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ABSTRACT

THE ROLE OF ENERGY STORAGE IN THE TRANSITION
TOWARD A CARBON-NEUTRAL ECONOMY

by

Siyu Feng

The University of Wisconsin-Milwaukee, 2023
Under the Supervision of Professor Itziar Lazkano

Energy transitions to less-carbon intense technologies, such as wind and solar

energy, in the electricity, sector are crucial to realizing international climate goals

because the electricity sector has been one of the main global carbon emitter for

decades, and environmental plans in most countries involve electrifying heavily

polluting industries with clean electricity generation. The intermittency problem of

renewable energy has been the main stumbling block on the path, and energy storage is

now referred to as the key in these transitions because it can boost renewable energy

use while also improving the efficiency of conventional power plants (Hall and Bain,

2008). However, existing large-scale energy storage is still expensive. Innovation has

been playing a decisive role in reducing costs and expanding capacity.

Referring to a conversion of electrical energy from a power network to a storable

form for later use (Price, 2011), energy storage is relatively newly developed, compared

with generation technologies. Economists have been seeking to contribute to the

understanding of innovation and its links with environmental policies and outputs, such

as the key determinants of innovation in energy storage and which policies are

successful at promoting it. My dissertation focuses on the innovation in energy storage,

especially its role in the transition toward a carbon-neutral economy.

Using patent data from 1978 to 2019 across 1881 regions, Chapter 1 studies the

innovation trend in energy storage at the global level and estimates the main

determinants. Results show an overall positive trend in storage patents, indicating its
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importance in the electricity sector. In addition, the results highlight the role of energy

prices and past innovation in shaping innovation. Specifically, a one-unit increase in

electricity prices leads to a 15.54% reduction in the ratio of storage to electricity

generation patents. These results imply the need for a combination of energy policies

and innovation policies to boost innovation in energy storage.

In Chapter 2, I examine the impact of market-based environmental policies on

innovation in energy storage. My results highlight the role of environmental taxes,

feed-in tariffs for solar energy, and tradable certificates for CO2 emissions in promoting

firms’ patenting activity, whereas renewable energy certificates and energy efficiency

certificates discourage it. These results imply the need for more stringent market-based

environmental policies to incentivize innovation in energy storage.

Chapter 3 focuses on the role of energy storage in realizing energy transitions and

whether energy storage subsidies successfully accelerate such transitions. While many

point to energy storage as the solution to the intermittency problem of renewable

resources, the relationship between energy storage and nonrenewable resources receives

far less attention. By modifying the theoretical model of directed technical change, a

subsidy to energy storage is presented as a mechanism that benefits both clean and

dirty sectors and influences the optimal allocation. Finally, it might play a more

important role in energy transitions by easing the substitution between clean and dirty

inputs than encouraging innovation directly.
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Chapter 1

Innovation Trends in Electricity

Storage: What Drives Global

Innovation?

1.1 Introduction

Climate change concerns such as heat waves and rising sea levels present a great

macroeconomic challenge that requires a drastic reduction in carbon emissions to fully

mitigate. As the electricity sector is the single largest carbon emitter worldwide,1 energy

transitions to less-carbon intense technologies within the sector are crucial to realizing

climate change goals. The intermittency problem of renewable energy like wind and

solar, leading to high costs and low capacity, has been the main treadstone on the path.

Energy storage technologies are now referred to as the key in these transitions because

they can boost renewable energy use while also improving the efficiency of conventional

power plants. Unfortunately, existing technologies are expensive, and their expansion

is limited. To resolve these issues, innovation in electrical storage has received global

attention.

1In 2018, global electricity generated 41.7% of total carbon emissions. In the same year, 37% of
carbon emissions and 31% of total greenhouse gas emissions in the U.S. came from the electricity sector
(International Energy Agency, 2020).
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Energy storage technologies include a range of systems able to store electrical energy

for later use. The earliest form of energy storage is pumped hydropower, which

dominates global capacity but offers limited expansion opportunities. Newer systems

such as batteries are easier to scale. However, their high cost prohibits widespread

adoption. For example, a transition to 100-percent renewable energy requires storage

capacity costs to drop 90 percent, roughly $20 per KWh (Ziegler et al., 2019). In

addition, the International Energy Agency (2020) estimates that international climate

goals require 266 GW of storage capacity by 2030. As of 2017, global storage capacity

was 176.5 GW and only 2.9 GW were added in 2019. Innovation has played a decisive

role in making batteries cheaper and promoting the development of new storage systems

such as compressed air-energy storage and flywheels. In this paper we document these

innovation trends and study the drivers of innovation.

Our goal is to identify the key determinants of innovation in electrical storage. To do

so, we first build a novel patent dataset from 1978 to 2019 and describe innovation trends

in electricity storage. Then, we study the drivers of innovation by estimating a dynamic

regional log-log induced innovation model.

Our global dataset includes energy storage and electricity generation patents, which

are drawn from the Organisation for Economic Cooperation and Development (OECD)

patent database. Our dataset is unique because we identify technologies related to

electricity storage by creating a new list of storage International Patent Classification

(IPC) codes. Overall, our dataset includes 219,265 patent applications across 1,881

NUTS3/TL3 regions in 93 countries from 1978 to 2019. Out of these, there are 12,701

electricity storage patents. We also consider energy prices and macroeconomic variables

such as government R&D, electricity consumption, and GDP.

To study the main drivers of innovation, we estimate a log-log regression model

following Popp (2002). Our model combines information on both market demand and

technological opportunity including energy prices, past innovation, spillover effects,

electricity consumption, generation capacity, and R&D spending. We also use

citation-adjusted knowledge stocks to incorporate the rates of decay and diffusion of

2



existing patents. This innovation model is helpful for two reasons. First, it overcomes

the difficulty of specifying a structural model of poorly-understood R&D processes in

different regions. In addition, we can interpret the estimated coefficients as elasticities.

Thus, our results show the causal effect of different variables in the ratio of storage to

electricity generating patents.

Our analysis shows an overall positive trend in storage patents, indicating its growing

importance in the electricity sector. Most innovation is directed at improving batteries

which have been the main electrical energy storage vessel used in the last decades. Not

surprisingly, Japan, the U.S. and Germany lead innovations in the electricity sector.

Our empirical results highlight the importance of energy prices and past innovation

to determine innovation in storage. First, we find a positive energy price effect on the

share of storage to electricity patents. Prior literature finds a strong and positive impact

of energy prices on cost reducing and clean energy patents. This literature contributes

to the understanding of the relationship between environmental policy and innovation,

which focuses on either pollution abatement control expenditures (see e.g. Brunnermeier

and Cohen, 2003; Lanjouw and Mody, 1996; Johnstone et al., 2010) or energy prices (see

e.g. Newell et al., 1999; Popp, 2002). For example, Crabb and Johnson (2010), Knittel

(2011), Kim (2014), and Aghion et al. (2016) focus on the automobile industry, while

Verdolini and Galeotti (2011a), Noailly (2012), Ley et al. (2016), Girod et al. (2017), and

Costantini et al. (2017) study energy-efficient and environmentally friendly technologies.

These and other related papers use an average energy price index as the price instrument.

In addition, we find that a one-unit increase in electricity price leads to a 15.54% reduction

in the share of storage patents relative to electricity generation patents. This result is

consistent with the directed technological change model developed by Acemoglu et al.

(2012) and the empirical findings of Stevens and Tang (2021) who study how renewable

policies affect the number of patent applications in complementary technologies such as

combustion mitigation and storage technologies. Using country-level patent data from 25

OECD countries between 1992 and 2015, they estimate a negative binomial model and

find evidence of a negative electricity price effect on storage technologies. Their focus is

3



on the heterogenous impact of renewable policies such as feed-in-tariffs and certificates on

complementary technologies, whereas our focus is on the determinants of innovation in

electricity storage. These results suggest that we cannot rely on price policies to increase

the share of patenting in energy storage.

Second, we emphasize the importance of past innovation to promote current

inventive activity. In line with Popp (2002), who finds that the quality of existing

knowledge has a strong and significant positive effect on innovation, we find that one

more citation-adjusted past patent leads to almost 14.03% more innovation in the

storage to electricity ratio. In addition, we find a strong relationship between storage

technologies and past innovation in renewable and fossil-fuel technologies. These results

suggest that policies that improve the quality of research in storage technologies may be

important to boost further innovation in storage.

Our paper contributes to the understanding of induced innovation in the energy

sector.2 A large share of this literature has empirically examined the drivers of

energy-efficient and renewable innovation. For example, using U.S. energy patent data

from 1950 to 1994, Popp (2002) finds a strong and positive impact of energy prices on

innovation in the energy sector. He also finds that the quality of existing patent

applications shapes the direction of innovation. We follow Popp (2002)’s methodology

to study the determinants of innovation in electricity storage. Another key study is

Acemoglu et al. (2012) as they set up the framework to study induced innovation in the

energy sector by incorporating market sizes along with energy prices. In addition, they

theoretically establish that environmental policy is a strong determinant of innovation,

where carbon taxes and research subsidies encourage energy-efficient innovation.

Building on this framework, Aghion et al. (2016) provide empirical evidence for path

dependence of clean energy innovation and find that carbon taxes promote the

innovation using patent data in the automobile industry. Furthermore, Acemoglu et al.

(2016) study the structure and time path of optimal policies in the transition to clean

technology in the US energy sector using a quantitative model. While many have

2See Popp (2019) for an excellent review of the literature.
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focused on the invention of clean technologies and energy-efficient conventional

technologies in energy generation and transmission, energy storage has received far less

attention.

Hall and Bain (2008) refer to energy storage as “the key to unlocking the door of

renewable energy.” Fabrizio et al. (2017) examine the impact of demand- and

supply-pushed policies on energy storage innovation using international panel data. For

a given country, they find that only demand-pull policies promote domestic innovation

in energy storage. Building on the framework of Acemoglu et al. (2012) and using a

firm-level dataset of patents, Lazkano et al. (2017a) is one of the first to empirically

analyze the importance of electricity storage in the energy sector. While their focus is

on the role of electricity storage in fostering innovation in both conventional and

renewable electricity generation, our focus is on studying the determinants of innovation

in storage technologies.3

The paper is organized as follows. In the next section, we describe our patent dataset.

In section 1.3 we discuss innovation trends according to statistics. Section 1.4 introduces

our model and empirical strategy, and section 1.5 analyzes the estimation results. Finally,

section 1.6 concludes the paper.

1.2 Patent Data Selection

We use patent applications drawn from the OECD patent database to measure

research output and past innovation. One advantage of using patent data is that patent

citations offer a good proxy of innovation quality and can be used to measure

knowledge stocks because they confirm that the improvement over previous technologies

(Verdolini and Galeotti, 2011a). Patent applications contain detailed information

including application and grant year, the inventor country and NUTS3/TL3 region,4

3Our dataset is different than the one created by Lazkano et al. (2017a). They rely on the list of IPC
codes created by the Wold Intellectual Property Organization (WIPO) to identify storage patents. In
contrast, we create our own list of IPC codes building on Price (2011) in addition to the ones listed by
WIPO. This results in a more extensive dataset of electricity storage patents.

4We adopt “NUTS3/TL3 region” definition to conduct our regional analysis. The NUTS classification
(Nomenclature of territorial units for statistics) is a hierarchical system for dividing up the economic
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technology type, International Patent Classification (IPC) codes, their backward and

forward citations.5

To create our unique dataset, we rely on IPC codes that identify the type of

technological invention. Specifically, we select IPC codes related to energy storage.6

Price (2011) defines energy storage as the conversion of electrical energy from a power

network to a storable form for later use. Storage technologies capture electricity, store it

in a different form of energy (chemical, thermal, or mechanical), and then release it

when needed. Our focus is on storage technologies that benefit the electricity industry;

those widely used in the supply side of electricity market.7 We review the most common

methods of energy storage in Appendix A.1, which we lean on to build a list of storage

patents. Most of these patents are also electricity patents, however, this is not the case

for all storage patents. We provide the complete list of the selected IPC classes used to

extract patents in tables A.2.1 and A.2.2 in Appendix A.2. From this list, we identify

storage patent applications and group them into four different categories according to

their technology types: “General,” “Fuel cells,” “Hydro” and “Wipo.” All patents

related to batteries and fuel cells are in “General” and “Fuel cells”, respectively. The

group “Hydro” includes patents related to technologies storing electricity as

hydropower. Finally, patents of other storage technologies identified by the IPC green

inventory of the World Intellectual Property Organization (WIPO) are added into

group “Wipo.”

Overall, our dataset includes 219,265 patent applications across 1,881 regions in 93

territory of the EU and the UK for the purpose of socio-economic analyses of the regions”, where
NUTS 3 is small regions for specific diagnoses. See https://ec.europa.eu/eurostat/web/nuts/background.
Similarly, “TL3” is the OECD Territorial Database used to classify regions within OECD member
countries.

5Usually there are two types of citations. Backward citations are patent cited or referenced by the
current patent, while forward citations are patents citing or referencing the current patent.

6We allocate each patent to every technology type it relates to. When a patent has J IPC
classifications, we assign one patent to each one of these technologies. For example, consider a patent
with three IPC codes, two related to storage and one related to renewable energy. In this case, we assign
one patent to storage technologies and one patent to renewable technology.

7We identify storage technologies related to electricity supply, for example, short-term storage, fuel
cells and electrolyser, rather than technologies mainly adopted by the demand side, for example hydrogen.
The storage technologies used in the electricity sector are invented by firms affiliated with a variety of
industries. For example, top innovative companies include energy companies such as General Electric
Company, technology companies such as Siemens, companies from the automobile industry such as
Toyota, or material companies such as Mitsubishi Chemical Corporation.
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countries from 1978 to 2019.8 Out of these patents, there are 12,701 storage patent

applications.9 Among all types of technologies, some appear to be more cost- or

capacity-efficient. We analyze current trends in energy storage technology innovation

through patent data.

1.3 Trends and Summary Statistics

In this section, we present descriptive statistics with a focus on innovation trends in

electricity storage relating to invention country and technology type.10

1.3.1 Patenting trends over time

Figure 1.1 shows that from 1978 onwards, patenting in electricity storage technologies

has slowly and stably increased with a steady growth since the 90s. There is a significant

decline in 2011, which is followed by a sharp increase. The reason could be that the global

electricity sector has faced some major changes since 2000s, including the shale gas boom

and a global push to reducing fossil fuels. In addition, the intermittency challenge of

renewable energy has led innovation effort towards storage as it is key to unlocking the

door of renewable energy (Hall and Bain, 2008). The sharp decline in recent years can

be partially explained by the application-to-grant time lag of patenting publication, as

documented by Lanzi et al. (2011).11

Next, Figure 1.2 shows patenting in energy storage technologies and electricity

generation technologies as a percentage of the entire electricity sector. There is no

substantial change in storage patenting relative to patenting in generation technologies.

8We allocate each patent to the region of its inventor. When a patent has N inventors in multiple
regions, we assign 1/N patents to each region. For example, consider a patent with two inventors, one
located in U.S. region 1 and the other one in Japan region 1. In this case, we assign 0.5 patents to U.S.
region 1 and 0.5 patents to Japan region 1.

9We also identify renewable energy generation technologies and fossil-fuel energy generation
technologies according to Johnstone et al. (2010).

10As is common with patent data, our dataset presents truncation bias. To correct this truncation
bias, we calculate the application-grant empirical distribution and adjust our sample with calculated
weights following Hall et al. (2005).

11We show trends from 1978 to 2017 because the last-two-year data would be strongly biased by the
time lag of patenting publication
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Innovation activities in the three most innovative countries, Japan, the U.S., and

Germany show a trend most consistent with the global trend in Appendix A.3 Figure

A.3.3. These figures show more fluctuations than the total patenting trend in Figure

1.1. Overall, they present an increasing trend since the 1990s and suffered the decline in

2011. As the most innovative country, innovation in Japan has increased by leaps and

bounds from 1978 while innovation in the U.S. started to boom after 2011. In contrast,

innovation in Germany remained relatively stable until 2015 when the share of storage

patents decreased.12 The share of storage technologies in the U.S. and Germany follows

the same trend as the full sample, while in Japan, patenting in storage overtook

patenting in generation technologies in the late 1990s. Overall, these figures show a

positive trend in electricity storage patents, which suggests the increasing importance of

these technologies in the electricity sector. While the importance of storage continue to

increase, generation technologies continue to dominate innovation activities in the

sector.

Figure 1.1: Patenting trend in electricity storage technologies, 1978-2017.

12Starting in 2015, the number of storage and generation patents decrease in Germany. While the
number of electricity patents also decreased temporarily, by 2017 the number of applications return to
their 2015 level. The last few years of our sample suggest that patent applications in the electricity
sector moved away from generation and storage technologies.
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Figure 1.2: Percentage of patents in electricity storage over total electricity patents,
1978-2017.

1.3.2 Patenting by technology type

To understand the nature of patents in electricity storage, we turn our attention to

different technology types. Looking at individual IPC codes in Appendix A.3 Figure

A.3.1, we find that innovation in electricity storage mainly happens in IPC

“H02J007/00” related to technologies for battery efficiency.13 Most of top 10

technologies are related to either “General” or “Fuel cells.” This is consistent with

Figure 1.3a where we group patents according to the main four different technology

types. Batteries in group “General,” compromise most patents and more than twice as

many as those in “Fuel cells” group. Fuel cells have the efficiency advantage and can

operate for long periods without maintenance, so they attract high innovation effort to

reduce their costs. Perhaps motivated by high efficiency, low prices, and little location

limitations, batteries attract the most innovation effort. Besides, technologies in

batteries are well developed so that they may provide better opportunities for further

technological improvement. Therefore, general storage technologies have been the main

electrical energy storage vessel used in the last decades by analyzing patenting either by

single technology or by technology type.

Not surprisingly, different electricity storage technology types are experiencing

13H02J007/00 is technologies of circuit arrangements for charging or depolarising batteriesor for
supplying loads from batteries. See details in Table A.2.1 in Appendix A.2.
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(a)The number of patents (b)Trend in patenting

Figure 1.3: Patenting by technology type of of electricity storage technologies, 1978-2017.

different patenting trends. As shown in Figure 1.3b, battery technologies have been

leading innovation efforts and registered a blowout type growth of innovation in 1990s.

There is no significant change if we consider patents in each technology type as a

percentage of those in all electricity storage technologies, which indicates that

innovation effort continues to develop technologies, and we have a large prospect for the

development of new and improved technologies.

1.3.3 Patenting by inventor country

Next, we analyze patenting in different inventor countries. Most patent applications

come from a small number of countries, mainly Japan, the U.S., Germany and Korea,

with 5,671, 1,558, 1,110 and 1,105 storage patents, respectively. Figure 1.4 shows the total

number of patents in the top seven inventor countries. This is hardly surprising, given

that they are also the top inventors in the overall electricity sector. Lanzi et al. (2011)

shows that the U.S. leads innovation in efficiency-improving technologies, while our data

shows that Japan leads innovation in storage patents. France follows with 371 patents,

and it is then followed by Switzerland, the UK, Italy and Canada. All the other countries

have a significantly lower number of patent applications in electricity storage technologies

over the whole sample period. This is in line with our expectation given that most of

the R&D investment happens in the developed OECD countries and electricity storage
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technologies have high location requirements, high costs, or both. We also calculate the

Herfindahl-Hirschman Index (HHI) of storage patents to describe the concentration of

storage patents across countries and regions.14 Over time, there is a higher concentration

in the late 1970s and late 2010s, and a close to zero concentration from 1980s to 2010.

Note, however, that while concentration is higher during these times, the HHI index is

still close to zero. As expected, we find lowest concentration in the countries with most

storage patents (Japan, the U.S., Germany and Korea). Overall, we find a very low

country-level and regional-level concentration, which indicates that storage innovation is

located in areas with broad technological competencies.

Finally, we analyze the distribution of storage technology types in different countries,

shown in Appendix A.3 Figure A.3.2. There is a certain degree of country specialization.

For instance, both the U.S. and Finland have high counts of type “General,” while the U.S.

is also specialized in “Fuel cells” and Finland is more specialized in “Wipo.” Patenting

in Ireland, on the other hand, focuses more on “Hydro” compared to other countries.

Limitations on location might be a convincing explanation for some storage technologies

such as pumped storage hydropower. Potentially, innovation opportunities would also

lead to some specialization.

Figure 1.4: Patenting in electricity storage technologies in top 7 countries, 1978-2017.

14The mean concentration of storage patents at the country level is .0014 with standard deviation
.0201, whereas the mean concentration at the regional level is .0038 and standard deviation is .0252.
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1.4 Econometric Model and Methodology

Next, our goal is to study the determinants of innovation in electricity storage.

Building on endonenous growth theory and induced innovation hypothesis,15 we follow

the econometric model of Popp (2002), which combines information on both market

demand and technological opportunity. Using this model, we focus our estimation at

region-level for two reasons. First, there are incentives to innovate at the firm level

regionally (Asheim and Gertler, 2009; Isaksen and Trippl, 2017; Parrilli et al., 2020).

Second, there are regional policies and market influences that shape the incentives to

innovate in different locations. By focusing our attention to 1,881 NUTS3/TL3 regions,

we exploit the variation in our dataset.16

A structural model to address the research question is impractical in our study since

our sample covers 1,881 regions and their R&D process varies vastly.17 We estimate a

log-log regression of storage patent applications on energy prices, a lagged knowledge

stock, R&D investment, and the other determinants of innovation following Popp (2002),

where the estimated coefficients can be interpreted as elasticities. Equation 1.1 describes

our baseline model:

log

(
SPAT i,t

EPAT i,t

)
= ϕ i +γ(1− λ) logP ∗j,i,t +θ logK h,i,t−1 +η(1− λ) logZ ∗i,t +τ + ε i,t,

(1.1)

15A microeconomic hypothesis first proposed in 1932 by John Hicks, where a change in the relative
prices of the factors of production induces invention directed to economizing the use of expensive facotrs.

16The country-level and firm-level analyses are carried out in Appendix A.5 Table A.5.3 and Appendix
A.6 Table A.6.4-A.6.5. The country-level analysis in Table A.5.3 shows less variation and less significance
than our baseline estimates in Table 1.1. The variation in the data diminishes at the country level
because we have a small number of top innovative countries and a large number of countries with lower
innovation activity. For example, when we calculate the knowledge stocks at the country level, there is
little variation among most countries. Our firm-level analysis in Appendix A.6 Table A.6.4-A.6.5 presents
two alternative specifications based on a sub-sample of 690 firms with at least three storage patents. In
Table A.6.4 we estimate our baseline model at the firm level and the results are consistent with our
baseline estimates and an even stronger significance than in our regional analysis. Note, however, that
the number of observations is small because few firms have generation and electricity patents, which is
used to calculate the dependent variable. Table A.6.5 addresses this concern by considering the total
number of storage patents as the dependent variable. The number of observations is higher and the
results are consistent with our main results.

17Since the observations with zero patents cannot be used due to the log transformation of the data,
we also estimate an exponential feedback model in which the dependent variable is the number of storage
patents in region i and year t. The estimation results in Table A.7.6 Appendix A.7 confirm the importance
of technological opportunity as a determinant of innovation in energy storage.
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where,

P ∗j,i,t = P j,i,t +λP j,i,t−1 +λ 2 P j,i,t−2 +...+ λ t−1 P j,i,1, (1.2)

Z ∗h,i,t = Z h,i,t +λZ h,i,t−1 +λ 2 Z h,i,t−2 +...+ λ t−1 Z h,i,1 . (1.3)

SPATi,t represents the number of patent applications in electricity storage

technologies in region i and year t, while EPATi,t represents the number of patent

applications in the entire electricity sector (or in electricity generation) in the same

region and the same year. We use the
SPATi,t
EPATi,t

percentage as the dependent variable,

rather than the total number of storage patent applications to alleviate the impact of

exogenous changes on the patenting behavior for the whole sector. For example, a

change in patenting law, such as a federal law that reduces the application fee for small

inventors, will affect both storage and electricity patents.18 It also offers more

instructive information about the importance of energy storage in the industry. Another

feature of our analysis is that we incorporate the quality of patents using citation data

as an explanatory variable but not explained variable. We do so because storage

technologies are new compared to renewable and fossil fuels and it takes time to build

citations.19

Pj,i,t is the normalized real price of energy j in region i and year t. In our baseline

model, instead of including prices of different kinds of energy inputs such as oil, coal

and natural gas, we focus on the price of electricity because there is a high correlation

between the electricity price and input prices.20 In addition, we consider alternative price

variables in other specifications.21

18In our baseline specification we follow Popp (2002) and use the ratio that can alleviate policies and
changes that affect the entire industry since we cannot include regional fixed effects in the log-log model.
In our robustness analysis, Appendix A.6 Table A.6.5 and Appendix A.7 Table A.7.6, the dependent
variable is the number of patent applications.

19We also construct dependent variables using citation-weighted patents. Both raw storage patents
and citation-adjusted storage patents follow the same trend, and we confirm that our estimation results
are consistent with raw patent counts and citation-adjusted patent counts.

