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ABSTRACT

COMPARATIVE STUDY OF VARIABLE SELECTION METHODS FOR
GENETIC DATA

by

Anna-Lena Kubillus

The University of Wisconsin-Milwaukee, 2023
Under the Supervision of Professor David Spade

Association studies for genetic data are essential to understand the genetic basis of
complex traits. However, analyzing such high-dimensional data needs suitable feature
selection methods. For this reason, we compare three methods, Lasso Regression,
Bayesian Lasso Regression, and Ridge Regression combined with significance tests,
to identify the most effective method for modeling quantitative trait expression in
genetic data. All methods are applied to both simulated and real genetic data and
evaluated in terms of various measures of model performance, such as the mean absolute
error, the mean squared error, the Akaike information criterion, and the Bayesian
information criterion. The results show that all methods perform better than the
ordinary least squares model on the prediction of future data. Moreover, the Lasso
Regression outperforms all methods in terms of execution time and simplicity of the
model, which therefore leads to better interpretability and makes it the best choice
for association studies. Overall this thesis provides valuable insights into the strength
and limitations of existing feature selection methods for modeling quantitative trait
expression and highlights its importance in association studies for genetic data.
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1 Introduction

1.1 Motivation and Goal

Association studies with SNPs have become a powerful tool in genetic research for identifying

genetic variants associated with complex diseases and traits, as seen for example in [26]. Sin-

gle nucleotide polymorphisms, or SNPs, are the most common type of genetic variation and

represent a single nucleotide change in the DNA sequence of an individual’s genome. These

variations can have significant effects on gene expression and ultimately disease susceptibility

[9].

Association studies compare the frequency of a particular SNP between two groups of

individuals. One group has a specific disease or trait and the other hasn’t. If the frequency

of the SNP is significantly different between the two groups, it indicates that the SNP may

be associated with the disease or trait [26]. This association can then be used to identify

potential genetic targets for drug development, disease prevention, and personalized medicine

[22].

An appropriate feature selection method is particularly essential in the processing and

analysis of genetic data due to the large number of SNPs included. This should help to

provide better interpretability and reduce the variance of the trained models, which is often

caused by overfitting the model to the training data.

In this thesis, we compare the performance of three feature selection methods for ef-

fective analysis of genetic data and modeling quantitative trait expression. Specifically, we

consider Lasso regression, Bayesian Lasso regression, and a combination of Ridge regression

and significance testing. All of these methods are expected to reduce the variance of the

model and ensure better interpretability compared to the ordinary least squares model. We

aim to identify the most suitable method to develop a relationship between the SNPs and

the observed trait value, such as blood pressure. By doing so, we can contribute to the de-

velopment of new methods for effective analysis of genetic data and a better understanding
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of the genetic basis of complex traits.

1.2 Structure

Afterward, chapter two describes the data sets that form the base of the thesis and are

available for training and evaluation of the models. Furthermore, the third chapter describes

the theoretical basics of the different models that are compared as well as the measures used

for the comparison. The main part of the thesis deals with implementing the models in R

in chapter four and the subsequent simulation studies, a comparison of the models, and an

evalution of the results in chapter five. Finally, the results of the thesis are summarized in

the conclusion.
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2 Dataset

The identification of genetic variants, in the context of this thesis as single nucleotide poly-

morphisms (SNPs), which are associated with different traits of an individual, is a common

field of research that has been performed very successfully in many cases (for example in

[3][13][1][21]). The aim here is to use a suitable method to find a relationship between the

SNPs and the observed characteristic, such as blood pressure. Thereby it is possible to draw

conclusions about possible cardiovascular diseases based on the genetic information of an

individual [25]. This fact should serve as a starting point of this thesis. The aim is to use

a suitable feature selection method to infer from the originally numerous SNPs occurring in

the DNA strand to a few central ones that are responsible for the expression of the trait.

The data sets of this thesis comprise an original data set of bred mice as well as synthetically

produced data, which are both randomly divided into 80% training and 20% test data for

building and validation of the models.

2.1 Original Data

The real data set was obtained from a genome wide assoication study in which data from

288 bred NMRI mice were collected [28]. Genomic DNA was isolated from tail biopsies by

phenol-chloroform extraction and 581,672 SNP genotypes were determined per mouse. The

exact isolation and preparation process can be read here [27]. After removing and merging

identical SNPs, 44428 unique SNP genotypes ultimately remained, which are now used as

features. At 8 weeks of age, blood pressure was also measured using a tail cuff. There were

100 measurement cycles, in which the systolic and diastolic blood pressure and the mean

arterial pressure were measured. Thereupon, all outliers with a standard deviation > 2 were

removed from the mean of the measurements and the final average of the remaining values

was assigned as the result for each mouse. For the further analysis, we will now restrict the

thesis to the prediction of systolic blood pressure using the available SNP genotypes.
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2.2 Synthetic generated data

The synthetically generated data has a similar structure. For this, 1000 unphased genotype

sequences of length 50,000 with minor allele frequency between 10% and 30% are simulated

using the ms function without selection in R. After all constant features are removed, a locus

is randomly selected to generate quantitative feature data. Similar to what was described

by Thompson and Kubatko in [23], these data are then generated along the evolutionary

tree at the selected SNP sites. Here, based on major (A) and minor (a) alleles occurring in

SNP sites, a distinction is made between 3 different combinations of these: AA coded as 0,

the heterogeneous allele pairs Aa and aA is coded as 1, and aa is coded as 2. Thus, a higher

mean trait value suggests a higher proportion of minor alleles. If, in addition, q denotes

the probability of such a minor allele and the Hardy-Weinberg equilibrium is assumed, the

following probabilities result: AA occurs with probability (1− q)2, heterogeneous pairs with

2q(1 − q), and aa with q2. The process assumes an additive model and therefore uses the

following generalized Hansen model, which is a generalized version of the Ornstein-Uhlenbeck

process:

dYi(t) = α(Θi(t)− YI(t)) + σY dBi(t) where Θi(t) =


Θ0, ifSi(t) = 0

Θ1, ifSi(t) = 1

Θ2, ifSi(t) = 2

. (1)

Yi(t) represents the trait value for lineage i at time t. Θ is the mean trait value and is

set to Θ1 = 80, Θ2 = 100 and Θ3 = 120 in the simulation. α = 5 represents the strength of

selection towards Θ and σY = 10 is the standard deviation of the model per unit time. Bi(t)

is a Brownian motion process for line i, making the values dBi(t) independent identically

normally distributed random variables with mean 0 and standard deviation dt for a small

time interval dt. It should be noted that the correlation between SNP sites resulting from the

generation of genetic data in this way is not considered in this model. After performing the
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methods just described datasets with 1000 genotype sequences and around 25000 to 30000

SNP features each are left for further consideration.
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3 Theory

3.1 Feature Selection Methods

Data sets in which the target variable has an underlying normal distribution are initially

very well suited for the prediction with a linear regression model. However, especially with

high dimensional data, one often encounters two problems in particular. First, models that

use numerous variables to predict a target variable are very difficult to interpret. Removing

variables that are redundant or receive no new information makes the model simpler without

losing information [11]. In addition, prediction accuracy plays a critical role. In general, the

higher the complexity of a model, the lower the squared bias, but the higher the variance

of these models [16]. Due to this so-called bias-variance tradeoff, the prediction accuracy

of ordinary least squares estimates is low, especially for high-dimensional data. To avoid

overfitting, the original model is adjusted by a regularization term, which reduces the variance

significantly and can partially perform variable selection [19].

