 

We used the SNOMED generated corpus to train a clinical BERT model, the generated 

embeddings are a combination of large medical corpus from PubMed and PMC, in addition to 

the SNOMED CT generated corpus. We selected the best BERT hyperparameters (train 
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steps=100,000, batch size=64, maximum sequence length=128, maximum predictions per 

sequence=20, learning rate=2e-5).  

3.5.4 Fine Tuning a Pretrained BERT 

BERT Base (uncased) is a pretrained model on English language using a masked language 

modeling (MLM) objective [58]. The BERT model was pretrained on a dataset consisting of 

11,038 unpublished books and English Wikipedia. 

Fine-tuning BERT involves taking the pre-trained BERT model and training it further on a 

specific downstream task with task-specific labeled data. The idea is to leverage the general 

language understanding abilities learned by BERT during pre-training and adapt them to the 

specific task at hand. We used “bert_base_uncased” clinical model. It was then fine-tuned to 

predict SNOMED CT concept embeddings obtained using graph-based method. SNOMED 

CT descriptions were used as inputs and the concept embeddings as targets as shown in 

Figure 13. This process makes BERT incorporate ontological knowledge into its clinical term 

embeddings. Table 4 shows the hyper parameters used in fine tuning process. 

 

Figure 13: Fine-tuning ClinicalBERT with SNOMED CT concept embeddings to combine 

corpus-based and ontology-based embeddings.  
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Table 4 Hyperparameters of the BERT-base-uncased fine tuning. Hyperparameters are 

parameters whose values control the learning process and determine the values of model 

parameters that a learning algorithm ends up learning. 
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4 Results 
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In this chapter, all the experimental evaluation results are presented.  

We evaluate the performance of embeddings obtained using SNOMED CT using different 

methods on the clinical term similarity tasks. We then present results on the clinical term 

normalization task. This is followed by the results obtained by combining the corpus-based and 

SNOMED CT embeddings obtained by different methods.  

4.1 Clinical Term Similarity Data Set 

In this study, we have used a few data sets from several sources:  

The first data set used in this research is Pedersen's dataset [39]. Pedersen dataset is a set of thirty 

term pairs annotated by three rheumatology physicians. The annotation of each pair is out of a 4-

point scale, the average correlation between physicians is 0.68, and the coders is 0.78. In Table 5 

“Renal failure” and “Kidney failure” similarity is 4 which means they are highly related to each 

other, where “Appendicitis” and “Osteoporosis” similarity is 1 that means they are dissimilar.  

 

Table 5 Sample of Pedersen's data. A set of 30 concept pairs that were then annotated by 

three physicians and a subset of 9 medical coders. Each pair was annotated on a 4-point 

scale: practically synonymous (4.0), related (3.0), marginally related (2.0) and unrelated 

(1.0). 

UMNSRS [26] is the second dataset, it consists of 566 medical term pairs, and it is compiled by 

first selecting all concepts from the UMLS with one of three semantic types: disorders, symptoms, 

and drugs. Subsequently, only concepts with entry terms containing at least one single-word term 

were further selected to control for potential differences in similarity and relatedness responses due 

to differences in term complexity. After this automatic selection, a practicing physician manually 
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selected pairs of the single-word terms to contain approximately thirty term pairs in each of the 

four relatedness categories and six semantic type categories of term pairs (DISORDER-

DISORDER, DISORDER SYMPTOM, DISORDER-DRUG, SYMPTOM SYMPTOM, 

SYMPTOM-DRUG, DRUG-DRUG). With terms denoting medications, we used brand names in 

most cases because generic names for drugs with similar chemical composition and/or function 

tend to have similar orthography and pronunciation, presenting a potential source of bias.  

 

Table 6 Sample of UMNSRS data. A set of 566 UMLS concept pairs manually rated for semantic 

similarity using a continuous response scale. 

The third dataset MAYOSRS [38], consists of 101 medical term pairs. The ratings are not 

uniformly distributed for either of the datasets. For the medical term pairs, a more significant 

proportion of ratings on average are found in the ''related'' (lower values) than the ''unrelated'' end 

of the scale. The distribution for the general English word pairs is bimodal, suggesting that the 

raters tended to make binary decisions.  

 

Table 7 Sample of MAYOSRS data. A set of 101 medical concept pairs manually rater by 

medical coders for semantic relatedness. 

