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ABSTRACT 

UTILIZING FLUORESCENT NANOSCALE PARTICLES  
TO CREATE A MAP OF THE ELECTRIC DOUBLE LAYER 

 

by 

Quintus S. Owen 

 

The University of Wisconsin-Milwaukee 2023 
Under the Supervision of Professor Jörg C. Woehl 

 

The interactions between charged particles in solution and an applied electric field follow 

several models, most notably the Gouy-Chapman-Stern model, for the establishment of an electric 

double layer along the electrode, but these models make several assumptions of ionic concentrations 

and an infinite bulk solution. As more scientific progress is made for the finite and single molecule 

reactions inside microfluidic cells, the limitations of the models become more extreme. Thus, creating 

an accurate map of the precise response of charged nanoparticles in an electric field becomes 

increasingly vital. Another compounding factor is Brownian motion’s inverse relationship with size: large 

easily observable particles have relatively small Brownian movements, while nanoscale particles are 

simultaneously more difficult to be observed directly and have much larger magnitude Brownian 

movements. The research presented here tackles both cases simultaneously using fluorescently tagged, 

negatively charged, 20 nm diameter polystyrene nanoparticles. By utilizing parallel plate electrodes 

within a specially constructed microfluidic device that limits the z-direction, the nanoparticle 

movements become restricted to two dimensions. By using one axis to measure purely Brownian 

motion, while the other axis has both Brownian motion and ballistic movement from the applied electric 
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field, the ballistic component can be disentangled and isolated. Using this terminal velocity to calculate 

the direct effect of the field on a single nanoparticle, as opposed to the reaction of the bulk solution, 

several curious phenomena were observed: the trajectory of the nanoparticle suggests that the charge 

time of the electrode is several magnitudes larger than the theoretical value, lasting for over a minute 

instead of tens of milliseconds. Additionally, the effective electric field does not reduce to below the 

Brownian limit, but instead has a continued influence for far longer than the model suggests. Finally, 

when the electrode was toggled off, a repeatable response was observed where the nanoparticle would 

immediately alter course in the opposite direction of the previously established field, rebounding with a 

high degree of force for several seconds after the potential had been cut before settling to a neutral and 

stochastic Brownian motion. While some initial hypotheses are presented in this dissertation as possible 

explanations, these findings indicate the need for additional experiments to find the root cause of these 

unexpected results and observations. 
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Chapter 1 

Introduction and the Einstein-Smoluchowski Equation  
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1.1 A Personal Anecdote 

Some scientists can pinpoint the moment when their unending thirst for knowledge began. 

For me, it started with a rather simple experiment when I was 8 years old during the classical 

Parent Career Day. My father, a middle school science teacher, brought a Van de Graaf 

generator and asked for five volunteers. Due to obvious tongue-in-cheek parental nepotism for 

this small demonstration, I was part of the small group chosen.  

The experiment was as follows: five children all stood in a line on their chairs, holding 

hands. Due to the rubber soles on our shoes, as well as the plastic seats, we were arguably 

insulated from the ground. At one end was my father with the Van de Graaf generator and on 

the other was a girl in my class with 3-foot-long hair. The student at the start of the chain 

touched the generator, we were all charged with static electricity, and then the entire class all 

gasped in bewildered excitement as the girl’s hair ballooned into a massive sphere as her long 

hair carried the charge and repelled each other.  

Staring at my classmate’s hair standing on end brought an incredible number of questions 

to our minds. Speaking to a class of 2nd graders, my father naturally simplified the explanation 

as a facet of electricity, to which most of my class nodded and accepted that answer as 

reasoning enough. Yet it is difficult to explain how disappointed I was with that explanation. If 

one were to inquire about what makes cars drive, there is a spectrum of answers ranging from 

“cars run on gasoline” to “a detailed diagram of the internal combustion engine.” My father 

provided the former, I wanted the latter. (To his credit, he did later provide me a detailed 

diagram of a Van de Graaf generator and dutifully answered all my nagging questions, but this 

just added more to my curiosity.) 
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Figure 1.1: (left) Actual image of a Van der Graaf generator sold by Pasco1, and (right) a depiction of how a Van der 

Graaf generator gathers and stores electrical charge on a metal sphere by Diyode2. 

 

1.2 Dissertation Organization 

It is the ultimate goal of this dissertation to leave every reader, regardless of scientific 

background, with a satisfying understanding of the various details contained within. Walking 

the fine line between the previously discussed spectrum between “oversimplified” and 

“pedantic tedium,” it is my honest hope that this dissertation will provide a concise yet detailed 

account that is applicable to both my fellow scientists as well as the wider public audience. As 

such, this dissertation largely consists of discussing three core concepts: 

1. Creating microfluidic cells for the categorization of specific particle interactions with 

both nanoscale Brownian motion and the Electric Double Layer (EDL), as inspired by 
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previous similar work done in the pursuit of slowing or preventing Brownian motion. 

2. Theoretical models to determine how an electrolytic solution interacts with a charged 

surface, both along the surface and throughout the   

3. Computational analysis of experimental results; namely fluorescent images of ionic 

particles interacting with charged surfaces, ideally matching the theoretical models 

presented. 

 

This dissertation's main focus is on the electric double layer (EDL) theory, which has been 

very well-developed and theoretically established for over a century but remains relatively 

poorly understood and relatively unobserved for real-world experiments on nanoscopic ionic 

particles. The research presented here thus aims to observe the formation and establishment 

of the EDL in a simple and well-defined system - two plane-parallel metal electrodes with a very 

dilute electrolyte solution filling the space between them. The electric field was probed by 

tracking the movement of nanometer-sized and fluorescent spherical particles, which exhibited 

both Brownian motion and a directed motion in the electric field direction if a field was applied. 

According to EDL theory, once the double layer has been established, the electric field in the 

bulk region becomes effectively zero. The results of the research presented in this dissertation 

show that the electric field did not drop to zero during the expected timeframe of EDL 

formation, but instead, the directed motion continued for as long as the nanobeads were 

tracked, in some cases taking several magnitudes longer than any expected value. This finding 

contradicts current EDL theory, indicating the need for further experimental investigation. Our 

research also found other unexpected behaviors, such as an apparent rebound effect, which 
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similarly requires closer investigation in the future to properly isolate and framework the force 

that causes this occurrence. These results highlight the need for accurate maps of the precise 

response of charged nanoparticles in an electric field, especially as more scientific progress is 

made for finite and single-molecule reactions inside microfluidic cells. The use of fluorescent 

nanoparticles, restricted to two dimensions using a specially constructed microfluidic device, 

offers a promising method to investigate these curious phenomena. 

It is thus necessary to describe the nanoscale realm in which we find ourselves. As such, the 

rest of Chapter 1 will be dedicated to giving an overview of the history and work behind 

Brownian motion. Chapter 2 is dedicated to exploring the necessary information regarding 

electric fields, potential, and charged particles. Chapter 3 will cover the historical models, as 

well as the current working models, of the electric double layer. Chapter 4 consists of the 

methods used in exploring the history of microscopes, specifically both the advantages and the 

severe limitations in analyzing anything below microscopic scales, subpixel localization, as well 

as the particle-to-pixel discrepancy, particle tracking, and super-resolution microscopy.  

Considering that our EDL story spans a minimum of two-hundred years, Chapter 5 is dedicated 

to contemporary research to give us a more modern perspective on how others have used 

these methods in their research. 

Getting to the bulk of my own research, Chapter 6 consist of the methods, materials, and 

instrumentation used in the experiments, while Chapter 7 will be the initial results and errors 

that had to be accounted for in the methods, as well as ways in which to overcome the 

limitations of the microfluidic cell. Chapter 8 is the core of the thesis, with in-depth analysis on 

the Brownian movements of nanoparticles, extrapolating ballistic components from particle 
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tracked images, and the resulting implications of the nature of the EDL. Chapter 9 will be the 

final chapter, dedicated to presenting and understanding the anomalous results and 

unexpected outcomes, as well as probing the future and presenting possible ideas on where 

additional research will be needed to complete the detailed map of the EDL.  

 

1.3 Chapter 1 Overview 

The rest of this chapter focuses largely on the historical aspects of the study of nanoscale 

objects and microfluidic solutions, and I include it in my introduction specifically to act as a 

rough facsimile of the themes of this dissertation: validating observation and theory with 

precise particle tracking. We will begin with a historical account of Brownian motion: Robert 

Brown’s observations in 1827, Albert Einstein’s theoretical model in 1905, and Jean Baptiste 

Perrin’s experimental results in 1908. From there, we will discuss expanding Brownian motion 

dimensionally, and how ballistic factors have a variable effect on Brownian motion depending 

on their magnitude.   