The SNP data set is also affected by this problem. Presumably, not all SNP variants

influence the blood pressure of an individual. Nevertheless, they are all included in the

ordinary least squares model, which on the one hand makes it very difficult to interpret the

model and to attribute much, little, or no influence to certain variants. On the other hand,

the danger of overfitting is also very high. If more than 40,000 predictors are used to train

a model from a data set with only about 300 data points, the model will adapt so strongly

to the data points due to the enormous imbalance that it will perform much worse later on

future data. Therefore, three methods for feature selection and regularization are described

below, which are applied and finally compared in this thesis.

3.1.1 Lasso

The Lasso (least absolute shrinkage and selection operator) technique first introduced by

Tibshirani in 1996 [24] combines the aspect of feature selection with regularization. We start
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with an ordinary regression situation with data (xi, yi), i = 1, ..., N , where xi represents the

predictor variables and yi the response. The OLS estimate is defined as:

β̂ = argmin
β


N∑
i=1

(
yi − β0 −

∑
j

βjxij

)2
 (2)

Lasso regression now adds another constraint, called a penalty term, which is an upper

bound (t) on the sum over all coefficients. This results in the following optimization problem

for the determination of the Lasso estimates:

β̂lasso = argmin
β


N∑
i=1

(
yi − β0 −

∑
j

βjxij

)2
 subject to

∑
j

|βj| ≤ t[24]. (3)

Moreover, it can be rewritten as follows:

β̂lasso = argmin
β

1

2

N∑
i=1

(
yi − β0 −

∑
j

βjxij

)2

+ λ
∑
j

|βj|

 [19]. (4)

The penalty term leads to a shrinkage of the coefficients, whereby the size of the λ controls

the amount of shrinkage. Compared to other regularization methods, Lasso shrinks some

coefficients to zero, especially in highly correlated groups, and these can then be excluded

from the model. This improves the interpretability of the model and reduces the variability

of the estimates [19].

3.1.2 Bayesian Lasso

An extension to the Lasso method is the Bayesian Lasso regression. Here, a different prior

distribution of the β coefficients is chosen, which affects their posterior distribution. Tibshi-

rani describes the posterior distribution of the β coefficients in the regular Lasso regression

as

7



β̂lasso = argmax
β

p(β|y, σ2, τ)[24] (5)

The prior distribution of βi is an independent Laplace distribution and the likelihood

component follows a multivariate normal distribution:

p(β|τ) =
(τ
2

)p
exp(−τ ||β||1)

p(y|β, σ2) = N(y|Xβ, σ2In)

[15] (6)

The version of the Bayesian Lasso regression model presented by Chris Hans in 2009 now

specifies a scaled version of the double exponential distribution as a prior which leads to the

following setting:

p(β|τ, σ2) =
( τ

2σ

)p
exp(τσ−2||β||1)

p(y|β, σ2, τ) = N(y|Xβ, σ2In)

[15] (7)

N(y|Xβ, σ2In) fits a multivariate normal distribution with mean Xβ and variance σ2In

evaluated at y. In addition, independent prior distributions σ−2 ∼ Ga(a, b) and τ ∼ Ga(r, s)

are specified for σ and τ , respectively, and thus the mode p(β|τ, σ2) is the Lasso estimate

with penalty parameter λ = 2τσ [15].

From these assumptions, the resulting posterior distribution is obtained:

p(βj|β−j, σ
2, τ, y) = p(y|βj, σ

2, τ)p(βj|σ2, τ)p(σ2)p(τ) (8)

Finally, observations of the respective distribution are drawn for β, σ2 and τ using Gibbs

sampling [15] or a reversible jump Markov Chain Monte Carlo algorithm.

3.1.3 Ridge regression with Significance Tests

Ridge regression is another approach that uses a different regularization term to reduce the

variance of the OLS model. In contrast to Lasso regression, the L2 norm is now used in the

8



penalty term. Ridge regression thus minimizes the following quantity:

β̂ridge = argmin
β


N∑
i=1

(
yi − β0 −

∑
j

βjxij

)2
 subject to

∑
j

β2
j ≤ t. (9)

Which is equivalent to:

β̂ridge = argmin
β

1

2

N∑
i=1

(
yi − β0 −

∑
j

βjxij

)2

+ λ
∑
j

β2
j

 .[24] (10)

A major disadvantage of this method is that in Ridge regression coefficients are shrunk

and regularized, but due to the property of the L2 norm rarely reach 0. This does not

ensure better interpretability of models trained with high-dimensional data. In Figure 1 the

minimization problem for the selection of the coefficients in Lasso and Ridge regression in

the two-dimensional space is graphically represented. In the center of each ellipse is the

coefficient β estimated by the OLS model. The constraint region, defined by the L1 and L2

norms, respectively, can be seen as a circle and rotated square. Considering the first point

at which this touches the ellipses, it is quite possible in the Lasso regression that this occurs

at one of the corners of the square. In the circular constraint of the Ridge regression, on the

other hand, this happens extremely rarely without corners, which is why both coefficients

are only shrunk but are still non-zero. [24]

Thus, no variables are excluded from the model by Ridge regression. To take advantage

of the regularization and the associated reduction in the variability of the predictions in the

model, this thesis also uses significance tests for the individual coefficients in addition to

Ridge regression for feature selection. These tests should help to determine the importance

of the individual predictors so that unimportant variables can be excluded from the model.

Therefore the significance test presented by Cule, Vineis, and De Iorio in [8] is used, which is

based on a t-test of individual coefficients and was specially constructed for high dimensional

data. The following test statistic is defined with the help of the Ridge coefficients bj and its

standard error (se(β̂λ
j )):

9



Figure 1: Lasso vs. Ridge - shrinkage process
[17]

Tλ =
β̂λ
j

se(β̂λ
j )

(11)

The standard error is calculated using the root of the respective diagonal entry in the

covariance matrix:

V ar(β̂λ) = σ2(XTX + λI)−1XTX(XTX + λI)−1 where σ̂2 =
(Y −Xβ̂)T (Y −Xβ̂)

ν
(12)

ν represents the residual effective degrees of freedom. In the original approach of Halawa

and El Bassiouni [14] ν = n − m is used. Since for high dimensional data ν would be

negative, the degrees of freedom are now obtained using the so-called ”hat matrix” H =

X(XTX + λI)−1XT . Then

ν = n− tr(H) (13)

where tr(H) is the trace of A.

10



For the significance test of a predictor, the null hypothesis H0 , Tλ ∼ N(0, 1) is assumed.

[8] Under this assumption and a significance level of α = 0.01%, the test is then performed

and non-significant variables are removed from the data set. The α was set that low to

strongly reduce the large number of coefficients in the model to the most decisive SNP sites.

Finally, a linear model is again trained and evaluated on the remaining predictors using

Ridge regression.

3.2 Measures

To be able to examine the performance of the models described in the last subsection in

terms of their predictive accuracy, the mean absolute error (MAE), root mean squared error

(RMSE), Akaike information criterion (AIC) and Bayesian information criterion (BIC) are

used.