The fourth dataset is the Hliaoutakis dataset [37], consisting of 34 medical term pairs with 

similarity scores obtained by human judgments. 
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Table 8 Sample of Hliaoutakis data. A set of 49 pairs. Their similarity was evaluated by doctors, 

giving a score to each pair between 0 (not similar) and 4 (perfect similarity). The average rating 

(by all doctors) of each pair represents an estimate of how similar each pair is according to human 

judgement. 

The fifth dataset is EHR-RelB, it is an open source of novel concept relatedness benchmark; it is 

six times larger than existing datasets and the concept pairs are chosen based on the cooccurrence 

in EHR system [41]. There are 3630 concept pairs sampled from electronic health records (EHRs) 

sorted uniquely in descending order.  

 

Table 9 Sample of EHR-RelB data. A biomedical concept relatedness dataset consisting of 3630 

concept pairs. Dataset is sampled from EHRs to ensure concepts are relevant for the EHR concept 

retrieval task. 

4.2 Medical questions pairs Data Set 

Medical questions pairs dataset [69] consists of 3048 similar and dissimilar medical question pairs 

hand-generated and labeled by Curai's doctors. Doctors with a list of 1524 patient-asked questions 

randomly sampled from the publicly available. Each question results in one similar and one 

different pair. Table [8] 
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Table 10 Sample medical questions pairs. [69] A question pairs relatedness dataset consisting of 

3048 question pairs. The dataset contains dr_id, question_1, question_2, label. 11 different 

doctors were used for this task so dr_id ranges from 1 to 11. The label is 1 if the question pair is 

similar and 0 otherwise. 

4.3 Evaluation Measures  

The cosine similarity of the various vectors is a standard method to compute the similarity of the 

words in such models, using the formula:  

 

a and b are vectors, and ai is the value of vector a's ith coordinate. Thus, the cosine similarity of two 

vectors oriented in the same direction is 1, and orthogonal vectors are 0, while vectors oriented in 

opposite directions have a similarity of -1. For a list of clinical term pairs, the similarities thus 

computed are compared against the expert-judged similarity scores in the dataset using a measure 

of correlation coefficient. The computed numbers of Spearman’s ranked correlation coefficient 

between the similarity scores obtained from embeddings and the expert-judged similarity scores. 

The other computed numbers are Pearson correlation coefficient between the similarity scores 

obtained using the embeddings and the expert-judged similarity scores. 
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4.4 SNOMED CT Embeddings Evaluated on Clinical Term Similarity Task 

The method to generate clinical term embeddings described in previous sections is evaluated on 

benchmark datasets of medical terms pair similarity.  

4.4.1 Matrix Factorization Method 

We use SNOMED CT files to extract the concepts and relations between these concepts, to build 

the n x n co-occurrence matrix where n is the number of concepts read from the SNOMED CT file. 

The selected matrix factorization method simulates an infinite random walk by computing the Katz 

index on the adjacency matrix. This operation involves the inversion of the matrix, which is 

computationally very expensive and thus, can be challenging for larger graphs. Then we factorized 

the adjacency matrix to obtain node embeddings, and because the larger the number of paths that 

exist between two nodes, the more similar they are, we count all the existing paths between two 

given nodes using the general formula: 𝑀𝐺 = (1−𝛼𝑀)−1. 

With vector dimension d=850, the dimensionality reduction using PCA, the vector dimensions are 

sorted by descending variance and the first n-dimensions are retained as embeddings. There are 

many algorithms for dimensionality reduction, PCA, IncrementalPCA, TruncatedSVD, and 

SparsePCA. We used IncrementalPCA for large number of concepts. Finally, we created the 

embedding file which consists from the concept ID and the 850 embeddings. 

We used the generated embedding file in RNN model, then we found similarity correlations for 

four datasets: Pedersen, UMNSRS, MYOSRS and Hliaoutakis. 

For intrinsic evaluation, we evaluate the embeddings in semantic similarity and relatedness tasks, 

where the similarity of the vectors is matched against gold standard scores established by humans. 

We got some descent results in Table 9. 
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Table 11 Matrix Factorization Embeddings. Pearson correlation coefficient between similarity 

scores from human judgments and those from word embeddings on four measurement datasets. 