20We use electricity (MWh) industry total price drawn from International Energy Agency (2021).
21One might argue that intertemporal energy price variations or future energy prices also matter. We

stick to an annual average price level in the baseline model following two reasons: (a) Innovation is not
a short-term activity. Researchers, for instance, may not stop working on new storage technology when
they expect a low oil price in the following years. (b) We found no a commen way to predict future
energy prices. It is outside of the scope of our work to focus on how to make equitable predictions on
future energy prices.
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The variable Kh,i,t−1 represents the lagged stock of knowledge in technology h

(storage, renewable or fossil fuels), which represents the available knowledge that

researchers can build upon in region i and year t. We consider two options: a simple

summation of patent applications and the summation of citation-adjusted patent

applications. As shown by Popp (2002), citations to earlier patents are contained when

a new patent is granted, therefore citation-adjusted knowledge stocks incorporate the

diffusion of each newly patented innovation, as well as its decay as a patent becomes

obsolete. Following Popp (2002), we first estimate the rates of decay and diffusion of

knowledge using an exponential model. Then we construct the knowledge stock variable

for each region with the estimated rates of decay and diffusion.22 In addition to the

internal knowledge stocks, we consider the role of technology spillover effects, Sh,i,t−1,

which are calculated by adding past patents by other regions in a country in technology

h at time t. In our robustness analysis, we explore alternative definitions of spillover

regions.23 We also calculate the spillover measure of Jaffe (1986) that accounts for

technology relatedness in a region. For each pair of regions in a country and year, we

calculate weights based on their patent shares in storage, renewable and fossil-fuel

technologies, which are then used to construct a regional spillover measure.24

Z is a vector of independent variables and τ is a time trend. We include total

government R&D spending in the baseline model. Since funding decisions can related to

energy prices, we use a one-year lag as an instrument. Besides, we consider different

proxies for electricity demand and other controls, such as GDP and different R&D

spending in electricity generation, in alternative specifications.

Expected future prices and other expected future independent variables are following

22We follow Popp (2002) in using citations to estimate knowledge stocks instead of the perpetual
inventory method that estimates R&D-based knowledge stocks. Since we measure innovation output
with patent applications (instead of R&D spending), patent-based knowledge stocks are consistent with
the dependent variable. In addition, we have patent data at the inventor level, which allows us to
estimate the decay and diffusion of knowledge at the regional level. See Appendix A.4 for further details
about the construction of our knowledge stocks.

23We consider two alternatives that expand the geographical region to a larger region based on the
World Bank’s income classification. The geographical regions are either six GEO regions or twenty GEO
subregions, which are listed in Appendix A.10 Table A.10.8.

24On average, each region has none-zero technology relatedness with 87% of other regions in the same
country (see Figure A.10.4). Therefore, each region receives a large percentage of the innovation effort
made by a peer region.
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an adaptive expectations model which depend on all past values, where λ is the weight

on previous observations and tells how quick the reaction is to exogenous shocks. Finally,

by combining equations 1.1, 1.2 and 1.3 we obtain the following dynamic AR(1) model:

log

(
SPAT i,t

EPAT i,t

)
= λ log

(
SPAT i,t−1

EPAT i,t−1

)
+ (1− λ)ϕ i +γ(1− λ) logP j,i,t

+ θ logK h,i,t−1−λθ logK h,i,t−2 +η(1− λ) logZ i,t

+ τ t +ε i,t−λε i,t−1 . (1.4)

We pool all regions to get single estimates for each parameter and to obtain a concise

presentation of results. To estimate the underlying short dynamic panel model, we use

System Generalized Method of Moments (system GMM) and limit the maximum 5 lags

of the dependent variable as instrumental variables for the first-order difference to avoid

weak IV problems.25 Applying this model, it is possible to cover the whole series of

past independent variables in adaptive expectations and to find the adjustment weight

λ.26 Finally, by estimating this model, we can find the causal effect of electricity price,

knowledge stock, and other variables to patents of electricity storage as a percentage of

total electricity patents.

1.5 Results and Discussion

In this section, we present our main results of the baseline model followed by

alternative specifications to validate our results. To study what drives innovation in

25System GMM can be applied as long as there is no autocorrelation in first-difference errors and
|∆y i,t−1,∆y i,t−2, ...| are not correlated with individual fixed effects. For our model, we have tested
the zero autocorrelation in first-difference errors and the overidentifying restrictions are also valid. We
assume that the second condition is also satisfied since we pool countries in our sample and most of them
do not yet reach the steady state. Popp (2002) finds a median lag of 4.86 years. and a mean lag of 3.71
years according to their estimated λ. Therefore we limit a lag of 5 here since little correlation between
innovations and potential drivers tends to exist when the time distance is long.

26In addition to the system GMM estimation, we also conduct a simpler pooled OLS estimation with
region and year dummies as a robustness check in Appendix A.8 Table A.8. These results confirm our
main results, this is, that the price effect and past innovation are important determinants of innovation
activity in storage technologies.
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electricity storage, our baseline model includes energy prices, past innovation and total

government R&D spending. The alternative specifications that follow use different

energy prices such as coal and natural gas, different variables related to the demand of

electricity, spillovers and a series of sub-samples. Since we take logs for all variables, the

estimated parameters can be directly interpreted as short-run elasticities. Standard

errors for each coefficient are included in parentheses.

We present the baseline estimates using data from all regions in Table 1.1. All

specifications include electricity price, the lagged knowledge stock of storage, total

government R&D spending and a time trend. We also consider two dependent variables:

in columns (1)-(2) and (5)-(6) the dependent variable is the share of storage patents in

electricity generation patents, whereas columns (3)-(4) and (7)-(8) use storage as a

percentage of all electricity related patents. In addition, columns (1)-(4) include only

the lagged stock of knowledge of electricity storage while columns (5)-(8) also include

the knowledge stocks of renewable and conventional electricity generation

technologies.27 Finally, we calculate knowledge stocks from past patents in two different

ways: a simple accumulation, and a citation-adjusted accumulation.

We highlight two main results from our estimations in tables 1.1-1.3. First, an increase

in the electricity price leads to a reduction in the share of storage patents. Then we find

evidence on the importance of past innovations to promote storage patent applications.

In the following subsections we describe these results in detail.

1.5.1 Innovation and energy prices

Our results show that an increase in the price of electricity leads to a reduction in

the share of storage patents. This result is robust to the use of different knowledge

stocks and dependent variables, however, it is only statistically significant when we

consider the share of storage patents over electricity generation patents with

citation-adjusted knowledge stocks (Table 1.1 columns 2 and 6, and Table 1.3 column

27The construction of lagged knowledge stocks for renewable and fossil-fuel technologies is consistent
with that of storage knowledge stocks. For example, all three stock variables in column (5) are simple
accumulated while those in column (6) are all citation-adjusted.
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2). This result is consistent with the directed technological change model developed by

Acemoglu et al. (2012) who incorporate the market size and prices as determinants of

technical change.28 One explanation could be that increasing electricity prices lead to

opposing forces. On the one hand, intermittent renewable energy becomes more

attractive, which encourages innovation in storage. On the other hand, as conventional

electricity generation becomes more expensive, more innovation effort goes towards

lowering the cost of generation, including efficiency-improving conventional technologies

and highly dispatchable generation, which discourages innovation in storage. Therefore,

as electricity prices increase, there is a disproportionate investment in conventional

technologies and thus the share of storage patents hinders. Based on our evidence

alone, we are unable to identify these mechanisms. Thus, we do not imply that

electricity prices hinder innovation in electricity storage but that the share of innovation

in storage decreases. Instead, we conclude that we cannot rely on price policies to

increase the share of innovation in electricity storage.

In our baseline model, we use the price of electricity to proxy price information,

which may create a potential endogeneity problem. For example, policymakers and

inventors may take energy prices into account in their decision making, which would

lead to a correlation between energy prices and other independent variables. To address

this potential endogeneity issue, we consider three alternative energy prices in Table 1.2:

energy price index, coal price, and natural gas price. We create the fixed-weight energy

price index following Linn (2008), where we include production inputs such as coal and

natural gas as instrumental variables.29 Our estimation results with the price index in

Table 1.2 panel A show an insignificant but positive price elasticity effect for both

specifications (storage-generation and storage-electricity ratios). In addition, we find a

positive price effect at 15% significance level when accounting for citation-adjusted

knowledge stocks (Table 1.2 panel A, column 4). Prior literature finds that higher

28This result is also consistent with the empirical findings of Stevens and Tang (2021) who find a
negative electricity price effect on complementary technologies such as storage. Lazkano and Pham
(2021) also finds a changing relationship between different energy prices and innovation in conventional
technologies.

29See the construction of the fixed-weight input price index in Appendix A.9.
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energy prices foster innovation towards renewable and efficiency-improving technologies

(e.g. Newell et al., 1999; Popp, 2002; Verdolini and Galeotti, 2011a; Noailly, 2012; Ley

et al., 2016). In our case, a higher energy price index leads to an increase in the storage

to electricity patent ratio. Since electricity patents include technologies of different

cleanliness levels, our results do not necessarily imply an increase in environmentally

friendly innovations in response to higher energy prices. In contrast, results from panel

B and panel C show that an increase in either coal or natural gas price lower innovation

in the share of electricity storage. Given that electricity, coal and natural gas prices are

highly tied to the price of conventional electricity generation, a price increase leads to a

reduction of the share of innovation going to storage.30

The price effect we study in this paper may stimulate supply or demand for storage

and electricity technologies, unfortunately, we are unable to distinguish between these

two channels. Fabrizio et al. (2017) show the importance of considering supply-push

and demand-pull policies to understand domestic innovation and transfer of storage

technologies. Using international patent data, they evaluate the impact of

innovation-supporting policies focused in either the supply of storage technologies or the

demand for products based on storage technologies. They found that after

implementing demand-pull policies, but not supply-push policies, the transfer of storage

technologies increased.

To conclude our price effect analysis, we explore the heterogeneous impact of energy

prices in regions with higher shares of renewable and fossil-fuel energy. In Table

A.12.14, we include the interaction between electricity price with the share of electricity

from renewable and fossil-fuel energy. We find a positive and significant interaction

between the electricity price and the share of fossil-fuel energy in the storage to

generation ratio, whereas a statistically insignificant interaction between the price and

the share of renewable energy. These results suggest that regions with higher fossil-fuel

30As technologies become more expensive to develop, policy stringency has to increase
disproportionately to have a further effect. As shown by Popp (2002), there are diminishing returns
to research which suggests that more R&D spending is needed for new innovation. We test the linear
and monotonic price effect assumption in our model by including a squared price term into our baseline
specification. Our results in Appendix A.12 Table A.12.13 show no evidence of statistical significance of
the squared price term.
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energy react more strongly to an increase in electricity price than regions with higher

renewable energy.31 This is in line with Aghion et al. (2016) who find a heterogenous

response to the fuel price effect based on a firm’s past innovation in the automobile

industry.

1.5.2 Innovation and knowledge stocks

Our second result emphasizes the importance of past innovation in current patent

applications. From our baseline estimates in Table 1.1, the sign of estimates differ for

simple and citation-adjusted knowledge stocks. In Table 1.1, simple accumulated

knowledge stocks in columns (1), (3), (5) and (7) show a strong negative influence.

However, when using citation-adjusted knowledge stocks in columns (2), (4), (6) and

(8), their signs change to positive. This suggests that the rate of knowledge decay and

diffusion, i.e. the usefulness of knowledge, plays an important role in shaping the

direction of innovation. In addition, λs in specifications with citation-adjusted

knowledge stocks, for example 0.2752 in column (4) and 0.2919 in column (8), are much

lower than those estimated with simple knowledge stocks, 0.4897 in column (3) and

1.7100 in column (7). Since λ represents the weight placed on past observations in

adaptive expectations, a smaller λ means a shorter lag structure. Thus, using simple

accumulated knowledge stocks might overestimate the lag structure of exogenous

shocks. Popp (2002) estimates a much higher λ = 0.829 in the weighted regression.

This means that our estimates suggest a relatively quick reaction to price change of

patenting in electricity storage within the energy sector.

In contrast to Popp (2002), we do not find a significant positive sign of the lagged

31From our model, we cannot identify the mechanisms that link the impact of electricity prices in
renewable technologies, and their link to storage patents. Recent empirical studies identify some of these
complex relationships. For example, using firm-level patent data from European countries, Noailly and
Smeets (2015) find that increases in fossil-fuel prices and fossil-fuel past innovation led to an increase
in the conventional-renewable technology gap through the innovation rate of mixed firms. From their
results, they conclude that helping small firms should be the focus of policies, such as taxes that increase
the electricity price, aimed at increasing renewable innovation. Lazkano et al. (2017a) also uses firm-level
patent data to study the technology gap between conventional and renewable technologies. They find
that if the average firm had an additional storage patent two years ago, their probability to apply for
a renewable patent or an efficiency-improving conventional patent increases. A structural model that
identifies the mechanisms that link electricity storage to different electricity generation technologies and
their prices would shed more light on these complex links.
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knowledge stock in all specifications. Our baseline estimates show a statistically

significant and positive effect only of citation-adjusted storage knowledge stock on the

share of storage innovation, and the significance stands out after controlling for past

innovation in generation technologies. In this case, we find a significantly positive

elasticity, 14.03% as shown in column (8). One possible reason is that we use the

number of storage patents as a percentage over either generation patents or electricity

patents as the dependent variable, different sensitivities and the interaction of patenting

activities in electricity storage and generation would lead to the ambiguity of signs.

Note also that electricity storage benefits both conventional and renewable technologies,

which may not move in the same direction. Thus, our empirical results may capture

these effects.

Knowledge spillovers of research from other regions can play an important role on a

region’s success (e.g. Grossman and Helpman, 1991; Jaffe, 1986; Jaffe et al., 1993;

Audretsch and Feldman, 2004a). To account for this, we calculate two different

measures of spillover effects: innovation by all the other regions in a given country and

the regional-level spillover measure of Jaffe (1986).32 We present our empirical results in

Appendix A.10 tables A.10.9-A.10.10. These results show the importance of spillover

effects in electricity storage within a country. Specifically, we find that past storage

innovation within a country has a statistically positive impact on the share of

electricity-related innovation dedicated to storage. Our results in Table A.10.10 confirm

the importance of regional spillover effects in the development of storage technologies.

32We also consider other definitions of geographic spillover localization: GEO subregional (past
innovation in the geographic subregion minus own NUTS3/TL3 region) and GEO regional (past
innovation in the geographic subregion minus own NUTS3/TL3 region). We do not find strong empirical
evidence of cross-boarder spillovers with these two definitions.
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Table 1.1: Baseline estimates using data from 1978 to 2019 for all regions.

Dependent variable:

Storage Patents/Generation Patents Storage Patents/Electricity Patents Storage Patents/Generation Patents Storage Patents/Electricity Patents

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

Constant -0.6980∗∗∗ -0.6791∗∗∗ -0.7632∗∗ -0.6202∗∗ -0.8257∗∗∗ -0.715∗∗∗ -0.6842† -0.8098∗∗∗

(0.2314) (0.1835) (0.3069) (0.2636) (0.2381) (0.1854) (0.4458) (0.2094)
Electricity
price

-0.0785 -0.1467∗∗ -0.1015 -0.0121 -0.0643 -0.1554∗∗ 0.0204 -0.0546

(0.0830) (0.0691) (0.1072) (0.0963) (0.0869) (0.0683) (0.1306) (0.0832)
KS

t−1 -0.1676∗∗∗ 0.0241 -0.4500∗∗∗ 0.0620∗ -0.2024∗∗∗ 0.0496† -1.6940∗∗∗ 0.1403∗∗∗

(0.0275) (0.0234) (0.0458) (0.0323) (0.0426) (0.0303) (0.5780) (0.0380)
KR

t−1 -0.0188 -0.0028 0.5056∗∗ -0.0697∗

(0.0429) (0.0223) (0.2113) (0.0377)
KFF

t−1 0.0713 -0.0601∗∗ 0.8969∗∗ -0.1592∗∗∗

(0.0593) (0.0296) (0.3855) (0.0457)
Total R&D 0.0872∗∗∗ 0.0454∗ 0.0579 -0.0663∗ 0.0925∗∗∗ 0.0575∗∗ 0.0267 -0.0158

(0.0304) (0.0236) (0.0415) (0.0373) (0.0326) (0.0235) (0.0542) (0.0301)
Time Trend 0.0131∗∗∗ 0.0074∗ 0.0166∗∗∗ 0.0048 0.0134∗∗∗ 0.0080∗∗ 0.0133∗ 0.0076∗

(0.0046) (0.0038) (0.0064) (0.0052) (0.0043) (0.0038) (0.0074) (0.0043)
λ 0.1848∗∗∗ 0.1118∗∗∗ 0.4897∗∗∗ 0.2752∗∗∗ 0.1960∗∗∗ 0.1137∗∗∗ 1.7100∗∗∗ 0.2919∗∗∗

(0.0503) (0.0392) (0.0559) (0.0406) (0.0576) (0.0407) (0.6300) (0.0371)
N 2215 2628 2483 2974 2005 2612 2263 2958
chi2 55 19 118 76 56 23 69 131

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: Total R&D stands for total government R&D spending, which is lagged to instrument for R&D spending. Numbers in parentheses are standard errors.
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Table 1.2: Estimates with alternative energy prices.

Dependent variable:
Storage Patents/Generation Patents Storage Patents/Electricity Patents

simple stock citation-adjusted stock simple stock citation-adjusted stock
Panel A: with energy price index
Constant -0.7423∗ -0.8484∗∗ -0.9304† -1.3490∗∗

(0.3826) (0.3974) (0.5863) (0.6456)
Energy price index 0.0406 0.0413 0.0525 0.0798†

(0.0323) (0.0325) (0.0477) (0.0508)
KS

t−1 -0.0308∗∗∗ 0.02997 -0.0987∗∗∗ 0.0166
(0.0093) (0.0248) (0.0117) (0.0305)

Total R&D 0.0084 -0.0082 -0.0564 -0.1421∗∗∗

(0.0321) (0.0309) (0.0456) (0.0498)
Time trend 0.0059∗ 0.0037 0.0073† 0.0043

(0.0034) (0.0034) (0.0050) (0.0055)
λ 0.1425∗∗∗ 0.1238∗∗∗ 0.2585∗∗∗ 0.2105∗∗∗

(0.0414) (0.0404) (0.0424) (0.0433)
N 2219 2625 2506 3002
chi2 26 15 111 44
Panel B: with coal price
Constant -0.3490∗ -0.4256∗∗ -0.4093† -0.5307∗

(0.1949) (0.1844) (0.2707) (0.3103)
Coal price -0.0988† -0.1201∗∗ -0.0534 -0.0678

(0.0601) (0.0551) (0.0792) (0.0743)
KS

t−1 -0.0304∗∗∗ 0.0345 -0.0992∗∗∗ 0.0190
(0.0087) (0.0250) (0.0115) (0.0308)

Total R&D 0.0369† 0.0181 -0.0190 -0.0876∗∗

(0.0252) (0.0242) (0.0386) (0.0440)
Time trend 0.0068∗∗ 0.0037 0.0083∗ 0.0050

(0.0031) (0.0034) (0.0047) (0.0055)
λ 0.1433∗∗∗ 0.1267∗∗∗ 0.2616∗∗∗ 0.2191∗∗∗

(0.0391) (0.0400) (0.0416) (0.0442)
N 2219 2625 2506 3002
chi2 30 20 111 44
Panel C: with natural gas price
Constant -0.3685∗ -0.4585∗∗ -0.4031† -0.5256∗

(0.1956) (0.192) (0.2739) (0.3133)
Natural gas price -0.0507 -0.0536 -0.0158 -0.0193

(0.0443) (0.0435) (0.0557) (0.0592)
KS

t−1 -0.0308∗∗∗ 0.0298 -0.0993∗∗∗ 0.0171
(0.0089) (0.0258) (0.0116) (0.0307)

Total R&D 0.0370† 0.0191 -0.0202 -0.0895∗∗

(0.0252) (0.0251) (0.0388) (0.0440)
Time trend 0.0083∗∗∗ 0.0060∗ 0.0087∗ 0.0057

(0.0031) (0.0035) (0.0049) (0.0053)
λ 0.1443∗∗∗ 0.1262∗∗∗ 0.2616∗∗∗ 0.2171∗∗∗

(0.0419) (0.0400) (0.0413) (0.0438)
N 2219 2625 2506 3002
chi2 31 16 108 44

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

Note: Total R&D stands for total government R&D spending, which is lagged to instrument for R&D

spending. Numbers in parentheses are standard errors.
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1.5.3 Robustness tests

One of the main advantages of storage is that it allows the seller to time the sale of

the energy to match consumers’ needs. Thus, the variation in demand over time might

be another key predictor of storage patents. We consider different proxies from both

production (i.e. generation and capacity) and consumption to capture that.

First, columns (5)-(8) Table 1.1 include lagged knowledge stock of renewable

generation technologies and fossil-fuel generation technologies. In previous work,

Lazkano et al. (2017a) has shown that the total number of electricity storage patents

increases with past innovation in renewable and efficiency-improving conventional

technologies. In contrast, when we study patenting in storage as a percentage of all

electricity patents, we find that citation-adjusted knowledge stocks of renewable and

fossil-fuel generation technologies reduce the share of storage patents (see Table 1.1

column (8)). This does not necessarily imply that our results contradict prior work.

Note that using the number of storage patents as a percentage over either generation

patents or electricity patents as the dependent variable could be a possible reason, since

past innovation renewable and conventional technologies might encourage generation

technologies more.

Next, we include the market share of electricity generated from renewable and fossil

fuels sources in Table 1.3. There is a significantly positive effect of the market share

of renewable energy for the ratio of storage to electricity sector, while the effect of the

fossil-fuel market share is positive but insignificant. This result implies that policies

directed at increasing the share of electricity generation from renewable resources have

the potential to promote the development of storage technologies.

We then incorporate generation, capacity and consumption at the macroeconomic

level. Table A.11.11 in Appendix A.11 includes the quantity of electricity generation,

capacity and consumption in different panels. All three variables show significant and

positive influence on the share of storage over generation. While other baseline estimates

are consistent with the estimations that include these three variables, it also suggests the

existing base of knowledge as a more important channel.
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Table 1.3: Estimates with market shares of renewable-energy and fossil-fuel electricity
generation.

Dependent variable:
Storage Patents/Generation Patents Storage Patents/Electricity Patents

simple stock citation-adjusted stock simple stock citation-adjusted stock
Constant -0.4439∗ -0.6013∗∗ -0.4302 -0.7221∗∗

(0.2360) (0.2349) (0.3367) (0.3637)
Electricity price -0.1224∗ -0.1581∗∗ -0.1055 -0.0982

(0.0657) (0.0673) (0.0961) (0.1018)
KS

t−1 -0.0339∗∗∗ 0.0267 -0.0973∗∗∗ 0.0162
(0.0089) (0.0246) (0.0125) (0.0304)

Elect from ren -0.0056 -0.0030 0.0136† 0.0169∗∗

(0.0051) (0.0050) (0.0086) (0.0083)
Elect from ff 0.0019 0.0020 0.0012 0.0038

(0.0022) (0.0021) (0.0026) (0.0031)
Total R&D 0.0297 0.0150 -0.0250 -0.0884∗∗

(0.0265) (0.0250) (0.0402) (0.0435)
Time trend 0.0120∗∗∗ 0.0097∗∗ 0.0034 -0.0002

(0.0039) (0.0040) (0.0063) (0.0059)
λ 0.1484∗∗∗ 0.1291∗∗∗ 0.2504∗∗∗ 0.2058∗∗∗

(0.0372) (0.0393) (0.0462) (0.0463)
N 2168 2573 2449 2942
chi2 34 22 117 54

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

Note: Total R&D stands for total government R&D spending, which is lagged to instrument for R&D

spending. Numbers in parentheses are standard errors.

Finally, we analyze the impact of R&D spending in renewable and fossil fuels, as well as

macroeconomic variables GDP and GDP per capita in Appendix A.11 Table A.11.12. In

panel A we find that R&D in renewable technologies has a significantly positive effect. It

confirms that innovation in storage would also benefit from innovation toward improving

renewable technologies, and the links between them. We then take GDP for the size of

each economy and GDP per capita for its productivity level as macroeconomic controls.

These results are in line with our baseline findings. Our results suggest that, in contrast

to energy prices and knowledge stocks, macroeconomic variables such as GDP and GDP

per capita may not be the first-hand determinant of innovation in electricity storage

directly.

The shares of patents in electricity storage in Figure 1.2 present an

opposite-direction development before and after 1990. We split the data into an

early-period (from 1978 to 1990) sub-sample and a later-period (from 1990 to 2019)

sub-sample to check the asymmetry of the estimation results. Table A.12.15 in
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Appendix A.12 presents the baseline specification results with these two subsamples.

The estimation results during 1978-1989 show little significance when innovation in

energy storage received little attention. During these years, past innovation in energy

storage plays the main role in boosting innovation in storage technologies. The

later-period results based on 1990-2019 data are in line with our baseline estimation

results in Table 1.1, which present evidence for the negative price effect and the

importance of quality-adjusted knowledge stocks. This is expected as innovation in

storage technologies draw more attention during this time period.

As the distribution of patent applications in Section 1.3 shows, most patent

applications in energy storage come from a small number of countries. To ensure the

overall results are not influenced by one country, we estimate our baseline specifications

with two sub-samples: (1) regions in all countries but the U.S.; (2) regions in the three

most innovative countries (Japan, the U.S. and Germany). Tables A.12.16-A.12.17 in

Appendix A.12 present these results. Our main results in Table 1.1 are robust to the

exclusion of the U.S.. When we focus on the three most innovative countries, we find

that past innovation has a stronger importance to determine storage innovation.

Remember that in our baseline estimations, past innovation in renewable and fossil fuels

lead to less innovation in storage whereas more storage innovation leads to a higher

share of storage innovation (Table 1.1 column 8). Our firm-level analysis of the most

innovative firms in Table A.6.5 also confirms a positive and significant effect of past

innovation in storage. In the most innovative countries, however, we find that past

innovation hinders the share of storage to electricity innovation (Table A.12.17 column

8). Recall the evolution of storage to electricity ratio in Figure A.3.3, where all

countries show an increasing trend starting in 2000. The ratio decreases in Germany

starting in 2015, due to a reduction in storage patents and an increase in electricity

patents, whereas in Japan this ratio decreases in the last few years. The negative past

innovation effect in the most innovative countries could be driven by the decrease in the

storage-electricity ratio in Germany.