3.2.1 RMSE and MAE

Root mean squared error (RMSE) and mean squared error (MAE) are both performance

measures assessing the performance with the loss function which compares the predicted

values to the actual values.

The RMSE here is the root of the mean squared error (MSE), which returns the mean

squared difference of the predicted values to the actual values:

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2[7] (14)

In contrast, the MAE calculates the mean of the absolute errors:

MAE =
1

n

n∑
i=1

|Yi − Ŷi|[7] (15)

In the end, both measure the prediction accuracy on future data and the lower each of

these values is, the better the model.

11



3.2.2 AIC and BIC

In conjunction with the MAE and RMSE criteria, which calculate the predictive power of

different models for future values based on predictions of test data, two further criteria will

now be considered. These compare different models on the base of their likelihood function

and thus assess, without using predictions of previously unknown test data, which model is

most suitable in terms of interpretation, prediction, and subsequent use. One class of such

alternative criteria is the penalized model selection criteria, which describe the goodness of a

model essentially by two building terms. First, the maximum likelihood is considered, which

reflects the performance concerning the known training data. However, this tends to favor

larger models with many predictors. Especially with high dimensional data, a model tends

to overfit the training data, which results in poor predictive power with respect to future

data. Therefore, a second term is intended to penalize the increase of the log-likelihood by

a higher number of predictors in the model. By describing two terms pulling in opposite

directions, the tradeoff between model fit and model complexity is represented, which plays

an important role regarding the prediction with genetic data [18].

Several such measures have been introduced in different literature, but this thesis is

limited to the use of AIC and BIC.

AIC is the Akaike information criterion and is defined as follows:

AIC = −2ln(L̂) + 2k, [2] (16)

where k is the number of nonzero coefficients in the model and ln(L̂) is the maximized

value of the log-likelihood function of the model. If we compare different models, the model

with a lower AIC value is preferred, since a higher maximum log-likelihood of the model

leads to a lower AIC value. The second term counteracts this and penalizes large models

that are difficult to interpret and have a strong tendency to overfit. The so-called Bayesian

information criterion (BIC) pursues the same goal of describing the performance of a model

12



using the maximum log-likelihood function, but its penalty term is somewhat different:

BIC = −2ln(L̂) + k · ln(n), [20] (17)

where n is the number of data points in the training data set. In contrast to the AIC before,

the BIC penalizes large models depending on the number of data points used for training and

the number of predictors. Comparing the two penalty terms 2k and ln(n)k, 2k > ln(n)k is

valid already from n = ⌈e2⌉ = 8 data points in the training data and thus the BIC conteracts

overfitting even more.
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4 Implementation in R

4.1 Lasso and Ridge regression

For the implementation of Lasso and Ridge regression in R, the common library glmnet is

used because it has very efficient procedures to train linear, logistic, multinomial, possion

and cox regression models [12] and has a significantly shorter runtime compared to other

libraries. Glmnet solves the following optimization problem:

min
β0,β

1

N

N∑
i=1

wil(yi, β0 + βTxi) + λ[(1− α)||β||22/2 + α||β||1] (18)

Since this thesis is limited to the training of ordinary linear models, the negative log-

likelihood contribution described by l(yi, ηi) for the ith consideration refers to the Gaussian

case 1
2
(yi − β0 − βTxi)

2. The regularization parameter λ is determined over a grid of values

that covers the entire width of all possible solutions and from which the λ with the smallest

error is determined. The larger λ, the greater the penalty for high coefficients in the model.

With the help of the parameter nlambda, which was set to 500 in the implementation, the

number of λ values available for selection is defined. Depending on which model is to be

trained, the parameter α is set. It spans the bridge between Ridge regression (if α = 0),

where the regularization term including the L1 norm in 18 disappears and the whole weight

lies on the first term, and the Lasso regression (if α = 1), where only the L1 norm is

considered[5]. Calling the glmnet function for Lasso regression is done by:

1 model <- glmnet(X, y, alpha = 1, nlambda = 500, intercept = TRUE ,

standardize= FALSE)

If, on the other hand, a linear model is trained via Ridge regression, the following line is

executed:

1 model <- glmnet(X, y, alpha = 0, nlambda = 500, intercept = TRUE ,

standardize= FALSE)

14



In both cases, an ordinary linear regression model is fitted using the training data. The

predict function can then be used to make predictions for the test data and determine the

metrics used for evaluation:

1 y_predicted <- predict(model , s = model$lambda[n_lambda] , newx = X_

test)

4.2 Significance Tests

As described in chapter 3.1.3, the Ridge regression reduces the variance of the model and

thus promises a better performance on future unknown data, but does not provide a better

interpretability of the model. Therefore an additional procedure is needed. Significance tests

for feature selection will now be used for this purpose. Due to the high number of features

in both datasets, the computing effort is very high especially for calculations like XT ·X or

for inverting matrices of an appropriate size, which is needed to create the ”hat”-matrix as

well as in the calculation of the covariance matrix. Just for storing a double-precision matrix

of size 45000x45000 around 16 GB RAM is needed. Chapter 3.1.3 outlines calculations that

require storage of at least three such matrices. As a result, carrying out these calculations on

a regular computer can prove to be prohibitively expensive or even unfeasible. To minimize

this computational expenditure the matrices are converted into single precision matrices with

the help of the float package [10].

1 X_single <- fl(X_double)

2 y_single <- fl(y_double)

This reduces both the time required for the calculations and the memory space. The

example matrix from above now only requires around 8 GB. For inverting the matrices,

the chol2inv(A) function from the matrix package is used, since this is more time-saving

than the commonly used solve() function. For the significance test, the amount of the test

value T0 calculated from the βi coefficient and its estimated standard deviation is compared

with the 99.9% quantile of the t-distribution (tcrit) for each feature. If |T0| < tcrit holds, no
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significant linear relationship between the respective SNP genotypes and the systolic blood

pressure can be detected and the feature is removed from the model. Finally, the model is

trained and evaluated again with all remaining SNP genotypes.

4.3 Bayesian Lasso

Since the glmnet package does not support the Bayesian Lasso method, the monovmn package

is used. This was excluded in the training for the other procedures due to higher runtime.

With the help of the implemented blasso function, the model described in chapter 3.1.2 is

trained on the training data:

1 model <- blasso(X, y, T=10, icept=TRUE , normalize = FALSE , mprior=c(2000 ,

38000))

The linear model here includes an intercept because the given data is not standardized.