4.4.2 Random walk Method  

We use a graph using the SNOMED CT concepts relations as the edges for our graph and the 

concept’s IDs as the vertices for our graph. Then we build random paths of length 10 from this 

graph with a predefined random probability of each edge. The generated random walks are used 

as input for the RNN model to generate word embeddings for the testing phrases from the 

benchmark datasets. According to the results in table 10 we found that this method outperforms 

both the SNOMED CT random factorization and the corpus-based embeddings. 

 

Table 12 Random Walk Embeddings. Pearson correlation coefficient between similarity scores 

from human judgments and those from word embeddings on four measurement datasets using 

random walk.  

4.4.3 Utilize relation types and semantic types 

 

In the results presented in the previous sections, only the graph structure was used to obtain 

embeddings. We used 5 semantic types and 5 relation types in order to read all the SNOMED 
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concepts and to test the effect of focusing on most common types and skipping the least used 

ones shown in Tables 12 and 13. This way the generated adjacency matrix dimension becomes 

lower and mode dense. We found that the correlation similarities are comparable with the corpus-

based and random walk results. Then, we added another set of types, the results become better 

than before until we include all the semantic and relation types (62 sematic types and 27 relation 

types). We found that more medical semantic types add more information to the generated 

embeddings. Table 11 compares the correlation similarities for partial semantic and relation types 

and the complete selection for all semantic and relation types.   

 
Table 13: Utilize relation types and semantic types. Pearson correlation coefficient between 

similarity scores from human judgments and those from word embeddings on four measurement 

datasets using random walk method.   First column for most common semantic types. The second 

column uses all semantic types. Third column using selected concepts relations. Fourth column 

using all concepts relations. 

 

Table 14: Partial Relation Types. 

 

Table 15: Partial Semantic Types. 
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4.5 Obtaining Word and Clinical Term Embeddings from Clinical Concept 

Embeddings 

4.5.1 SNOMED CT Term Embeddings Results 

The methods described in the previous sections can obtain only clinical concept embeddings. 

However, for NLP applications one needs embeddings for words as well as clinical terms. This 

method has descent results for clinical terms from clinical corpus dataset. Results shown in Table 

16 is competitive against the corpus based embeddings. 

 

Table 16: Clinical Term embeddings using RNN model 

4.5.2 Clinical Term Normalization Results 

Table 15 shows the results for the clinical term normalization task on the MCN dataset [34] 

which was used in the n2c2 2019 shared task [53]. The first column shows results obtained by the 

full system. The second column shows the results when the patterns as described in the previous 

section are not used. The last column shows the results of only exact matching as a baseline for 

comparison. When the correct answer is not the top closest concept determined by the system, 

often it is one of the top closest concepts. Hence to gauge how far the correct answer is when the 

top answer is incorrect, the table also shows the results when the correct answer is within the top 

2, 5 and 10 closest concepts. 
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Table 17: Results on the clinical term normalization task on the MCN benchmark dataset using 

the embeddings obtained from SNOMED CT using our method. The numbers are represent the 

accuracies (%) when the correct answer is in within the top 1, 2, 5, and 10 closest concepts 

according to the system. 

Our system obtained 80.23% accuracy on this task. For comparison, the 33 teams that 

participated in the n2c2 2019 shared-task had obtained accuracies ranging from 51.85% to 

85.26% with the top 10 teams obtaining accuracies ranging from 79.57% to 85.26% [34]. There 

was a large gap between the best (85.26%) and the second-best system (81.94%) system. These 

systems had used a variety of approaches and many of the top performing systems had 

specifically trained machine learning methods for the normalization task. In contrast, our system 

was not specifically trained for the normalization task, but it simply used embeddings learned 

from SNOMED CT to find the most similar concept. Yet our system performed competitively 

and would have secured 7th rank in this shared task based on accuracy. This shows that our 

method obtains embeddings for clinical terms which encode their concepts well enough that they 

can be used to normalize the clinical terms to their concepts. 