Overall, these estimations show that our main results are robust to a number of
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different model specifications and assumptions.

1.6 Conclusion and Policy Implications

Energy storage has received much attention to achieve clean energy transitions.

Innovation in energy storage has dramatically increased in the last three decades. Using

patent data from 1978 to 2019 across 1,881 regions, we document the evolution of

innovation in storage focusing on different technology types. Innovation in battery

technologies still dominates innovation efforts, though fuel cells are attractive because of

high efficiency and durability. In addition, technologies such as flywheels with a higher

storage capacity continue to draw attention to transition towards a less-carbon intense

grid. Overall, innovation offers many technological possibilities for large-scale, and

hopefully, cheaper energy storage.

Our empirical analysis draws attention to energy prices and past innovation to foster

global innovation in energy storage. We find that an increase in the average energy price

leads to more storage patenting, whereas an increase in the price of electricity leads to a

reduction in the share of storage patents relative to all electricity patenting. We also find

that this electricity price effect varies with the regional share of renewable and fossil fuel

energy. There is a negative (but insignificant) price effect in regions with a high share

of renewable energy, while regions with a high share of fossil-fuel energy present a strong

positive effect. These results suggest that we cannot rely on price policies to increase

the share of patenting in energy storage. Finally, we also find strong evidence of the

importance of past innovation. Specifically, we find that the quality of past innovation is

important to promote the share of storage innovation. This suggests that policies aimed

at improving the quality of R&D in storage can be an important tool to boost the share

of storage innovation.
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Chapter 2

Do Market-based Environmental

Policies Encourage Innovation in

Energy Storage?

2.1 Introduction

Energy transitions to less-carbon intense technologies are crucial to realizing climate

change goals. Since the electricity sector is one of the largest carbon emitters, most

environmental plans involve electrifying heavily polluting industries with clean electricity

generation (IEA, 2021a). For example, one solution to the energy crisis in the European

Union is to maximize generation from existing low-emission sources, and to deploy new

wind and solar projects (IEA, 2022a). The penetration of renewables in the energy sector

is fast growing with the help of innovation and policy interventions. Unfortunately, the

intermittency problem of renewables, where renewable energy cannot always consistently

produce energy at all hours of the day, continues to be a limiting determinant to their

expansion. Therefore, technologies in electrical storage have received global attention as

they can help reduce the intermittency problem to boost renewable energy use.

Governments have introduced various market-based policies in an effort to promote
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renewables and accelerate energy transitions.1 The number of countries adopting direct

policy support has tripled from 48 in 2004 to at least 147 by 2017 (IRENA, IEA and

REN21, 2018). Well-designed policies lead to increased deployment and cost reduction.

For example, the trading scheme in Italy helped to install 6700 MW of wind capacity by

the end of 2011 (IRENA, IEA and REN21, 2018). With efficient feed-in tariffs (FITs),

the global average price of wind energy in 2016 was USD 40/MWh, down from USD

80/MWh in 2010 (IRENA, IEA and REN21, 2018). However, climate objectives still

require a scale-up deployment of renewables. The share of renewables in global electricity

generation reached almost 29% in 2020, but to meet the Net Zero Emissions by 2050

Scenario, it needs to reach more than 60% by 2030 (IEA, 2022b). As energy storage

is playing a decisive role in resolving the intermittency problem, policy support that

encourages innovation in energy storage is crucial to realize energy transitions.

My goal is to examine the effects of the stringency of market-based environmental

policies on innovation in energy storage. To do so, I first build a global firm-level patent

dataset from 1978 to 2019, and then I combine it with the Environmental Policy

Stringency (EPS) index generated by the Organisation for Economic Cooperation and

Development (OECD). The EPS dataset covers twenty-eight OECD and BRICS

(Brazil, Russia, India, China, South Africa) countries from 1990 to 2015. Since policy

data is unavailable until 1990 and after 2015, I use patent data from 1978 to 1989 as the

pre-sample period to determine pre-sample patenting behavior, and patent data from

1990 to 2015 as the sample period. I adopt a negative binomial model to test the impact

of market-based environmental policies on patent applications in storage technologies.

My patent pool consists of patent applications of electrical storage technologies drawn

from the OECD patent database in the ten most innovative countries which account for

about 90% of all storage innovation at the global level.2 I identify battery and fuel cell

1There has been a debate between price and quantity with regarding to optimal environmental policy
instruments. A large share of literature has discussed this topic (see e.g. Weitzman, 1974; Kete, 1994;
Pizer, 1997; Pizer and Prest, 2020). This work focuses on market-based instruments, i.e. price-based
instruments, and their effects on storage innovation as they do not prescribe that firms use specific
technologies and allow firms greater flexibility in research choice.

2As shown in Section 2.2.1 and Figure 2.1a, the top ten countries in storage innovation are: Japan, the
United States, Korea, Germany, France, Switzerland, Canada, Italy, the United Kingdom, and China.
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technologies based on International Patent Classification (IPC) codes as they have little

location limitations and attract high innovation effort in the last several decades. Overall,

my dataset includes 9,970 storage patent applications from 2,194 unique firms. These

firms present different specialty levels; only 7.54% of them are specialized in developing

storage technologies while more than 90% are mixed firms also innovating in renewable

or fossil-fuel generation technologies, or both. In addition to patents, I measure the

stringency of market-based environmental policies using the EPS dataset. This dataset

distinguishes between three types of market-based environmental policies: environmental

taxes, FITs and trading schemes; and scores policy instruments on a scale of 0 (not

existing) to 6 (most stringent) based on the comparison against the distribution of values

for the same type of instrument. This allows me to use continuous measures of the

stringency and compare them across countries and over time.

As the dependent variable is a count of patents, I estimate a negative binomial model

to examine the relative effectiveness of policies for innovation in energy storage. This

model helps overcome the overdispersion problem of my data. In addition to policy

measures, the model combines information on both market demand and technological

opportunity including energy prices, past innovation and spillover effects (see e.g. Popp,

2002; Acemoglu, 2002; Acemoglu et al., 2012; Feng and Lazkano, 2022). Following Aghion

et al. (2016), I use the pre-sample behavior as a firm fixed effect to address the problem

that knowledge stocks may not be strictly exogenous. Finally, I transform the estimated

coefficients to report them as percentage changes. Thus, my results show the relative

effect of different policy measures on a firm’s patenting activity.

The empirical results highlight three interesting findings. First, a firm is expected to

apply for 60.9% more storage patents when the composite market EPS within the

country increases by one unit. While the overall effect is positive, I find that some

policies encourage innovation in storage whereas others discourage it. Specifically,

environmental taxes, FITs for solar power and tradable CO2 certificates strongly

promote firms’ patenting activity in energy storage. I find that a more stringent

environmental tax policy strongly fosters a firm’s patenting activity in storage by
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119.7%. This contributes to the understanding of the relationship between

environmental taxes and storage innovation. Barradale (2010) shows that investors have

better belief in the future of policies without the direct link to public finance.

Johnstone et al. (2009) prove this potential concern with tax policies using a tax

dummy and find no effect of tax measures on renewable innovation. My results

complement theirs because I use a continuous tax proxy. One possible reason is that a

more stringent tax policy may affect investors’ anticipation more than the existing of a

tax policy. In addition to environmental taxes, FITs for solar energy and tradable

certificates for CO2 emissions also present a significant positive effect. A firm’s

patenting in energy storage is expected to increase by 14.5% with a one-unit higher

stringency of FITs for solar and by 18.2% with that of tradeble certificates for CO2

emissions. This is consistent with the induced innovation theory and the directed

technical change model as they would increase the overall costs of conventional

technologies and improve a transition towards renewable energy (Acemoglu, 2002;

Acemoglu et al., 2012). Prior literature also finds a positive influence of such policies on

other types of energy innovation (see e.g. Johnstone et al., 2009; Rogge and Hoffmann,

2010; Schmidt et al., 2012; Borghesi et al., 2015; Cui et al., 2018). While previous work

focuses on the direction and adoption of the overall environmental or low-carbon

innovation, my focus is on the innovation in energy storage.

Second, my results show that some policies are discouraging storage innovation.

Specifically, renewable energy certificates and energy efficiency certificates discourage

firm-level storage innovation. A firm’s storage patenting is expected to drop by 28.14%

with a one-unit higher stringency of renewable energy certificates and by 83.56% with

that of energy efficiency certificates. The significant negative impacts are unexpected

but not surprising, as more than 90% of sample firms are mixed firms. Such certificates

might change the allocation of investment and innovation effort in firms which innovate

both generation and storage technologies.

Finally, my results emphasize the heterogenous policy effects in firms of different

specialties. Firms with a higher innovation share in renewable technologies react less to
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environmental taxes but more to tradable certificates for CO2. Environmental taxes and

tradable certificates for CO2 encourage patenting activities in energy storage directly,

but the sensitivity alters in firms with different levels of specialization in renewable

technologies. Besides, some policies such as FITs show a stronger influence with longer

lags while the significance of policies such as trading schemes vanishes with longer lags.

It suggests that policies may affect different stages in the process of storage innovation.

Using continuous measures of the stringency for policy options, this paper

contributes to the understanding of links between environmental policy and innovation

in energy storage. A large share of the innovation literature has empirically examined

the impact of environmental policies on innovation in renewable energy.3 Early studies

show that differences between policies matter, even among market-based options. Due

to the heterogenous nature of policies adopted, researchers often use binary variables to

indicate the presence of policies. For example, Johnstone et al. (2009) use dummies for

police types such as tax credits as they only find possible continuous variables to

represent the policy stringency of R&D expenditures, FITs and renewable energy

certificates. They emphasize the importance of public policy and find that different

policy instruments are effective for different renewable energy sources. In contrast, I

focus on continuous policy proxies for the stringency which can help governments

optimally allocate investments. As an important complement to intermittent renewable

energy, energy storage technologies are still at a relatively earlier stage of the

technology life cycle, and has received far less attention. Fabrizio et al. (2017) separate

energy storage policies into demand-pull policies that focused on the demand for

products based on these technologies and supply-push policies that focused on the

supply of a given set of technologies. They create dummies for their presence and

examine their impact on energy storage innovation. For a given country, they find that

only demand-pull policies promote domestic innovation in energy storage. While they

focus on energy storage policies from demand and supply side (those to increase

demand and those to support research effort), my focus is on studying the effects of

3Popp (2010) and Popp (2019) provide an extensive review of this topic.
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three distinct types of market-based environmental policies.

The paper is organized as follows. In the next section, I describe the patent dataset

as well as policy measures. Section 2.3 introduces the model and empirical strategy, and

section 2.4 analyzes the estimation results. Finally, section 2.5 concludes the paper.

2.2 Data

2.2.1 Patent applications

My dataset includes energy storage and electricity generation patents drawn from

the Organisation for Economic Cooperation and Development (OECD) patent database

from 1978 to 2019. As patent values can be addressed by citation and pre-sample

variables, I use the number of patent applications (also referred as “patent counts”

hereafter) related to storage technologies to measure storage innovation.4 This dataset

identifies storage technologies that are widely adopted by the supply side of electricity

market based on International Patent Classification (IPC) codes. I focus on patents of

battery and fuel cell technologies in this study because, compared to hydro technologies,

they have little location limitations and attract high innovation effort in last several

decades. I identify battery and fuel cell technologies following the list of storage IPC

codes in Feng and Lazkano (2022). The complete list of the selected IPC classes used to

extract patents in this study can be found in Appendix B.1 Table B.1.1. I focus on

patent applications by firms from the ten most innovative countries – Japan(“JP”), the

United States(“US”), Korea(“KR”), Germany(“DE”), France(“FR”),

Switzerland(“CH”), Canada(“CA”), Italy(“IT”), the United Kingdom(“GB”), and

China(“CN”) – as most patent applications come from these countries. As expected,

nine of ten are OECD countries given that most of the R&D investment happens in the

developed OECD countries and electricity storage technologies require unique locations,

4Though patent counts do not directly indicate heterogenous values of different patents, the citation
information in patent dataset can offer a good proxy of innovation quality and be used to measure
knowledge stocks (Verdolini and Galeotti, 2011b). An alternative is R&D investments, which measure
the input of innovation but cannot easily be classified by technology.
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high costs, or both. China also stands in the top position as the investment in

technological R&D has been continuously increasing after the State Council put forward

the strategy of “innovation-driven development” and the strategy of scientific and

technological innovation (Xin-gang and Wei, 2020).

Overall, the data includes 9,970 storage patent applications from 2,194 unique firms

in ten countries.5 The distribution of patent applications and inventor firms in each

of the ten inventor countries is presented in Figure 2.1. Figure 2.1a shows the total

number of storage patents. Most patent applications come from top four countries: the

U.S., Korea, Germany, and especially Japan. I present the patenting trend for these four

countries in Figure 2.2. Japan has a substantial technological development in storage

technologies since late 1980s and has remained high since then. Germany and the U.S.

have kept a constant trend through the sample period while Korea starts to catch up after

2000. Figure 2.1b shows the total number of firms in each country. Consistent with the

distribution of storage patent applications, Japan, the U.S. and Germany have the highest

numbers of firms. Korea has a relatively lower number of firms, which suggests that Korea

might have a more concentrated allocation of innovation in storage technologies.

Figure 2.3 presents the distribution of storage patents by firm. The median firm has

one storage patent application. Out of the 2,194 firms, 575 firms have at least three

patent applications accounting for 84% of total storage patents and 368 firms have at

least five patents accounting for 77%. Inventor firms present different levels of specialty.

As shown in Figure 2.4, only 7.54% of them are specialized in developing storage

technologies while more than 90% are mixed firms also innovating generation

technologies. Most of those mixed firms, 79.89%, conduct research on both renewable

and fossil-fuel generation technologies alongside storage innovation. For such mixed

5In my data, “firm” includes entities from both private and public sector such as universities and
national labs. One might argue that environmental policies may affect private and public entities
differently. I pool all firms, i.e. entities, in the estimation following two reasons: (a) The OECD
patent database does not offer enough information to identify private and public entities. (b) I identify
53 universities out of 2,194 unique firms, which have in total 107 storage patent applications out of 9,970.
I estimate the model using storage patents from “non-university” firms in Appendix B.3. Table B.3.2
shows that both the magnitude and the significance of estimates are in line with baseline results, which
provides no evidence on heterogenous policy effects. This is consistent with the previous finding of the
high correlation between areas with strong science-based universities and private sector innovation (see
e.g. Jaffe, 1989; Belenzon and Schankerman, 2013; Valero and Van Reenen, 2019).
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(a)Total number of storage patents (b)Total number of firms

Figure 2.1: Distribution in top ten countries, 1978-2019.

firms, environmental and renewable policies might, on the one hand influence investors’

anticipation, on the other hand direct the allocation of research effort within a firm.

Figure 2.2: Patenting trend of storage technologies in top four countries, 1978-2019.

2.2.2 Environment policy measures

To measure the stringency of market-based environment policies, I use data drawn

from the Environmental Policy Stringency (EPS) dataset gathered by the OECD

(OECD, 2016). This dataset covers twenty-eight OECD and BRICS countries from 1990

to 2015.6 It defines policy stringency as a higher cost of polluting or environmentally

6There is an updated version of the EPS index published on August 29th, 2022, which covers
forty countries from 1990-2020 (see Kruse et al., 2022). I do not use this revised EPS index for two
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Figure 2.3: Distribution of storage patents by firm, 1978-2019.

Figure 2.4: Specialty of firms in top ten countries, 1978-2019.

harmful behavior. For example for taxes, a higher price on a unit of pollutant implies

higher stringency, while for subsidising instruments such as FITs, a higher subsidy is

interpreted as more stringent. Based on quantitative data, it scores environmental

policy instruments on a scale of 0 (not existing) to 6 (most stringent), and aggregates

reasons: (a) The revised index adopts a different taxonomy which includes a third subindex, technology
support, in addition to market-based and non-market-based policies. Some market-based policies such
as feed-in tariffs are no longer included into the market-based EPS subindex. (b) The policy selection of
environmental taxes, which is the most important policy instrument in this paper, has changed to include
less information than the 2015 version. For example, in the 2020 version, there are no environmental
taxes instituted in Korea before 2000, and only a near-zero diesel tax in Canada from 2000 to 2018,
whereas the 2015 version offers a great variation of the stringency of environmental taxes in these two
countries (shown in Appendix B.2 Figure B.2.1a).
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scores into composite EPS indexes. The score reflects the relative stringency – the

country’s position on each instrument relative to the other countries and years (Botta

and Koźluk, 2014). In contrast to previous work, which relies on dummy variables to

capture the effect of the implementation of most policies (see e.g. Johnstone et al., 2009;

Fabrizio et al., 2017), this dataset allows me to measure continuous variables to

represent stringency for most common environmental policies. With this, the stringency

of environmental policies can be compared across countries and over time.

Following the taxonomy developed by de Serres et al. (2010), this dataset distinguishes

three different market-based policy types: taxes, FITs and trading schemes. In this

paper, I use a composite market EPS index, one composite indicator for each policy

type, and six policy measures from the three types to study the impact of market-based

environmental policies on innovation in electricity storage. The six policy measures are

environmental taxes, FITs for solar power, FITs for wind power, tradable certificates for

CO2 emissions, renewable energy certificates and energy efficiency certificates. Table 2.1

shows the selected policy instruments and their measurements used for scoring.

Table 2.1: Policy instruments: measurements and summary statistics.

Policy Information considered for scoring Mean St. Dev.

Market EPS 1.2891 0.0571

Environmental Taxes Tax rate in EUR/tonne 1.625 0.0403
Feed-in Tariffs
FIT Solar EUR/kWh 1.5391 0.1337
FIT Wind EUR/kWh 1.8125 0.1442

Trading Schemes
CO2 Certificates Price of one CO2 allowance 0.625 0.0908
Green Certificates % of renewable electricity that has to be

procured annually
0.5977 0.0857

White Certificates % of electricity saving that has to be
delivered annually

0.3867 0.0703

Note: Statistics come from scores of the top ten countries for period 1990-2015.

Environmental taxes are directly applied to the pollution source (tax on emissions of

CO2, NOx, SOx) and on input or output of a production process (diesel tax) to

encourage activities in lower emissions.7 I present the stringency of environmental taxes

7I do not use carbon taxes because they are just a recent policy choice for most countries, or they do
not have high carbon taxes instituted. Therefore, I use the measure of total environmental taxes, which
converts emissions of all pollutants to a price/ton emission value.
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in each country over time in Appendix B.2 Figure B.2.1a. Countries started adopting

environmental taxes in late 1970s and they are widely used. For example, the

Environmental Protection Tax Law of People’s Republic of China is implemented on

January 2018 to reduce greenhouse gas emission (Hu et al., 2018).

Feed-in tariffs (FITs) for solar energy, as well as FITs for wind power, are subsidies

for electricity production from renewable energy sources. They guarantee purchases of

power generated from solar and wind at fixed prices over longer periods, and encourage

the deployment of renewable electricity technologies. FITs are common internationally.

Germany has been the front-runner to introduce FITs since the early 1990s (see Appendix

B.2 Figure B.2.1b), such as the Electricity Feed-in Act (Strominspeisungsgesetz) between

1991 and 1999, and the Renewable Energy Sources Act (Erneuerbare-Energien-Gesetz)

in 2000. For example, according to the Renewable Energy Sources Act (2000), “the

compensation to be paid for electricity generated from solar radiation energy shall be at

least 50.62 cent (Euro) per kilowatt-hour.”

Tradable certificates for CO2 emissions give holders the right to emit, and to trade

the right under a cap-and-trade system. Such policies are more common in European

countries as European Union Emissions Trading System (EU ETS) launched in 2005

is the world’s first international emissions trading system, which drives a jump of the

stringency of trading schemes, as shown in Appendix B.2 Figure B.2.1c, in EU countries

in 2005 (Botta and Koźluk, 2014).

Renewable energy certificates legally convey the environmental attributes of one

megawatt-hour (MWh) of electricity generated from a renewable energy source. Policies

that issue such certificates are commonly used to incentivize deployment of large-scale

renewable electricity, such as Renewable Energy Obligations (RO) in the U.K. and

Renewable Portfolio Standards (RPS) in the U.S..

Energy efficiency certificates, also called “white tags,” represent one MWh of energy

saving through an energy efficiency activity of utilities. Though this type of tradable

certificate is far less common than renewable energy certificates, it is also found in select

states in the U.S. and some European countries, such as the U.K. and France.
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On average, the top innovative countries in energy storage have a relatively low

stringency for market-based environmental policies on a scale 0 to 6, while six of the

them have an above-OECD-average market EPS. Figures 2.5 and 2.6 provide a sense of

overall market-based environmental policy stringency, i.e. the composite Market EPS

index, by showing the mean scores and its trend in each country. The mean scores in

the top ten countries are low in terms of a scale of 0 to 6 and present a wide range. As

shown in Figure 2.5, France has the highest mean market EPS, 1.80, while the lowest is

China with 0.51. Overall, European countries such as France, Germany and Italy have

relatively higher scores, Korea and Japan are about the average, while the U.S. and

China stand the lowest. This is hardly surprising. As each country’s EPS index in

Figure 2.6 shows, European countries had ambitious market-based environmental

policies from early 1990s, while other countries started around 2000 or even later.

Figure 2.5: Mean market-based environmental policy stringency index for the top ten
countries, 1990-2015.

To investigate the impact of market-based environmental policies on innovation in

energy storage, I combine the patent data and EPS measures. Since policy data is only

available from 1990 to 2015, the time period from 1978 to 1989 is defined as the pre-sample

period to determine pre-sample variables, and that from 1990 to 2015 is defined as the
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Figure 2.6: Market-based environmental policy stringency index for the top ten countries,
1990-2015.

sample period.8

2.3 Empirical Strategy

This section describes the econometric approach used to identify the effects of

market-based environmental policies on innovation in energy storage. As the dependent

variable is patent counts at the firm level, I estimate a firm-level count model (Asheim

and Gertler, 2009; Isaksen and Trippl, 2017; Parrilli et al., 2020). The following

equation describes the baseline model where j indexes country, i indexes inventor firm,

and t = 1990, ..., 2015 indexes time (year):

PATi,t =exp(β1Pricej,t + β2Ki,t + β3Spilloverj−i,t + β4Policyj,t

+ β5Firmi + β6Timet) + εi,t.

(2.1)

The dependent variable PATi,t represents the number of patent applications in battery

and fuel cell technologies in firm i and year t.9 The quality of patents are often proxied

8Patents data suffers truncation bias (a comparison between two data versions) as it usually takes
several years to know just how many patents were applied for during any particular period. I do not
have to worry about it as the sample uses patent data before 2015 and I have full patent data to 2019.

9I identify storage patent applications by firm. Each firm is only located in one country. For
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by citation data. I abstract from this because it takes time (median 4 years in my patents

data) to build citations and storage technologies are newer than generation technologies.

Pricej,t is a country-level average energy price index in country j and year t. Following

Linn (2008), I construct this fixed-weight energy price index with production inputs such

as coal, natural gas and renewable energy.10 I use this index rather than the price of any

single energy input or electricity to avoid endogeneity concerns. While these prices could

be much driven by new storage technologies, this index considers country characteristics,

the energy mix, and fuel prices.

The variable Ki,t represents the stock of knowledge in storage technologies, i.e. the

available knowledge that researchers can build upon in year t. Literature confirms the

importance of past innovation to promote current inventive activities (Popp, 2002;

Acemoglu et al., 2012; Aghion et al., 2016; Feng and Lazkano, 2022, etc.). Echoing

Popp (2002), I construct a citation-adjusted storage knowledge stock.11 A storage

patent usually has a term of 20 years from its earliest effective. Citations are contained

when a new patent is granted so forward citations and backward citations could tell the

diffusion of each newly patented innovation, as well as its decay as a patent becomes

obsolete. Therefore, the citation-adjusted knowledge stock accounts for not only

knowledge accumulation but also the quality of storage patents.

Spilloverj−i,t is knowledge spillovers from other firms in country j. While previous

work confirms the role of knowledge spillovers on innovation success (e.g Grossman and

Helpman, 1991; Jaffe et al., 1993; Audretsch and Feldman, 2004b), Feng and Lazkano

(2022) find that knowledge spillovers in electricity storage influence only within the same

international companies, the dataset documents different names for firms in different countries. For
example, General Electric Canada Inc. is located in Canada while General Electric Technology GmbH
is in Switzerland.

10The energy price index is a country-level variable. For example, the price index of firm i in country
j and year t is obtained from the average of the share of electricity production from energy inputs such
as oil, natural gas and hydro power in country j over the sample period.

11A citation-adjusted stock of previous granted patents:

Ki,t =

t∑
s=1978

PATi,sexp[−β̂1 (t− s)] ∗ [1− exp
(
−β̂2 (t− s)

)
].

β̂1 and β̂2 stand for the rate of decay and diffusion of knowledge, which are estimated by the probability
that a patent would be cited by subsequent patents. See Popp (2002) and Feng and Lazkano (2022) for
further details about the construction of our knowledge stocks.
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country. There is no evidence on them in greater geographic definitions such as subregions

and regions. Therefore, I construct a country-level spillover, which is the accumulation of

all citation-adjusted knowledge stock of storage technologies from other firms in country

j, i.e. Kj−i,t.
12

Policyj,t is a vector of policy variables. As described in section 2.2.2, I use continuous

measures of policy stringency. I adopt a composite market EPS index, one composite

indicator for each policy type namely environmental taxes, FITs and trading schemes,

and six policy measures from the three types (environmental taxes, FITs for solar energy,

FITs for wind power, tradable certificates for CO2 emissions, renewable energy certificates

and energy efficiency certificates) in three baseline specifications, respectively.