Before we begin, however, I must make an important declaration: most of the work 

presented in this thesis comes from a global community of scientists. As such, most of these 

works are in a foreign language: Brown presented his research in Latin, Einstein’s original 

papers and observations were all in his native German, and Perrin wrote in his native French. 

While some of you reading this might possibly be able to read and understand English, German, 

Latin, and French, I’ve made the executive decision to only use translated titles and texts from 

here forward for the sake of simplicity and readability. 
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1.4 Robert Brown and Brownian Motion 

Robert Brown, a Scottish botanist and paleobotanist, was not the first pioneer of the 

microscopic world, but he certainly had a remarkable effect on the totality of biology. While 

other biologists were interested in large-scale categorization of newer species, Brown was 

instead interested in the more minute details of already well-known plants4,5. Equipped with his 

much-admired double-convex single-lens microscope6 (“with focal length of about 1/32nd of an 

inch,” which was the only microscope he used “to give greater consistency to [his] 

statements,”6) he often studied the reproductive traits of living plants or attempted to observe 

the small structures in fossilized plant-life. Over the course of his multi-decade career as a 

scientist, he was instrumental in identifying the seed distinctions between cone-bearing plants 

(gymnosperms) and flowering plants (angiosperms).7,8 For his multitude of years of scientific 

discovery, he was awarded the Copley Medal in 1839. 

 

Figure 1.2: Portrait of Robert Brown by Henry William Pickersgill3 
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Eventually, he wanted to see if he could make further separations and categorizations of 

these plants by observing pollen grains suspended on the surface of water. It was his hope to 

observe the precise mechanism in which male pollen grains and female ovule interact in plant 

reproduction. It was while observing the Clarkia pulchella pollen grains that he made a startling 

observation: there were small particles within the pollen grains that moved, despite no obvious 

biological motor6. After frequent and repeated observations, he was quite satisfied to declare 

to himself that these motions were not due to microcurrents in the water or from evaporation, 

but instead believed that it might possibly be some factor inherent to the pollen itself: Life.  

 

Figure 1.3: Clarkia pulchella pollen grains under electron microscope and traditional light microscope (top left)9 

 

Being a critical scientist, he worked to verify this as a function of life, dubbed “vitality”6. In 
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his report, A Brief Account of Microscopical Observations Made in the Months of June, July, and 

August 1827, he performed a series of experiments that all sought to establish a root cause of 

the motion. He took long-dead pollen grains from the genus Equisteum, aged and dried for over 

100 years, and repeated the experiment. Stunningly, he observed the exact same motions at 

the exact same magnitude. Thinking that perhaps it was some function of the pollen, he ground 

up coal and wood fragments to be the roughly the same size as the pollen, but he got the exact 

same results. Believing that it might be a function of organic matter, he ground up volcanic ash, 

obsidian, and pumice. Still the motion persisted. At one point, he even used metal powders (as 

inorganic as one could possibly get) and he still observed the exact same motions. As he 

presented his findings and investigations, Brown vehemently stated that he had no explanation 

for the motion; he had exhausted every possible reasoning.  

This motion, later named “Brownian motion,” was characterized by the particles moving, 

rotating, changing direction rapidly, and even bending themselves while under observation, 

with rapidly changing magnitudes of movement in all directions. There is no immediately 

apparent rhyme or reason to the movements, and they are almost completely unpredictable as 

to how they will move, outside of obvious dimensional limitations. This movement is also often 

referred to as “random walk” motion or even tongue-in-cheek as “drunken sailor” motion.  

 

1.5 Einstein’s Other Paper 

In 1905, Albert Einstein wrote several landmark and stunning papers, dubbed the “Annus 

mirabilis” papers or “The Miracle Year” papers.10 His first paper, Concerning an Heuristic Point 

of View toward the Emission and Transformation of Light11 delves into Max Planck’s critical 
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conjecture of the black-body radiation problem and proposes the idea that energy must be 

emitted in specified and discrete amounts, or quanta. For this paper, he was awarded the Nobel 

Prize in 1921. Another paper, On the Electrodynamics of Moving Bodies12, delves into the theory 

of special relativity and that the speed of light must be a constant in all frames of reference. As 

such, time itself must therefore be referential for the speed of light to remain constant. For 

this, as well as his first paper, he was awarded the Copley Medal in 1925. In yet another paper, 

Does the Inertia of a Body Depend Upon Its Energy Content?13, Einstein systematically and 

mathematically deduces the relation between energy and mass, E = mc2, which is the 

foundation for nuclear reaction physics and the equation for which he is most well-known. 

As exciting as they are, however, we will not be discussing any of those papers. 

 

Figure 1.4: Photograph of Albert Einstein in Vienna, 1921, by Ferdinand Schmutzer14 
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Instead, we will be focused on the least publicly-known paper: On the Motion of Small 

Particles Suspended in a Stationary Liquid, as Required by the Molecular Kinetic Theory of 

Heat15. Before getting into the specifics of this paper, the general premise is quite direct: by 

taking the kinetic theory of gases and applying the same concepts to the diffusion of small 

particles in water via osmotic pressure forces, one can sufficiently measure the transfer of 

kinetic energy as a randomized motion, “identical to so-called Brownian molecular motion.” 

In our current scientific climate, it is easy to take for granted how atomic theory is 

remarkably well-accepted by the public, but just at the start of the 20th century it was an 

incredibly hotly debated topic among very prominent physical chemists, with notable 

detractors including Lord Kelvin, Wilhelm Ostwald, Josiah Gibbs, and Max Planck.16,17 Atomic 

theory was useful for estimations, but there had been no tangible proof presented to validate 

it, so it was little more than well-wishing to many scientists. So, by mathematically tying atomic 

theory to Brownian motion, Einstein created an avenue for validation. His thought process was 

remarkably direct: suspended particles in a liquid medium should follow the same physical laws 

as ideal gas particles, which were well-established at this time. If this were true, then both 

liquids and gases are formed of similar components: atoms. 

 

1.5.1 Osmotic Pressure Equations 

Einstein started with the natural diffusion of dissolved electrolytes in a liquid medium via 

osmotic pressure, where the osmotic pressure 𝛱 of an electrolyte against a semi-permeable 

membrane is dependent on the partitioned volume V*, the number of suspended particles 𝑛𝑝, 

Avogadro’s number NA, temperature T, and a constant factor of R: 
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𝛱 =

𝑅𝑇

𝑁𝐴
(

𝑛𝑝

𝑉∗
) 

(1.1) 

If you instead suspend large, visible particles, however, there should be no osmotic pressure 

according to classical thermodynamics, and as the forces of gravity are essentially negligible on 

the microscopic scale, we can ignore the force of gravity acting upon the liquid. It is here that 

Einstein makes his first postulate: according to the molecular-kinetic theory of heat, a dissolved 

non-ionic electrolyte molecule and a suspended uncharged particle are functionally the same 

and are only differentiated by size.  

From this point, we can connect the kinetic theory of heat to the diffusion of small particles. 

By starting with the amount of free energy in the system 𝐸𝐹, the energy of the system 𝐸𝑆, and 

the entropy of the system S, we can relate it to an equilibrium position (note the similarity to 

enthalpy, which wasn’t coined until five years later, and Gibbs free energy, which was not 

widely used until after 1922): 

 𝛿𝐸𝐹 = 𝛿𝐸𝑆 − 𝑇𝛿𝑆 = 0 (1.2) 

 

From here, we can relate the free energy of the system to the force acting on a particle 𝐾, the 

number of suspended particles in a certain volume 𝑣 (equal to 
𝑛𝑝

𝑉∗⁄  from Equation 1.1), and a 

finite displacement of the particle 𝑥𝐷.  