Due to computational expense, only 10 RJMCMC (T=10) samples from the Bayesian LASSO

procedure are collected. In addition, a mprior distribution is specified. mprior is the prior for

the number of regression coefficients that are not zero. Setting mprior = c(2000, 38000) rep-

resents a Binomial distribution Bin(m|n = M, p) where p ∼ Beta(2000, 38000). Therefore

it sets the probability of inclusion for a coefficient to be on average 5%. [6] The regression

coefficients of the model are then extracted and used to make predictions for the test data:

1 \label{predict_blasso}

2 betas <- c(model$mu[t],model$beta[t,])

3 X_with1 <- cbind(rep(1, nrow(X_test)), X_test)

4 y_predicted <- X_with1%*%betas

Finally, the various measures of model performance are calculated, which are used in the

following chapter to compare the various models.
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5 Results

5.1 Simulation Studies

Using the measures described in 3.2 the performance in terms of predictive power is com-

pared in this chapter. Therefore datasets with 1000 datapoints and usually between 25000

and 30000 predictors are generated and each of the models is trained 50 times. Due to

computational expense for the significance tests, only 20000 predictors are picked randomly

in each run.

model time lambda number coef MAE sqrt MSE AIC BIC
ols 17.63 0.00 20001.00 10.45 13.35 -100990.59 -7280.95
lasso 7.41 0.10 218.68 8.12 10.20 -93479.98 -92459.92
ridge 1157.05 3988.41 19625.50 8.01 10.06 -29296.10 62654.27
blasso 358.63 215.07 552.60 8.34 10.53 3977.78 6567.77

Table 1: ’Mean value of the various measured variables from 50 simulations’

5.1.1 General Comparison

In table 1 the mean values for the respective measures, the number of predictors remaining

in the final model including one additional for the intercept, the selected regularization

parameter λ and the time required for one run from the 50 simulation rounds are presented.

It is evident that Ridge regression and significance tests take a considerable amount of time

for training and require a high computational effort, as discussed in chapter 4.2. Similarly

the Bayesian Lasso trained by the blasso function of the monovmn package cannot keep up

with the optimized algorithms of the glmnet package with regard to the time, demonstrated

comparing the time per run for OLS and Lasso regression. The number of coefficients still

contained in the final model is significantly reduced by both varieties of Lasso regression.

While the Bayesian Lasso only retains about 550 parameters on average, the Lasso regression

reduces the number of coefficients to just over 200. In both cases, the substantial reduction

enhances the interpretability of the models, which is an essential goal of the feature selection.
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On the other hand, the number of nonzero coefficients in the Ridge regression model remains

almost the same even after significance tests with an uncommonly low significance level of

α = 0.01 are performed. On average, only just around 400 of the 20000 features considered

were removed, indicating limited interpretability. This is likely due to the low correlation

between individual predictors. A major advantage of Ridge regression is typically to detect

highly correlated groups of features and to shrink all but one. Within the significance tests,

these would be declared as not significant and thus removed from the model. However,

the correlations between individual features in this study are generally very low, with only

around 2.5% exhibiting a correlation of more than 0.9. This implies that the significance

tests have minimal effect, and almost all coefficients remain in the model.

In the following chapters, each of the three feature selection methods is compared first

with the ordinary least squares regression model, followed by comparisons among them.

5.1.2 Comparison Ordinary Least Squares versus different Feature Selection

Methods

By examining both the MAE shown in Figure 2 and the RMSE shown in Figure 3, it is

clear that all three models have improved. These figures compare the MAE and RMSE

of the OLS model to those of the Lasso, Ridge, and Bayesian Lasso regression. For each

simulation round, the bisector y = x is plotted to indicate which model has the lower value.

If a point is above the line, the MAE or RMSE of the OLS is lower, and if it is below,

the opposite method performs better. Both MAE and RMSE are calculated using test data

that the model has not previously seen, and therefore they measure the model’s predictive

accuracy on future data. The improvement is due to the fact that the OLS model is heavily

overfitted, and this fit to the training data results in poorer predictive accuracy on the test

data. Regularization, which is applied to Ridge regression as well as to Lasso and Bayesian

Lasso procedures, helps improve the prediction of the test data, often at the expense of the

model accuracy on the training data. While the OLS model is on average about 10.5 off
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Figure 2: Scatterplots of MAE from OLS versus other Feature Selection methods. The
panels present the following methods: (Top Left): Lasso, (Top Right): Ridge, (Bottom
Left): Bayesian Lasso

the correct value, Lasso has a mean deviation of 8.1, Bayesian Lasso has 8.3, and Ridge

regression has an even lower mean deviation of 8.0. Similar results can be observed for the

RMSE, where Ridge regression shows an improvement from 13.4 to as low as 10.1. Both

variants of the Lasso procedure have RMSE values around 10.3. Thus, the evaluation of

these measures suggests a significant improvement of all models compared to the original

OLS model.

If we also examine AIC and BIC, which evaluate the model purely based on maximum

log-likelihood on the training data and the number of predictors included, we obtain slightly

different results. Figures 4 and 5 compare AIC and BIC between the OLS model and Lasso,

Ridge, and Bayesian Lasso regression. The left column again depicts the bisector to illustrate
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Figure 3: Scatterplots of RMSE from OLS versus other Feature Selection methods. The
panels present the following methods: (Top Left): Lasso, (Top Right): Ridge, (Bottom
Left): Bayesian Lasso

the direct comparison of the two with the same scaling of the axes, while the right column

describes the exact distribution of the points on differently scaled axes.

Here, Ridge regression shows a clear result. In all 50 simulations, both the AIC and

BIC for Ridge regression are higher than those of the OLS, which makes the OLS a better

model regarding those measures. This is because strong overfitting occurs especially in the

OLS model without regularization, resulting in a very high maximum log-likelihood on the

training data. Thus, it minimizes both AIC and BIC more than it is the case with the

Ridge regression with regularization to avoid overfitting. Additionally, both models have a

similar number of non-zero coefficients, which makes the penalty term roughly the same.

Consequently, Ridge regression performs worse than the OLS model in all 50 simulations.
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Figure 4: Scatterplots of AIC from OLS versus other Feature Selection methods. The panels
present the following methods: (Top Row): Lasso, (Middle Row): Ridge, (Bottom Row):
Bayesian Lasso

A completely different result is obtained when comparing the Lasso regression model and

the OLS model. While the AIC still slightly tends towards the strongly overfitted OLS, the

BIC prefers the Lasso model in almost all cases. The reason for this is the significantly dif-

ferent numbers of coefficients of both models. Looking first at the maximum log-likelihood,

a very similar picture to the Ridge regression emerges between OLS and Lasso. The reg-

ularization term in the Lasso model counteracts overfitting and thus reduces the value of

the maximum log-likelihood. In contrast, in Lasso regression, the penalty term for the num-

ber of parameters in the model is much smaller. In the AIC, this lower penalty is not as

noticeable as it is in the BIC, which is why it tends to favor the OLS model. The BIC in

Figure 5 reflects a clear advantage on the side of the Lasso model since in this measure, as
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Figure 5: Scatterplots of BIC from OLS versus other Feature Selection methods. The panels
present the following methods: (Top Row): Lasso, (Middle Row): Ridge, (Bottom Row):
Bayesian Lasso

described earlier in Chapter 3.2.2, large models that tend to overfit the data are penalized

stronger. Consequently, the significant advantage of the few coefficients in the Lasso model

has a stronger impact.

Next, we analyze the comparison between OLS and Bayesian Lasso regression. The AIC

results show a clear preference for OLS over Bayesian Lasso regression, which is consistent

with the Ridge regression results. Interestingly, Bayesian Lasso is very stable in its perfor-

mance across different simulated data sets. The left plots with equally scaled x- and y-axis

show that all points seem to lie almost on a horizontal line. Only by adjusting the scaling

of the axes, one can see some fluctuations in different runs, which are much smaller than in

the OLS model. Looking at the BIC, the results shift in favor of the model with the smaller
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number of coefficients. There is no longer a clear tendency toward the OLS model, as there

are runs with smaller BIC values in the Bayesian Lasso regression as well as in the OLS

regression. Therefore, no clear winner emerges here.