Firmi is the pre-sample patenting behavior that proxies for fixed effects. This variable

is constructed to address the problem that knowledge stocks are not strictly exogenous,

which would bias the standard fixed effects count data model (Hausman et al., 1984;

Blundell et al., 1995). Following Aghion et al. (2016), the citation-adjusted knowledge

stock in year 0, i.e. the last year of the pre-sample period (t = 1989 in this case), is

taken as the pre-sample fixed effects in this study (shown as Pre-sample Firm in result

tables). There are alternative ways to deal with the firm-level fixed effects. For example,

a pre-sample average of the dependent variable suggested by Blundell et al. (1995), and

the fixed-effect Poisson estimator confirmed by Aghion et al. (2016). Specifications with

such alternatives are presented in robustness analysis. In addition, Timet is a complete

set of year dummies to account for year fixed effects.13

I adopt a negative binomial model as the baseline to address overdispersion of

patent data.14 I include a dummy variable, Pre-sample Zero, for firms without

12While one might be concerned that Ki,t and Spilloverj−i,t are endogenous because they include
current patent applications, note that current patent applications are only a small portion of the overall
stock because of the slow nature of the diffusion process. In addition, all explanatory variables are lagged
to address such issues.

13One might argue that a country fixed effect is necessary to control for some country-specific
characteristics such as financial markets. Table B.4.3 in Appendix B.4 shows estimations with a set
of country dummies. Policy instruments keep the signs as in baseline estimations but most of them lose
significance. Thus, country differences are important in terms of the effects here, but the identification
comes from country differences in the stringency of environmental policies.

14Specify the mean and variance of a count data as follow:

E(Y ) = λ, V ar(Y ) = λ ∗ (1 + δ),
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pre-sample patents. This variable is used to address the potential that these firms

behave in a structurally different way and the model may be biased because of the

incidental parameter problem. Finally, there might be an endogeneity problem.

Innovation in energy storage can help reduce the costs of renewable energy, scale up its

deployment, and then reduce carbon emissions. Pricej,t and Policyj,t could pose a

simultaneity issue as they may respond to new storage technologies. Note, however,

that the variables describe current prices and policies whereas innovation may only have

an impact on the future. In addition, it takes time for any response to result in

patenting behavior. Therefore, I use the lag of explanatory variables to control for

potential endogenous links. As there is no common way to find an optimal lag, I use the

first lag of all explanatory variables in the baseline and conduct specifications using

different lag structures in the robustness analysis.15

2.4 Results and Discussion

In this section I present the main results of the baseline model followed by

alternative specifications to validate my results. To study the impact of market-based

environmental policies on innovation in energy storage, the baseline model includes

energy prices, past innovation, knowledge spillovers and the stringency of market-based

environmental policies. The alternative specifications that follow use different

where δ is the overdispersion parameter. My patent data shows overdispersion where δ = 1.87. Therefore,
I adopt the negative binomial model as it addresses overdispersion problem compared to the Poisson
distribution.

15I conduct the Oster’s bound analysis to evaluate the endogeneity of these variables. Specifically, to
test whether the price index, fixed effects, and lags can fully address the potential bias due to endogeneity,
I first estimate a linear regression model with the dependent variable log(PATi,t+1) and then I apply
the Oster’s bound analysis. The bound estimates (δ) of the lagged energy price index are close to zero
in all specifications, which suggests that the extent of the bias is limited. For most policy instruments,
the bound estimate is either much smaller than the linear coefficient, or close to zero. For example, the
bound estimate of lagged environmental taxes is 0.0016, which is much smaller than its coefficient 0.0069
from the linear regression. This indicates that there is little evidence of endogeneity bias. The bound
estimates of other lagged policy variables, such as FITs for solar energy with δ = 0.0009, though not
necessarily smaller than the controlled estimates, are close to zero and the R-squares of the controlled
model are substantially larger. This suggests that policy variables help explain some variation in the
dependent variable, though there might be a small degree of endogeneity bias present. Overall, the
Oster’s bound analysis gives me confidence that the variables I selected in my baseline model to address
endogeneity.
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estimators, and different lag structures. I report percentage impacts of explanatory

variables along with the estimated parameters for ease of interpretation. Standard

errors for each coefficient are included in parentheses.

2.4.1 Main results

Table 2.2 presents the main results of the negative binomial model using firm-level data

from 1990 to 2015. I consider three different specifications: (1) a composite market EPS

index, (2) one composite indicator for each policy type, namely environmental taxes, FITs

and trading schemes, and (3) six individual environmental policy measures. Columns

(1), (3) and (5) present the estimated coefficients, and columns (2), (4) and (6) show

the expected change in the count of storage patents in terms of a percentage change.

In line with the induced innovation theory and previous work, the energy price index,

knowledge stocks, and knowledge spillovers significantly drive storage innovation (e.g.

Jaffe et al., 1993; Popp, 2002; Audretsch and Feldman, 2004b; Verdolini and Galeotti,

2011b; Acemoglu et al., 2012).

Column (1) explains the first specification and shows the overall positive and

significant effect of market EPS on storage patenting. Specifically, with a one-unit rise

in the composite market EPS, a firm is expected to apply for 60.9% more storage

patents. This suggests that firms tend to innovate more when they are located in a

country where market-based environmental policies are overall valued and stringent.

This implies that the both the existence and stringency of environmental policies are

important to promote firm-level innovation in energy storage. Thus, we can boost

improvements in storage technologies by increasing the stringency of existing policies.

Column (3) explains the second specification for each policy type. I find significantly

positive effects of environmental taxes and FITs but not trading schemes. Column (5)

then shows estimates of the third specification with individual environmental policy

measures, where I find that different market-based environmental policies lead to

heterogeneous effects, even among the same policy type.

Results in Table 2.2 show strong evidence for the role of environmental taxes in
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promoting firms’ storage patenting. As discussed in Section 2.2.2, the measure for

environmental taxes applies additional costs based on emissions of CO2, NOx, SOx and

diesel (Botta and Koźluk, 2014). As shown in both columns (3) and (5), a more

stringent environmental tax policy fosters patenting in energy storage. The effect is

strong and positive, with a greater than 100% change, which the country-level analysis

in Table 2.3 supports. This result contributes to the understanding of the relationship

between environmental taxes and storage innovation. Previous work on energy

innovation offers inconsistent evidence of the impact of environmental taxes. For

example, Johnstone et al. (2009) find no effect of tax measures on

renewable-energy-related innovation. My results may be different for two reasons. First,

my analysis is based on a different policy proxy. While the tax dummy in Johnstone

et al. (2009) does not reflect policy stringency, I use a continuous tax measure

indicating both the existence and the stringency of environmental taxes. Rozendaal and

Vollebergh (2021) also find a positive and significant tax effect on clean patenting in the

car market, using a continuous excise tax. Thus, there might be more political obstacles

for a stringent tax policy than other policies, which leads to no significant effect of the

presence of a tax policy. Second, as a complementary technology, environmental taxes

could influence innovation in energy storage differently. To explain this further, I

conduct the same estimation using patent data on generation technologies. Appendix

B.5, Table B.5.6 shows that there is no significant effect of environmental taxes on

renewable generation technologies, which is in line with Johnstone et al. (2009). This is

also consisted with Barradale (2010) who indicates that investors tend not to believe

that policies depending on public finance would remain in place for a relative long time,

such as tax policies. Therefore, higher costs caused by environmental taxes might have

an impact on energy investors’ perception of future viability, which leads to a

non-significant environmental tax effect. Nevertheless, innovation in energy storage is

currently in a fast-developing stage, and the next generation of energy storage

technologies are given high expectations (Perdana et al., 2023). Storage investors then

may anticipate a higher market share of renewable energy from stringent environmental
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taxes and invest more on advanced storage technologies to solve the intermittency

problem of renewables.

Next, I discuss FITs which guarantee a set price for solar power and wind power.

The composite index of FITs has an overall positive effect on a firm’s storage patenting

activities in Table 2.2 column (3). However, as shown in column (5), the impacts of

FITs for solar power and for wind power differ. Specifically, only solar FITs have a

significant effect on improving firm-level patenting activities. A firm is expected to apply

for 14.5% more storage patents if the stringency of solar FITs increases by one unit,

while wind FITs lead to a statistically insignificant reduction. This is consistent with

Stevens and Rouhollahi (2021), who find a weakly positive impact of FITs for solar on

storage technology patenting. They find no statistical significance for FITs for wind on

other types of complementary grid technologies. These results suggest that guaranteed

prices of wind energy may not additionally improve firm-level incentives to innovate in

storage. In addition, these results support the idea that the impact of different FITs are

technology-specific. Previous work has found a similar result when studying innovation

in renewable energy. For example, Johnstone et al. (2009) find that the level of FITs has

a positive influence on solar energy patenting, but not on other types of technologies.

Likewise, Böhringer et al. (2017), focusing on the German feed-in tariff scheme, find both

negative and positive technology-specific FITs effects. They indicate that FITs for solar

and wind have an insignificant influence on renewable patent filings. A potential reason

could be that since feed-in tariffs are often calculated based on the average cost of each

respective technology, there are few revenue incentives for renewable electricity producers

to deploy. In addition, there are few incentives for investors to invest in uncertain new

technologies as pre-existing established technologies could be more attractive. Therefore,

compared with other market-based environmental policies, FITs have limited impact

boosting firm-level innovation in energy storage.

As with FITs, trading schemes also present heterogenous effects. The aggregate

index for trading schemes is insignificant in column (3). However, tradable certificates

for CO2 emissions promote storage innovation. With a one-unit higher stringency, a
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firm’s storage patenting is expected to increase by 18.2%. This is consistent with the

induced innovation theory. With tradable CO2 certificates, emitters can trade the right

to emit under a cap-and-trade system. A more stringent policy on that requires a

higher use of low-carbon-emission resources and a transition towards renewable energy.

New storage technologies then become imperative to help lower costs by overcoming the

intermittency problem and boost the expansion. In contrast, renewable energy

certificates, and particularly white tags (written as Certificates: Green and Certificates:

White respectively in tables) are strong hindrances for storage patenting. Renewable

energy certificates require a certain share of renewable energy in utilities’ portfolio,

where a one-unit higher stringency reduces a firm’s storage patenting by 28.14%.16

White tags establish energy savings obligations for utilities and lead the storage

patenting activities to a 83.56% reduction. One possible explanation is a firm’s resource

composition. Close to 90% of firms are mixed firms innovating both in electricity

generation and storage technologies. Such certificates might change the allocation of

investment and innovation effort within firms. To investigate this further, I estimate

equation 2.1 using patent applications of generation technologies in Appendix B.5.

White tags hinder firm-level generation innovation (see Appendix B.5 Table B.5.4).

Specifically, a firm is expected to apply for 22.8% less generation patents, from both

fossil-fuel and renewable technologies, when the stringency of white tags is one-unit

higher. This could happen when prices or transaction costs of white tags are high.

Though they are generally designed to improve energy efficiency, they could also create

a financial burden for firms and discourage investment. Therefore, within a country’s

environmental policy framework, the inclusion of specific incentives or bonuses for

renewable energy adoption and energy storage deployment might be an effective channel

to further incentivize innovation. In contrast, renewable energy certificates strongly

encourage patenting in both fossil-fuel and renewable generation technologies, by 30.3%

and 39.2% respectively. This is hardly surprising as energy storage and generation

16This result is further confirmed by estimating my model with the 2020 version EPS data. These
results show nearly identical results for tradable certificates for CO2 emissions and renewable energy
certificates. Note, however, that the updated 2020 index excludes white tags.
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technologies are at different stages of maturity, which lead to distinct anticipation of

investment and research effort for a successful innovation. Firms will then choose the

least-costly technology option to meet these energy targets. Thus, for mixed firms, more

stringent renewable energy certificates could alter their decision due to cost differences

among technologies. In addition, previous work has reported inconsistent effects of

renewable energy certificates on renewable generation and capacity, which ranges from a

positive effect to a negative effect (see e.g. Carley, 2009; Johnstone et al., 2009; Shrimali

and Kniefel, 2011; Hollingsworth and Rudik, 2019). Nevertheless, this study only finds

negative influences of renewable energy certificates and energy efficiency certificates on

firms’ storage patenting behavior. Therefore, I am unable to draw the conclusion based

on this evidence alone.

To conclude the results on how market EPS affects incentives of storage innovation,

I estimate the baseline model using aggregate country-level data in Table 2.3.17 Results

are overall in line with firm-level results in Table 2.2 but with less significance. The

composite indicator, Market EPS, presents a low impact on country-level incentives.

Environmental taxes have a positive effect at the country level, but with a much smaller

magnitude than at the firm level. Policies that affect firms’ innovation incentives, such

as FITs for solar energy, tradable certificates for CO2 emissions and renewable energy

certificates, are insignificant at country level. I keep the firm-level analysis as the baseline

analysis for two reasons. First, the incentives to innovate happen at the firm level (see

e.g. OECD, 2015; Hall et al., 2010). Second, as shown in Figure 2.1, most innovation

happens in three countries, and so the variation in the data diminishes when I focus on

the top ten countries.

2.4.2 Heterogenous policy effects

Figure 2.4 shows that 92.47% of the sample firms are mixed firms innovating both

in storage and generation technologies. Technology-neutral environmental policies could

17Here Kt−1 is the available knowledge that researchers can build upon in country j and year t.
As mentioned in section 2.3, knowledge spillovers in electricity storage influence only within the same
country. Therefore, I do not include any spillover here in greater geographic definitions. In addition, the
variable Pre-sample Zero is no longer included because all countries have pre-sample patents.
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Table 2.2: Firm-level baseline estimates using data from 1990 to 2015 for top 10 countries.

Dependent variable: the number of storage patents
(1) (2) (3) (4) (5) (6)
Coeff. %Change Coeff. %Change Coeff. %Change

Constant -1.828∗∗∗ -2.557∗∗∗ -2.693∗∗∗

(0.2274) (0.2668) (0.2722)
Energy price indext−1 2.1e-08∗∗ 0%∗∗ 2.4e-08∗∗ 0%∗∗ 3.0e-08∗∗∗ 0%∗∗∗

(9.3e-09) (9.4e-09) (1.0e-08)
Kt−1 0.2941∗∗∗ 34.2%∗∗∗ 0.282∗∗∗ 32.6%∗∗∗ 0.2748∗∗∗ 31.6%∗∗∗

(0.0238) (0.0235) (0.0230)
Spilloverst−1 0.0041∗∗∗ 0.4%∗∗∗ 0.0013∗ 0.1%∗ 0.0009 0.1%

(0.0005) (0.0008) (0.0008)
Market EPSt−1 0.4756∗∗∗ 60.9%∗∗∗

(0.1456)
Environmental
Taxest−1

0.6955∗∗∗ 100.5%∗∗∗ 0.7869∗∗∗ 119.7%∗∗∗

(0.1117) (0.1129)
Feed-in Tariffst−1 0.101∗∗ 10.6%∗∗

(0.0506)
FIT Solart−1 0.1354∗ 14.5%∗

(0.0762)
FIT Windt−1 -0.0543 -5.29%

(0.0553)
Trading Schemet−1 0.0844 8.8%

(0.1736)
Certificates: CO2t−1 0.1669∗ 18.2%∗

(0.0910)
Certificates: Greent−1 -0.3305∗∗ -28.14%∗∗

(0.1618)
Certificates: Whitet−1 -1.805∗∗ -83.56%∗∗

(0.8493)

Pre-sample Firm -0.0501 -4.88% -0.0194 -19.2% -0.0056 -0.56%
(0.0492) (0.0493) (0.0483)

Pre-sample Zero -1.159∗∗∗ -68.6%∗∗∗ -1.154∗∗∗ -68.45%∗∗∗ -1.113∗∗∗ -67.15%∗∗∗

(0.0986) (0.0988) (0.0983)
Year YES YES YES
N 3894 3894 3894
chi2 942 972 1004

Significance levels: †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: The citation-adjusted knowledge in the last pre-sample year (t = 1989) is used as the firm fixed
effect. The last-two-year data was weighted with application granted distribution to address truncation
problem. The 1st lag of all explanatory variables is used.

have different influences on firms specialized more in renewable energy and firms with a

higher focus on conventional generation technologies. To understand heterogenous policy

effects in different firm types, I construct two variables to proxy a firm’s expertise in

renewable energy: (1) Specialtyi,t – the share of renewable patents (over the total number

of generation patents) in firm i and year t; (2) Timingi – the time length since firm i
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Table 2.3: Country-level baseline estimates using data from 1990 to 2015 for top 10
countries.

Dependent variable: the number of storage patents
(1) (2) (3) (4) (5) (6)
Coeff. %Change Coeff. %Change Coeff. %Change

Constant 1.368∗∗∗ 0.9824∗∗∗ 0.9161∗∗∗

(0.1982) (0.2285) (0.2232)
Energy price indext−1 -7.2e-08∗∗∗ 0%∗∗∗ -8.0e-08∗∗∗ 0%∗∗∗ -7.3e-08∗∗∗ 0%∗∗∗

(9.7e-09) (1.0e-08) (1.3e-08)
Kt−1 0.0079∗∗∗ 0.8%∗∗∗ 0.0066∗∗∗ 0.7%∗∗∗ 0.0064∗∗∗ 0.6%∗∗∗

(0.0004) (0.0005) (0.0005)
Market EPSt−1 0.0398 4.1%

(0.0796)
Environmental
Taxest−1

0.2489∗∗∗ 28.3%∗∗∗ 0.3425∗∗∗ 39.8%∗∗∗

(0.0801) (0.0840)
Feed-in Tariffst−1 -0.0107 -1.04%

(0.0301)
FIT Solart−1 0.0146 1.5%

(0.0355)
FIT Windt−1 -0.0157 -1.55%

(0.0229)
Trading Schemet−1 -0.0927∗ -8.85%∗

(0.0547)
Certificates: CO2t−1 0.0337 3.4%

(0.0411)
Certificates: Greent−1 -0.0443 -4.33%

(0.0451)
Certificates: Whitet−1 -0.1469∗∗∗ -13.66%∗∗∗

(0.0491)

Pre-sample Country 0.0563∗∗∗ 5.8%∗∗∗ 0.0608∗∗∗ 6.3%∗∗∗ 0.0579∗∗∗ 6%∗∗∗

(0.0039) (0.0041) (0.0047)
Year YES YES YES
N 205 205 205
chi2 471 478 493

Significance levels: †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: The citation-adjusted knowledge in the last pre-sample year (t = 1989) is used as the firm fixed
effect. The last-two-year data was weighted with application granted distribution to address truncation
problem. The 1st lag of all explanatory variables is used.

applied for its first renewable patent.18 These two variables capture the intensity of firm

i in renewable energy innovation, and how long it has conducted renewable innovation.

18Specifically, the construction of these two variables is as follows:

Specialtyi,t =
Renewable patentsi,t
Generation patentsi,t

,

Timingi = 1990− s,

where s is the year when firm i filed its first renewable patents. A greater Timingi captures an
“earlier” firm and the sign indicates whether the first renewable patent happens with any market-based
environmental policy.
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Table 2.4 shows baseline estimates of policy interactions with these two variables.

Appendix B.6 Table B.6.7 and Table B.6.8 present the complete results of specifications

with policy interactions, where the levels of interaction terms are also shown. Note

that the composite indicator Market EPS, environmental taxes and FITs have larger

coefficients on their levels in Table B.6.7 and Table B.6.8, and adding interactions does not

take them away. Here in Table 2.4, I only show interaction terms. Overall, the composite

indicator of market EPS, as presented in column (1), does not impact storage patenting

differently given firms’ various expertise in renewable energy. However, environmental

taxes and tradable certificates for CO2 have heterogenous effects when a firm is more

specialized in renewable technology invention. In panel A column (5), firms with a higher

innovation share in renewable energy react more strongly to tradable certificates for CO2

but slightly less to environmental taxes. Interactions with the time length variable in

panel B do not show statistical significance. One possible reason is that battery and

fuel cell technologies are relatively newly developed, and whether a firm starts renewable

innovation early or later may not be as important as its behavior in recent years.

These results suggest that the level of renewable specialization matters more than

the time length specialization. Moreover, as seen in Table 2.2, environmental taxes and

tradable certificates for CO2 emissions encourage firms’ patenting activities in energy

storage directly, and their sensitivity to these results change with a firm’s level of

specialization in renewable technologies. This suggests that policies directed at

increasing R&D investments for renewable energy can boost their expertise, and

therefore create additional benefits to innovation energy storage. Thus, the combination

of both types of policies creates an effective framework to boost innovation.

2.4.3 Robustness analysis

I further explore specifications with alternative firm fixed effects and different lag

structures in this section to validate the baseline results.

In the baseline estimation, I use the knowledge stock in the last year of the pre-sample

period (year 1989) as the firm fixed effect and a Pre-sample Zero dummy to address the
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Table 2.4: Heterogenous policy effects in firms’ expertise in renewable technologies.

Dependent variable: the number of storage patents
(1) (2) (3) (4) (5) (6)
Coeff. %Change Coeff. %Change Coeff. %Change

Panel A: Interaction with Specialtyt−1

xMarket EPSt−1 -0.0159 -1.58%
(0.0138)

xEnvironmental
Taxest−1

-0.0076† -0.76%† -0.0111∗∗ -1.1%∗∗

(0.0051) (0.0050)
xFeed-in Tariffst−1 -0.0135 -1.34%

(0.0129)
xFIT Solart−1 -0.0034 -0.34%

(0.0160)
xFIT Windt−1 -0.0079 -0.78%

(0.0118)
xTrading Schemet−1 -0.0054 -0.54%

(0.0199)
xCertificates: CO2t−1 0.1119∗∗ 11.8%∗∗

(0.0465)
xCertificates: Greent−1 -0.0045 -0.45%

(0.0103)
xCertificates: Whitet−1 -20.26 -100%

(52.63)

Panel B: Interaction with Timingt−1

xMarket EPSt−1 0.0048 0.5%
(0.0185)

xEnvironmental
Taxest−1

-0.0025 -0.25% 0.0015 0.2%

(0.0176) (0.0175)
xFeed-in Tariffst−1 0.0128† 1.3%†

(0.0087)
xFIT Solart−1 -0.0027 -0.27%

(0.0120)
xFIT Windt−1 0.0056 0.6%

(0.0100)
xTrading Schemet−1 -0.0020 -0.2%

(0.0296)
xCertificates: CO2t−1 -0.0024 -0.24%

(0.0132)
xCertificates: Greent−1 -0.0013 -0.13%

(0.0253)
xCertificates: Whitet−1 -15.7 -100%

(644.9)

Significance levels: †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: Data from 1990 to 2015 in top 10 countries. The citation-adjusted knowledge in the last
pre-sample year (t = 1989) is used as the firm fixed effect. The last-two-year data was weighted with
application granted distribution to address truncation problem. The 1st lag of all explanatory variables
is used.

potential incidental parameter problem. There are alternative ways to proxy firm-level

fixed effects. Blundell et al. (1995) suggest the pre-sample average of the dependent
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variable, while Aghion et al. (2016) choose a fixed-effect Poisson estimator.19 I adopt

both alternatives and use a Poisson Pseudo-Maximum Likelihood (PPML) estimator

because of consistency and no asymptotic bias (Weidner and Zylkin, 2021). I present

results in Table 2.5 and Table 2.6, and the main results hold. Estimates with average

citation-adjusted knowledge stocks in the pre-sample period (year 1978-1989) in Table

2.5 show that the composite market EPS, environmental taxes and tradable certificates of

CO2 emissions significantly promote firm-level storage patenting while renewable energy

certificates and white tags hinder it. The fixed-effect Poisson estimation in Table 2.6

validates the positive impacts of the composite market EPS and environmental taxes on

firm-level storage patenting, but only significant influence of white tags among trading

schemes.

I then conduct the baseline model with different lag structures and results are

presented in Table 2.7 and Table 2.8. Table 2.7 uses the second lag of all explanatory

variables and Table 2.8 uses the third lag. Results are in line with the baseline results

where the composite market-based environmental policy stringency, particularly

environmental taxes and tradable certificates of CO2 emissions, significantly incentivize

patenting activities in storage technologies. Moreover, further lags of feed-in tariffs

show a stronger influence than their first lag. For example, from table 2.2 the

stringency of FITs for solar energy in the last year increases a firm’s storage patenting

by 14.5% at a 10% significance level. Table 2.7 column (6) shows that FITs for solar

energy two years before increase storage patenting by 25.3%, while the third lag in

Table 2.8 shows a 42.8% increase, and both significant at 1%. In contrast, the

significance of trading schemes vanishes with longer lags. This is hardly surprising as

the innovation process can take years. It suggests that some policies such as FITs may

affect the early stage in the process of storage innovation while other policies such as

trading schemes impact the later stage to a higher degree. By understanding these

relationships, policymakers could be able to develop more effective policies to support

the development, as well as the deployment, of new technologies.

19Allison and Waterman (2002) indicate that conditional negative binomial model for panel data does
not qualify as a true fixed effects method because it does not control for all stable covariates.
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Table 2.5: Alternative firm-level fixed effects: pre-sample average fixed effects.