 
𝛿𝐸𝑆 =  − ∫ 𝐾𝑣 𝑥𝐷  𝑑𝑥

1

0

 
(1.3) 

 
𝛿𝑆 =  ∫

𝑅𝑣

𝑁𝐴
 

1

0

𝜕 𝑥𝐷

𝜕𝑥
 𝑑𝑥 =  −

𝑅

𝑁𝐴
∫

𝜕𝑣

𝜕𝑥
 𝑥𝐷 𝑑𝑥

1

0

 
(1.4) 

Solving the integral for 𝑥𝐷 and recombining Equations 1.3 and 1.4 back into Equation 1.2 leads 

to the following equation relating to the force: 
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−𝐾𝑣 +

𝑅𝑇

𝑁𝐴

𝑑𝑣

𝑑𝑥
 = 0 

(1.5) 

 

1.5.2 Diffusion Equations 

If the suspended particles are spheres (or at least rough estimations of spheres), we can 

directly relate the rate of diffusion of a particle 𝐷, the radius of the particle 𝑎, the viscosity of 

the liquid 𝜂, the number of particles passing through an area, and the velocity of these 

particles: 

 𝐾𝑣

6𝜋𝜂𝑎
=  𝐷 

𝜕𝑣

𝜕𝑥
 

(1.6) 

By rearranging this equation, we substitute in the 𝐾𝑣 term from Equation 1.5 and solve for 

diffusion coefficient. This does a massive simplification, removing several complicated variables, 

showing diffusion is a function of just temperature, particle radius, and viscosity: 

 
𝐷 =

𝐾𝑣

6𝜋𝜂𝑎
∗

𝜕𝑥

𝜕𝑣
= (

𝑅𝑇

𝑁𝐴

𝜕𝑣

𝜕𝑥
)

1

6𝜋𝜂𝑎
∗

𝜕𝑥

𝜕𝑣
 

(1.7) 

 
𝐷 =

𝑅𝑇

𝑁𝐴

1

6𝜋𝜂𝑎
 

(1.8) 

Taking this a step further, we can relate diffusion to a probability distribution of randomized 

displacements f over time t: 

 𝑑𝑓

𝑑𝑡
= 𝐷

𝑑2𝑓

𝑑𝑥2
 

(1.9) 

 

𝑓(𝑥, 𝑡) =
𝑛

√4𝜋𝐷

𝑒−
𝑥2

4𝐷𝑡

√𝑡
 

(1.10) 

By solving for a 1-dimensional displacement along the x-axis 𝜆𝑥, we can then solve for the 

square root of the arithmetic mean of the square of the displacements: 
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 𝜆𝑥 =  √〈𝑥2〉 = √2𝐷 ∗ 𝑡 (1.11) 

Using the diffusion coefficient term solved earlier, the root-mean-squared (RMS) 

displacement is dependent on several constant values: particle diameter and viscosity are 

roughly unchanging values and temperature can easily be held constant in an experiment. This 

shows that RMS displacement increases with the square root of time: 

 

𝜆𝑥 =  √𝑡 ∗ √
𝑅𝑇

𝑁𝐴

1

3𝜋𝜂𝑎
 

(1.12) 

 

1.6 Einstein-Smoluchowski Equation 

As Einstein released his paper in 1905, Polish scientist Marian Smoluchowski had been 

working diligently on his own derivation of Brownian motion. Smoluchowski had been waiting 

for verifiable results before presenting his article, but became pressured once Einstein broke 

ground on the subject18. His submittals are dated just a few months later in 1906, and while 

they are similar in subject matter and even in conclusion, they greatly vary when it comes to 

the method. 

Whereas Einstein relied on kinetic-molecular theory of gases, Smoluchowski’s article, On 

the Kinetic Theory of the Brownian Molecular Motion and of Suspensions19, instead focused on 

changes in momentum. Electrolytes move through a medium via random chaotic impacts with 

the solvent particles, and because both are on the same magnitude of size, these transfers of 

momentum are large. As such, the particle will move quite dramatically over a set period. For a 

larger suspended particle, however, the same solvent particles will still impart their 

momentum, but the large difference in mass between solvent and suspended particle causes 
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the magnitudes to be far smaller.  

It is a common, yet erroneous, assumption that if a particle is being constantly bombarded 

by solvent molecules, that the sum of these collisions would be null. The error is that 

randomization will inexorably lead to a non-zero value in individual interactions; the 

randomized values on one side of the particle will almost certainly either be slightly greater 

than or slightly less than the other, while the chances of a perfect net zero21 will not be true in a 

more limited timeframe. Or, as Smoluchowski wrote: “This is the same error in reasoning as if a 

gambler were to believe that he can never lose an amount of money that is greater than the 

stake of a single throw.”20 

Using the analysis as done by Islam22, we can characterize Smoluchowski’s method as 

follows: the particle in a given timestep should take 𝑁 steps of a mean free path length of 𝜆𝑓, of 

which there are some steps in the positive direction 𝑥+, and some steps in the negative 

direction 𝑥− . Unless 𝑥+ = 𝑥− (statistically unlikely for many steps) there will be a dominating 

factor 𝑥𝑠𝑡𝑒𝑝, which determines the distance from the origin 𝑥𝐷 . 

 𝑁 = 𝑥+ + 𝑥− (1.13) 

 𝑥dist = 𝑥step 𝜆𝑓 = (𝑥+ − 𝑥−)𝜆𝑓  (1.14) 

There is thus a probability 𝑃𝑥, that characterizes how far the particle has travelled: 

 

𝑃𝑥 = (
2

𝜋𝑁
)

1
2

𝑒−
𝑥step

2

2𝑁  

(1.15) 

By adding in the coefficient of diffusion, we can approach a more uniform equation: 
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𝐷 =

𝑁𝜆𝑓
2

2𝑡
 

(1.16) 

 

𝑃𝑥 = (
𝜆𝑓

2

𝜋𝐷𝑡
)

1
2

𝑒−
𝑥𝐷

2

4𝐷𝑡 

(1.17) 

Assuming that the value of the mean free path is a constant, this equation can then be 

integrated to find a mean square distance 𝑥2̅̅ ̅ that looks remarkably familiar: 

 

𝑑𝑃 =
1

2
(

1

𝜋𝐷𝑡
)

1
2

𝑒−
𝑥𝐷

2

4𝐷𝑡 𝑑𝑥  

(1.18) 

 
𝑥2̅̅ ̅ =

∫ 𝑥𝐷
2𝑑𝑃

∞

0

∫ 𝑑𝑃
∞

0

= 𝟐𝑫𝒕  
(1.19) 

Having derived the exact same equation as Einstein, but via calculations determined by 

momentum, it further added legitimacy to the model. In fact, Einstein even praised 

Smoluchowski’s method for its “basis on mechanics.”23 This equation, now known as the 

Einstein-Smoluchowski equation, is the very basis on which we will later expand upon our work. 

 

1.7 Some Enquirer: Jean Baptiste Perrin  

As a final point in his paper, Einstein calculated a possible displacement value as a 

suggested matter of validation. Using water at 17 0C and a particle of diameter of 1 μm, he 

found that after 1 min the displacement should be about 0.8 μm. In addition, he also suggested 

that knowing the displacement could also be used to calculate the value of NA as another 

method of validating atomic theory. He then finished his paper with a request for help: “It is 

hoped that some enquirer may succeed shortly in solving the problem suggested here.”15 
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Figure 1.5: Portrait of Jean Baptiste Perrin from 192624  

 

Four short years later a French physicist, Jean Baptiste Perrin, sought to authenticate this 

proposed theory suggested by Einstein. Perrin had already established himself as a notable 

physicist by discovering that cathode rays were negatively charged particles in 189525, two full 

years before J. J. Thomson discovered the electron in 189726. (Note: the reason as to why 

Thomson is given the credit of the electron instead of Perrin is a technicality. Perrin identified 

that cathode rays were negative particles, Thomson identified that the rays were negative 

particles and found their charge-to-mass ratio. It is this writer’s opinion that Perrin deserves 

more credit.) 

In Perrin’s landmark paper, Brownian Movement and Molecular Reality27, he sought to 

confirm atomic theory via rigorous measurement and direct observations, something that 

atomic theory was severely lacking at that time: “In brief, the examination of Brownian 
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movement alone suffices to suggest that every fluid is formed of elastic molecules.”27 His 

method for doing so was to repeatedly calculate Avogadro’s number, an accreditation that 

Perrin coined. By connecting a vast myriad of well-accepted scientific theories to the same 

constant, and then experimentally finding that constant via Brownian motion observations, it 

provides hard proof that the kinetic molecular theory of heat can be applied to liquids, and thus 

atomic theory itself is given a vast network of additional proof. To do so, he diligently recorded 

the precise locations of a colloidal particle as it moved vertically in suspension, and he repeated 

this methodology over two hundred times with different particles of varying sizes. In addition, 

using the values he calculated, he was able to follow through with Einstein’s proposal on using a 

suspended colloidal particle to calculate Avogadro’s number, at the time considered solely a gas 

constant. 

 

Figure 1.6: Perrin’s hand-drawn paths of three granules of mastic, roughly 1 μm diameter, at 30 second intervals.27  
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Perrin outright refers to both Einstein’s and Smoluchowski’s work and does a very detailed 

breakdown of their parameters for his experiments: Einstein’s equation for a specific particle 

only refers to the size of particle and the mean displacement over time. He verifies that it is 

independent of mass by using different substances with different densities: granules of 

gamboge (a pigment obtained from evergreen trees) and mastic (a plant resin obtained from 

Pistacia lenticus). Despite this, consistent with Einstein’s estimations, Perrin obtained nearly 

identical mean displacements. He even repeated the experiments with much larger particles, 

measuring nearly 50 μm, a fifty-fold increase. This increase in size would naturally produce a 

smaller Brownian mean displacement, and Perrin found that these results are yet again 

consistent: an estimated mean displacement of 2.50 μm rather nicely matched his measured 

displacement of 2.35 μm, even before accounting for various expected errors and difficulties in 

obtaining ideal solution criteria. 