In conclusion, the results confirm the assumption of overfitting in the OLS model. Look-

ing only at the max log-likelihood of the models, the OLS performs best, and the other

models can only keep up in a direct comparison if they are less penalized by their smaller

number of coefficients in the model and achieve a similar value in the AIC or BIC. The regu-

larization in the individual methods counteracts this overfitting and ensures better prediction

accuracy of future unknown data than the OLS in all three feature selection methods.

5.1.3 Comparison Lasso versus Bayesian Lasso regression

In this section, we compare regular Lasso regression with Bayesian Lasso regression, as shown

in Figure 6. Both the MAE and RMSE plots show a slight bias towards regular Lasso. In

most runs, the Lasso regression model resulted in a comparatively smaller RMSE, reflected

in the average value of 10.2 compared to 10.5 in Bayesian Lasso. The average MAE is also

lower for regular Lasso, at 8.1 compared to 8.3 for Bayesian Lasso.

The comparison of AIC and BIC shows that the Lasso model outperforms the Bayesian

Lasso in both cases. However, since both models were able to greatly reduce the number of

predictors and now have a similar number of coefficients remaining, this also applies to the

penalty term in both measures. The max log-likelihood of the Lasso model dominates, from

which one can conclude a significantly better performance in terms of prediction accuracy on

the training data. This may also be related to stronger regularization in the Bayesian Lasso

model, explaining the significantly larger average regularization parameter (λ) in Bayesian

Lasso of 215, compared to 0.1 in Lasso. As a result, the Bayesian Lasso model cannot adapt

strongly enough to the training data and has a lower performance.

In conclusion, the Lasso regression model shows a better tendency than the Bayesian

Lasso in all four measures, indicating that the Lasso makes better predictions based on
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Figure 6: Scatterplots of comparison of different prediction measures between Lasso and
Bayesian Lasso. The panels present the following methods: (Top Row): MAE and MSE,
(Middle Row): AIC, (Bottom Row): BIC

this simulation study and therefore has a higher prediction accuracy. The Lasso model is

also significantly faster to generate, averaging only 7.5 seconds compared to the Bayesian

Lasso, which takes around 6 minutes per run. Finally, the Lasso regression retains only 220

coefficients on average, while the Bayesian Lasso retains around 550. Thus, regular Lasso

guarantees even better interpretability and should be preferred to Bayesian Lasso based on

the studies conducted here.

5.1.4 Comparison Lasso versus Ridge regression

In this section, we compare the performance of the Ridge regression model trained with

significance tests with that of the Lasso model. The results of the simulation study presented
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Figure 7: Scatterplots of comparison of different prediction measures between Lasso and
Ridge regression. The panels present the following methods: (Top Row): MAE and MSE,
(Middle Row): AIC, (Bottom Row): BIC

in Table 1 and Figure 7 indicate that both models perform similarly in terms of MAE and

RMSE, with a slight preference for the Ridge regression model. However, the comparison

based on AIC and BIC shows that the Lasso model outperforms the Ridge regression model.

This can be attributed to the high number of remaining coefficients in the Ridge regression

model, which leads to a much higher penalty term and subsequently results in a higher value

of AIC and BIC. The high number of nonzero coefficients in the Ridge regression model also

makes it less interpretable and difficult to filter out specific SNP features responsible for

certain trait values.

In addition, the Lasso model has a significantly faster execution time, taking an average

of only 7 seconds compared to the Ridge regression model which takes around 20 minutes
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due to the significance tests involved. Based on these results, we conclude that the Lasso

regression model is the better model of the two and should be preferred over the Ridge

regression model for its better performance, interpretability, and faster execution time.

5.2 Real Data Analysis

model time lambda number coef MAE sqrt MSE AIC BIC
ols 0.07 0.00 20001 51.47 63.30 -1730215.63 -1660938.99
lasso 1.71 0.66 182 7.19 8.81 -1767733.74 -1767106.79
ridge 636.51 2323.48 19997 7.02 9.19 -1728471.01 -1659208.23
blasso 8.40 16.92 202 18.94 23.48 1219.40 1919.95

Table 2: ’Execution of the various measured variables using original data’

The simulation study results are now being applied to the original dataset to verify or

refute them. Once again, a random selection of 20,000 out of the original 44,428 features was

used to train the models due to limited RAM availability. Table 2 shows the results of the

run. As previously observed, both MAE and RMSE improve significantly across all models

compared to OLS. The Bayesian Lasso prediction reduce the deviation from over 50 to 19,

and Ridge and Lasso regression to around 7. The same trend is observed for the RMSE.

However, the AIC and BIC shows somewhat different results. The Lasso regression

model has the best values, with high prediction accuracy on the training data and only

182 predictors, leading to a low penalty term. The OLS model and Ridge regression follow

closely behind, while the Bayesian Lasso model is very far behind, indicating poor prediction

accuracy. The low values of the other models indicate a strong fit to the training data. All

models are likely still impacted by overfitting. Due to the limited amount of 224 data points

in the training dataset, it is hardly possible to train a model with such a high number of

features without overfitting. Moreover, only 3 coefficients were removed from the Ridge

regression, leading to poor interpretability.

Therefore, the results of the simulation study are confirmed, and Lasso regression is found

to be the best model for the original data as well.
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6 Conclusion

In this thesis, we compared three feature selection models to extend the ordinary least

squares regression model. Based on the simulation study and real data analysis, the Lasso

regression model emerged as the best, and we recommend it over the other models. In

conjunction with Ridge regression, it provided the best results in terms of predictive power

on future data, outperforming both the original OLS and Bayesian Lasso approaches. By

using regularization, we were able to reduce the variance in the predictions and increase

accuracy.

In addition, Lasso regression has proven its worth with regard to better interpretability

of the model. While Ridge regression contained almost all coefficients even after performing

significance tests, Lasso regression reduced the number of predictors to around 10% of the

originally existing predictors. As mentioned earlier, besides prediction accuracy, it is impor-

tant to be able to identify individual SNP features that can be used to draw conclusions

about the level each feature is investgated in predicting the trait value. Lasso regression is

better able to select SNPs that explain a high percentage of the variation in the trait values

compared to Ridge regression and Bayesian Lasso, which produced more complex regression

models in terms of the number of variables selected.

Another significant benefit of the Lasso approach is the time it takes to run. In the

simulation studies, the Lasso model required almost 50 times less training time than the

Bayesian Lasso and around 150 times less than Ridge regression with significance tests. It

even finished in less than half the time of the OLS model.

Overall, Lasso regression is a good approach to filter out significant SNP features in

genetic data. It provides relatively simple regression models with high prediction accuracy,

explaining a large part of the variation in the trait values.