Dependent variable: the number of storage patents
(1) (2) (3) (4) (5) (6)
Coeff. %Change Coeff. %Change Coeff. %Change

Constant -1.452∗∗∗ -1.908∗∗∗ -2.059∗∗∗

(0.1951) (0.2227) (0.2281)
Energy price indext−1 2.3e-09 0% 2.3e-09 0% 1.1e-08 0%

(7.7e-09) (7.7e-09) (8.6e-09)
Kt−1 0.347∗∗∗ 41.5%∗∗∗ 0.3498∗∗∗ 41.9%∗∗∗ 0.3389∗∗∗ 40.3%∗∗∗

(0.0224) (0.0228) (0.0223)
Spilloverst−1 0.0043∗∗∗ 0.4%∗∗∗ 0.0023∗∗∗ 0.2%∗∗∗ 0.0021∗∗∗ 0.2%∗∗∗

(0.0004) (0.0007) (0.0007)
Market EPSt−1 0.1853† 20.4%†

(0.1221)
Environmental
Taxest−1

0.4277∗∗∗ 53.4%∗∗∗ 0.4769∗∗∗ 61.1%∗∗∗

(0.0969) (0.0969)
Feed-in Tariffst−1 0.0115 1.2%

(0.0432)
FIT Solart−1 -0.0188 -1.87%

(0.0623)
FIT Windt−1 -0.0084 -0.84%

(0.0438)
Trading Schemet−1 0.0262 2.7%

(0.1584)
Certificates: CO2t−1 0.1576∗∗ 17.1%∗∗

(0.0787)
Certificates: Greent−1 -0.3101∗∗ -26.67%∗∗

(0.1389)
Certificates: Whitet−1 -1.411∗ -75.62%∗

(0.8261)

Pre-sample Firm -0.1609∗∗ -14.86%∗∗ -0.1563∗∗ -14.47%∗∗ -0.1322∗ -12.39%∗

(0.0696) (0.0700) (0.0684)
Pre-sample Zero -1.289∗∗∗ -72.44%∗∗∗ -1.279∗∗∗ -72.18%∗∗∗ -1.259∗∗∗ -71.62%∗∗∗

(0.0923) (0.0932) (0.0922)
Year YES YES YES
N 5717 5717 5717
chi2 1310 1315 1353

Significance levels: †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: Data is from 1990 to 2015 for all firms in top 10 countries. The average citation-adjusted
knowledge in the pre-sample period is used as the firm fixed effect. The last-two-year data was weighted
with application granted distribution to address truncation problem. The 1st lag of all explanatory
variables is used.

2.5 Conclusion

Energy storage has received global attention as an important complement to

intermittent renewable energy. Currently, innovation in energy storage is dramatically

increasing but its use is still limited. Along with climate goals, governments have

introduced various market-based policies to accelerate clean energy transitions. Using
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Table 2.6: Alternative firm-level fixed effects: PPML estimator.

Dependent variable: the number of storage patents
(1) (2) (3) (4) (5) (6)
Coeff. %Change Coeff. %Change Coeff. %Change

Energy price indext−1 4.8e-09 0% 7.4e-09† 0%† 7.5e-09 0%
(4.9e-09) (4.8e-09) (5.7e-09)

Kt−1 0.106∗∗∗ 11.2%∗∗∗ 0.1043∗∗∗ 11%∗∗∗ 0.104∗∗∗ 11.%∗∗∗

(0.0050) (0.0050) (0.0050)
Spilloverst−1 0.0048∗∗∗ 0.5%∗∗∗ 0.0030∗∗∗ 0.3%∗∗∗ 0.0027∗∗∗ 0.3%∗∗∗

(0.0003) (0.0004) (0.0004)
Market EPSt−1 0.1802∗∗ 19.7%∗∗

(0.0826)
Environmental
Taxest−1

0.4211∗∗∗ 52.4%∗∗∗ 0.4552∗∗∗ 57.7%∗∗∗

(0.0824) (0.0818)
Feed-in Tariffst−1 0.0404 4.1%

(0.0313)
FIT Solart−1 0.0417 4.3%

(0.0444)
FIT Windt−1 -0.0136 -1.35%

(0.0309)
Trading Schemet−1 -0.174∗∗ -15.97%∗∗

(0.827)
Certificates: CO2t−1 -0.0058 -0.58%

(0.0569)
Certificates: Greent−1 -0.1197 -11.28%

(0.0906)
Certificates: Whitet−1 -0.2131∗ -19.2%∗

(0.1185)

Year YES YES YES
N 15315 15315 15315
chi2 1212 1258 1282

Significance levels: †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: Data is from 1990 to 2015 for all firms in top 10 countries. The last-two-year data was weighted
with application granted distribution to address truncation problem. The 1st lag of all explanatory
variables is used.

patent data from 1978 to 2015 combined with the EPS index generated by the OECD, I

empirically examine the impacts of market-based environmental policies on innovation

in energy storage in the ten most innovative countries. Overall, I find that the

stringency of environmental policies, as measured by a composite market EPS index,

encourages innovation in energy storage. Specifically, environmental taxes, FITs for

solar energy and tradable certificates for CO2 emissions strongly promote firms’

patenting activity in energy storage, whereas renewable energy certificates and energy

efficiency certificates discourage it. In addition, I find that firms with a high level of

specialization in renewable technologies respond more to tradable certificates for CO2
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Table 2.7: Alternative lag structures: the 2nd lag.

Dependent variable: the number of storage patents
(1) (2) (3) (4) (5) (6)
Coeff. %Change Coeff. %Change Coeff. %Change

Constant -1.715∗∗∗ -2.533∗∗∗ -2.686∗∗∗

(0.2457) (0.2817) (0.2863)
Energy price indext−2 3.3e-08∗∗∗ 0%∗∗∗ 3.3e-08∗∗∗ 0%∗∗∗ 4.4e-08∗∗∗ 0%∗∗∗

(1.0e-08) (1.0e-08) (1.1e-08)
Kt−2 0.2902∗∗∗ 33.7%∗∗∗ 0.2571∗∗∗ 29.3%∗∗∗ 0.2693∗∗∗ 30.9%∗∗∗

(0.0257) (0.0249) (0.0246)
Spilloverst−2 0.00463∗∗∗ 0.5%∗∗∗ 0.0013† 0.1%† 0.0008 0.1%

(0.0005) (0.0008) (0.0008)
Market EPSt−2 0.6864∗∗∗ 98.7%∗∗∗

(0.1616)
Environmental
Taxest−2

0.7895∗∗∗ 120.2%∗∗∗ 0.8854∗∗∗ 142.4%∗∗∗

(0.1173) (0.1174)
Feed-in Tariffst−2 0.1292∗∗ 13.8%∗∗

(0.0563)
FIT Solart−2 0.2255∗∗∗ 25.3%∗∗∗

(0.0848)
FIT Windt−2 -0.112∗ -10.6%∗

(0.0645)
Trading Schemet−2 0.1172 12.4%

(0.1868)
Certificates: CO2t−2 0.1778∗ 19.5%∗

(0.1028)
Certificates: Greent−2 -0.4798∗∗∗ -38.11%∗∗∗

(0.1801)
Certificates: Whitet−2 -21.08 -100%

(27135)

Presample Firm -0.0844† -9.1%† -0.0086 -0.86% -0.0285 -2.81%
(0.0550) (0.0541) (0.0532)

Presample Zero -1.14∗∗∗ -68.03%∗∗∗ -1.107∗∗∗ -66.94%∗∗∗ -1.09∗∗∗ -66.39%∗∗∗

(0.1126) (0.1047) (0.1118)
Year YES YES YES
N 3469 3469 3469
chi2 753 793 837

Significance levels: †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: Data is from 1990 to 2015 for all firms in top 10 countries. The citation-adjusted knowledge in
the last pre-sample year (t = 1989) is used as the firm fixed effect. The last-two-year data was weighted
with application granted distribution to address truncation problem. The 2th lag of all explanatory
variables is used.

emissions but less to environmental taxes. Finally, my results suggest that these policies

may affect different stages in the process of storage innovation. Some policies such as

FITs show a stronger influence with longer lags while the significance of other policies

such as trading schemes vanishes overtime.

These empirical findings have several policy implications. First, governments could
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Table 2.8: Alternative lag structures: the 3rd lag.

Dependent variable: the number of storage patents
(1) (2) (3) (4) (5) (6)
Coeff. %Change Coeff. %Change Coeff. %Change

Constant -1.666∗∗∗ -2.337∗∗∗ -2.401∗∗∗

(0.2643) (0.2978) (0.2998)
Energy price indext−3 3.0e-08∗∗∗ 0%∗∗∗ 2.9e-08∗∗∗ 0%∗∗∗ 3.2e-08∗∗ 0%∗∗∗

(1.1e-08) (1.1e-08) (1.2e-08)
Kt−3 0.2549∗∗∗ 29%∗∗∗ 0.2279∗∗∗ 25.6%∗∗∗ 0.2386∗∗∗ 26.9%∗∗∗

(0.0262) (0.0255) (0.0249)
Spilloverst−3 0.0050∗∗∗ 0.5%∗∗∗ 0.0019∗∗ 0.2%∗∗ 0.0015∗ 0.1%∗

(0.0006) (0.0009) (0.0009)
Market EPSt−3 0.7863∗∗∗ 119.5%∗∗∗

(0.1708)
Environmental
Taxest−3

0.7481∗∗∗ 111.3%∗∗∗ 0.8134∗∗∗ 125.6%∗∗∗

(0.1226) (0.1227)
Feed-in Tariffst−3 0.1513∗∗ 16.3%∗∗

(0.0590)
FIT Solart−3 0.3564∗∗∗ 42.8%∗∗∗

(0.0933)
FIT Windt−3 -0.1849∗∗∗ -16.88%∗∗∗

(0.0712)
Trading Schemet−3 0.2232 25%

(0.1882)
Certificates: CO2t−3 0.1516† 16.4%†

(0.101)
Certificates: Greent−3 -0.2405 -21.37%

(0.1918)
Certificates: Whitet−3 -18.85 -100%

(6060)

Presample Firm -0.0622 -6.03% -0.0053 -0.52% -0.0261 -2.58%
(0.058) (0.0569) (0.0564)

Presample Zero -1.102∗∗∗ -66.78%∗∗∗ -1.073∗∗∗ -65.79%∗∗∗ -1.046∗∗∗ -64.87%∗∗∗

(0.1179) (0.1088) (0.117)
Year YES YES YES
N 3135 3135 3135
chi2 625 660 699

Significance levels: †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: Data is from 1990 to 2015 for all firms in top 10 countries. The citation-adjusted knowledge in
the last pre-sample year (t = 1989) is used as the firm fixed effect. The last-two-year data was weighted
with application granted distribution to address truncation problem. The 3th lag of all explanatory
variables is used.

focus on increasing the stringency of existing market-based environmental policies as

part of the energy policy framework targeting innovation in energy storage. Six of the

most innovative ten countries have an above-OECD-average market EPS. It suggests

that countries with stronger market-based environment policies also promote developing

patents in energy storage technologies. Second, governments interested in facilitating
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innovation in energy storage could strengthen direct carbon pricing instruments, i.e.

carbon taxes and tradable CO2 certificates (ETSs). My results show that such policies

strongly and significantly increase patenting in energy storage These results provide

another reason to enhance these policies among these ten countries. In 2021, though

carbon prices rose quickly and hit record highs in many jurisdictions (World Bank,

2022), my stringency results support even higher carbon prices to encourage storage

innovation. Finally, firms specialized in renewable energy respond differently to policies

that directly encourage storage patenting. Therefore, increasing investments in R&D for

renewable energy to help firms reach a higher expertise level will create additional

benefits to innovation in energy storage.
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Chapter 3

The Role of Energy Storage

Subsidies to Boost Clean Energy

Transitions

3.1 Introduction

Energy storage plays a key role in the transition to clean energy. In the

transportation sector, electric vehicles, which rely on storage batteries, are the key

technology to decarbonize road transportation. In the electricity sector, storage

provides energy system flexibility. On the one hand, storage helps harness renewable

energy like wind and solar, which generate energy intermittently. On the other hand,

storage improves the efficiency of conventional technologies like natural gas and coal

power plants. Thus, global energy storage deployment is scaling up to achieve climate

and energy targets. To this end, policymakers globally have implemented policies like

subsidies and mandates to boost growth in global energy storage deployment.1

Energy storage deployment includes a variety of technologies. In the electricity

sector, the most widely deployed technology is pumped-storage hydropower followed by

1For example, from 2016 to 2021 hydrogen and fuel cells technologies have seen the most rapid
increase of 140% in public R&D budgets among International Energy Agency countries. IEA Energy
Technology RD&D Budgets database, https://www.iea.org/data-and-statistics/data-product/
energy-technology-rd-and-d-budget-database-2.
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grid-scale batteries, while in the transportation sector, electric vehicles commonly use

lithium-ion batteries. The expansion of pumped-storage hydropower is geographically

limited, whereas the production of batteries used in solar photovoltaic plants, wind

farms and electric vehicles relies on nonrenewable minerals like cobalt, nickel, and

lithium.2 For example, IEA (2021b) finds that an electric car uses six times the mineral

inputs of a conventional car and that an onshore wind plant uses nine times more

mineral resources than a gas-fired plant. Thus, the global increase in the share of

renewables and electric vehicles has led to a higher demand for minerals, which has

resulted in a 50% increase on the average amount of minerals needed for a new unit of

power generation capacity since 2010 (IEA, 2021b). To address mineral energy security

and to reduce reliance on critical materials, we would like to highlight the role of

innovation.

The newest innovation is sodium-ion batteries that are free of lithium and the sodium

they need can be found anywhere. The first sodium-ion battery car (BYD Seagull) is

scheduled to be released in April 2023 and mass production of sodium-ion batteries is

expected for the second quarter of 2023. The global patent race for post-lithium-ion

batteries over the past 10 years shows that patents for sodium-ion batteries dominate

the race. In total, there are close to 10,000 patents for post-lithium-ion batteries. This

one example shows how innovation can provide alternatives to batteries that rely on

non-renewable materials such as lithium.

Our goal is to theoretically show that a research subsidy to energy storage has the

potential to change the technical transition in energy sector beyond its ability to enable

the use of intermittent renewable energy and electric vehicles. Acemoglu et al. (2012) is

prominent in the literature to study induced innovation in the energy sector and many

subsequent papers have built on or analyzed their work (see e.g. Acemoglu et al., 2014;

Lazkano et al., 2017b; Lemoine, 2017; Wiskich, 2021). Their model considers two sectors

2IEA (2021b) states that “the types of mineral resources used vary by technology. Lithium, nickel,
cobalt, manganese and graphite are crucial to battery performance, longevity and energy density. Rare
earth elements are essential for permanent magnets that are vital for wind turbines and EV motors.
Electricity networks need a huge amount of copper and aluminium, with copper being a cornerstone for
all electricity-related technologies.”
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(clean and dirty) and optimal policy to achieve energy transition relies on a carbon tax

and a research subsidy to the clean sector. Within a stylized theoretical model of directed

technical change, we consider a research subsidy to energy storage contributing to both

clean and dirty sectors. Specifically, we adopt a proportional profit subsidy to energy

storage, which shows in the expected profit from undertaking research in both clean

and dirty sectors. Thus, we present energy storage as a mechanism that can promote

innovation in both clean and dirty sector, then influence the optimal allocation.

Our results provide the evidence on the importance of a subsidy to energy storage,

particularly when the elasticity of substitution between clean and dirty energy inputs

is low. In other conditions unchanged, a storage subsidy would postpone the timing

of adopting a clean innovation subsidy, and shorten its duration, which helps shoulder

temporary financing and research burden in clean sector.

The paper proceeds as follows. In section 2, we present the the optimal

environmental policy while section 3 presents the calibrations and discusses our results.

Section 4 concludes.

3.2 Optimal Environmental Policy

According to Acemoglu et al. (2012), the relative benefit from undertaking research

in clean sector c to dirty sector d in the decentralized equilibrium without any policy

intervention is:

Πct

Πdt

=
ηc
ηd

(
pct
pdt

) 1
1−α Lct

Ldt

Act−1

Adt−1

. (3.1)

Defining ϕ ≡ (1− α)(1− ε), equation 3.1 can be written as 3.2:

Πct

Πdt

=
ηc
ηd

(
1 + γηcsct
1 + γηdsdt

)−ϕ−1(
Act−1

Adt−1

)−ϕ
. (3.2)

Under the assumption of DTC model, “dirty input production Yd always grows

without bound” and the economy under laissez-faire will lead to an environmental

disaster. Acemoglu et al. (2012) implement the socially optimal allocation using a tax
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on dirty input (a “carbon” tax), a subsidy to clean innovation, and a subsidy for the use

of all machines.

In addition to these three policy interventions, we include a research subsidy to energy

storage in our study, which is a proportional profit subsidy but contributes to both sector.

Therefore, given a carbon tax τt, a subsidy to clean sector qt and a subsidy to energy

storage qs, the relative benefit ratio in equation 3.2 becomes:

Πct

Πdt

=

(
1 + qt + qs

1 + qs

)
ηc
ηd

(
1 + γηcsct
1 + γηdsdt

)−ϕ−1

(1 + τt)
ε

(
Act−1

Adt−1

)−ϕ
. (3.3)

With different levels of a storage subsidy qs, the optimal policies and the socially

optimal allocation change. In the next section, we incorporate this subsidy into the

calibration of this DTC model of Acemoglu et al. (2012).

3.3 Calibration

In this section we calibrate our model with a storage subsidy. Our goal is to compare

our results to the standard Acemoglu et al. (2012) model, and therefore we select the same

parameter values as in Acemoglu et al. (2012). Figure 3.1 describes those parameters and

their values. Governments have invested in renewable energy research from the 1980s

while subsidies to energy storage spurred in early 2000s. Some countries, for example the

U.S. as shown in figure 3.1, have larger spur of R&D spending in energy storage in certain

time periods. Therefore, we consider three levels of the storage subsidy, i.e. qs = 0.5qt,

qt, and 1.5qt. Our objective is to highlight the effects of different levels of the storage

subsidy on the form of optimal environmental regulation and the resulting timing of a

switch (of R&D and production) to clean technology.

3.3.1 Results with subsidies to energy storage

Next, we apply different levels of storage subsidies in equation 3.3, and explore their

effects on the optimal allocation. Note that the level of subsidies to energy storage only
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Table 3.1: Parameter choice.

Parameter Value Description

ε
3

Elasticity of substitution between two sector
10

ρ
0.001*dt

Utility discount rate per period
0.015*dt

σ 2 Coefficient of relative risk aversion
α 1/3 Factor share of machines
ψ 2/3 Cost of machines
γ 1 Innovation step size
ηd 0.02*dt Probability of success in the dirty sector
ηc 0.02*dt Probability of success in the clean sector
dt 5 Number of years in one period
t 80 Number of periods

Note: The parameter choice is the same as in Acemoglu et al. (2012).

(a)Renewable R&D Spending. (b)Storage R&D Spending.

Figure 3.1: Public R&D Spending in the U.S., 1978-2019.

influence the subsidy to clean sector in the optimal allocation. Therefore, we present only

the clean innovation subsidy in this section.

Figure 3.2 shows the subsidy to clean sector, i.e. qt with the presence of a subsidy to

energy storage for different values of the elasticity of substitution between two sector, ε,

and the discount rate, ρ. Column (a), (b) and (c) present the optimal path of qt when

qs = 0.5qt, qt, and 1.5qt, respectively.

The first row shows that when ε = 3 and ρ = 0.001, the optimal subsidy to clean

research remains temporary, but is higher and of shorter duration than its baseline. In

addition, the presence of a subsidy to energy storage postpones the timing of the clean

innovation subsidy. Particularly when qs = qt, the high level of subsidy only lasts shortly

(about 10 years) around year 50. This buys time for both policymakers and scientists.

As shown in Acemoglu et al. (2012) Figure 1 panel A, without a qs, we have to adopt

62



the highest level of qt immediately to achieve the clean transition and to avoid a natural

disaster. It suggests that, to a certain extent, a subsidy to energy storage helps the clean

sector to shoulder research burden, and complement the clean innovation. This result

helps us understand the evolution of the relationship between clean, dirty, and storage

technologies.

Row 2 is the scenario that includes an eventual natural disaster, i.e. when ε = 3 and

ρ = 0.015. Compared to the other two scenarios, the switch to clean research occurs

at a later time, and the optimal subsidy is larger and lasts longer. Adding a subsidy

to energy storage does not have significant impacts, but it lowers the required level of

optimal subsidy when qs is sufficiently high, in our case when qs = 1.5qt.

Similarly, in the third row, when ε = 10, subsidizing energy storage does not

substantially benefit the optimal allocation. This is not surprising. Energy storage

technologies are now referred to as the key in clean transitions because they help reduce

the intermittency problem of renewable energy. With a high ε, clean inputs easily

substitute dirty inputs. As shown in Acemoglu et al. (2012) Figure 1 panel D, the clean

sector takes over most of input production rapidly (around 30 years). In this case, there

is no further incentive to innovate in storage technologies, and a subsidy to energy

storage does not improve the optimal allocation.

3.3.2 Elasticity to substitution closer to one

Limited work empirically determines the elasticity of substitution between clean and

dirty energy inputs. Goulder and Schneider (1999) find a value of 0.9. Using a

steady-state assumption, Lanzi and Sue Wing (2010) estimate a value of 1.6 for the

elasticity of substitution between clean and dirty inputs in the energy sector. Popp

(2004) find the same value for the elasticity of substitution between fossil fuels and

nonfossil fuels in the modified DICE model. Papageorgiou et al. (2017) estimate nested

CES specifications using nonlinear estimation, which imply a value of 1.8 in the

electricity-generating sector and a value of 3 in non-energy industries. Therefore, in

addition to ε = 3 and 10, we adopt an elasticity of substitution between clean and dirty
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Figure 3.2: Subsidy to clean sector in the optimal allocation with a subsidy to energy
storage.
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sectors that is closer to stylized facts, ε = 1.5, to explore the optimal allocation and the

effects of a storage subsidy.

Figure 3.3 shows the subsidy and the allocation of scientists to clean sector, the carbon

tax, the share of clean inputs in total production and the increase in temperature in the

optimal allocation when ε = 1.5 and qs = 0. Despite the presence and levels of a storage

subsidy, the results confirm that it is difficult to avoid a natural disaster if the elasticity

of substitution is sufficiently low. In this case, the clean innovation subsidy, as shown in

Figure 3.4, is significant lower and of shorter duration with a higher storage subsidy.

Figure 3.3: Optimal environmental policy for ε = 1.5.

3.4 Conclusion

Energy storage technologies can boost renewable energy use while also improving

the efficiency of conventional power plants. While many focus on energy storage as the

solution to the intermittency problem of renewable resources, its benefits to conventional

technologies receives far less attention. By introducing a research subsidy to energy
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Figure 3.4: Subsidy to clean sector in the optimal allocation with a subsidy to energy
storage when ε = 1.5.

storage contributing to both clean and dirty sectors, we modify the theoretical model of

directed technical change, and present energy storage as a mechanism that can promote

innovation in both sectors and influence the optimal allocation. We then report the

results of the same quantitative example as Acemoglu et al. (2012). We find that in other

conditions unchanged, a storage subsidy changes the optimal subsidy to clean innovation,

particularly when the elasticity of substitution between two sectors are low. And different

levels of storage subsidies would postpone the timing of its adoption, shorten its duration,

or lower the optimal level. However, they cannot guarantee the avoidance of natural

disasters. In line with Acemoglu et al. (2012), a sufficiently high elasticity is more reliable

to get rid of the environmental threaten and go back to the preindustrial level. Therefore,

energy storage might play a more important role in energy transitions by improving the

substitution between clean and dirty inputs than encouraging innovation directly, as

solving the intermittency problem will increase the ability of renewables to substitute

dirty energy inputs.
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Appendix A

Appendix to Chapter 1

A.1 Technology Descriptions: Energy

Storage Systems

There are multiple types of energy conversion used for either short-term or long-term

storage. For short-term storage, electrochemical devices convert electrical energy to

chemical energy for storage. The most common technologies are batteries, which have

been used since the 19th century and currently have uses in everyday technology such

as phones and in small-scale energy storage.1 Research in batteries is extensive and

installations plans are on the rise. For example, South Australia is able to power over

30,000 homes with a 100MW-capacity battery built in 2017. Batteries are expected to

be the largest commercial-level form of energy storage. Instead, long-term storage, such

as days to weeks or even months, relies on mechanical methods that convert electrical

1Normally when chemicals mix they release energy in the form of thermal energy. A battery is able
to control the output of these reactions so that it yields electrical energy. Typical batteries consists of
two electrodes. One controls the release of ions and the other the release of electrons. An electrolyte
between the electrodes will allow ions to flow from one electrode to the other while keeping the electrons
in place. The electrolyte is what allows the battery to produce power. There are two main types of
batteries available: primary cell and secondary cell batteries. Primary cells cannot be recharged while
secondary cells are able to reproduce the reactants which makes these favorable for the energy industry.
One type of secondary cell is a standard secondary cell. A standard secondary cell carries all of its
reactants within the cell. Lead-acid batteries fall in this category. A second type of secondary cell is
flow batteries. Compared to standard secondary cells, flow batteries carry the reactants on the outside
of the cell which can be made larger or smaller based on capacity needs. These could be economically
beneficial for large-scale uses.
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energy into two types of mechanical energy: kinetic and potential energy. For example,

flywheels employ kinetic energy conversion whereas compressed air energy storage

(CAES) systems and pumped storage hydropower (PSH) rely on potential energy.

In the following, we describe the specific technologies associated with each type of

energy conversion, durability, and cost.

A.1.1 Long-term storage: flywheels, pumped storage

hydropower, and compressed air energy storage

Flywheels use kinetic energy and they consist of a wheel on top of an axle layered

with bearings, a rotor, and an electric motor generator. Electrical energy is delivered to

the flywheel through a reversible motor generator, which causes the rotor to spin and in

turn the flywheel also spins.2 The general principle is that the more rotations the device

is capable of, the more kinetic energy storage potential there is. However, along with

high energy storage potential, faster rotations can also lead to energy loss to friction.