What he found is unsurprising to us now, but at the time was incredible. His results 

matched Einstein’s estimations and his estimate for Avogadro’s number was practically a 

match: between all his experimental calculations, independent of the “mass, density, or 

nature” of the particle, he found values for NA between 5.0-8.0 x 1023, with a final estimation of 

6.8 x 1023. At the time, the commonly accepted value was 6.0 x 1023, as determined by the van 

der Waals equation. 

To say that this paper was influential is an understatement. This paper, as well as Perrin’s 

book Les Atomes have been credited by even the most die-hard detractors of atomic theory as 

the evidence that finally convinced them of its validity, most notably Wilhelm Ostwald17,28. For 

Perrin’s tireless work, he was awarded the Nobel Prize in 1926.25 
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1.8 Dimensionality and Additive Factors 

To finish off this chapter, and to expand briefly upon the Einstein-Smoluchowski equation, 

we can adapt the Einstein-Smoluchowski equation into more than one dimension29. Thankfully, 

it does not create an undue burden. If we consider a mean square displacement in three 

dimensions 𝑟2, as a function of x-y-z dimensions, and assuming that the diffusion coefficient is 

isotropic (meaning consistent in all directions) we can come to a general equation where 𝑛 is 

the number of dimensions30: 

 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2 (1.20) 

 〈𝛥𝑟2(𝑡)〉 = 2𝐷𝑥𝑡 + 2𝐷𝑦𝑡 + 2𝐷𝑧𝑡 = 2𝑛𝐷𝑡 (1.21) 

This equation can then be further adapted using additional systemic drift factors coming 

from any number of multiple sources, including but not limited to: temperature gradients 

creating convection currents, electrical fields inducing electromagnetic forces, organic cellular 

locomotion, and counteractive frictional forces31. By considering the force on an object as the 

combination of the vectors of all forces, we can create a more general all-encapsulating term 

for this ballistic motion 𝑉(𝑡), that describes these forces as a function of time. 

 〈𝛥𝑟2(𝑡)〉 = 2𝑛𝐷𝑡 + 〈𝑉(𝑡)2〉 (1.22) 

Figure 1.7 shows that there are a few distinctive regions for an isolated particle undergoing 

some form of ballistic motion. The first region is characterized by the second half of the 

equation, which dominates over the Brownian factor to such a degree that it is functionally 

irrelevant. The second region is the diffusion, which follows Einstein’s equation of 2𝐷𝑡 for a 1-

dimensional particle. Finally, the third region, characterizes that if a particle is limited in the 
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distance it is allowed to travel (eg: an electrostatically trapped or a physically obstructed 

particle), then there is an upper limit on the particle’s long-form displacement. 

 

Figure 1.7: Mean square displacement of a 1.0 μm diameter silica sphere in water as it transitioned from ballistic 

motion to Brownian motion due to confinement factors, measured by Huang et al, with addendums by Pusey.32,33 

 

Specifically, this dissertation seeks to probe the area of ambiguity between the first and 

second region by using data of a diffusing particle: what if the diffuse and ballistic components 

are of similar magnitude? Following the full equation, a combination of diffusion and drift will 

be the basis of much of the work presented later in this dissertation. We will calculate 〈𝛥𝑟2(𝑡)〉 

and 2𝑛𝐷𝑡 experimentally to find the sum of ballistic effects, V(x), on a particle and see if they 

match the theoretical values.  
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Chapter 2 

Electric Potential Theory and the Debye Length 
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2.1. Chapter Overview 

This chapter gives a complete overview of the electrical concepts that will be used later in 

the dissertation. This chapter is specifically presented out of order, with the visualizations 

presented first, followed by the mathematical formulae that describe these visualizations 

presented second.  

 

2.2. Electrical Field of a Single Particle 

When confronting large, complicated, and multi-faceted systems, it is often best to start at 

a more basic concept and then build complexity. As such, the simplest geometry for calculating 

an electric field is a solitary perfectly circular source, with some arbitrary electrical charge. For 

our purposes, to be consistent with later examples, we will assume that our circular source is 

negatively charged. This source is arbitrarily set at a radius of 1 nm and a potential of -0.5 V. 

To best depict this, we will use the COMSOL1 Multiphysics program, version 5.5. COMSOL 

can render any user-created structure and calculate a myriad of properties, including 

electrostatic fields, fluid flow, heat transfer, structural integrity, acoustics, liquid and gas 

interactions, and even chemical reactions such as battery discharge, metal deposition, and 

corrosion. For our purposes, we will only be using the electrostatics module. Each model was 

user-generated, and the values were indicated on each model. Insofar as accuracy is concerned, 

these models also match readily available analytical solutions. 
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Figure 2.1: COMSOL plots showing: (a) the dimension and position of a single circular source at -0.5 V. (b) The electrostatic potential shown by their field lines, 

with arrows along those lines pointing towards negative potential. (c) The continuous electric potential generated by the source. (d) The same electric field, 

now segmented into single-color regions, with grey equipotential lines delineating the regions.  

a                                         b 

 

 
 

 

 

c                                          d 2
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Here we can observe three of the different functions that will be relevant to understanding 

any future models: electrical field lines (Figure 2.1.b), electric potential (Figure 2.1.c), and 

equipotential lines (Figure 2.1.d). Firstly, the field lines, shown as small black arrowed lines, are 

defined as the directional force on a positive charge; the arrows always point from-positive-to-

negative potential. For our hypothetical negatively charged source, that means that all arrows 

will point towards the negative surface. 

 The electric potential, emanating from the electrical charge present on the source, radiates 

outwards from the source: the farther away from the source, the less the electrical field will 

have influence. This decreasing effect is represented by the colorful spectrum, where red is 

indicative of negative potential and blue is indicative of relatively positive charge potential. As 

the distance from the charge source increases, the felt potential decreases according to the 

spectrum-scale on the right. 

Finally, equipotential lines (“equivalent potential”), shown as small grey lines between the 

different colors, are drawn at the distance from the source where the potential is a constant 

value. This is a useful method of viewing an electrical field, as it more easily shows whether a 

change in the field is constant or exponential by seeing whether the equipotential lines are 

spaced evenly or not. An important note is that these lines are perpendicular to the electric 

field lines shown in Figure 2.1.b. Secondly, similar to how the electric field arrows are clustered 

tightly around the source, the equipotential lines are also quite dense near the source, but 

quickly become farther apart as the distance increases. For example, the equipotential line of -

0.45 V (shown as red) is a source very close to the source, while the -0.15 V equipotential line 

(shown as light blue) is much farther away and much larger. This shows that there is a rapid 
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decrease in the potential close to the circular source but decreases more slowly in further out 

areas. 

By combining these different concepts, we can form a singular image that imparts all the 

relevant information. It is important, though, to see how each of these different variables are 

just a function of the singular electrical field. With just a single solitary circular source, these 

lines are perfectly symmetrical and extend outwards towards infinity (or an arbitrary zero 

distance). With the combined image, we can also see how the field lines and the equipotential 

lines are truly perpendicular to each other. As everything is symmetrical, this means that all 

field lines are equal in strength and density.  

 

Figure 2.2: COMSOL plot combining equipotential lines, electric potential, and electrostatic field lines. 
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2.2.1. Electrical Field of a Two Particles 

The more interesting phenomenon, of course, is the relation between two objects and their 

relative charges. For our case, we will now consider our object as a floating particle, the first 

particle is already set as negatively charged; the other particle can be either positively or 

negatively charged. Which leaves us with two unique cases we will have to explore: similarly 

charged or oppositely charged. 

For the first case, with similarly charged particles, we can see a departure from the previous 

case: the field lines no longer radiate outwards evenly in all directions. All the field lines pointed 

at the other particle curve dramatically away at sharp angles as it progresses. We can partially 

consider these field lines as the potential direction of movement of the particles: all lines point 

away from the other particle. Thus, these two particles will repel each other.  

 

Figure 2.3: COMSOL plot of two negatively charged particles, shown as black circles. Divergent lines show that the 

particles will repel each other. 
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The second case, oppositely charged particles, is quite dramatically different. Instead of 

having the field lines point away from the other particle, now all the field lines must connect to 

the opposite charge. As seen below, the field lines cluster very tightly in the space between the 

two particles. If these two particles were allowed to move freely, they would immediately be 

attracted to each other.  

 

Figure 2.4: COMSOL plot of oppositely charged particles, shown as black circles. Lines connecting the two particles 

show that the particles will be attracted to each other. 