However, these models are strongly restricted to the given SNP features. When consid-

ering the blood pressure of a person, other factors such as diet or lifestyle also influence it in

addition to genetic factors. Therefore, our regression models are currently very limited and
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would require additional information as covariates to make more precise, realistic statements

and guarantee even more accurate results.
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Appendix

Results of different simulation runs

model time elapsed lambda number coef MAE MSE AIC BIC
1 ols 14.616878 0.00000000 20001 6.001421 7.431362 -27552.796 66064.297
2 ols 13.916986 0.00000000 20001 9.321401 12.129847 -47674.674 45866.995
3 ols 13.786416 0.00000000 20001 7.077374 8.865100 -131997.736 -38057.051
4 ols 17.369682 0.00000000 20001 7.298584 10.735459 -27954.414 65986.271
5 ols 16.753671 0.00000000 20001 15.313889 18.684540 -132689.196 -39477.693
6 ols 18.201634 0.000000e+00 20001 16.761570 21.401887 -243361.428 -149053.760
7 ols 15.921513 0.000000e+00 20001 7.348833 9.453972 -41581.933 52135.286
8 ols 15.998817 0.000000e+00 20001 10.014019 12.989133 -145238.698 -51471.604
9 ols 10.373602 0.000000e+00 20001 9.224154 11.857573 -102901.693 -9461.034
10 ols 21.097041 0.000000e+00 20001 11.023246 13.942341 -60966.357 32875.318
11 ols 25.123200 0.000000e+00 20001 10.170953 12.698646 -89418.462 3379.055
12 ols 11.007853 0.000000e+00 20001 11.826441 15.065195 -125609.148 -31767.474
13 ols 16.172426 0.000000e+00 20001 6.655393 8.833073 -26378.138 66858.957
14 ols 13.729877 0.000000e+00 20001 7.142289 9.082018 -50470.175 42741.328
15 ols 10.852059 0.000000e+00 20001 7.680023 9.614322 -20107.317 74103.145
16 ols 11.858047 0.000000e+00 20001 10.559538 13.221779 -84036.707 9580.387
17 ols 31.136451 0.000000e+00 20001 9.258403 12.352847 -77682.006 16577.118
18 ols 16.996481 0.000000e+00 20001 11.328487 14.392582 -202784.111 -109726.850
19 ols 21.126842 0.000000e+00 20001 8.034842 10.322816 -25960.070 67606.772
20 ols 18.490323 0.000000e+00 20001 7.310539 9.193470 -31458.652 62183.520
21 ols 17.794987 0.000000e+00 20001 16.254732 21.167393 -158546.994 -64606.309
22 ols 18.454485 0.000000e+00 20001 16.878687 21.463701 -176416.621 -82574.946
23 ols 22.641029 0.000000e+00 20001 15.392264 19.359089 -133378.115 -39786.132
24 ols 18.797181 0.000000e+00 20001 11.072970 13.713888 -68500.924 25439.761
25 ols 16.896996 0.000000e+00 20001 7.406634 9.474694 -67619.440 26172.546
26 ols 14.920576 0.000000e+00 20001 8.979773 11.315630 -74588.170 19622.292
27 ols 20.375002 0.000000e+00 20001 15.342529 19.545697 -120853.596 -27136.377
28 ols 12.422207 0.000000e+00 20001 7.075277 9.014304 -64128.662 29910.545
29 ols 27.388570 0.000000e+00 20001 13.175283 16.818973 -107501.316 -13610.075
30 ols 16.347067 0.000000e+00 20001 8.806781 11.221452 -82085.390 11879.971
31 ols 14.591568 0.000000e+00 20001 7.891554 10.765409 -57447.974 36443.267
32 ols 9.544040 0.000000e+00 20001 14.329265 18.576929 -314603.299 -220736.825
33 ols 35.293637 0.000000e+00 20001 10.455914 13.390677 -54691.883 38698.079
34 ols 13.888631 0.000000e+00 20001 9.566026 13.730640 -89705.766 3986.4681
35 ols 17.192207 0.000000e+00 20001 12.409735 15.681776 -130104.103 -36138.7421
36 ols 20.992627 0.000000e+00 20001 8.246924 10.687019 -45421.504 48295.7154
37 ols 15.375957 0.000000e+00 20001 8.058221 10.197021 -61484.283 31905.6785
38 ols 17.735829 0.000000e+00 20001 12.543518 15.549852 -155759.415 -62017.2427
39 ols 14.296490 0.000000e+00 20001 10.006170 12.454998 -93362.560 454.2853
40 ols 20.442156 0.000000e+00 20001 12.207423 15.317373 -137002.136 -42791.6738
41 ols 11.892152 0.000000e+00 20001 10.088770 12.993076 -91810.595 2055.8785
42 ols 17.893412 0.000000e+00 20001 13.805192 18.539734 -190462.114 -96970.886
43 ols 23.649440 0.000000e+00 20001 18.452422 22.604854 -346863.589 -253096.495
44 ols 23.579784 0.000000e+00 20001 8.957317 11.314205 -48953.796 44512.164
45 ols 13.515563 0.000000e+00 20001 7.138155 9.402669 -58774.091 34615.871
46 ols 11.288497 0.000000e+00 20001 9.960601 12.103532 -57963.704 35853.141
47 ols 12.490184 0.000000e+00 20001 16.593652 21.050314 -237604.006 -143688.027
48 ols 16.384085 0.000000e+00 20001 7.772846 9.775943 -48629.584 45311.101
49 ols 11.343042 0.000000e+00 20001 7.560268 9.756015 -54599.187 38637.908
50 ols 39.403907 0.000000e+00 20001 6.738507 8.431422 -24842.941 68368.562