Although bearings are used to reduce these losses some loss of energy is inevitable. Their

commercial cost ranges from $500 to $2000 per kilowatt. Larger flywheels are expected

to be less expensive than smaller ones. Commercial flywheels have the potential to

store between 1-100 kWh with 80% of efficiency. The technology has a high round-trip

efficiency because mechanical energy is the only energy flowing into, through, and out

of the technology until it must be converted for usage. Other benefits include very little

machinery upkeep and a quick 25 msec response time. Full power can be reached in 15

seconds or less. Examples of current uses include New York City’s power network and

Japan’s installations used for research.

Another form of long-term storage technology is pumped storage hydropower (PSH)

plants. They stem from typical hydropower plants where water is stored in a reservoir

2As the wheel moves, kinetic energy is stored in the rotating rotor. When electricity is required back
out of the system, energy stops feeding through the motor. The motor begins to go in the opposite
direction and the flywheel’s rotation speed decreases as energy exits the system. Light materials such
as carbon and glass fiber have been engineered to work at the utility-level to exploit flywheel rotations
since a heavy material will increase friction and reduce rotation speed.
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and released when energy is needed.3 There are 130 GW of capacity in use of this

technology and since long-term energy losses are low, this technology is beneficial for

seasonal storage purposes. PSH plants usually have a roundtrip efficiency of 75-80%. A

disadvantage of this technology is the varied response times, between 10 seconds and 15

minutes to provide power. Another well-known limitation is site availability.4 Regarding

costs, pumped hydropower plants are costly to build. In the U.S., a 500MW-capable plant

could cost as much as $1.1 billion while a more capable (1800MW) plant would cost the

same amount in Zhejiang, China. Despite these challenges, PSH is the most common

large-scale energy storage system used today.5 They are used in China, Australia, Japan,

the United States, Russia, and in parts of Europe.

Finally, compressed-air energy storage (CAES) also makes use of mechanical energy.

CAES is used in textile, industrial motor, and printing industries since the 19th century.

It stores potential energy in the form of pressurized air.6 An advantage of compressed

air systems is that they can provide power in as little as 2-3 minutes. However, the

amount it takes to compress air into storage usually exceeds the amount of the time that

the system can supply energy. The larger the compressor is relative to the turbines, the

faster it generates one hour of electricity. Ultimately it generates between 25-60% more

energy than is required to compress the air during the first stages of the process. The

overall roundtrip efficiency is 65%. Another benefit of CAES is cost. Limited large-scale

usage of CAES only provides provisional expected costs but low ones compared to other

technologies. Unfortunately, a main limitation of CAES is location. There must be

3PSH technology involves a second reservoir that stores the water that was released from the first
repository. Water is relocated to the first reservoir by the use of pumps when excess energy is available.
The reservoirs must be at different heights for this process to be carried out. A larger height difference
and bigger set of reservoirs will yield higher capabilities to store and supply energy.

4There must be a natural height difference or space to engineer the two reservoirs used in the process.
Usually, a natural lake is used as one source and another is built into the site. Another option is creating
two man-made reservoirs. This option makes the overall cost of constructing a PSH plant more expensive
than the combination of using a natural body of water and a man-made one.

5Installments of these technologies were established in the 1970s. Pumped hydropower storage is
often used to store base-load energy from nuclear power plants when it is not needed.

6Off-peak energy is delivered to a motor that supplies it to a compressor. The compressed air is then
stored in a storage chamber and later used by a recuperator that extracts the energy from this vessel
when needed. Following the recuperator step, compressed air is mixed with fuel and used in the turbines
which will ultimately deliver energy to the last step which is the generator. Like PSH, excess energy
supplies the compressor the potential to compress the air as well as store energy in the storage reservoir.
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space to build a compressed air reservoir. Small-scale installations can use above-ground

chambers but commercial and utility-level facilities require underground caverns. The

demand for caverns is high by other industries like natural gas.7

A.1.2 Short-term storage: lead-acid and flow batteries

Batteries store electrical energy from sources such as wind and solar installments as

chemical energy. Lead-acid batteries (LAB), based on the reaction between lead acid and

sulfuric acid, are a popular option for a variety of storage needs. The cost ranges from $400

to $2300 per kWh. Lead-acid batteries can supply power in 5 msec and have a slightly

larger roundtrip efficiency than normal batteries at 75-85%. The durability of these

cells at the utility level is almost 20 years when cycled effectively. Another advantage of

lead-acid batteries is the ease at which they can be translated into large-scale installations

because there is little limitation on location. Currently, the most used secondary cell is

lead-acid batteries, making up over half of global secondary cell purchases. On the other

hand, a disadvantage is that, like many batteries, lead-acid cells can leak over time and

discharge themselves completely. In fact, the large-scale installations of this type of

battery have been short lived due to cell degradation. For this reason, LAB are used in

smaller scale wind and solar farms to store daily power. Another disadvantage of LAB is

their temperature dependance because they have water-based electrolytes.

In addition, flow batteries store chemicals combining batteries and fuel cells. Their

roundtrip efficiency is about 90% because the separation of the cell and the reactants.

They have several main advantages. Their storage depleting capacity is slow, they can

provide power within 100 msec, and they are cheaper than other batteries with a range of

$150-800 per kWh. Note, however, that there are no utility level flow battery installations,

but once built, the most cost-effective installations would be at the large-scale. The flow

7The options for chamber/cavern sites depend on the geology of the area. Hard-rock can be cleared
out to create a cavern. This choice is one of the most expensive options however. Another alternative
are salt caverns which can be created by dissolving salt domes available in many areas of the world.
Aquifers and old oil extraction sites can also be used for cavern-purposes and are the least expensive
alternative. Potential sites were found across 80% of the U.S. so locations worldwide are available, but
they may be limited by the demand from other industries.There is currently only one commercial CAES
plant in function today. It is located in Alabama, U.S. and has been used for over 30 years.
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batteries currently in use are zinc-bromide battery, polysulfide-bromide battery, and the

vanadium redox flow battery.

A.1.3 Superconductors

A technology type that uses electromagnetic conversion is superconducting magnetic

energy storage (SMES).8 The most important advantage over other technologies described

above is that power is available almost immediately. This technology is particularly useful

when demand is immediate. Indeed, superconductors have storage and supply potentials

of up to 100MW. The largest capacity known today is 10 MW. Superconductors can

convert energy in 5 ms. Daily cycling using superconductors can yield an efficiency of

90%. This number will decrease as the technology is used for more long-term purposes.

A limitation of superconductors is that the system must be kept cold.9

A.2 IPC Codes for Electricity Technologies

The complete list of the selected IPC classes used to extract patents for this study is

provided in table A.2.1. There are some electricity patents that are defined as

environmentally friendly. We follow the definition developed by the IPC Committee of

Experts in the IPC Green Inventory for Environmentally Sound Technologies (ESTs).

From this list, we summarize the main EST categories related to our electricity patents

in table A.2.2.

8Superconductors involve a DC current flowing through a storage ring known as the superconducting
loop, creating a magnetic field. The device can store this magnetic field for months if temperature
conditions are adequate. Temperatures must be low enough to surpass the transition temperature. This
temperature indicates the point where the superconducting material’s physical properties change and
current is able to flow without energy loss.

9There is abundant research in finding superconducting material that can work equally as effective
as current materials but at relatively higher temperatures. The most modern superconducting materials
must be kept at around -253 degrees Celsius to function. Liquid hydrogen or liquid helium are used to
keep the coil material cool but this can be an expensive process.
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Table A.2.1: Selected IPC codes for electricity technologies.

Storage

General

H01M002/06-40 Details, processes of manufacture of the non-active parts for batteries.

H01M004 Electrodes

H01M006 Primary cells.

H01M010 Secondary cells.

H01M014 Electrochemical current or voltage generators.

H01M016 Combinations of different types of electrochemical generators.

Fuel Cells

H01M002/00-04 Details, processes of manufacture of the non-active parts for batteries:

cases, jackets or wrappings; lids or covers.

H01M004/86-98 Electrodes for fuel cells.

H01M008 Fuel cells.

H01M012 Hybrid cells.

WIPO

B60K006/28 Arrangement or mounting of plural diverse prime-movers for mutual

or common propulsion, e.g. hybrid propulsion systems comprising

electric motors and internal combustion engines.

B60W010/26 Conjoint control of vehicle sub-units of different type or different

function.

H01G009/155 Electrolytic capacitors, rectifiers, detectors, switching devices,

light-sensitive or temperature-sensitive devices; processes of their

manufacture.

H01M010/44-46 Secondary cells; methods for charging or discharging; accumulators

structurally combined with charging apparatus.

H02J003/28 Arrangements for balancing the load in a network by storage of energy.

H02J007/00 Circuit arrangements for charging or depolarising batteries or for

supplying loads from batteries.

H02J015/00 Systems for storing electric energy.

Hydro

B63H019/02-04 Marine propulsion not otherwise provided for, by using energy derived

from movement of ambient water, e.g. from rolling or pitching of

vessels; propelled by water current.

E02B009 Water-power plants; Layout, construction or equipment, methods of,

or apparatus for.

F03B Machines or engines for liquids.

F03C Positive-displacement engines driven by liquids.

Generation, conversion and distribution

H01B/C/F/G/H/J/K/L/P/Q/R/S/T Basic electric elements (except processes or means for the direct

conversion of chemical energy into electrical energy).

H02B/G/H/J/K/M/N/P/S Generation, conversion or distributionof electric power.

H03B/C/D/F/G/H/J/K/L/M Basic electronic circuitry.

H04B/H/J/K/L/M/N/Q/R/S/W Electric communication technique.

H05B/C/F/G/H/K Electric techniques not otherwise provided for.

H99Z99/00 Subject matter not otherwise provided for in this section.
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Table A.2.2: IPC list of electricity patents in IPC Green Inventory .

Topic IPC codes
Storage of electrical energy H01M 10/44-10/46;

H01G 11/00;
H02J 3/28, 7/00, 15/00

Power supply circuitry H02J
Fuel cells H01M 4/86-4/98, 8/00-8/24, 12/00-12/08
Solar energy H02S

A.3 Additional Figures

Figure A.3.1: Patenting in top ten IPC codes of electricity storage technologies,
1978-2017.

Figure A.3.2: Distribution of patenting by technology type in selected countries,
1978-2017.
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(a) Japan. (b) Japan.

(c) U.S. (d) U.S.

(e) Germany. (f) Germany.

Figure A.3.3: Distribution of patenting in electricity storage, most innovative countries,
1978-2017.

A.4 Constructing the Knowledge Stocks

When a patent is granted, the applicant and the examiner will list all related previous

patents. Therefore, we assume citations indicate a flow of knowledge and use citations to

an earlier patent as the previous technological knowledge upon which the current inventor

could build. In our dataset, every patent application contains information about which

application it has cited and which application has cited it. Following Popp (2002), we
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look at the probability of citation and use an exponential distribution to model flows of

knowledge (Caballero and Jaffe, 1993; Jaffe and Trajtenberg, 1996).

First, we group citations by the year cited, which is denoted CTD, and the year citing

which is CTG for each region. For example, in region US40147, citations of storage

patents granted in 1978 made by storage patents granted in 1995. Denoting citations

in each region as CiCTD,CTG, the number of potentially cited patents granted for in year

CTD as niCTD and the number of potentially citing patents granted in year CTG as

ni,CTG, the probability of citation for patents within each group, p, is shown as A.1.

Pi,CTD,CTG =
ci,CTD,CTG

(ni,CTD) (ni,CTG)
. (A.1)

We then estimate the probability that a patent would be cited by subsequent patents

using A.2. β1 stands for the rate of decay of knowledge, and β2 represents the rate of

diffusion at which newly patented innovation occurs. As an example of it, a patent in

battery technology granted in 1978 might inspire a lot of innovation in 1980 but little in

2019.

Pi,CTD,CTG = αi,CTD,CTGexp[−β1 (CTD − CTG)]∗[1−exp (−β2 (CTD − CTG))]+ε i,CTD,CTG .

(A.2)

With the rate of decay and diffusion estimated above, we construct two stocks of

knowledge for each region:

(1) A simple stock of accumulated previous granted patents:

Ki,t =
t∑

s=1978

PATi,s. (A.3)

(2) A citation-adjusted stock of previous granted patents:

Ki,t =
t∑

s=1978

PATi,sexp[−β1 (t− s)] ∗ [1− exp (−β2 (t− s))]. (A.4)
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A.5 Country-level Analysis

Table A.5.3: Baseline specification using country-level data for all countries.

Dependent variable:

Storage Patents/Generation Patents Storage Patents/Electricity Patents Storage Patents/Generation Patents Storage Patents/Electricity Patents

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

Constant 0.0445 -0.2308 -2.491∗∗∗ -0.3585 -0.6379 -0.2735 -2.72† -0.5827
(1.033) (0.7621) (0.9473) (0.654) (1.187) (1.347) (1.684) (1.015)

Electricity
price

-0.1387 -0.0064 0.4725 -0.0813 -0.0339 -0.0586 0.1617 -0.0444

(0.1995) (0.3467) (0.5493) (0.2999) (0.2986) (0.4201) (0.5475) (0.6202)
KS

t−1 -0.0493 0.0575† -0.0284 0.0624 -0.4653 0.0786 0.6459 0.0807
(0.1056) (0.0394) (0.1865) (0.0437) (0.4433) (0.0824) (3.216) (0.1591)

KR
t−1 0.1458 0.4079 -0.7715 0.0297

(0.3898) (0.9119) (1.68) (1.571)
KFF

t−1 .3241 -.473 .1253 -.139
(.468) (.9516) (1.665) (1.673)

Total R&D -0.0523 -0.0225 -0.0040 -0.2245 -0.0258 -0.0288 0.1474 -0.1354
(0.1598) (0.1256) (0.1709) (0.1795) (0.1652) (0.1831) (0.2136) (0.2365)

Time trend -0.0087 -0.0097 0.0365 0.0151 -0.0227 -0.0056 -0.0075 0.0083
(0.0168) (0.0100) (0.0416) (0.0241) (0.0216) (0.0173) (0.0323) (0.0350)

λ -0.0534 -0.3363 -0.0442 0.2298 0.2067 -0.1609 -0.7339 0.0602
(0.2187) (0.3454) (0.2842) (0.3456) (0.4306) (0.3809) (3.506) (0.3858)

N 536 543 547 558 534 543 544 558
chi2 2 13 3 43 5 41 2 86

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: Total R&D stands for total government R&D spending, which is lagged to instrument for R&D spending. Numbers in parentheses are standard errors.
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A.6 Firm-level Analysis

We create a firm-level database to estimate our baseline specification. This

specification includes a variable to control for firm-level heterogeneity in addition to a

time trend. This dataset includes 7443 firms; 3665 of those firms have applied for at

least one storage patent. In our firm-level estimations, we have considered three

different sub-samples: (1) the full sample with 3665 firms having one or more storage

patent; (2) 690 firms with at least three storage patents accounting for 73% of total

storage patents; (3) 301 firms with at least five storage patents accounting for 64% of all

storage patents.

In the first estimation, using the full sample, the estimation results are consistent with

our baseline estimates using regional-level data in table 1.1, however, they show a lower

significance. We use a large number of dummies to control for firm-specific heterogeneity,

which could explain the lower significance of this analysis. The second estimation, using

a sub-sample that includes 73% of total storage patents, also shows results consistent

with our baseline estimates. In this case, the firm-level analysis finds an even stronger

significance than our baseline regional analysis. Finally, the third estimation, based on

the most innovative firms, shows little statistical significance. This sample only covers

64% of all storage patents and the majority of these firms are located in Japan, the

U.S. and Germany. The lack of variation in this sub-sample, which relies on explanatory

variables such as electricity price and total R&D that are unavailable at the firm level,

may drive the lack of significance in our results. Out of these three estimations, we report

the estimation results of sub-sample (2) in table A.6.4.

Notice that our firm-level estimations rely on a small number of observations. The

reason is that firms with storage patents often have 0 electricity generation and

electricity patents. Since generation and electricity patents are used in the denominator

to calculate our dependent variable, many firms/observations drop from the estimation.

The sub-sample used in table A.6.4 includes 690 firms that apply for 3 or more storage

patents, however, only 112 of these firms have a dependent variable bigger or equal to

zero. Given this limitation, we estimate our baseline model with an alternative
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dependent variable: the total number of storage patents using firm-level data. The

results in table A.6.5 show that the number of observations is much larger than in table

A.6.4. Furthermore, the results in table A.6.5 confirm our main results in table 1.1.

Since our explanatory variables are unavailable at the firm level, we keep the

regional-level analysis as our baseline analysis.
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Table A.6.4: Baseline specification using firm-level data for all countries.

Dependent variable:

Storage Patents/Generation Patents Storage Patents/Electricity Patents Storage Patents/Generation Patents Storage Patents/Electricity Patents

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

Constant -0.2738∗∗∗ -0.1504† -0.6661∗∗ -0.8359† -0.2023 -0.1978∗∗ -0.4876 -0.8904∗

(0.0737) (0.0975) (0.2909) (0.5105) (0.1637) (0.0956) (0.5692) (0.4617)
Electricity
price

-0.0591∗ -0.0426∗ -0.0327 -0.1524† -0.0515 -0.0368 -0.0650 -0.1955

(0.0346) (0.0254) (0.0988) (0.0994) (0.0403) (0.0332) (0.1311) (0.1466)
KS

t−1 -0.0292∗∗ 0.0130 -0.0576 -0.1259∗∗ -0.0345 0.0056 -0.0513 -0.0039
(0.0120) (0.0129) (0.0549) (0.0525) (0.0243) (0.0297) (0.1406) (0.0795)

KRen
t−1 0.0314∗ 0.02324∗∗ 0.0144 -0.0182

(0.0171) (0.0116) (0.0556) (0.0358)
KFF

t−1 -0.0123 -0.0210 0.0114 -0.0793
(0.0242) (0.0209) (0.1187) (0.0920)

Total R&D 0.0356∗∗∗ 0.0208∗ 0.021 0.0673 0.0354∗∗ 0.0355∗∗∗ 0.0080 0.0672
(0.0095) (0.0114) (0.0533) (0.0879) (0.0163) (0.0119) (0.0751) (0.1127)

Time trend 0.0013 -0.0012 0.0062 0.0083 -0.0009 -0.0023 0.0038 0.0080
(0.0013) (0.0017) (0.0110) (0.0065) (0.0029) (0.0020) (0.0114) (0.0147)

Firm ID 9.0e-06 6.3e-07 7.7e-05∗∗∗ 8.6e-05∗∗∗ 5.9e-06 3.0e-06 6.1e-05 7.6e-05∗∗∗

(8.3e-06) (1.4e-05) (1.2e-05) (3.0e-05) (1.7e-05) (8.6e-06) (4.9e-05) (3.0e-05)
λ 0.2485∗∗∗ 0.2449∗∗∗ 0.2958∗∗∗ 0.2091∗∗∗ 0.2373∗∗∗ 0.2368∗∗∗ 0.2507∗∗∗ 0.1622†

(0.0803) (0.0852) (0.0710) (0.0738) (0.0764) (0.0823) (0.0809) (0.1087)
N 347 347 423 423 306 347 382 423
chi2 89 108 89 114 68 117 85 272

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: We use a sub-sample of firms with three or more storage patents. Total R&D stands for total government R&D spending, which is lagged to instrument
for R&D spending. Numbers in parentheses are standard errors.
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Table A.6.5: Baseline specification using firm-level data and the number of storage patents
as a dependent variable.

Dependent variable: the number of storage patents.

simple stock citation-adjusted
stock

simple stock citation-adjusted
stock

Constant -252.4∗∗ -285∗∗ -219.8∗∗∗ -263.1∗∗

(104.8) (127.1) (79.39) (110.1)
Electricity price -100.6∗ -81.38† -88.11† -72.83†

(60.68) (52.7) (55.82) (47.57)
KS

t−1 10.3 17.15∗∗ 10.56 29.47∗∗∗

(7.352) (6.944) (12.07) (10.01)
KRen

t−1 -35.15∗∗∗ -30.24∗∗∗

(11) (9.975)
KFF

t−1 26.51∗∗∗ 16.17
(8.642) (11.32)

Total R&D 23.77∗∗ 21.53∗ 22.3∗∗ 20.45∗

(11) (11.47) (9.831) (11.25)
Time trend 5.916∗∗ 6∗ 5.762∗∗ 5.785∗

(2.958) (3.4) (2.737) (3.319)
Firm ID 0.0068 0.0102∗∗ 0.0003 0.0044

(0.0053) (0.0049) (0.0089) (0.0072)
λ 0.2419∗∗∗ 0.2527∗∗∗ 0.2434∗∗∗ 0.2346∗∗∗

(0.0495) (0.0578) (0.0510) (0.0595)
N 4769 4769 4769 4769
chi2 90 81 124 125

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: We use a sub-sample of firms with three or more storage patents. Total R&D stands for total
government R&D spending, which is lagged to instrument for R&D spending. Numbers in parentheses
are standard errors.

A.7 Exponential Feedback Model

We estimate a dynamic feedback model using a fixed-effect Poisson estimator, which

is robust to different variance-mean relationship (Hausman et al., 1984; Blundell et al.,

1995). We do not estimate a zero-inflated Poisson estimator because we lack region-level

variables that would allow us to estimate the two margins. Another option is a negative

binomial estimator, which is appropriate with patent data that exhibits over-dispersion.

Note, however, that even with over-dispersion, the negative binomial is not necessarily

an appropriate estimator for our main specification due to the large number of regional

and time fixed effects that we would need to incorporate. The estimation results in table

A.7.6 confirm the importance of technological opportunity as a determinant of innovation
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in energy storage. This specification is more in line with the one used by Lazkano et al.

(2017a), but it fails to address exogenous shocks to the electricity sector in different

regions. Moreover, it is less instructive for the transition within the industry since we

need to explore the interaction between electricity generation and storage. For these

reasons, we prefer the log-log estimation.
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Table A.7.6: Fixed-effect Poisson estimation of the exponential model (dependent variable: the number of patent applications).

Dependent variable:
Storage Patents Generation Patents Electricity Patents

simple stock citation-adjusted
stock

simple stock citation-adjusted
stock

simple stock citation-adjusted
stock

Electricity price -0.0136 0.2228 -0.1417 0.0131 -0.0693 0.0365
(0.1680) (0.1997) (0.1673) (0.1806) (0.1238) (0.1317)

KS
t−1 0.0116∗∗∗ 0.0057∗∗ 0.0071∗∗ 0.0029 0.0003 -0.0008

(0.0028) (0.0025) (0.0031) (0.0028) (0.0011) (0.0009)
KRen

t−1 -0.0013 -0.0265∗∗∗ -0.0024 -0.0231∗∗∗ -0.0001 0.0016
(0.0021) (0.0047) (0.0022) (0.0054) (0.0037) (0.0119)

KFF
t−1 0.0012 0.0260∗∗∗ 0.0026 0.0231∗∗∗ 0.0011 0.0007

(0.0021) (0.0047) (0.0022) (0.0053) (0.0037) (0.0115)
Total R&D 5.6e-05∗∗ 7.7e-05∗∗∗ 5.9e-05∗∗ 7.5e-05∗∗∗ 1.1e-05 2.3e-05

(2.6e-05) (2.2e-05) (2.4e-05) (2.4e-05) (3.3e-05) (3.3e-05)
N 11126 11102 11318 11296 11564 11538
chi2 4193 1971 2238 1036 2893 3053

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

Note: Year dummies control for year fixed effects. Total R&D stands for total government R&D spending, which is lagged to instrument for R&D spending.

Numbers in parentheses are standard errors.
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A.8 Pooled-OLS Model

Table A.8.7: Pooled-OLS model with time and regional controls.

Dependent variable:

Storage Patents/Generation Patents Storage Patents/Electricity Patents Storage Patents/Generation Patents Storage Patents/Electricity Patents

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

Constant -0.6435∗∗∗ -0.434∗∗∗ -2.424∗∗∗ -2.277∗∗∗ -0.5671∗∗ -0.306∗ -1.979∗∗∗ -1.903∗∗∗

(0.1884) (0.1579) (0.2316) (0.198) (0.2211) (0.1628) (0.2559) (0.1962)
Electricity
price

-0.0389 -0.0556 -0.2752∗∗∗ -0.2085∗∗∗ -0.0200 -0.0369 -0.2732∗∗∗ -0.1739∗∗∗

(0.0675) (0.0550) (0.0810) (0.0674) (0.0757) (0.0557) (0.0862) (0.0661)
KS

t−1 0.0199∗∗∗ 0.0489∗∗∗ -0.0240∗∗∗ 0.0213∗∗ 0.0455∗∗∗ 0.0757∗∗∗ 0.0727∗∗∗ 0.1108∗∗∗

(0.0063) (0.0089) (0.0075) (0.0106) (0.0090) (0.0101) (0.0103) (0.0117)
KRen

t−1 -0.0214∗∗ -0.0040 -0.0986∗∗∗ -0.0456∗∗∗

(0.0094) (0.0114) (0.0108) (0.0139)
KFF

t−1 -0.0185∗ -0.0597∗∗∗ -0.0581∗∗∗ -0.1794∗∗∗

(0.0095) (0.0149) (0.0109) (0.0180)
Total R&D -0.119 -0.0477 -0.5941∗ -0.7736∗∗ -0.1231 -0.1509 -0.8382∗∗ -1.248∗∗∗

(0.2942) (0.2653) (0.3553) (0.3294) (0.3288) (0.2801) (0.3779) (0.3372)

Region FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES

N 3179 4298 3482 4774 2732 4225 3013 4699
chi2 575 957 14134 18083 573 995 15740 19634

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: The table shows our regression results from a pooled-OLS model with IVs. Total R&D stands for total government R&D spending, which is lagged to
instrument for R&D spending. Numbers in parentheses are standard errors.
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A.9 Construction of the Fixed-weight Price

Index

We build on Linn (2008) and create a fixed-weight price index as instrumental variable

for energy prices. Because the lack of data, we can only build a country-level fixed-weight

price index.