From Table 11, one can observe that exact matching alone obtains 76.05% accuracy which is 

consistent with prior reporting [56]. With exact matching also sometimes, the correct answer is 

not the closest concept but the second-closest concept, this shows that a clinical term can be 

ambiguous and exactly match more than one concepts. The table also shows that the patterns 

helped in improving the accuracy from 79.19% to 80.23%. Given that the top-2 accuracy is 
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almost same with and without patterns, it shows that the patterns helped in determining the 

correct answer when it was within the top-2 closest concepts. When we used ClinicalBERT 

embeddings for normalization in the same way as we obtained results using our SNOMED CT 

embeddings, the accuracy was 78.3% without using patterns (worse than 79.19% accuracy 

obtained using SNOMED CT embeddings). With patterns, the accuracy improved to 80.16% 

(slightly worse than 80.23% obtained using SNOMED CT embeddings with patterns). This 

shows that the patterns are general and useful on this task when using corpus-based embeddings 

as well. 

Besides quantitatively evaluating the embeddings obtained using SNOMED CT on two tasks, we 

qualitatively evaluated them and compared them with corpus-based embeddings. Table 18 shows 

five illustrative clinical terms, none of which is already present in UMLS, and the top 5 most 

similar clinical terms in UMLS found using the embeddings from SNOMED CT obtained by our 

method and found using embeddings from ClinicalBERT. The similarities between clinical terms 

were computed using cosine similarity between their embeddings. It can be observed that 

SNOMED CT embeddings found similar terms based on their clinical meanings, for example, for 

“broken thumb” it found “fracture of thumb” as most similar. In contrast, corpus-based 

embeddings found similar terms based on their linguistic usage, for example, for “broken thumb” 

it found “broken wrist” and “broken elbow” as most similar. Similar trend can be observed in the 

other examples too. This shows that embeddings obtained from SNOMED CT capture clinical 

semantics better than embeddings obtained from corpus-based methods. 
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Top 5 most similar terms  

using SNOMED CT embeddings 

Top 5 most similar terms  

using ClinicalBERT embeddings 

surgical removal of cancer 

excision of neoplasm; excision neoplasm 

malignant; excision of malignant neoplasm; 

excision tumor; excision tumors 

surgical removal of prostate; surgical removal of 

gallbladder; surgical removal of impacted tooth; 

surgical removal of tooth; surgical removal of 

tonsil 

pain in lower extremities 

pain in lower limb; pain in lower limb nos; pain in 

legs; pain in leg; limb pain leg; pain in unspecified 

lower leg  

pain in upper extremities; pain in extremities; pain 

in bilateral lower legs; pain in bilateral upper arms; 

pain in upper arms   

left toe injury 

injury of toe of right foot; injury of toe of left foot; 

open wound of right great toe; open wound of lesser 

toe of right foot; right toe contusion   

left foot injury; left ankle injury; left thigh injury; 

left shoulder injury; right foot injury 

pubic bone metastasis 

secondary malignant neoplasm of pubis; metastatic 

malignant neoplasm to pubis; metastatic malignant 

neoplasm to bone nos; bone neoplasm, malignant - 

pubis secondary; metastasis of malignant neoplasm 

to bone 

dermal metastasis; adrenal gland metastasis; spleen 

metastasis; scrotal metastasis; axillary metastasis 

broken thumb 

fracture of thumb; fracture thumb; fractured thumb; 

fracture of phalanges of thumb; fractures thumb 

broken wrist; broken elbow; broken tooth; broken 

forearm; broken knee cap 

Table 18 Qualitative comparison between the clinical term embeddings obtained from SNOMED 

CT using our method and clinical term embeddings obtained from ClinicalBERT. For each 

clinical term, the top 5 most similar terms in UMLS found using each type of embeddings are 

shown. 

4.6 Combining Ontology-Based and Corpus-Based Embeddings 

4.6.1 Concatenate Embeddings 

By concatenating the Clinical BERT embeddings (dim = 768) with the SNOMED CT Random 

Walk embeddings (dim = 200). Table 16 shows a comparison between single embeddings and 

combined embeddings. We found that embedding combinations can improve the results. The first 

column is the correlation similarities for SNOMED CT Random Walk embeddings alone. The 

second column is the Clinical BERT Embeddings for the SNOMED CT concepts descriptions. The 
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third column shows the correlation coefficients for the concatenated embeddings. The results some 

improvement. 

 

Table 19 Concatenate Embeddings. Correlation similarities for concatenated Clinical BERT 

embeddings with SNOMED CT Random Walk embeddings. 

4.6.2 Merging Clinical corpus and SNOMED CT generated corpus 

According to the following results in Table 17, the results of mering the trained clinical BERT 

embeddings with the original clinical BERT embeddings. We noticed an improvement in the 

results, that drives us to the result that multiple sources of embeddings increase the information. 