 

It is from these two examples that we can begin to better our understanding of how 

particles interact with other charged bodies. In areas of high electrostatic potential change, 

such as between the two particles, we expect to see a large density of electromagnetic field 

lines, which in turn implies a stronger attractive force. Similarly, the size of the arrowheads is 

representative of their relative strength, with the strength of the field rapidly decreasing as the 

distance to the particles increases. 
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2.2.2. Electrical Field of a Charged Surface 

It is important now that we move away from arbitrarily small, charged particles and begin to 

transition towards our eventual destination: the field lines of two parallel plates. For the sake of 

consistency, we will adapt our previous examples one at a time to see how the system changes 

with each step. 

Our first case is replacing our secondary positively charged particle with a positively charged 

surface, where we can see how the particle is attracted to the surface, with all its field lines 

bending dramatically towards the surface. Even the field lines that extend from the far-side of 

the particle all bend towards the conductive surface. Thus, if allowed to move freely, we would 

expect our negatively charged particle to approach the surface very quickly.  

 

Figure 2.5: COMSOL plot of a negatively charged particle being attracted towards a positively charged plate. The 

highest density of lines, and the largest arrows, are directly between the particle and the plate. 
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Otherwise, if the surface is similarly charged as the particle, now the field lines are very 

much clustered in the opposite direction. This particle will very rapidly be repelled by the 

surface.  

 

Figure 2.6: COMSOL plot of a negatively charged particle being repelled by a negatively charged plate. None of the 

lines from the particle ever approach the plate, and instead all move directly away from it.  

 

2.2.3. Electrical Field of Two Parallel Plates 

The final theoretical simulation we will be discussing in this section is also the one that will 

be most vital for our understanding of the experimental results. Namely, two parallel plates at 

some distance. Whereas before we observed that the radial field lines highlight an exponential 

increase or decrease in potential, shown by diverging and converging field lines, two parallel 

conductive plates provide us with a unique situation: a uniform field with a constant rate of 

change for the potential. Between these two plates, we can observe that the equipotential lines 

and the field lines are both perfectly straight, forming an even transition. Of course, once we 

start approaching the top and bottom edges, the field lines begin to bulge outwards similarly to 
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the two-particle system, and the equipotential lines begin to diverge, and the strength of the 

field arrows decrease. For an experiment, however, if we limited ourselves to staying within 

these two plates and didn’t approach the edges too much, we could work within the uniform 

area of the field. 

 

Figure 2.7: COMSOL plot of oppositely charged plates. The electrostatic potential lines between the two plates are 

parallel and with even strength, the lines near the edges begin to bend and lose strength, and the field lines not 

between the two plates are very weak.  

 

2.2.4. A Particle Between Two Plates 

It is here that we must momentarily depart from these COMSOL simulations, as charting 

particle trajectories between these two plates becomes more theoretical and less visually 

interesting: a single suspended particle will have no noticeable effect on the field between the 

two rigid plates, as they hold several orders of magnitude more charge, and the mobile particle 

will now move in the direction of the field. Similarly, as soon as there are a sizable number of 

mobile particles then the calculation of the potential moves quickly into a mathematical time-
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based function, as well as becoming dramatically more difficult to chart effectively: the particles 

will repel each other in addition to being driven by the electric field; summarizing these effects 

as an electric potential plot is impractical. 

As we dig further into the theorems of Helmholtz, Gouy-Chapman, and Stern for Electric 

Double Layers, it is difficult to present their research as they were originally presented. Due to 

the subtle changes in mathematical nomenclature over the past 150 years (Helmholtz in 

particular uses archaic and outdated terminology), we will be using the modern understanding 

of these classical systems to keep things concise. 

  

2.3. Electrical Field Theory 

Before we begin, the following material is considered a fundamental base of 

electrochemistry, mathematics, and physics, and all of it can be found in various textbooks and 

papers. For the purposes of this dissertation, and to give proper credit where it is due, we will 

be loosely following the approach as presented by Dr. John Quine2, a professor of Mathematics 

at Florida State University. 

Our starting point in electrostatic equations is also the most fundamental; Coulomb’s Law 

describes the interaction and attraction between a source charge 𝑞, and a test charge 𝑄, 

separated by a particular distance d as a vector directed away from the origin. The force of this 

interaction F is given by a vector: 

 
𝑭 =

1

4𝜋𝜀

𝑞𝑄

𝑑2
 �̂� 

(2.1) 

 

The factor of 1 4𝜋𝜀⁄  is a conversion factor for our modernized standardized units, with 𝜀 as the 

permittivity for the medium (in this case, a vacuum). To describe this in practical terms, we can 
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envision this as the two-particle system described earlier where if the charges are oppositely 

charged, they’ll be attracted, but if they’re the same charge then they’ll be repelled. If we 

increase the distance between these two particles dramatically, the force of the attraction 

decreases not linearly, but with the square of the distance between them. 

By defining the electric field 𝑬 as being a function of the source charge, we can then 

simplify the force of attraction as the electric field acting on the unit charge: 

 
𝑬 =

1

4𝜋𝜀

𝑞

𝑑2
�̂� 

(2.2) 

 

 𝑭 = 𝑄𝑬 (2.3) 

 

Similarly, we can derive the potential energy of the system 𝑈𝑝𝑜𝑡, as a function of the 

electrostatic potential energy 𝜑: 

 
𝑈𝑝𝑜𝑡 =

1

4𝜋𝜀

𝑞𝑄

𝑑
 

(2.4) 

 

 
𝜑 =

1

4𝜋𝜀

𝑞

𝑑
   

(2.5) 

 𝑈𝑝𝑜𝑡 = 𝑄𝜑   (2.6) 

While Equation 2.2 and 2.4 might look similar, there is not a distance term in the 

denominator. In fact, the electrostatic force is the negative vector derivative of the potential 

energy: 

 𝑭 =  −𝜵𝑈𝑝𝑜𝑡 (2.7) 

 

Where 𝜵 is the del operator, the derivative function in three dimensions and often known 

as the gradient of a field. This allows us to directly relate the electric field as the gradient of the 

electrostatic potential energy: 
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 𝑭 = 𝑄𝑬 =  −𝜵𝑈𝑝𝑜𝑡 = −𝑄𝜵𝜑 (2.8) 

 
 𝑬 = −𝜵𝜑 (2.9) 

In simpler terms, this means we have effectively removed the charge Q of our target particle 

from our calculation, and thus can instead simply concern ourselves with the electronic 

potential applied to our system. This will be useful for our system of two parallel metal plates 

with some applied potential, leading to a uniform electrostatic field between the two plates. 

However, we still have more to do before we can apply values to this system. 

 

2.4. Gauss’s Law and Poisson Equation 

To evaluate the characteristics of this electrostatic potential and field, it is going to be 

impractical to count the vast number of charges aligned along the metal surface. The 

calculations work for a few single particles, but definitely not for the quintillion particles in our 

system. So, having removed the test charge, we must now endeavor to remove the surface 

charge q. 

Our way forward is using Gauss’s Law, which measures the flux of an electrostatic field. Flux 

is the net amount of electrostatic field that emanates from some specific volume occupied by a 

closed surface. We can visualize this as one of two possibilities: the field’s source is inside or 

outside the closed surface. In our case, let us use the electric field lines emanating from a single 

particle, as discussed earlier in this chapter. We will consider two shapes: a red surface that 

does not contain the source and a blue surface that does. For every field line entering the 

surface, there is an equivalent line leaving the surface. Therefore, the overall net flux is zero. 

But for the blue surface, every single field line enters the surface, with none exiting the surface. 
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Thus, the overall net flux is determined exactly by the field. 

 

Figure 2.8: Two curves highlighting the difference in flux. The electrostatic field lines (black arrows) radiate 

from the particle. The blue surface encapsulates the particle, while the red surface does not.  

 

We can describe this mathematically, converting briefly from Cartesian distance d to spherical 

coordinate distance r, as: 

 
∮ 𝑬 ∗ 𝒅𝒂

 

𝑆

=  ∮
1

4𝜋𝜀

𝑞

𝑟2
 �̂�

 

𝑆

𝒅𝒂 
(2.10) 

 

 𝒅𝒂 = r2 sin 𝜃 𝑑𝜃𝑑𝜑�̂� (2.11) 

 
∮ 𝑬 ∗ 𝒅𝒂

 

𝑆

=
𝑞𝑒𝑛𝑐𝑙

4𝜋𝜀
∮ sin 𝜃 𝑑𝜃𝑑𝜑

 

𝑆

=
𝑞𝑒𝑛𝑐𝑙

4𝜋𝜀
∫ sin 𝜃 𝑑𝜃 ∫ 𝑑𝜑

2𝜋

0

𝜋

0

 
(2.12) 

The integral uses 𝒅𝒂, a vector factor normal to the surface of our enclosed surface and directed 

outwards, and the enclosed charge qencl, which can be a single charge or a multitude of charges 

in a specific volume.  By converting both E and da to a spherical coordinate system, we can 

simplify the integral considerably: the integrals of sin 𝜃 𝑑𝜃 and 𝑑𝜑 can be solved 

mathematically as 2 and 2π respectively, which results in an elegant formula: 
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∮ 𝑬 ∗ 𝒅𝒂

 

𝑆

=
𝑞𝑒𝑛𝑐𝑙

𝜀
 

(2.13) 

 

For sufficiently large quantities, we can characterize this as a function of volume 𝑉𝑡 , an 

infinitesimal volume element d𝜏, and most crucially the charge density 𝜌. 