Table 3: ’Results of the various measured variables from 50 simulations of OLS Regression’
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model time elapsed lambda number coef MAE MSE AIC BIC
1 lasso 7.567101 0.08960683 129 4.595769 5.758988 -50545.636 -49946.486
2 lasso 7.634124 0.07520341 265 7.602628 9.674539 -53331.498 -52096.748
3 lasso 7.308425 0.17620912 76 5.949244 7.305271 -140465.254 -140112.976
4 lasso 7.387386 0.07376484 217 5.175994 6.497758 -41942.321 -40927.761
5 lasso 7.677062 0.06582020 454 12.906985 15.532396 -123315.318 -121204.078
6 lasso 7.779537 1.224248e-01 283 13.714201 17.255921 -167176.144 -165846.406
7 lasso 7.389230 9.255598e-02 163 5.686924 7.316505 -52244.109 -51485.000
8 lasso 7.274265 1.512184e-01 152 7.441339 9.571571 -118635.362 -117927.421
9 lasso 7.045667 1.185646e-01 160 7.540223 9.493561 -100733.423 -99990.570
10 lasso 7.665625 6.855255e-02 293 8.079199 10.394451 -63611.754 -62241.665
11 lasso 10.345891 1.167136e-01 187 8.508495 10.618970 -86281.673 -85418.656
12 lasso 7.505492 9.844764e-02 229 8.769698 11.065776 -110076.351 -109006.556
13 lasso 7.563363 7.440821e-02 191 4.852300 6.116468 -45466.068 -44580.316
14 lasso 7.493786 1.210391e-01 121 5.529645 7.036740 -64953.258 -64393.989
15 lasso 7.826938 6.502580e-02 253 5.735721 7.281906 -38460.058 -37273.006
16 lasso 7.623199 1.017930e-01 209 8.352104 10.510594 -83663.607 -82689.989
17 lasso 8.041437 1.083880e-01 169 6.374483 8.068052 -75901.366 -75109.590
18 lasso 7.415827 1.744942e-01 161 8.563829 11.057948 -171932.658 -171188.200
19 lasso 7.817608 5.844348e-02 284 6.636179 8.409690 -42113.421 -40789.450
20 lasso 7.616690 8.231429e-02 164 5.670216 7.039596 -49071.685 -48308.501
21 lasso 8.074948 7.956352e-02 373 12.753738 16.331155 -130551.645 -128804.348
22 lasso 8.619729 9.759105e-02 356 13.221284 16.113993 -133212.222 -131546.533
23 lasso 7.699366 8.598361e-02 294 11.231602 14.177090 -111953.606 -110582.484
24 lasso 7.742377 6.534785e-02 317 9.086569 11.545577 -73969.849 -72485.586
25 lasso 7.511786 1.185245e-01 133 5.547033 7.215437 -77008.915 -76389.888
26 lasso 8.095989 8.699403e-02 200 6.944114 8.839126 -82654.109 -81716.715
27 lasso 8.406786 7.453267e-02 371 11.401896 14.472548 -103637.852 -101904.083
28 lasso 7.783674 8.967643e-02 155 5.499727 6.889915 -77492.838 -76768.737
29 lasso 7.918039 8.686267e-02 307 10.497262 13.044423 -89097.449 -87660.913
30 lasso 7.723920 1.173442e-01 156 6.478862 8.414825 -85077.282 -84349.050
31 lasso 7.721938 7.495275e-02 288 7.153558 8.993838 -61569.102 -60221.762
32 lasso 7.779939 2.287634e-01 116 11.089571 14.104839 -235586.895 -235047.163
33 lasso 7.601268 8.819841e-02 231 7.778746 9.426509 -57639.033 -56565.048
34 lasso 6.760260 1.102453e-01 180 7.494705 9.634630 -87539.443 -86700.8973
35 lasso 7.507537 1.387551e-01 160 9.095350 11.113775 -105141.150 -104394.1250
36 lasso 6.460025 9.165141e-02 190 6.635396 8.294781 -50653.354 -49767.7259
37 lasso 6.315596 8.454798e-02 219 6.368091 8.158957 -71980.973 -70963.0226
38 lasso 7.219430 9.373897e-02 283 9.709356 12.208572 -141244.987 -139923.2219
39 lasso 6.994804 1.015472e-01 233 8.362660 10.022822 -90138.402 -89050.1271
40 lasso 7.267626 1.103399e-01 213 9.150801 11.338479 -110979.325 -109980.6945
41 lasso 7.266552 9.881759e-02 215 7.728890 9.981163 -84468.977 -83464.6054
42 lasso 7.808802 1.057044e-01 292 11.176352 14.011061 -154544.069 -153183.772
43 lasso 7.391182 2.129165e-01 144 14.110311 17.088465 -247147.030 -246476.596
44 lasso 7.427056 9.467480e-02 183 7.036283 8.744447 -56974.222 -56123.682
45 lasso 5.964738 9.458849e-02 177 5.714158 7.210022 -72949.316 -72127.484
46 lasso 5.998578 8.664760e-02 242 8.283569 10.276108 -58121.653 -56991.160
47 lasso 6.035167 1.363115e-01 262 12.438872 15.630875 -169639.562 -168413.959
48 lasso 5.901440 8.118151e-02 202 5.710802 7.060636 -63875.484 -62931.380
49 lasso 5.661515 1.051555e-01 134 5.666596 7.271462 -67562.746 -66942.719
50 lasso 5.646002 8.620232e-02 148 4.905328 6.239515 -41666.332 -40981.227

Table 4: ’Results of the various measured variables from 50 simulations of Lasso Regression’
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model time elapsed lambda number coef MAE MSE AIC BIC
1 ridge 1240.358124 76.37737649 19199 4.577924 5.732449 -12075.998 77787.050
2 ridge 1224.488790 55.29356064 19377 7.401527 9.266910 -2421.995 88201.174
3 ridge 1223.688273 129.54412516 19566 6.113517 7.697539 -101993.236 -10095.761
4 ridge 1233.025464 60.45175873 19324 4.840175 6.157070 1561.080 92321.873
5 ridge 1230.757103 60.24081295 19575 11.628498 14.341373 -28500.435 62725.663
6 ridge 1188.372025 9.573440e+03 19981 13.242310 16.097681 -29280.025 64933.335
7 ridge 1230.713304 6.817842e+01 19419 5.553667 7.178192 -11645.994 79344.054
8 ridge 1213.181114 1.067799e+04 19496 7.657577 9.858853 -38962.739 52436.736
9 ridge 1230.821732 1.023167e+02 19529 7.583565 9.617338 -56681.786 34553.673
10 ridge 1230.961438 6.250402e+01 19398 7.633242 9.691397 -7232.810 83779.539
11 ridge 1205.733263 8.986625e+03 19986 8.197722 10.270595 -25814.302 66913.617
12 ridge 1190.705234 9.284283e+03 19977 9.269075 11.300743 -10676.866 83052.198
13 ridge 1226.701488 6.104049e+01 19320 4.815305 6.028298 -3971.602 86090.770
14 ridge 1202.866297 8.264801e+03 19994 5.436283 6.888197 -16734.048 76444.831
15 ridge 1242.389871 5.608611e+01 19380 5.625884 7.126306 5235.510 96520.737
16 ridge 1196.929426 8.152836e+03 19987 8.643842 10.823035 -6964.862 86586.700
17 ridge 1196.041067 8.133461e+03 19978 7.570053 9.505521 -8509.072 85641.654
18 ridge 1197.645010 1.270006e+04 19998 8.695144 11.530727 -95253.947 -2210.645
19 ridge 1245.720435 5.489972e+01 19315 6.406334 8.076552 5059.931 95417.431
20 ridge 1202.760417 6.965613e+03 19982 6.345942 7.802051 6754.812 100308.024
21 ridge 1246.298311 7.485994e+01 19601 11.349403 14.663876 -47791.759 44270.113
22 ridge 1243.990734 7.274719e+01 19514 12.216426 14.821842 -51326.893 40229.737
23 ridge 1225.638833 7.834906e+03 19515 10.541363 13.457978 3180.047 94497.745
24 ridge 1245.439611 6.806947e+01 19487 8.553275 10.601359 -14914.306 76612.104
25 ridge 1206.740042 8.558199e+03 19994 5.873368 7.679135 -21373.882 72385.277
26 ridge 1256.316940 7.442268e+01 19419 6.826841 8.710366 -39160.605 52308.332
27 ridge 1260.049005 5.825512e+01 19429 10.819409 13.596109 -25971.755 65065.152
28 ridge 1258.930763 9.087033e+01 19477 5.583227 7.024172 -35071.895 56503.485
29 ridge 1260.737958 7.108993e+01 19486 10.009855 12.349825 -25304.706 66168.836
30 ridge 1242.289471 8.702421e+03 19502 6.601391 8.440998 -29515.450 62105.475
31 ridge 1255.622380 6.228841e+01 19514 6.681345 8.383995 -6180.689 85424.301
32 ridge 1216.207545 1.551970e+04 19997 12.069072 15.373066 -143367.143 -49519.443
33 ridge 1255.989272 6.293716e+01 19310 7.465640 8.991735 -9129.466 81033.872
34 ridge 1190.538415 8.773217e+03 19984 7.734656 10.047050 -19960.200 73652.3966
35 ridge 1189.933742 9.332673e+03 19992 8.962508 11.051981 -38432.600 55490.4767
36 ridge 1191.831337 6.529411e+03 19978 6.677882 8.432709 7324.726 100934.1700
37 ridge 1229.682136 8.310808e+01 19194 6.155322 7.933329 -27596.128 62025.5489
38 ridge 1226.861384 9.585350e+01 19610 9.266621 11.779783 -77230.492 14679.0206
39 ridge 1232.628528 7.986274e+01 19473 8.316984 10.022847 -41068.081 50271.9999
40 ridge 1194.522477 9.103082e+03 19984 9.561201 12.165108 -12200.219 81930.1643
41 ridge 1218.587630 8.087273e+03 19450 8.091087 10.293465 -5341.571 85938.8812
42 ridge 1224.270552 1.085531e+02 19572 10.661880 13.398492 -83416.678 8069.163
43 ridge 1178.444533 1.429559e+04 19999 14.338818 17.518364 -150781.316 -57023.598
44 ridge 1219.159161 7.087789e+01 19472 6.902654 8.571909 -12975.251 78018.534
45 ridge 688.022463 7.533408e+01 19533 5.578888 7.065082 -30214.101 60990.536
46 ridge 682.253289 6.848852e+01 19356 8.018833 10.005409 -11634.591 79156.661
47 ridge 641.275389 9.518068e+03 19977 11.547066 14.624845 -39912.279 53891.000
48 ridge 693.360931 8.179318e+01 19451 5.686671 6.934609 -21604.285 69753.031
49 ridge 642.705960 8.274295e+03 19989 6.284328 8.175173 -13871.492 79309.660
50 ridge 680.248218 6.628734e+01 19235 4.852651 6.137803 -1853.465 87788.038