 

Table 20 Merge clinical corpus and SNOMED generated corpus embeddings using RNN. 

Pearson correlation coefficient between similarity scores from human judgments and those from 

word embeddings on four measurement datasets. 

In table 18, another way for correlation coefficient results by using the word representation model 

(word2vec) 
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Table 21 Merge Clinical and SNOMED corpus using Word2Vec. Pearson correlation coefficient 

between similarity scores from human judgments and those from word embeddings on four 

measurement datasets. A comparison table for word representation model (Word2Vec) 

Table 19 shows an improvements in the correlation coefficient after training the clinical BERT 

with SNOMED CT generated corpus. 

 

Table 22 Pearson Correlation Similarities for Medical Questions Pairs. 

4.6.3 Fine-Tuning BERT on SNOMED CT embeddings 

It is commonly accepted that fine-tuning improves task performance. The fine-tuned models 

(along with the original models) are then used to generate contextualized representations. Our 

preliminary experiments showed that the commonly used 3-5 epochs of fine-tuning are 

insufficient for the smaller representations, such as BERT tiny, and they require more epochs. 

We fine-tuned all the representations for 10 epochs except BERT base, which we fine-tuned 

for the usual three epochs. Table 20 shows good results by fine-tuning SNOMED embeddings 

as target on a pretrained model on English language in a self-supervised fashion using a masked 

language modeling (MLM) objective. 
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Table 23 Fine Tuning Clinical BERT. Pearson correlation coefficient between similarity scores 

from human judgments and those from word embeddings on four measurement datasets. Fine 

tuning a pretrained Clinical BERT using SNOMED CT embeddings description combination. 
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5 Future Work  
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We have many ideas that may improve the embeddings for the downstream NLP tasks. The 

suggested methods are considered as future work that can be continued work on leveraging the 

biomedical ontological knowledge to improve clinical term embeddings. The first one, is using 

more biomedical ontologies will increase the information given to embeddings which will 

positively affect the results. The other way that also could be another method which is add new 

semantic types and more relation types, since we notice that when we use all the semantic types 

and the relation types in SNOMED CT it increases the correlation similarities for medical term 

pairs. Using longer connections in the graph may help optimize the results which means 

considering multiple descendants for the medical concepts. It is like increasing the number of 

related concepts before and after the current concepts. The fourth idea is to use more grammatical 

words for the generated corpus and use more relations that will increase the size of the generated 

corpus. Lastly, Handling the linguistic morphology of the medical term and the edit pattern to 

solve the problem of singular and plural, polysemy and homonymy. 
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6 Conclusion  
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Traditionally, word embeddings are obtained from text corpora. In this research, we presented a 

novel method to obtain embeddings for clinical terms and words from the SNOMED CT ontology. 

The embeddings performed better than corpus-based embeddings on clinical term similarity task. 

They also performed competitively on clinical term normalization tasks. These results show that 

SNOMED CT is an alternate resource for obtaining clinical term embeddings and the presented 

method can successfully infuse ontological knowledge into embeddings. We also presented 

methods to combine the two sources of embeddings in order to incorporate linguistic as well as 

ontological knowledge into embeddings. The results on the evaluated tasks show that this helps 

improve the embeddings.    

  



52 

 

 

7 References  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



53 

 

[1] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for 

word representation. In Proceedings of the 2014 conference on empirical methods in 

natural language processing (EMNLP), pages 1532–1543, 2014.  

[2] SNOMED International, http://www.SNOMED.org/ (Accessed January 3, 2022).  

[3] Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.  

[4] Charles E Osgood, George J Suci, and Percy H Tannenbaum. The measurement of 

meaning. Urbana: University of Illinois Press, 1957. 

[5] L Wittgenstein. In gem anscombe. Philosophical investigations, 1953.  

[6] Sébastien Harispe, Sylvie Ranwez, Stefan Janaqi, and Jacky Montmain. Semantic 

similarity from natural language and ontology analysis. Synthesis Lectures on Human 

Language Technologies, 8(1):1–254, 2015.  

[7] Noh, J., & Kavuluru, R. (2021). Improved biomedical word embeddings in the transformer 

era. Journal of Biomedical Informatics, 120, 103867.  