 
𝑞𝑒𝑛𝑐𝑙 =  ∫ 𝜌 𝑑𝜏

 

𝑉𝑡

 
(2.14) 

 

By then combining this with the previous equation with the divergence theorem, we obtain our 

final goal: 

 
∮ 𝑬 ∗ 𝒅𝒂

 

𝑆

=  ∫ (𝜵𝑬)𝑑𝜏
 

𝑉

 
(2.15) 

 
∮ 𝑬 ∗ 𝒅𝒂

 

𝑆

= ∫
𝜌

𝜀
𝑑𝜏

 

𝑉

 
(2.16) 

 
𝜵𝑬 =

𝜌

𝜀
 

(2.17) 

In summation, the gradient of the electric field is proportional to the charge density of the 

system. By combining this with our understanding of the electrostatic potential and substituting 

in the permittivity of free space 𝜀0 and the permittivity of the medium 𝜀𝑟  for permittivity, we 

can now relate our electrostatic potential to a quantity that does not rely on a specific number 

of charges. This results in the Poisson Equation3: 

 𝜀 = 𝜀𝑟𝜀0 (2.18) 

 
−

𝜌

𝜀𝑟𝜀0
= −𝜵𝑬 = 𝛻2𝜑 

(2.19) 
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2.5. Parallel Plate Capacitor 

With our nanoscale understanding established, let us momentarily consider the macro level. 

Specifically, a parallel plate capacitor can be imagined initially as two metal plates separated by 

some distance and with an overlapping area of effect A: 

 

Figure 2.9: Two electrodes (grey) set apart at a particular distance, d, with an overlapping area, A. Charges can 

be seen along the surface of each electrode, denoted by (+/-) signs.  

 

For this capacitor, with the capacitance of the plate C, the permittivity of the medium (i.e. 

water) between the two plates, and the permittivity of free space: 

 
𝐶 = (

𝜀𝑟𝜀0

𝑑
) ∗ 𝐴 

(2.20) 

 

From here, with the capacitance also equal to the charge per applied voltage Vq, which can then 

be related to the surface charge density of the surface 𝜎 as being a charge per unit area: 

 
𝐶 =

𝑞

𝑉𝑞
           𝜎 =

𝑞

𝐴
 

(2.21) 

 𝐶

𝐴
=

𝑞

𝑉𝑞𝐴
=

𝜎

𝑉𝑞
=

𝜀𝑟𝜀0

𝑑
 

(2.22) 

 

With a rearrangement of Equation 2.22, we can obtain a relation between the surface 

charge density as a function of the voltage per unit distance: 
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 𝑉𝑞

𝑑
=

𝜎

𝜀𝑟𝜀0
 

(2.23) 

In other words, as the distance between the two plates increases, the charge density of the 

surface will decrease.  

 

2.6. Poisson-Boltzmann Equation 

Another model we will be using in Chapter 3 depicts exponential decrease in charge density 

of a suspension of point charges. We can characterize4 the relative concentrations of these 

charges by their distance from the electrode as a Boltzmann-Maxwell5,6 distribution. We can 

start with considering a specific ion species which has a number of ions in a particular space ni, 

which can be described as a function of the total number of ions in the bulk solution n0, the 

charge number zi, the potential acting on those ions 𝜑𝑖, the elementary unit charge e0, the 

Boltzmann constant kB, and temperature: 

 
𝑛𝑖 = 𝑛0 𝑒

−
𝑧𝑖𝑒0𝜑𝑖

𝑘𝐵𝑇  
(2.24) 

 

This can then be further refined by considering the total free charge density to be a 

collection of all ions: 

 
𝜌(𝑥) =  ∑ 𝑧𝑖𝑒0(𝑛𝑖)

 

𝑖

= ∑ 𝑧𝑖𝑒0 (𝑛0 𝑒
−

𝑧𝑖𝑒0𝜑𝑖
𝑘𝐵𝑇 )

 

𝑖

 
(2.25) 

 

This can then be simplified further by first using a property of derivatives, where 𝑊 is an 

arbitrary constant: 
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 𝑑

𝑑𝑥
[(

𝑑𝜑

𝑑𝑥
)

2

+ 𝑊] = 2
𝑑𝜑

𝑑𝑥
(

𝑑2𝜑

𝑑𝑥2
) 

(2.26) 

 𝑑2𝜑

𝑑𝑥2
=

1

2

𝑑

𝑑𝜑
[(

𝑑𝜑

𝑑𝑥
)

2

+ 𝑊] 
(2.27) 

By then combining a one-dimensional version of Equation 2.19 with 2.25, and inserting it into 

Equation 2.27, we can reduce this down to a first-order differential equation: 

 𝑑2𝜑

𝑑𝑥2
= −

1

𝜀𝑟𝜀0
𝜌(𝑥) = −

1
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−
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𝑖

 
(2.28) 
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𝑖

𝑑𝜑 
(2.29) 

By integrating Equation 2.29, selecting the specific bounds in 1-dimension, where at  𝑥, 𝜑𝑖 =

𝜑, (𝑑𝜑𝑖 𝑑𝑥⁄ ) = (𝑑𝜑 𝑑𝑥⁄ ) and when at ∞, 𝜑𝑖 = 0, and (𝑑𝜑𝑖 𝑑𝑥⁄ ) = 0 
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(2.32) 

We can also use the hyperbolic sine function definition to finally obtain a differential equation 

that will help us make estimates for our systems: 

 
sinh(𝑥) ≡

1

2
(𝑒𝑥 − 𝑒−𝑥) 

(2.33) 
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2𝑘𝐵𝑇
) 

(2.34) 
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2.7. Debye-Hückel Theory 

While the previous equation might seem complicated, it is effectively a whole series of 

constants multiplied by a 𝑠𝑖𝑛ℎ function. If we can estimate this the function, we will have a very 

direct and solvable value. Our estimation is going to be that if the electrostatic energy is much 

smaller than thermal energy, then sinh(𝑥) can be approximated as 𝑥. By setting all our 

constants equal to a singular constant, the Debye screening vector 𝜅, this means that we can 

find that the gradient of the potential is equal to a series of constants multiplied by that field: 

 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒: 
𝑑𝜑

𝑑𝑥
= (

2𝑛0𝑧𝑖
2𝑒0

2

𝑘𝐵𝑇𝜀𝑟𝜀0
)

1
2

 𝜑𝑖 

(2.35) 
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2
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1
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(2.36) 

 𝑑𝜑

𝑑𝑥
= 𝜅𝜑 

(2.37) 

This constant is most often seen inverted and referred to as the Debye Length 𝜆𝐷 

 

𝜆𝐷 = 𝜅−1 = (
𝑘𝐵𝑇𝜀𝑟𝜀0

2𝑛0𝑧𝑖
2𝑒0

2)

1
2

 

(2.38) 

 

By inputting a series of constants, we can finally have a single set value for this distance7. 

Noting that the number of ions is a function of the concentration 𝑐, that 𝑛0 = 𝑐 ∗ 𝑁𝐴, we can 

find that if we use a 10-4 M aqueous solution of a 1:1 electrolyte at 20 oC, and assuming the 

dielectric constant of the solution is roughly equal to water, 80.1, we obtain a Debye length of 

30.5 nm. As we will discuss in the next chapter, this length is a characteristic of the exponential 

decrease, and is essential to our understanding of how the electric potential decreases over 

distance; after every Debye length8,9, the potential has decreased by a factor of 1 𝑒⁄ , or 36.8%. 
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After 5 Debye lengths, it would be 1 𝑒5⁄  or 0.67% of the original potential, which is roughly 

where the field is considered to have dissipated and the bulk of the solution where the 

concentration is back to the rough average. 

 

2.8. Dielectrophoretic Forces 

Having completed the brief summation of forces relevant towards understanding the EDL, it 

is here that we make a small departure into non-uniform electric fields. While not necessary for 

later chapters, dielectrophoresis (DEP) is a force-effect that can have strong effects on a 

suspended particle, and it is thus vital to understand and limit DEP as much as possible. 