As shown in equation A.5, the price index of country c in year t is obtained from the

average of the share of electricity production from the energy input f in country c over

the sample period, and the price of energy input f in country c at time t:

PIc,t =
1

t− 1978 + 1

t∑
s=1978

(wc,f ∗ pricec,f,s). (A.5)

A.10 Spillover Effects

We adopt the NUT3 definition of region in our empirical analysis. In addition, we

consider three geographic definitions to examine spillover effects by other inventors. Table

A.10.8 presents the complete list of countries, GEO subregions, and GEO regions used to

calculate spillover effects. We construct these measures by adding all patent applications

by other regions in a country/GEO subregion/GEO region minus the number of patents

in NUT3 region i. We only report country-level spillover effects in table A.10.9 since

other definitions provide statistically insignificant results.

Following Jaffe (1986), we measure spillover effects by accounting for technology

relatedness in a region. For each pair of regions (i, j) in a country and year t, we

calculate weights based on their patent shares in storage, renewable and fossil fuel

technologies, which are then used to construct a regional spillover measure. Specifically,

h technology spillover in region i is Si,ht =
∑

i 6=j PijPatjh where weights

Pij =
FiF

′
j

((FiFj)Fji)1/2
are calculated with Fi being a vector with the fraction of the region

i’s patents devoted to technology h (s, ren or ff), and Patjh is the number of total

patents in region j and technology h. Within each country, we calculate all region-pairs
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to construct the spillover measure. On average, each region has none-zero technology

relatedness with 87% of other regions in the same country. Therefore, each region

receives a large percentage of the innovation effort made by a peer region. In figure

A.10.4, we plot the frequency distribution of technology relatedness, and table A.10.10

present the empirical results.

Table A.10.8: List of countries, GEO subregions and GEO regions.

Spillover levels

Country Argentina; Aruba; Australia; Austria; Azerbaijan; Bahamas; Barbados;
Belarus; Belgium; Bermuda; Brazil; British Virgin Islands; Brunei Darussalam;
Bulgaria; Burundi; Canada; Cayman Islands; Chile; China; Colombia;
Croatia; Cyprus; Czech Republic; Denmark; Dominica; Ecuador; Egypt;
Estonia; Finland; France; Gabon; Germany; Greece; Hong Kong, Special
Administrative Region of China; Hungary; India; Indonesia; Iran; Islamic,
Republic of; Ireland; Israel; Italy; Japan; Kazakhstan; Korea, Republic of;
Kuwait; Latvia; Lebanon; Liechtenstein; Lithuania; Luxembourg; Macao,
Special Administrative Region of China; Malaysia; Malta; Mauritius; Mexico;
Monaco; Netherlands; Netherlands Antilles; New Zealand; Norway; Panama;
Philippines; Poland; Portugal; Puerto Rico; Romania; Russian Federation;
Samoa; San Marino; Saudi Arabia; Sierra Leone; Singapore; Slovakia; Slovenia;
South Africa; Spain; Sweden; Switzerland; Taiwan, Republic of China;
Thailand; Turkey; Turks and Caicos Islands; Ukraine; United Arab Emirates;
United Kingdom; United States of America; Uruguay; Venezuela, Bolivarian
Republic of.

GEO Subregion Arabian Peninsula, Australia and New Zealand, Caribbean, Central Africa,
Central Asia, Central Europe, Eastern Africa, Eastern Europe, Mashriq, Meso
America, North America, North East Asia, Northern Africa, South America,
South Asia, South East Asia, South Pacific, Southern Africa, Western Africa,
Western Europe,Western Indian Ocean.

GEO Region Africa, Asia and Pacific, Europe, Latin America and Caribbean, North
America, West Asia.
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Table A.10.9: Country-level spillover effects.

Dependent variable:

Storage Patents/Generation Patents Storage Patents/Electricity Patents Storage Patents/Generation Patents Storage Patents/Electricity Patents

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

Constant -0.3815∗∗ -0.4647∗∗ -0.4863∗ -0.6123∗∗ -0.4218∗∗ -0.5252∗∗∗ -0.5326∗ -0.8272∗∗∗

(0.1786) (0.1905) (0.2573) (0.2817) (0.2105) (0.1853) (0.3002) (0.2132)
Electricity Price -0.1174† -0.1569∗∗ -0.1039 -0.0168 -0.1243† -0.1495∗∗ -0.1199 -0.1415†

(0.0719) (0.0707) (0.0949) (0.0959) (0.0826) (0.0702) (0.1085) (0.0968)
KS

t−1 -0.0317∗∗∗ 0.0235 -0.0924∗∗∗ 0.0083 -0.0336∗∗ 0.0473† -0.1127∗∗∗ 0.0957∗∗

(0.0090) (0.0268) (0.0126) (0.0328) (0.0131) (0.0319) (0.0164) (0.0376)
SpilloversSt−1 0.0034 0.0105 -0.0068 0.0498∗ 0.0016 0.0122 -0.0041 0.1715∗∗∗

(0.0087) (0.0168) (0.0112) (0.0275) (0.0116) (0.0435) (0.0132) (0.0634)
KRen

t−1 -0.0032 -0.0108 0.0313∗∗ -0.1223∗∗∗

(0.0119) (0.0292) (0.0139) (0.0457)
SpilloversRen

t−1 0.0120 0.0326 -0.0147 -0.0482
(0.0110) (0.1377) (0.0122) (0.1264)

KFF
t−1 0.0039 -0.0497∗ -0.0060 -0.1193∗∗∗

(0.0118) (0.0298) (0.0144) (0.0425)
SpilloversFF

t−1 -0.0046 -0.0243 -0.0005 -0.1012
(0.0134) (0.1484) (0.0145) (0.1225)

Total R&D 0.0375† 0.0135 0.0022 -0.0967∗∗ 0.0330 0.0219 0.0147 -0.0105
(0.0242) (0.0251) (0.0362) (0.0406) (0.0295) (0.0254) (0.0405) (0.0341)

Time Trend 0.0069∗ 0.0057† 0.0099∗∗ 0.0047 0.0072∗∗ 0.0063† 0.0113∗∗ 0.0070†

(0.0035) (0.0040) (0.0051) (0.0056) (0.0036) (0.0040) (0.0052) (0.0045)
λ 0.1452∗∗∗ 0.1190∗∗∗ 0.2944∗∗∗ 0.2611∗∗∗ 0.1442∗∗∗ 0.1168∗∗∗ 0.2729∗∗∗ 0.2615∗∗∗

(0.0327) (0.0326) (0.0384) (0.0398) (0.0336) (0.0348) (0.0487) (0.0369)
N 2218 2635 2495 2997 2006 2608 2274 2970
chi2 28 17 120 80 39 23 100 145

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: Spillovers are from all regions except own in the same country. Total R&D stands for total government R&D spending, which is lagged to instrument for
R&D spending. Numbers in parentheses are standard errors.
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Figure A.10.4: Frequency distribution of technology relatedness.

Table A.10.10: Country-level spillover measure accounting for technology relatedness in
each region-pair and year.

Dependent variable:
Storage
Patents/Generation
Patents

Storage
Patents/Electricity
Patents

Storage
Patents/Generation
Patents

Storage
Patents/Electricity
Patents

Constant -0.5307∗∗∗ -0.4584† -0.564∗∗∗ -0.6202∗∗

(0.1997) (0.3113) (0.2012) (0.246)
Electricity Price -0.1268∗ -0.0111 -0.1442∗ -0.1243

(0.0750) (0.0940) (0.0753) (0.0887)
KS

t−1 0.0415 0.0355 0.0512† 0.0904∗∗

(0.0307) (0.0364) (0.0322) (0.0391)
SpilloversSt−1 0.0390† 0.0249 0.0518† 0.0780∗∗

(0.0268) (0.0323) (0.0359) (0.0367)
KRen

t−1 -0.0088 -0.0388
(0.0288) (0.0413)

SpilloversRen
t−1 0.0168 0.1316

(0.0573) (0.1029)
KFF

t−1 -0.0266 -0.1723∗∗∗

(0.0305) (0.0489)
SpilloversFF

t−1 -0.0326 -0.217∗

(0.0560) (0.1147)
Total R&D 0.0055 -0.1088∗∗ 0.0177 -0.0342

(0.0287) (0.044) (0.0280) (0.0338)
Time Trend 0.0075∗∗ 0.0045 0.0081∗∗ 0.0083∗

(0.0036) (0.0055) (0.0034) (0.0045)
λ 0.1122∗∗∗ 0.2221∗∗∗ 0.1131∗∗∗ 0.2358∗∗∗

(0.0413) (0.0417) (0.0420) (0.0374)
N 2475 2824 2457 2806
chi2 26 50 33 104

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: All internal knowledge stocks are citation adjusted. The spillover effects are based on the spillover
measure of Jaffe (1986). Total R&D stands for total government R&D spending, which is lagged to
instrument for R&D spending. Numbers in parentheses are standard errors.
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A.11 Alternative Proxies for the Electricity

Demand

While we use knowledge stocks of renewable and fossil fuel technologies in table 1.1,

and shares of electricity generated from renewables and fossil fuels in 1.3 as channels

incorporating electricity demand, table A.11.11 uses proxies in a macroeconomic way:

using generation, capacity and consumption, respectively, in different panels.

Table A.11.12 examines different R&D policies instead of a total R&D spending in

our baseline table. Panel A controls for R&D spending in storage, renewable-energy

generation and fossil-fuel generation. Note that not all regions have detailed R&D

information in our sample time period. That explains the drop of observations and

might lead to the poor performance. Panel B takes GDP for the size of each economy

and GDP per capita for its productivity level as macroeconomic controls.
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Table A.11.11: Estimates with electricity generation, capacity and consumption.

Dependent variable:
Storage Patents/Generation Patents Storage Patents/Electricity Patents

simple stock citation-adjusted
stock

simple stock citation-adjusted
stock

Panel A: with electricity generation
Constant -0.5484∗∗∗ -0.6909∗∗∗ -0.5021∗ -0.6907∗∗

(0.1815) (0.1667) (0.3052) (0.3448)
Electricity price -0.1417∗∗ -0.1609∗∗∗ -0.0865 -0.0292

(0.0658) (0.0617) (0.0970) (0.0985)
KS

t−1 -0.0311∗∗∗ 0.0423∗ -0.1028∗∗∗ 0.0198
(0.0079) (0.0238) (0.0124) (0.0344)

Total R&D -0.0257 -0.0613∗ -0.0489 -0.1545∗∗∗

(0.0389) (0.0350) (0.0530) (0.0598)
Electricity
generation

0.0963∗∗ 0.1190∗∗∗ 0.0507 0.0987

(0.0397) (0.0380) (0.0696) (0.0809)
Time trend 0.0091∗∗∗ 0.0069∗∗ 0.0093† 0.0049

(0.0032) (0.0031) (0.0056) (0.0057)
λ 0.1362∗∗∗ 0.1178∗∗∗ 0.2611∗∗∗ 0.2126∗∗∗

(0.0364) (0.0295) (0.0431) (0.0440)
N 2204 2609 2491 2986
chi2 55 47 111 43
Panel B: with electricity capacity
Constant -0.4064∗∗ -0.5136∗∗∗ -0.4260† -0.5354∗

(0.1976) (0.1953) (0.2723) (0.3042)
Electricity price -0.1582∗∗ -0.1790∗∗∗ -0.0970 -0.0431

(0.0664) (0.0691) (0.0943) (0.0939)
KS

t−1 -0.0310∗∗∗ 0.0409† -0.1023∗∗∗ 0.0196
(0.0091) (0.0276) (0.0124) (0.0346)

Total R&D -0.0351 -0.0725∗ -0.0774 -0.1874∗∗∗

(0.0461) (0.0439) (0.0561) (0.0646)
Electricity capacity 0.1081∗∗ 0.1335∗∗∗ 0.0906 0.1432†

(0.0491) (0.0494) (0.0780) (0.0924)
Time trend 0.0087∗∗ 0.0065∗ 0.0086† 0.0041

(0.0036) (0.0036) (0.0055) (0.0057)
λ 0.1371∗∗∗ 0.1189∗∗∗ 0.2594∗∗∗ 0.2110∗∗∗

(0.0374) (0.0392) (0.0420) (0.0439)
N 2204 2609 2491 2986
chi2 44 37 113 46
Panel C: with electricity consumption
Constant -.5458∗∗∗ -.6916∗∗∗ -.4962† -.6824∗∗

(.1745) (.1953) (.306) (.3478)
Electricity price -.1417∗∗ -.1603∗∗ -.08698 -.03001

(.06243) (.06897) (.09764) (.09761)
KS

t−1 -.03106∗∗∗ .04194∗ -.1028∗∗∗ .01998
(.00803) (.02549) (.01229) (.03436)

Total R&D -.02451 -.05969† -.04591 -.1541∗∗

(.03508) (.03881) (.0522) (.06015)
Electricity
consumption

.09548∗∗∗ .1183∗∗∗ .04688 .09786

(.03448) (.04295) (.06928) (.08204)
Time trend .00905∗∗∗ .00697∗∗ .00933∗ .0049

(.00304) (.00335) (.00552) (.00575)
λ .1361∗∗∗ .1176∗∗∗ .2615∗∗∗ .2122∗∗∗

(.03189) (.03487) (.04243) (.04401)
N 2204 2609 2491 2986
chi2 57 42 115 43

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

Note: Total R&D stands for total government R&D spending, which is lagged to instrument for R&D

spending. Numbers in parentheses are standard errors.
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Table A.11.12: Estimates with R&D spending in storage, renewable and fossil fuel
policies, and controls for GDP and GDP per capita.

Dependent variable:
Storage Patents/Generation Patents Storage Patents/Electricity Patents

simple stock citation-adjusted stock simple stock citation-adjusted stock
Panel A: with different R&D spendings
Constant -0.3955∗∗ -0.3114† -1.0150∗∗∗ -1.3860∗∗∗

(0.1857) (0.2038) (0.3701) (0.4944)
Electricity price -0.2060 -0.1738 -0.1702 -0.0381

(0.1445) (0.1302) (0.2060) (0.1736)
KS

t−1 -0.0108 0.0380 -0.1180∗∗∗ 0.0535
(0.0187) (0.0367) (0.0295) (0.0565)

R&D in storage 0.0004 -0.0208 0.0239 0.0164
(0.0521) (0.0505) (0.0949) (0.0946)

R&D in renewables 0.1430∗∗∗ 0.1203∗∗ 0.1629∗∗ 0.1246
(0.0533) (0.0522) (0.0760) (0.0870)

R&D in fossil fuels -0.0481 -0.0328 -0.0744 -0.1005
(0.0497) (0.0502) (0.0934) (0.0853)

Time trend -0.0080 -0.0122 0.0057 0.0073
(0.0090) (0.0094) (0.0137) (0.0140)

λ 0.0525 0.0389 0.2452∗∗ 0.2052†

(0.0568) (0.0521) (0.1050) (0.1248)
N 663 800 756 934
chi2 9 14 65 18
Panel B: with GDP and GDP per capita
Constant -1.9910 -1.0560 0.2790 -0.0353

(1.9740) (1.8750) (3.5750) (3.7140)
Electricity price -0.1310∗ -0.1489∗∗ -0.0373 0.0110

(0.0723) (0.0690) (0.0980) (0.0990)
KS

t−1 -0.0324∗∗∗ 0.0281 -0.1002∗∗∗ 0.0114
(0.0098) (0.0252) (0.0115) (0.0325)

Total R&D -0.0295 -0.0425 -0.0913∗ -0.1699∗∗∗

(0.0423) (0.0369) (0.0500) (0.0542)
GDP 0.1103∗∗ 0.1079∗∗ 0.1117† 0.1366∗

(0.0532) (0.0493) (0.0702) (0.0803)
GDP per capita 0.0504 -0.0540 -0.1711 -0.1802

(0.2076) (0.2026) (0.3415) (0.3502)
Time trend 0.0056 0.0060 0.0063 0.0029

(0.0058) (0.0053) (0.0082) (0.0093)
λ 0.1459∗∗∗ 0.1289∗∗∗ 0.2542∗∗∗ 0.2060∗∗∗

(0.0427) (0.0410) (0.0426) (0.0428)
N 2168 2573 2449 2942
chi2 41 29 119 44

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

Note: Government R&D spending in storage, renewable-energy generation and fossil-fuel generation

are used as R&D policy proxies. GDP stands for the size of the economy while GDP per capita refer

to the productivity level. Total R&D stands for total government R&D spending, which is lagged to

instrument for R&D spending. Numbers in parentheses are standard errors.
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A.12 Robustness Tests

Table A.12.13: Baseline estimates with a price-square term using data from 1978 to 2019.

Dependent variable:

Storage Patents/Generation Patents Storage Patents/Electricity Patents Storage Patents/Generation Patents Storage Patents/Electricity Patents

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

Constant 0.0322 0.4498 -0.7389 0.2568 -0.1335 0.1792 -0.7264 -0.5467
(1.2450) (1.0520) (1.3050) (1.448) (1.144) (1.058) (1.327) (1.126)

Electricity
price

-0.0385 -0.0137 -0.1073 0.11 -0.0679 -0.0543 -0.0899 -0.0030

(0.1563) (0.1379) (0.2009) (0.2067) (0.1451) (0.1338) (0.2134) (0.1645)
Electricity
price2

-0.0291 -0.0686 0.0169 -0.0592 -0.0199 -0.0521 0.0064 -0.0125

(0.0825) (0.0711) (0.0960) (0.1033) (0.0772) (0.07) (0.0988) (0.0808)
KS

t−1 -0.0429∗∗∗ 0.0307 -0.1013∗∗∗ 0.0245 -0.0477∗∗∗ 0.0578∗ -0.1293∗∗∗ 0.0885∗∗

(0.0092) (0.0262) (0.0114) (0.0301) (0.0111) (0.0309) (0.0156) (0.0363)
KRen

t−1 0.0130 0.0062 0.0171 -0.0634†

(0.0124) (0.0286) (0.0140) (0.0401)
KFF

t−1 -0.0096 -0.0724∗∗ 0.0159 -0.1035∗∗

(0.0130) (0.0358) (0.0137) (0.0436)
Total R&D 0.0453† 0.0143 0.0030 -0.0809∗∗ 0.0522† 0.0305 0.0053 -0.0356

(0.0314) (0.0276) (0.0311) (0.0363) (0.0328) (0.0292) (0.0340) (0.0308)
Time trend 0.0098∗∗∗ 0.0085∗∗ 0.0087† 0.0058 0.0103∗∗∗ 0.0090∗∗∗ 0.0098∗ 0.0074†

(0.0036) (0.0038) (0.0053) (0.0055) (0.0036) (0.0035) (0.0055) (0.0045)
λ 0.1422∗∗∗ 0.112∗∗∗ 0.2837∗∗∗ 0.2445∗∗∗ 0.1453∗∗∗ 0.1141∗∗∗ 0.2614∗∗∗ 0.2673∗∗∗

(0.0371) (0.0379) (0.0399) (0.0429) (0.0373) (0.0382) (0.047) (0.0395)
N 2215 2629 2490 2984 2010 2612 2275 2967
chi2 38 19 140 58 44 25 118 93

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: Total R&D stands for total government R&D spending, which is lagged to instrument for R&D spending. Numbers in parentheses are standard errors.

100



Table A.12.14: Heterogeneous impact of energy prices.

Dependent variable:
Storage Patents/Generation Patents Storage Patents/Electricity Patents

simple stock citation-adjusted stock simple stock citation-adjusted stock

Constant -.5067∗∗ -.668∗∗∗ -.4446 -.6613∗

(.2336) (.2404) (.3537) (.3807)
Electricity price -.4314∗∗ -.4438∗∗ -.3877 .02639

(.1966) (.1867) (.2974) (.3057)
KS

t−1 -.04188∗∗∗ .02439 -.1012∗∗∗ .0154
(.00807) (.02499) (.01185) (.03078)

Share of renewables .00033 .00109 .0051 .00763
(.0099) (.00873) (.01498) (.01374)

Share fossil-fuels .00214 .00218 .00174 .004
(.00218) (.00211) (.00258) (.00292)

Total R&D .03991 .02155 -.02091 -.1∗∗

(.02791) (.02558) (.04219) (.04756)
Time trend 0.0120∗∗∗ 0.0097∗∗ 0.0034 -0.0002

(0.0039) (0.0040) (0.0063) (0.0059)
Price×Ren share -.00847 -.00616 .02027 .02145

(.01749) (.0149) (.02613) (.02425)
Price×FF share .00567∗ .005∗ .00425 -.00298

(.00312) (.00302) (.00472) (.00489)
λ .1577∗∗∗ .1293∗∗∗ .2461∗∗∗ .2033∗∗∗

(.04352) (.03869) (.04487) (.04581)
N 2168 2573 2449 2942
chi2 45 26 132 54

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

Note: Total R&D stands for total government R&D spending, which is lagged to instrument for R&D

spending. Numbers in parentheses are standard errors.
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Table A.12.15: Baseline estimates using early-period and later-period subsamples for all regions.

Dependent variable:

Storage Patents/Generation Patents Storage Patents/Electricity Patents Storage Patents/Generation Patents Storage Patents/Electricity Patents

simple stock citation-adjusted
stock

simple stock citation-adjusted
stock

simple stock citation-adjusted
stock

simple stock citation-adjusted
stock

Panel A: Sample 1978-1989:

Constant -0.4474 -0.5011 0.1935 0.3564 -0.2535 -0.3626 0.0916 0.12
(0.4713) (0.4384) (0.7008) (0.7078) (0.4467) (0.447) (0.6114) (0.5816)

Electricity price -0.1357 -0.02577 -0.1583 0.0033 -0.1646 -0.1027 -0.0880 0.0004
(0.1586) (0.1532) (0.1905) (0.2193) (0.1447) (0.1445) (0.2165) (0.2279)

KSt−1 -0.0340∗ -0.0023 -0.1141∗∗∗ 0.1129† -0.0283∗ 0.0231 -0.1002∗∗∗ .03316∗∗∗

(0.0180) (0.0508) (0.0206) (0.0694) (0.0165) (0.0598) (0.0285) (0.0900)
KRent−1 0.0170 -0.0414 0.0189 -0.0585

(0.0178) (0.0533) (0.0279) (0.1121)
KFFt−1 -0.0290 -0.0230 -0.0245 -0.2256∗

(0.0240) (0.0731) (0.0242) (0.1327)
Total R&D 0.0529 0.0451 -0.0660 -0.177∗ 0.0221 0.0327 -0.0803 -0.1127∗

(0.0492) (0.0434) (0.0847) (0.0923) (0.0506) (0.0491) (0.0750) (0.0682)
Time trend -0.0019 -0.0084 -0.0225 -0.0353 0.0095 -0.0138 -0.0136 -0.0210

(0.0151) (0.0211) (0.0193) (0.0249) (0.0129) (0.0162) (0.0170) (0.0235)
λ 0.0730 0.0657 0.2229∗∗∗ 0.1818∗∗ 0.1307∗∗ 0.1238∗∗ 0.2018∗∗ 0.2915∗∗∗

(0.0616) (0.0572) (0.0773) (0.0902) (0.0651) (0.0617) (0.0971) (0.0685)
N 619 660 675 726 569 644 627 711
chi2 9 5 51 14 11 13 33 49

Panel B: Sample 1990-2019:

Constant -0.4658∗∗ -0.6132∗∗∗ -0.4858∗ -0.6351∗∗ -0.4759∗ -0.5546∗∗∗ -0.4554 -0.7222∗∗∗

(0.1966) (0.2082) (0.2722) (0.2781) (0.2625) (0.2021) (0.32) (0.2246)
Electricity price -0.193∗∗ -0.2097∗∗ -0.1469 -0.0683 -0.3141∗∗∗ -0.275∗∗∗ -0.1697 -0.1003

(0.0859) (0.0927) (0.1214) (0.1095) (0.1069) (0.0857) (0.1212) (0.0941)
KSt−1 -0.0523∗∗∗ 0.0449 -0.0967∗∗∗ 0.0149 -0.0407∗∗ 0.0264 -0.1006∗∗∗ 0.0565†

(0.0120) (0.0383) (0.0147) (0.0372) (0.0162) (0.0335) (0.0181) (0.0363)
KRent−1 0.0197 -0.0057 0.0019 -0.1164∗∗

(0.0152) (0.0351) (0.0196) (0.0506)
KFFt−1 -0.0105 -0.0519 -0.0121 -0.0765†

(0.0156) (0.0362) (0.0183) (0.05)
Total R&D 0.0849∗∗∗ 0.0452† 0.0024 -0.0586 0.06754∗ 0.0436 -0.0055 -0.0209

(0.0271) (0.0297) (0.0442) (0.0454) (0.0371) (0.0317) (0.0503) (0.0412)
Time trend 0.0111∗ 0.0105† 0.0122† 0.0102 0.0147∗∗∗ 0.0092∗ 0.0181∗∗ 0.0080

(0.0063) (0.0065) (0.0081) (0.0090) (0.0055) (0.0054) (0.0083) (0.0076)
λ 0.1306∗∗ 0.1131∗ 0.264∗∗∗ 0.2504∗∗∗ 0.0323 0.0349 0.2419∗∗∗ 0.2621∗∗∗

(0.0570) (0.0641) (0.0555) (0.0612) (0.0503) (0.0514) (0.0652) (0.0558)
N 1427 1772 1629 2056 1294 1780 1511 2078
chi2 33 17 74 35 27 14 84 46

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

Note: Total R&D stands for total government R&D spending, which is lagged to instrument for R&D spending. Numbers in parentheses are standard errors.
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Table A.12.16: Baseline specification excluding data from the U.S..