[8] Agarwal, K., Eftimov, T., Addanki, R., Choudhury, S., Tamang, S., & Rallo, R. (2019). 

SNOMED2Vec: Random Walk and Poincare Embeddings of a Clinical Knowledge Base 

for Healthcare Analytics. arXiv preprint arXiv:1907.08650.  

[9] Schulz, C., & Juric, D. (2020, April). Can Embeddings Adequately Represent Medical 

Terminology? New Large-Scale Medical Term Similarity Datasets Have the Answer! In 

Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 05, pp. 

87758782).  



54 

 

[10] Wang, Y., Liu, S., Afzal, N., Rastegar-Mojarad, M., Wang, L., Shen, F., ... & Liu, H. 

(2018). A comparison of word embeddings for the biomedical natural language 

processing. Journal of biomedical informatics, 87, 12-20. 

[11] Saedi, C., Branco, A., Rodrigues, J., & Silva, J. (2018, July). Wordnet embeddings. In 

Proceedings of the third workshop on representation learning for NLP (pp. 122-131). 

[12] Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., & Smith, N. A. (2014). 

Retrofitting word vectors to semantic lexicons. arXiv preprint arXiv:1411.4166. 

[13] Yu, M., & Dredze, M. (2014, June). Improving lexical embeddings with semantic 

knowledge. In Proceedings of the 52nd Annual Meeting of the Association for 

Computational Linguistics (Volume 2: Short Papers) (pp. 545-550).  

[14] Camacho-Collados, J., Pilehvar, M. T., & Navigli, R. (2015). Nasari: a novel approach to 

a semantically-aware representation of items. In Proceedings of the 2015 Conference of 

the North American Chapter of the Association for Computational Linguistics: Human 

Language Technologies (pp. 567-577).  

[15] Vendrov, I., Kiros, R., Fidler, S., & Urtasun, R. (2015). Order-embeddings of images and 

language. arXiv preprint arXiv:1511.06361.  

[16] Nickel, M., & Kiela, D. (2017). Poincaré embeddings for learning hierarchical 

representations. Advances in neural information processing systems, 30, 6338-6347. 

[17] Rodrigues, J., Branco, R., Silva, J., Saedi, C., & Branco, A. (2018, July). Predicting brain 

activation with WordNet embeddings. In Proceedings of the Eight Workshop on Cognitive 

Aspects of Computational Language Learning and Processing (pp. 1-5).  



55 

 

[18] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). 

Translating embeddings for modeling multi-relational data. Advances in neural 

information processing systems, 26.  

[19] Lin, Y., Liu, Z., Sun, M., Liu, Y., & Zhu, X. (2015, February). Learning entity and relation 

embeddings for knowledge graph completion. In Twenty-ninth AAAI conference on 

artificial intelligence. 

[20] Nickel, M., Rosasco, L., & Poggio, T. (2016, March). Holographic embeddings of 

knowledge graphs. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 

30, No. 1).  

[21] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural 

probabilistic language model. Journal of machine learning research, 3(Feb):1137–1155, 

2003. 

[22] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word 

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.  

[23] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed 

representations of words and phrases and their compositionality. In Advances in neural 

information processing systems, pages 3111–3119, 2013.  

[24] Hongyun Cai, Vincent W Zheng, and Kevin Chang. A comprehensive survey of graph 

embedding : problems, techniques, and applications. IEEE Transactions on Knowledge 

and Data Engineering, 2018. 

[25] Mark Newman. Networks: an introduction. Oxford university press, 2010.  

[26] https://conservancy.umn.edu/handle/11299/196265 ((Accessed April 30, 2023))  

[27] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In 

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge 

discovery and data mining, pages 855–864. ACM, 2016.  

https://en.wikipedia.org/wiki/Text_annotation


56 

 

[28] [28] Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. A semantic 

matching energy function for learning with multi-relational data. Machine Learning, 

94(2):233–259, 2014. 

[29] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of 

machine learning research, 9 (Nov) : 2579–2605, 2008. 

[30] Franz Baader, Diego Calvanese, Deborah McGuinness, Peter Patel-Schneider, Daniele 

Nardi (Eds.), The Description Logic Handbook: Theory, Implementation, and 

Applications, Cambridge University Press, 2003. 