Table 5: ’Results of the various measured variables from 50 simulations of Ridge Regression’
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model time elapsed lambda number coef MAE MSE AIC BIC
1 blasso 348.485348 152.56434252 544 4.923115 6.255333 3515.212 6062.280
2 blasso 347.712912 171.74323280 547 7.889699 9.894517 3906.781 6465.834
3 blasso 365.518734 142.28270733 559 6.487014 8.009385 3776.927 6403.259
4 blasso 355.833789 234.41389670 573 5.218930 6.680190 3840.934 6533.041
5 blasso 324.494452 265.66780560 538 11.852203 14.715149 4198.913 6706.990
6 blasso 377.185492 2.523930e+02 566 13.572947 17.078889 4567.589 7237.182
7 blasso 350.724324 2.730728e+02 532 5.976567 7.704859 3741.509 6235.051
8 blasso 350.959795 2.508875e+02 545 8.028331 10.358256 4088.741 6644.573
9 blasso 339.967708 1.920565e+02 554 7.908912 10.138988 3900.278 6489.285
10 blasso 365.280201 2.396850e+02 564 8.119911 10.417195 4062.223 6709.258
11 blasso 325.760121 2.180464e+02 525 9.028594 11.173710 3773.619 6210.240
12 blasso 374.711706 2.108939e+02 550 8.950653 11.561759 4113.530 6694.858
13 blasso 355.194591 1.805751e+02 537 5.286062 6.844636 3580.169 6084.271
14 blasso 346.095196 2.772913e+02 546 5.902274 7.368489 3634.541 6179.914
15 blasso 405.575156 1.771188e+02 560 6.051638 7.623090 3779.248 6417.823
16 blasso 363.458786 1.638838e+02 557 8.690569 10.712210 3931.138 6539.073
17 blasso 391.606173 1.831952e+02 568 6.719150 8.799542 4029.031 6706.680
18 blasso 331.174500 2.262611e+02 549 9.272794 11.671211 4046.325 6601.455
19 blasso 350.798576 1.642327e+02 565 6.475497 8.188195 3802.593 6446.566
20 blasso 370.521561 1.960164e+02 564 6.125628 7.611865 3686.381 6327.796
21 blasso 377.737010 2.747676e+02 567 11.791684 15.456637 4367.888 7031.806
22 blasso 367.418967 2.357347e+02 553 12.664207 15.754405 4389.058 6984.466
23 blasso 352.783180 1.676919e+02 530 11.442544 14.388648 4168.700 6649.553
24 blasso 389.069071 2.322625e+02 568 9.029021 11.143959 4054.544 6723.160
25 blasso 375.345651 2.095706e+02 544 6.127861 7.983743 3790.193 6342.011
26 blasso 414.479290 2.339559e+02 569 7.406876 9.680804 3975.591 6656.571
27 blasso 367.477320 2.285084e+02 567 11.378481 14.237897 4287.787 6945.378
28 blasso 382.237248 1.787941e+02 533 5.968529 7.677030 3760.030 6266.830
29 blasso 390.020246 3.323593e+02 554 10.052005 12.525838 4207.479 6808.951
30 blasso 375.999975 2.136288e+02 556 6.928199 8.952149 3883.933 6496.855
31 blasso 377.196017 1.972470e+02 541 7.406497 9.248738 4002.496 6542.923
32 blasso 368.677477 1.946298e+02 547 12.011562 15.362620 4318.673 6886.599
33 blasso 343.724983 2.068780e+02 553 7.799459 9.537339 3899.376 6482.310
34 blasso 354.515120 1.796802e+02 539 7.845005 10.082675 3913.398 6439.0772
35 blasso 378.450752 2.722242e+02 555 9.400006 11.443980 4150.849 6759.0717
36 blasso 355.552502 2.416538e+02 554 6.731763 8.429011 3869.610 6466.2683
37 blasso 342.347272 1.895159e+02 542 6.733372 8.545690 3768.823 6300.3786
38 blasso 362.227241 1.588890e+02 553 10.308731 13.187981 4146.780 6739.4404
39 blasso 371.491334 1.016931e+02 552 9.104701 10.789705 3972.072 6562.1018
40 blasso 381.225772 1.684793e+02 550 9.302199 11.927476 4227.099 6818.5560
41 blasso 365.678731 2.562561e+02 578 7.996557 10.443296 4102.239 6815.6955
42 blasso 343.735734 2.297004e+02 550 11.430955 14.429847 4232.592 6804.294
43 blasso 358.150734 2.956631e+02 554 13.993811 17.397684 4408.136 7006.174
44 blasso 355.375004 2.319366e+02 539 7.171086 9.134572 3784.335 6303.924
45 blasso 315.294102 2.244371e+02 563 6.087522 7.554784 3737.092 6366.734
46 blasso 339.952037 2.653003e+02 563 8.182580 10.145017 3984.310 6625.953
47 blasso 330.182354 2.280173e+02 561 12.749643 16.265842 4463.346 7098.383
48 blasso 334.851322 2.808561e+02 570 5.934952 7.328664 3783.675 6461.687
49 blasso 309.593950 2.060911e+02 534 6.006868 7.724111 3642.043 6132.155
50 blasso 309.610264 1.448171e+02 548 5.379426 6.718698 3621.192 6175.888

Table 6: ’Results of the various measured variables from 50 simulations of Bayesian Lasso
Regression’
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