Dependent variable:

Storage Patents/Generation Patents Storage Patents/Electricity Patents Storage Patents/Generation Patents Storage Patents/Electricity Patents

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

Constant -0.0274 -0.1377 -0.1661 -0.1659 -0.0308 -0.1367 -0.2809 -0.5524∗∗

(0.2083) (0.2044) (0.2385) (0.2715) (0.2298) (0.2133) (0.2554) (0.2262)
Electricity
price

-0.1373∗ -0.162∗∗ 0.0135 0.0412 -0.1698∗ -0.1921∗∗ 0.0066 -0.0123

(0.0813) (0.0744) (0.0907) (0.0893) (0.0893) (0.0765) (0.0888) (0.0837)
KS

t−1 -0.0175∗ 0.0214 -0.0892∗∗∗ 0.0350 -0.0126 0.0292 -0.0980∗∗∗ 0.1101∗∗

(0.0096) (0.0295) (0.0130) (0.0362) (0.0148) (0.0338) (0.0198) (0.0456)
KRen

t−1 0.0119 0.0609∗∗ 0.0184 -0.0555
(0.0158) (0.0280) (0.0171) (0.0530)

KFF
t−1 -0.0196† -0.0754∗ -0.0234 -0.1779∗∗∗

(0.0128) (0.0394) (0.0168) (0.0622)
Total R&D -0.0335 -0.0388 -0.0561 -0.1365∗∗∗ -0.0345 -0.0353 -0.0450 -0.0557†

(0.0330) (0.0322) (0.0413) (0.0453) (0.0354) (0.0332) (0.0427) (0.0378)
Time trend 0.0070∗ 0.0087∗∗ 0.0045 0.0015 0.0074∗ 0.0088∗∗ 0.0068 0.0060

(0.0041) (0.0040) (0.0050) (0.0054) (0.0038) (0.0042) (0.0057) (0.0048)
λ 0.1096∗∗∗ 0.0970∗∗ 0.2041∗∗∗ 0.2283∗∗∗ 0.1066∗∗∗ 0.0948∗∗ 0.1635∗∗∗ 0.2324∗∗∗

(0.0375) (0.0404) (0.0478) (0.056) (0.0389) (0.0405) (0.0624) (0.0519)
N 1651 1999 1845 2256 1486 1985 1673 2242
chi2 16 13 94 46 21 20 85 80

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: Total R&D stands for total government R&D spending, which is lagged to instrument for R&D spending. Numbers in parentheses are standard errors.
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Table A.12.17: Baseline specification using data from the three most innovative countries – Japan, the U.S. and Germany.

Dependent variable:

Storage Patents/Generation Patents Storage Patents/Electricity Patents Storage Patents/Generation Patents Storage Patents/Electricity Patents

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

simple
stock

citation-adjusted
stock

Constant -0.3939 -0.5455∗ -0.5053† -0.2823 -0.3452 -0.4741† -0.5937† -0.6702∗∗

(0.2915) (0.3037) (0.337) (0.4501) (0.3416) (0.3053) (0.3683) (0.314)
Electricity
price

-0.0630 -0.1413∗ -0.0089 0.0548 -0.0202 -0.1346† 0.0111 0.0081

(0.0807) (0.0804) (0.0920) (0.1002) (0.0801) (0.0856) (0.107) (0.0717)
KS

t−1 -0.0055 0.0831∗∗ -0.0678∗∗∗ -0.0988∗∗∗ -0.0247∗ -0.0746∗∗ -0.0704∗∗∗ -0.0571∗

(0.011) (0.0320) (0.0120) (0.0325) (0.0150) (0.0333) (0.0202) (0.0318)
KRen

t−1 0.0359∗∗ 0.0271 0.0048 -0.0968∗∗

(0.0167) (0.0326) (0.0195) (0.0469)
KFF

t−1 0.0003 -0.0107 -0.0072 -0.1032∗∗

(0.0132) (0.0220) (0.0183) (0.0447)
Total R&D 0.0172 0.0280 -0.0280 -0.116∗∗ -0.0026 0.0186 -0.0339 -0.0498

(0.0349) (0.0353) (0.0416) (0.0542) (0.0415) (0.0357) (0.0441) (0.0428)
Time trend 0.0042 0.005 0.0102∗∗ 0.0107∗ 0.0033 0.0045 0.0109∗∗ 0.0135∗∗∗

(0.003) (0.0035) (0.0044) (0.0059) (0.0030) (0.0036) (0.005) (0.0045)
λ 0.0788∗∗ 0.0573 0.2445∗∗∗ 0.2512∗∗∗ 0.0876∗∗ 0.0553† 0.1902∗∗∗ 0.2512∗∗∗

(0.0402) (0.0413) (0.0376) (0.0489) (0.0402) (0.0366) (0.0606) (0.0494)
N 1380 1595 1555 1824 1259 1585 1429 1814
chi2 7 13 126 72 11 14 90 146

Significance levels : †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: Total R&D stands for total government R&D spending, which is lagged to instrument for R&D spending. Numbers in parentheses are standard errors.
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Appendix B

Appendix to Chapter 2

B.1 IPC Codes for Storage Technologies

Table B.1.1: Selected IPC codes for battery and fuel cell technologies.

Batteries

H01M002/06-40 Details, processes of manufacture of the non-active parts for batteries.
H01M004 Electrodes
H01M006 Primary cells.
H01M010 Secondary cells.
H01M014 Electrochemical current or voltage generators.
H01M016 Combinations of different types of electrochemical generators.

Fuel Cells

H01M002/00-04 Details, processes of manufacture of the non-active parts for batteries:
cases, jackets or wrappings; lids or covers.

H01M004/86-98 Electrodes for fuel cells.
H01M008 Fuel cells.
H01M012 Hybrid cells.
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B.2 Additional Figures

(a) Environmental taxes.

(b) FITs.

(c) Trading schemes.

Figure B.2.1: The stringency of three policy types for the top ten countries, 1990-2015.
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B.3 Baseline estimates using non-university

patents

Table B.3.2: Firm-level baseline estimates using non-university patents.

Dependent variable: the number of storage patents
(1) (2) (3) (4) (5) (6)
Coeff. %Change Coeff. %Change Coeff. %Change

Constant -1.839∗∗∗ -2.602∗∗∗ -2.741∗∗∗

(0.2264) (0.2658) (0.2715)
Energy price indext−1 2.1e-08∗∗ 0%∗∗ 2.4e-08∗∗ 0%∗∗ 3.0e-08∗∗∗ 0%∗∗∗

(9.3e-09) (9.4e-09) (1.0e-08)
Kt−1 0.292∗∗∗ 33.9%∗∗∗ 0.2801∗∗∗ 32.3%∗∗∗ 0.2735∗∗∗ 31.5%∗∗∗

(0.0235) (0.0231) (0.0227)
Spilloverst−1 0.0042∗∗∗ 0.4%∗∗∗ 0.0012∗ 0.1%∗ 0.0009 0.1%

(0.0005) (0.0008) (0.0008)
Market EPSt−1 0.4694∗∗∗ 59.9%∗∗∗

(0.1448)
Environmental
Taxest−1

0.7175∗∗∗ 104.9%∗∗∗ 0.7683∗∗∗ 115.6%∗∗∗

(0.1108) (0.1115)
Feed-in Tariffst−1 0.0953∗ 10%∗

(0.0504)
FIT Solart−1 0.1128† 11.9%†

(0.0749)
FIT Windt−1 -0.0372 -3.65%

(0.0545)
Trading Schemet−1 .04671 4.8%

(0.1737)
Certificates: CO2t−1 0.1555∗ 16.8%∗

(0.0895)
Certificates: Greent−1 -0.3349∗∗ -28.46%∗∗

(0.1598)
Certificates: Whitet−1 -1.283∗∗ -72.27%∗∗

(0.5541)

Pre-sample Firm -0.0467 -4.57% -0.0150 -1.49% -0.0037 -0.37%
(0.0486) (0.0487) (0.0478)

Pre-sample Zero -1.149∗∗∗ -68.3%∗∗∗ -1.142∗∗∗ -68.1%∗∗∗ -1.11∗∗∗ -67.05%∗∗∗

(0.0978) (0.0979) (0.0976)
Year YES YES YES
N 3894 3894 3894
chi2 949 982 1009

Significance levels: †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: The citation-adjusted knowledge in the last pre-sample year (t = 1989) is used as the firm fixed
effect. The last-two-year data was weighted with application granted distribution to address truncation
problem. The 1st lag of all explanatory variables is used.
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B.4 Baseline estimates with a country fixed

effect

Table B.4.3: Firm-level baseline estimates with country fixed effects.

Dependent variable: the number of storage patents
(1) (2) (3) (4) (5) (6)
Coeff. %Change Coeff. %Change Coeff. %Change

Constant -1.58 -1.623 -1.736†

(1.148) (1.165) (1.167)
Energy price indext−1 -4.0e-08† 0%† -4.1e-08† 0%† -1.3e-08 0%

(2.5e-08) (2.7e-08) (3.3e-08)
Kt−1 0.2908∗∗∗ 33.8%∗∗∗ 0.2727∗∗∗ 31.3%∗∗∗ 0.288∗∗∗ 33.4%∗∗∗

(0.0235) (0.0230) (0.0233)
Spilloverst−1 -0.0021∗∗ -0.21%∗∗∗ -0.0021∗∗ -0.21%∗∗ -0.0020∗∗ -0.2%∗∗∗

(0.0009) (0.0010) (0.0010)
Market EPSt−1 -0.2081 -18.78%

(0.2121)
Environmental
Taxest−1

-0.0322 -3.17% 0.0402 4.1%

(0.2783) (0.2965)
Feed-in Tariffst−1 -0.0591 -5.74%

(0.0743)
FIT Solart−1 0.0137 1.4%

(0.0968)
FIT Windt−1 -0.0703 -6.79%

(0.0631)
Trading Schemet−1 -0.1709 -15.71%

(0.1881)
Certificates: CO2t−1 0.0376 3.8%

(0.0956)
Certificates: Greent−1 -0.3581∗∗ -30.1%∗∗

(0.1812)
Certificates: Whitet−1 -1.153 -68.42%

(0.8436)

Pre-sample Firm -0.0508 -4.86% -0.0142 -1.41% -0.0410 -4.02%
(0.0483) (0.0476) (0.0483)

Pre-sample Zero -1.134∗∗∗ -67.83%∗∗∗ -1.114∗∗∗ -67.18%∗∗∗ -1.118∗∗∗ -67.31%∗∗∗

(0.1048) (0.0985) (0.1053)
Country YES YES YES
Year YES YES YES
N 3894 3894 3894
chi2 1013 1023 1026

Significance levels: †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: The citation-adjusted knowledge in the last pre-sample year (t = 1989) is used as the firm fixed
effect. The last-two-year data was weighted with application granted distribution to address truncation
problem. The 1st lag of all explanatory variables is used.
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B.5 Baseline estimates on generation

patents

Table B.5.4: Firm-level estimates on total generation patent.

Dependent variable: the number of total generation patents
(1) (2) (3) (4) (5) (6)
Coeff. %Change Coeff. %Change Coeff. %Change

Constant -0.292 -0.0356 -0.0602
(0.1305) (0.143) (0.1438)

Energy price indext−1 -2.7e-08∗∗∗ 0%∗∗∗ -2.8e-08∗∗∗ 0%∗∗∗ -3.0e-08∗∗∗ 0%∗∗∗

(5.6e-09) (6.5e-09) (6.7e-09)
Kt−1 0.124∗∗∗ 13.2%∗∗∗ 0.126∗∗∗ 13.4%∗∗∗ 0.126∗∗∗ 13.4%∗∗∗

(0.0081) (0.0083) (0.0082)
Spilloverst−1 0.0025∗∗∗ 0.2%∗∗∗ 0.0030∗∗∗ 0.3%∗∗∗ 0.0035∗∗∗ 0.4%∗∗∗

(0.0009) (0.0011) (0.0012)
Market EPSt−1 -0.2042∗∗ -18.47%∗∗

(0.0830)
Environmental
Taxest−1

-0.0965† -9.2%† -0.912 -8.72%

(0.0661) (0.0664)
Feed-in Tariffst−1 -0.0693∗∗ -6.7%∗∗

(0.0298)
FIT Solart−1 -0.1669∗∗∗ -15.38%∗∗∗

(0.0487)
FIT Windt−1 0.0468† 4.8%†

(0.0295)
Trading Schemet−1 -0.1016 -9.66%

(0.1106)
Certificates: CO2t−1 0.0238∗∗ 2.4%

(0.0635)
Certificates: Greent−1 0.0947 9.9%

(0.0907)
Certificates: Whitet−1 -0.2588† -22.8%†

(0.1626)

Pre-sample Firm -0.0118 -1.17% -0.0139∗ -1.38%∗ -0.0121† -1.2%†

(0.0083) (0.0083) (0.0082)
Pre-sample Zero -0.8492∗∗∗ -57.22%∗∗∗ -0.8948∗∗∗ -59.13%∗∗∗ -0.8476∗∗∗ -57.15%∗∗∗

(0.0648) (0.0654) (0.065)
Year YES YES YES
N 3894 3894 3894
chi2 1705 1708 1720

Significance levels: †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: The citation-adjusted knowledge in the last pre-sample year (t = 1989) is used as the firm fixed
effect. The last-two-year data was weighted with application granted distribution to address truncation
problem. The 1st lag of all explanatory variables is used.
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Table B.5.5: Firm-level estimates on fossil-fuel generation technologies

Dependent variable: the number of fossil-fuel generation patents
(1) (2) (3) (4) (5) (6)
Coeff. %Change Coeff. %Change Coeff. %Change

Constant 0.0449 0.1032 0.1631
(0.136) (0.1556) (0.1563)

Energy price indext−1 7.7e-09 0% 2.6e-09 0% -4.5e-09 -0%
(5.7e-09) (6.8e-09) (7.4e-09)

Kt−1 0.0134∗∗∗ 1.3%∗∗∗ 0.0140∗∗∗ 1.4%∗∗∗ 0.0135∗∗∗ 1.4%∗∗∗

(0.0010) (0.0011) (0.0011)
Spilloverst−1 -0.0006∗∗∗ -0.6%∗∗∗ -0.0005∗∗∗ -0.5%∗∗∗ -0.0003∗∗ -0.3%∗∗

(8.7e-05) (0.0001) (0.0002)
Market EPSt−s -0.2119∗∗ -19.09%∗∗

(0.0925)
Environmental
Taxest−1

-0.1501∗ -13.94%∗ -0.1797∗∗ -16.45%∗∗

(0.0899) (0.0909)
Feed-in Tariffst−1 -0.0740∗∗ -7.13%∗∗

(0.0323)
FIT Solart−1 -0.1152∗∗ -10.88%∗∗

(0.0512)
FIT Windt−1 0.0248 2.5%

(0.0335)
Trading Schemet−1 0.0690 7.1%

(0.1231)
Certificates: CO2t−1 0.0773 8%

(0.0659)
Certificates: Greent−1 0.2624∗∗∗ 30.3%∗∗∗

(0.0996)
Certificates: Whitet−1 -0.5796∗∗∗ -43.99%∗∗∗

(0.2084)

Presample Firm 0.0012† 0.1%† 0.0008 0.1% 0.0012† 0.1%†

(0.0008) (0.0008) (0.0008)
Presample Zero -0.3679∗∗∗ -30.78%∗∗∗ -0.4616∗∗∗ -36.97%∗∗∗ -0.3854∗∗∗ -31.98%∗∗∗

(0.1306) (0.1333) (0.1311)
Year YES YES YES
N 3894 3894 3894
chi2 1054 1054 1076

Significance levels: †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: Data from 1990 to 2015 for all firms in top 10 countries is used. The citation-adjusted knowledge
in the last pre-sample year (t = 1989) is used as the firm fixed effect. The last-two-year data was
weighted with application granted distribution to address truncation problem. The 1st lag of all
explanatory variables is used.
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Table B.5.6: Firm-level estimates on renewable generation technologies

Dependent variable: the number of renewable generation patents
(1) (2) (3) (4) (5) (6)
Coeff. %Change Coeff. %Change Coeff. %Change

Constant -0.0468 -0.1442 -0.0551
(0.1404) (0.1594) (0.1601)

Energy price indext−1 3.1e-08∗∗∗ 0%∗∗∗ 3.1e-08∗∗∗ 0%∗∗∗ 2.1e-08∗∗∗ 0%∗∗∗

(5.4e-09) (6.4e-09) (7.0e-09)
Kt−1 0.0560∗∗∗ 5.8%∗∗∗ 0.0574∗∗∗ 5.9%∗∗∗ 0.0542∗∗∗ 5.6%∗∗∗

(0.0057) (0.0058) (0.0056)
Spilloverst−1 -0.0007∗∗∗ -0.7%∗∗∗ -0.0008∗∗∗ -0.8%∗∗∗ -0.0007∗∗∗ -0.7%∗∗∗

(7.7e-05) (0.0001) (0.0001)
Market EPSt−s -0.2107∗∗ -19%∗∗

(0.0958)
Environmental
Taxest−1

0.0216 2.2% -0.0188 -1.87%

(0.0902) (0.0912)
Feed-in Tariffst−1 -0.0886∗∗∗ -8.48%∗∗∗

(0.0332)
FIT Solart−1 -0.0901∗ -9.66%∗

(0.0531)
FIT Windt−1 0.0044 0.4%

(0.0347)
Trading Schemet−1 0.103 10.9%

(0.1296)
Certificates: CO2t−1 0.0704 7.3%

(0.0674)
Certificates: Greent−1 0.3307∗∗∗ 39.2%∗∗∗

(0.1038)
Certificates: Whitet−1 -0.6055∗∗∗ -49.11%∗∗∗

(0.2361)

Presample Firm 0.0203∗∗∗ 2.1%∗∗∗ 0.0196∗∗∗ 2%∗∗∗ 0.0213∗∗∗ 2.1%∗∗∗

(0.0041) (0.0042) (0.0042)
Presample Zero -0.119 -11.22% -0.1469 -13.66% -0.127 -11.93%

(0.1266) (0.1278) (0.1266)
Year YES YES YES
N 3894 3894 3894
chi2 941 939 966

Significance levels: †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
Note: Data from 1990 to 2015 for all firms in top 10 countries is used. The citation-adjusted knowledge
in the last pre-sample year (t = 1989) is used as the firm fixed effect. The last-two-year data was
weighted with application granted distribution to address truncation problem. The 1st lag of all
explanatory variables is used.
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B.6 Complete tables of heterogenous policy

effects

Table B.6.7: Heterogenous policy effects in the share of renewable patents.

Dependent variable: the number of storage patents

(1) (2) (3) (4) (5) (6)

Coeff. %Change Coeff. %Change Coeff. %Change

Constant -1.988∗∗∗ -3.302∗∗∗ -3.66∗∗∗

(0.3339) (0.4094) (0.4186)

Energy price indext−1 4.1e-08∗∗∗ 0%∗∗∗ 4.5e-08∗∗∗ 0%∗∗∗ 6.2e-08∗∗∗ 0%∗∗∗

(1.3e-08) (1.4e-08) (1.6e-08)

Kt−1 0.1866∗∗∗ 20.5%∗∗∗ 0.158∗∗∗ 17.1%∗∗∗ 0.1617∗∗∗ 17.6%∗∗∗

(0.0227) (0.0223) (0.0212)

Spillovert−1 0.0042∗∗∗ 0.4%∗∗∗ -0.0004 -0.4% -0.0002 -0.02%

(0.0006) (0.0010) (0.0010)

Specialtyt−1 0.0229∗∗ 2.3%∗∗ 0.0271∗∗ 2.7%∗∗ 0.0332∗∗∗ 3.4%∗∗∗

(0.0111) (0.0115) (0.0119)

Market EPSt−1 0.7284∗∗∗ 107.2%∗∗∗

(0.2067)

Environmental Taxest−1 1.188∗∗∗ 227.9%∗∗∗ 1.294∗∗∗ 264.7%∗∗∗

(0.1722) (0.1704)

Feed-in Tariffst−1 0.2249∗∗∗ 25.2%∗∗∗

(0.0795)

FIT Solart−1 0.3063∗∗ 35.8%∗∗

(0.1216)

FIT Windt−1 -0.0682 -6.59%

(0.0885)

Trading Schemet−1 0.2956 34.4%

(0.2451)

Certificates: CO2t−1 -0.1117 -10.58%

(0.1646)

Certificates: Greent−1 -0.2831 -24.65%

(0.2037)

(Continued on next page)
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(Continued from previous page)

Certificates: Whitet−1 5.1 16310%

(8.374)

Interaction with Specialtyt−1

xMarket EPSt−1 -0.0159 -1.58%

(0.0138)

xEnvironmental

Taxest−1

-0.0076† -0.76%† -0.0111∗∗ -1.1%∗∗

(0.0051) (0.0050)

xFeed-in Tariffst−1 -0.0135 -1.34%

(0.0129)

xFIT Solart−1 -0.0034 -0.34%

(0.0160)

xFIT Windt−1 -0.0079 -0.78%

(0.0118)

xTrading Schemet−1 -0.0054 -0.54%

(0.0199)

xCertificates: CO2t−1 0.1119∗∗ 11.8%∗∗

(0.0465)

xCertificates: Greent−1 -0.0045 -0.45%

(0.0103)

xCertificates: Whitet−1 -20.26 -100%

(52.63)

Pre-sample Firm -0.0638 -6.18% -0.0121 -1.2% -0.0520 -5.07%

(0.0607) (0.0584) (0.0588)

Pre-sample Zero -0.9861∗∗∗ -62.7%∗∗∗ -1.025∗∗∗ -64.14%∗∗∗ -0.9719∗∗∗ -62.16%∗∗∗

(0.144) (0.1352) (0.1439)

Year YES YES YES

N 1549 1550 1549

chi2 477 512 558

Significance levels: †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

Note: Data from 1990 to 2015 in top 10 countries. The citation-adjusted knowledge in the last

pre-sample year (t = 1989) is used as the firm fixed effect. The last-two-year data was weighted with
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application granted distribution to address truncation problem. The 1st lag of all explanatory variables

is used.
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Table B.6.8: Heterogenous policy effects in the time length of renewable innovation.

Dependent variable: the number of storage patents

(1) (2) (3) (4) (5) (6)

Coeff. %Change Coeff. %Change Coeff. %Change

Constant -1.791∗∗∗ -2.568∗∗∗ -2.731∗∗∗

(0.3134) (0.4855) (0.482)

Energy price indext−1 2.6e-08∗∗∗ 0%∗∗∗ 2.4e-08∗∗ 0%∗∗ 3.7e-08∗∗∗ 0%∗∗∗

(9.5e-09) (9.6e-09) (1.1e-08)

Kt−1 0.3171∗∗∗ 37.3%∗∗∗ 0.2857∗∗∗ 33.1%∗∗∗ 0.2968∗∗∗ 34.6%∗∗∗

(0.0243) (0.0237) (0.0236)

Spillovert−1 0.0042∗∗∗ 0.4%∗∗∗ 0.0011† 0.1%† 0.0010 0.1%

(0.0005) (0.0008) (0.0008)

Timingt−1 -0.0048 -0.48% -0.0034 -0.34% -0.0047 -0.47%

(0.0223) (0.0415) (0.0407)

Market EPSt−1 0.4613∗∗ 58.6%∗∗

(0.2323)

Environmental Taxest−1 0.7438∗∗∗ 110.4%∗∗∗ 0.7829∗∗∗ 118.8%∗∗∗

(0.2117) (0.2098)

Feed-in Tariffst−1 -0.0261 -2.58%

(0.1039)

FIT Solart−1 0.1466 15.8%

(0.1307)

FIT Windt−1 -0.0911 -8.71%

(0.1087)

Trading Schemet−1 0.1033 10.9%

(0.3853)

Certificates: CO2t−1 0.2157 24.1%

(0.1659)

Certificates: Greent−1 -0.3603 30.25%

(0.3767)

Certificates: Whitet−1 49.61 3.5e+21

(1935)

Interaction with Timingt−1

(Continued on next page)
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(Continued from previous page)

xMarket EPSt−1 0.0048 0.5%

(0.0185)

xEnvironmental

Taxest−1

-0.0025 -0.25% 0.0015 0.2%

(0.0176) (0.0175)

xFeed-in Tariffst−1 0.0128† 1.3%†

(0.0087)

xFIT Solart−1 -0.0027 -0.27%

(0.0120)

xFIT Windt−1 0.0056 0.6%

(0.0100)

xTrading Schemet−1 -0.0020 -0.2%

(0.0296)

xCertificates: CO2t−1 -0.0024 -0.24%

(0.0132)

xCertificates: Greent−1 -0.0013 -0.13%

(0.0253)

xCertificates: Whitet−1 -15.7 -100%

(644.9)

Pre-sample Firm -0.0919∗ -8.78%∗ -0.0210 -2.08% -0.0496 4.84%

(0.0507) (0.0504) (0.0496)

Pre-sample Zero -1.143∗∗∗ -68.12%∗∗∗ -1.125∗∗∗ -67.54%∗∗∗ -1.124∗∗∗ -67.52%∗∗∗

(0.1146) (0.1094) (0.1148)

Year YES YES YES

N 3882 3880 3882

chi2 922 955 994

Significance levels: †: 15% ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

Note: Data from 1990 to 2015 in top 10 countries. The citation-adjusted knowledge in the last pre-sample

year (t = 1989) is used as the firm fixed effect. The last-two-year data was weighted with application

granted distribution to address truncation problem. The 1st lag of all explanatory variables is used.
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