[31] [31] Stephen T. Wu, Vinod C. Kaggal, Dmitriy Dligach, James J. Masanz, Pei Chen, 

Lee Becker, Wendy W. Chapman, Guergana K. Savova, Hongfang Liu, Christopher G. 

Chute (2013), A common type system for clinical natural language processing, J. Biomed. 

Semant. 4 (1), 1-12.  

[32] Kate, R. J. (2020). Automatic full conversion of clinical terms into SNOMED CT 

concepts. Journal of Biomedical Informatics, 111, 103585.   

[33] SNOMED  CT  Editorial  Guide, 

https://confluence.ihtsdotools.org/display/DOCEG (Accessed April 30, 2023).  

[34] Yen-Fu Luo, Weiyi Sun, Anna Rumshisky, MCN: A comprehensive corpus for medical 

concept normalization, J. Biomed. Inform. (2019) 103132.  

[35] SNOMED  CT  Editorial  Guide, 

https://confluence.ihtsdotools.org/pages/viewpage.action?pageId=26837115 (Accessed 

April 30, 2023) 

[36] Salawa, M., Branco, A., Branco, R., Rodrigues, J., & Saedi, C. (2019, September). Whom 

to learn from? graph-vs. text-based word embeddings. In Proceedings of the International 

Conference on Recent Advances in Natural Language Processing (RANLP 2019) (pp. 

10411051).  



57 

 

[37] Hliaoutakis, A. (2005). Semantic similarity measures in MeSH ontology and their 

application to information retrieval on Medline. Master's thesis.  

[38] Pakhomov, S. V., Pedersen, T., McInnes, B., Melton, G. B., Ruggieri, A., & Chute, C. G. 

(2011). Towards a framework for developing semantic relatedness reference standards. 

Journal of biomedical informatics, 44(2), 251-265.  

[39] Pedersen, T., Pakhomov, S. V., Patwardhan, S., & Chute, C. G. (2007). Measures of 

semantic similarity and relatedness in the biomedical domain. Journal of biomedical 

informatics, 40(3), 288-299.   

[40] Kate, R. J. (2021). Clinical term normalization using learned edit patterns and sub-concept 

matching: system development and evaluation. JMIR Medical Informatics, 9(1), e23104.  

[41] Schulz, C., Levy-Kramer, J., Van Assel, C., Kepes, M., & Hammerla, N. (2020). 

Biomedical Concept Relatedness--A large EHR-based benchmark. arXiv preprint 

arXiv:2010.16218. 

[42] https://confluence.ihtsdotools.org/display/DOCSTART/4.+SNOMED+CT+Basics 

(Accessed April 30, 2023).  

[43] He, Y., Chen, J., Antonyrajah, D., & Horrocks, I. (2021). BERTMap: A BERT-based 

Ontology Alignment System. arXiv preprint arXiv:2112.02682.  

[44] Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L. 

u.; and Polosukhin, I. 2017. Attention is All you Need. In Guyon, I.; Luxburg, U. V.; 

Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and Garnett, R., eds., Advances in 

Neural Information Processing Systems, volume 30. Curran Associates, Inc.  

[45] Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of 

neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.  

[46] Henry S, Wang Y, Shen F, Uzuner O. The 2019 National Natural language processing 

(NLP) clinical challenges (n2c2)/open health NLP (OHNLP) shared task on clinical 



58 

 

concept normalization for clinical records. J Am Med Inform Assoc 2020 Oct 

1;27(10):1529-1537. 

[47] Noh J, Kavuluru R. Improved biomedical word embeddings in the transformer era. Journal 

of Biomedical Informatics. 2021 Aug 1;120:103867.  

[48] Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY. A comprehensive survey on graph 

neural networks. IEEE transactions on neural networks and learning systems. 2020 Mar 

24;32(1):4-24. 

[49]   Zhang Y, Chen Q, Yang Z, Lin H, Lu Z. BioWordVec, improving biomedical word 

embeddings with subword information and MeSH. Scientific data. 2019 May 10;6(1):52. 

[50] Xu C, Bai Y, Bian J, Gao B, Wang G, Liu X, Liu TY. RC-NET: A general framework for 

incorporating knowledge into word representations. In Proceedings of the 23rd ACM 

international conference on conference on information and knowledge management 2014 

Nov 3 (pp. 1219-1228). 