Dielectrophoresis is a resultant force that occurs in non-uniform electrostatic fields, where 

there is an observed motion either towards (positive) or away from (negative) that area with a 

larger change in potential, easily recognized by a higher concentration of field lines. 

 

Figure 2.10: Diagram of positive-DEP by Khoshmanesh et al.10,11 of an electric field acting on a neutral, but 

polarizable, cell. A) Uniform symmetrical fields induce equivalent DEP-forces, thus having a net zero effect. B) Non-

uniform fields have non-equivalent forces. For positive-DEP, this means moving towards the maximum field. 



44 
 

The largest determining factor for DEP is the relational permittivity between the particle 

and the medium, also known as the Clausius-Mossotti factor11, 𝐶𝑀(𝑓), shown here where 𝜀𝑚
∗  is 

the complex permittivity of the medium and 𝜀𝑝
∗  is the complex permittivity of the particle, 𝜎𝑝 

and 𝜎𝑚 are the electrical conductivities, 𝑓𝐸 is the frequency of the electric field, and 𝑖 is the 

imaginary constant equal to √−1. The complex permittivity, as opposed to relative permittivity, 

includes an additional factor for heat loss through dissipation. 

 
𝜀𝑝

∗ = 𝜀0𝜀𝑝 + 𝑖
𝜎𝑝

𝜋𝑓𝐸
                           𝜀𝑚

∗ = 𝜀0𝜀𝑚 + 𝑖
𝜎𝑚

𝜋𝑓𝐸
 

(2.39) 

 
𝐶𝑀(𝑓) =

𝜀𝑝
∗ − 𝜀𝑚

∗

𝜀𝑝
∗ + 2𝜀𝑚

∗
 

(2.40) 

The Clausius-Mossotti factor is a way of describing if the particle or the medium is more 

polarizable: if the particle has a higher polarizability, then it will be more strongly affected by 

the non-uniformity of the field and will thus move towards the maximum electric field. If the 

particle and the medium are equal, this factor equals zero, and thus the DEP force trends 

towards zero. The strangest case is negative dielectrophoresis: if the medium is more 

polarizable than the particle, then the particle will shift away from higher field density. We 

typically only observe the movement of the particle, and it is often difficult to directly observe 

the medium’s response, but essentially it is the medium itself that is pushing the particle 

further away.   

To put this in more layperson terms, a visual example helps to clarify: imagine for a moment 

a single particle floating in water. If an electric potential is applied to a distant asymmetrical 

electrode, both the water and the particle are attracted to it. In the simplest case, positive DEP, 

if the particle is more polarizable by the field, it will have a greater attraction to the electrode 
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and will push past the solvent. If the water is more polarizable, however, then the opposite 

occurs: the water pushes past the particle as it is more attracted to the electrode. As the water 

continually pushes in front of the particle, the particle is effectively “repelled” from the 

electrode, despite not being repulsed from it. Thus, dielectrophoretic forces are not directly an 

attractive/repulsive effect, but instead the difference between two attractive values.  

  

Figure 2.11: COMSOL plots of the dielectrophoretic potential of two electrode setups, (left) uniform field between 

two electrode plates and (right) non-uniform field. In both cases, the red region signifies high dielectrophoretic 

potential, while the lines show the electrostatic potential. 

 

To return to the COMSOL calculations from earlier in the chapter, as seen in Figures 2.1 to 

2.7, the classification of the electrostatic potential as uniform or non-uniform has a dramatic 

effect on the dielectrophoretic potential. Dielectrophoresis occurs when there is a notable 

gradient, with positive dielectrophoresis pushing particles towards red sections, and negative 

dielectrophoresis pushing particles towards blue. However, when the field is uniform the 

gradient effect is negligible and thus DEP has almost zero effect, as seen by the constant grey 

region between the plates. In non-uniform fields there are no large stable zones of a constant 



46 
 

DEP potential12,13.   

With the understanding of how the Clausius-Mossotti factor functions, we can then take 

this one step further to find the magnitude of this force effect14, 𝑭𝑫𝑬𝑷. We can take the real 

part of the complex Clausius-Mossotti factor, 𝑅𝑒[𝐶𝑀(𝑓)], and the three-dimensional derivative 

of the square of the root-mean-squared value of the applied electric field, 𝛻𝑬𝑅𝑀𝑆
2 , we can come 

to the following equation for spherical dielectric particles: 

 𝑭𝑫𝑬𝑷 = 2𝜋𝜀𝑚𝜀0𝑟3 · 𝑅𝑒[𝐶𝑀(𝑓)] · 𝛻𝑬𝑅𝑀𝑆
2  (2.41) 

As our goal is to eliminate dielectrophoresis, there are three methods that this can be 

reduced as much as possible: modifying the radius, relative permittivity, and the electric field. If 

the volume is minimized, then the polarity of the particle becomes less and less of a factor: a 

small particle will have a smaller separation of its similiarly reduced charge. If the complex 

permittivities of the medium and the particle are the same, then the CM factor trends to zero 

as (𝜀𝑝
∗ − 𝜀𝑚

∗ ) effectively becomes zero. And finally, if the electrical field is uniform and parallel, 

then the derivative of this linear function becomes zero. As controlling the permittivity of a 

particle is difficult, the research presented later in this dissertation will focus on the other two 

factors: small particle volume and ensuring a uniform electric field. 
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Chapter 3 

Gouy-Chapman-Stern Model of the Electric Double Layer  
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3.1 Chapter Overview 

This chapter’s overall goal is to describe the many different current theories regarding the 

electric double layer. While I cannot resist the temptation to imply that there are many layers 

to these theories, it is nevertheless true: each hypothesis builds upon the previous hypothesis’s 

concepts and adds new informational modeling and details that were previously unknown, 

assumed to be minimal, or outright ignored. Thus, each progression builds upon the idea 

instead of completely overwriting it. We will begin with the three “core” theories by Helmholtz, 

Gouy-Chapman, and Stern to get a broad idea, followed by some additional theories that 

introduce smaller changes.  

This chapter will refer heavily to Chapter 2. The theories presented here are going to be 

made without constantly re-stating the equations and variables already described to keep this 

chapter as succinct as possible.  

 

3.2 Helmholtz Model 

In 1879, Herman von Helmholtz released his paper, Studies on Electric Boundary-Layers1, in 

which he describes the interactions of charged ions upon two parallel plates of copper and zinc, 

with the copper plate being negative and the zinc plate being positive in potential. He describes 

it as “a finite quantity of electricity spread out in an infinitely thin layer,” and then proceeds to 

propose a mathematical formula for its calculation. As a reminder, atomic theory wasn’t fully 

established yet2, and so his proposal of infinitely thin layers of charge wasn’t seen as an 

impossibility. As an example, Helmholtz proposes a variety of ideas, such as separating two 

metal plates by 0.03 nm with an insulating barrier between them. Considering that the width of 
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a hydrogen atom is around 0.11 nm, there is no possible way for a molecular insulating barrier 

to exist at such a distance. 

More importantly, he proposed a system in which the ionic charges suspended in solution 

would migrate towards the electrodes of the opposite charge3. In his hypothesis, he proposed 

that the charges in solution would form a uniformly thick layer along the entire electrode 

surface. This uniform thickness of charge would perfectly match the electric charge present on 

the metal surface, and thus it be a perfectly linear decrease of potential until it reached a net 

zero potential, after which the solution would return to homogeneity. This thickness, oddly 

enough, accounted for atomic size and charge density despite not being known at the time4. His 

approach compared it to a classical form of a parallel plate capacitor for storing charge, with 

parallel plates of exactly opposite potential depending on the capacitance per unit area, which 

lead to the term of a “double layer” along the metal surface.  

By slightly adapting the parallel plate capacitor example presented in Chapter 2.9, we can 

create a system that matches Helmholtz’s hypothesis by lining one of the electrodes with a line 

of rigid ions5. For our example, we will assume that there is a monolayer, but the same theory 

applies for multiple stacked layers: 

 

Figure 3.1: A positively charged metal electrode (grey) with counter-ions (red) in close proximity. 
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For the monolayer, instead of taking the distance as being the entire diameter of the ion, 

we are instead going to consider the “center” of the ion as the location of the overall charge, 

which means we will instead use the radius of the ion r, as shown on the right. This can then be 

related back to the Poisson Equation’s use of charge density in Equation 2.19: 

 
𝛻2𝜑 = −

𝜌(𝑥)

𝜀𝑟𝜀0
 

(2.19) 

 

The Poisson Equation itself has many solutions, depending on the specific geometry of the 

system6. For the EDL, we can derive a concise analytical solution by relating it to the 1-

dimensional distance to the electrode. We can summarize this as a very simple linear equation, 

starting at our initial applied potential, 𝜑initial, that drops to 0 as the distance from the surface 

𝑥𝑟  goes from 0 to 𝑎: 

 𝜑 = 𝜑initial(𝑎 − 𝑥𝑎) (3.1) 

 

 

Figure 3.2: The Helmholtz Model: a linear decrease in potential across the radius of a particle. At a characteristic 

distance of the electrode, the potential has reached zero. 
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This approach was not necessarily flawed given the knowledge at the time but is 

nonetheless devastating: it does not match experimental data. Namely, the applied potential 

on the electrode is not immediately cancelled, and instead there is a diffuse layer that is not 

compensated for in his mathematical formulations7. We now know that, according to molecular 

theory, ions that form along the electrode are only partially rigidly held: as the potential drops, 

the repulsion between ions becomes a significant factor4.   