[51] Alawad M, Hasan SS, Christian JB, Tourassi G. Retrofitting word embeddings with the 

UMLS metathesaurus for clinical information extraction. In2018 IEEE International 

Conference on Big Data (Big Data) 2018 Dec 10 (pp. 2838-2846). IEEE. 

[52] Pattisapu N, Patil S, Palshikar G, Varma V. Medical concept normalization by encoding 

target knowledge. In Machine Learning for Health Workshop 2020 Apr 30 (pp. 246-259). 

PMLR. 

[53] Luo YF, Henry S, Wang Y, Shen F, Uzuner O, Rumshisky A. The 2019 n2c2/UMass 

Lowell shared task on clinical concept normalization. Journal of the American Medical 

Informatics Association. 2020 Oct;27(10):1529-e1. 

[54] Bodenreider O. The unified medical language system (UMLS): integrating biomedical 

terminology. Nucleic acids research. 2004 Jan 1;32(suppl_1):D267-70. 



59 

 

[55] Kate RJ. Normalizing clinical terms using learned edit distance patterns. Journal of the 

American Medical Informatics Association. 2016 Mar 1;23(2):380-6. 

[56] Kate RJ. Clinical term normalization using learned edit patterns and sub concept matching: 

system development and evaluation. JMIR Medical Informatics. 2021 Jan 14;9(1):e23104. 

[57] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, 

Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. 

arXiv:1802.05365 [cs]. ArXiv: 1802.05365. 

[58] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding. 

arXiv:1810.04805 [cs]. ArXiv:1810.04805. 

[59] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, 

and Jaewoo Kang. 2019. BioBERT: a pre-trained biomedical language representation 

model for biomedical text mining. arXiv:1901.08746 [cs]. ArXiv: 1901.08746.  

[60] Kaung Khin, Philipp Burckhardt, and Rema Padman. 2018. A Deep Learning Architecture 

for De-identification of Patient Notes: Implementation and Evaluation. arXiv:1810.01570 

[cs]. ArXiv: 1810.01570. 

[61] Yuqi Si, Jingqi Wang, Hua Xu, and Kirk Roberts. 2019. Enhancing Clinical Concept 

Extraction with Contextual Embedding. arXiv:1902.08691 [cs]. ArXiv: 1902.08691. 

[62] Pyysalo S, Ginter F, Moen H, Salakoski T, Ananiadou S. Distributional semantics 

resources for biomedical text processing. Proceedings of LBM. 2013 Dec 12:39-44. 

[63] Kosmopoulos A, Androutsopoulos I, Paliouras G. Biomedical semantic indexing using 

dense word vectors in bioasq. J BioMed Semant Suppl BioMedl Inf Retr. 

2015;3410:959136040-1510456246. 



60 

 

[64] Chiu B, Crichton G, Korhonen A, Pyysalo S. How to train good word embeddings for 

biomedical NLP. InProceedings of the 15th workshop on biomedical natural language processing 

2016 Aug (pp. 166-174). 

[65] McDonald R, Brokos GI, Androutsopoulos I. Deep relevance ranking using enhanced 

document-query interactions. arXiv preprint arXiv:1809.01682. 2018 Sep 5. 

[66] Zhang Y, Chen Q, Yang Z, Lin H, Lu Z. BioWordVec, improving biomedical word 

embeddings with subword information and MeSH. Scientific data. 2019 May 10;6(1):52. 

[67] Chen Q, Peng Y, Lu Z. BioSentVec: creating sentence embeddings for biomedical texts. 

In2019 IEEE International Conference on Healthcare Informatics (ICHI) 2019 Jun 10 (pp. 1-5). 

IEEE. 

[68]   Alsentzer E, Murphy JR, Boag W, Weng WH, Jin D, Naumann T, McDermott M. Publicly 

available clinical BERT embeddings. arXiv preprint arXiv:1904.03323. 2019 Apr 6. 

[69] McCreery, Clara H., Namit Katariya, Anitha Kannan, Manish Chablani, and Xavier 

Amatriain. "Effective transfer learning for identifying similar questions: matching user questions 

to COVID-19 FAQs." In Proceedings of the 26th ACM SIGKDD international conference on 

knowledge discovery & data mining, pp. 3458-3465. 2020. 


	Leveraging Biomedical Ontological Knowledge to Improve Clinical Term Embeddings
	Recommended Citation

	Unsupervised Biomedical Named Entity Recognition