 

3.3 Gouy-Chapman Model 

In the early 1910s, Louis Gouy8 and David Chapman9 simultaneously and independently 

proposed a similar approach to finding a mathematical system of explaining experimental 

results of the EDL. Going beyond Helmholtz’s proposed rigid layer, they each proposed a system 

that accounted for the thermal vibration and movement of ions near the surface. Their system 

had no rigid layer, but instead a fully diffuse medium of ions and counterions that were 

attracted to and repelled by the surface10. 

Instead of starting with the charge density of the surface, they both used the Poisson-

Boltzmann (PB) distribution equation to create an exponential curve, using Equation 2.28: 

 
𝛻2𝜑 = −

𝑒0

𝜀𝑟𝜀0
∑ 𝑧𝑖𝑛0 (𝑒

−
𝑧𝑖𝑒0𝜑𝑖

𝑘𝐵𝑇 )

 

𝑖

 
(2.28) 

 

As we discussed in Chapter 2.11, this can be mathematically solved to show the initial potential 

will drop consistently over each Debye Length by a factor of 1/e, or about 36.7%. Simplifying as 

a generalized exponential decrease allows us to create the following graph, using the relation 

shown in Equation 2.37 (where 𝜅 =
1

𝜆𝐷
 ) and x is the distance from the electrode: 
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 𝜑 = 𝜑initial𝑒
−𝜅𝑥 (3.2) 

 

 

Figure 3.3: The Gouy-Chapman Model: the percentage decrease in potential as a function of Debye lengths.  

 

Gouy-Chapman theory, however, made several assumptions to fit their mathematical 

solution to the EDL model, the most glaring issue being that the ions had to be assumed to be 

infinitesimal point-charges that ignored atomic size and ion density in order to fit the PB 

equation11, which leads to impossibly high concentrations along the electrode’s surface6. They 

had swung too far in the opposite direction from Helmholtz’s model; they created a model that 

characterized the diffuse layer but failed at the surface. 

 

3.4 Stern Model 

If the Helmholtz Model’s capacitor-like rigid layer worked along the surface, and the Gouy-

Chapman Model matched the diffuse layer, why not simply combine the two together? Otto 

Stern12, clearly, had the same idea in 1924.  
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The Gouy-Chapman-Stern (GCS) model he proposed breaks the interface into two major 

regions: an immobile layer along the electrode (later named the Outer Helmholtz Plane, or 

OHP) and the mobile region where the potential decays exponentially (later named the diffuse 

Layer). The boundary between these two regions is also now called the Stern Plane10. This 

combination solves the issues present in both of the previous hypotheses: the OHP properly 

accounts for atomic size along the surface and the potential will decrease linearly as it passes 

through the rigid lattice of oppositely charged ions. After the Stern Plane, the diffuse layer 

allows for ion mobility, following the more accurate Gouy-Chapman’s model, as they are no 

longer adhered to a solid-like structure. 

Mathematically, it is simply a repetition of the previous two subchapters, but with an added 

addendum for the location of the Stern Plane.  

 

Figure 3.4: Decrease in potential across a certain distance according to the GCS model. Up to the Stern Plane d-

Stern, the potential decreases linearly according to the Helmholtz Model. The model then decreases according to 

the Gouy-Chapman Model using the reduced potential at the Stern Plane, the zeta potential. 
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The equations of the characteristics of this model are simply a combination of the previous 

two hypotheses13: 

 𝜑initial = 𝜑drop + 𝜁pot (3.3) 

 
 

𝜑drop = (
𝜎

𝜀0𝜀𝑟
) 𝑑Stern 

(3.4) 

 𝜑Diffuse = 𝜁pot 𝑒−𝜅𝑥 (3.5) 

The overall potential drops (𝜑drop) linearly as a function of distance and the charge density of 

the surface. This distance reaches its termination at the Stern plane distance 𝑑Stern, which 

corresponds to the zeta potential 𝜁pot , which is where the Stern layer ends and the diffuse 

layer begins. This is where the model then shifts into the Guoy-Chapman model using Debye 

lengths based on this new set of coordinates.  

 

3.5 Additional EDL Theories 

At this point, we have now covered a large portion of what will directly influence our results 

and calculations used later in this paper. There are, however, multiple additional theories that 

change and adapt our understanding of the EDL. These will focus upon the very thin Stern layer, 

while leaving the calculation of the bulk solution region relatively untouched. For the sake of 

completeness, these are presented below because understanding the interactions on the 

electrode surface is important to get a complete picture, but not necessarily vital for the 

conclusions of this paper. 
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3.5.1 Specifically Adsorbed Ions 

In 1947, David Grahame discusses various aspects of the EDL, but he adds in a new concept: 

specifically adsorbed ions14. Grahame believed that while the oppositely charged ions are most 

often held in place by the Coulombic attraction, sometimes the ion will undergo a redox 

reaction to become covalently linked to the surface (although we will soon discuss in a later 

chapter how this is not quite accurate). These specifically adsorbed ions thus create a slightly-

higher-than-expected concentration of counter-ions along the surface, and more crucially, 

these ions become attached to the electrode. Thus, the Stern layer will be slightly changed as 

the electrode surface is no longer a hypothetical uniform flat surface and will instead have 

small protrusions into the solution via the adsorbed ions. These ions can undergo another redox 

reaction to return to the solution, but otherwise the ions cannot be simply diluted like the 

other ions in solution because they are either covalently or coordinately bound to the surface15. 

In addition to this concept, Grahame14 also expanded upon the delineation of the Stern 

Layer. Instead of a uniformly dense layer of ions that neutralizes the charge across the 

boundary, he proposed that there are two layers inside the Stern layer: the Inner Helmholtz 

Plane (IHP) and the Outer Helmholtz Plane (OHP). The Outer Helmholtz Plane is the Stern Layer: 

a semi-rigid layer of immobile ions packed together and causing a linear decrease in potential, 

attracted to and bound to the surface via electrostatic attraction, except that these ions are 

now conceived as still being fully surrounded by a solvation layer. The Inner Helmholtz Plane, 

however, is the previous addendum to the model: there are a small amount of specifically 

adsorbed ions studded along the surface. For both Planes, the line is drawn directly through the 

center of the rigid layer of ions.  
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Figure 3.5: Molecular representation of the Inner and Outer Helmholtz Planes according to Grahame. Negative 

ions (red), a specifically adsorbed ion (yellow), and water molecules (light blue) partially oriented with the ions 

 

In Figure 3.5, we can see a rough schematic of Grahame’s theory, with the lines drawn 

through the center of our solvated ions. The specifically adsorbed ion functions as part of the 

electrode, while the non-bonded ions retain their negative charge. The water molecules solvate 

the ions but are otherwise randomly distributed. It is important to note, however, that each of 

the red ions and the yellow ion shown in Figure 3.5 are the same ion, but with differing charges. 

The specifically adsorbed ion has undergone a redox reaction to bond with the electrode, and 

thus aids the electrode in its capacitance. 

 

3.5.2 Solvation Layer 

To further expand upon the Inner Helmholtz Plane, in 1963 Bockris, Devanathan, and 

Mueller postulated that in addition to orienting the water molecules geometrically with respect 
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to the charge on the ions, there should also be a very thin layer of solvent molecules that have 

oriented themselves along the surface of the electrode and act as a barrier between the ions 

and the electrode16. These more rigidly bound and oriented water molecules are effectively 

acting as a massive solvation layer for the electrode, and it is only when one of the solution’s 

ions can fully pierce through the Inner Helmholtz Plane that it would be able to undergo a redox 

reaction to become a specifically adsorbed ion.  

 

Figure 3.6: Molecular representation according to Bockris/Devanathan/Mueller. The only changes from Figure 3.5 

are that the water molecules are now rigidly oriented along the electrode surface, and the IHP line has been 

moved to cut through the center of these reorientated solvent molecules. 

 

Figure 3.6 is similar to Figure 3.5, but with the Inner Helmholtz Plane now being made up of 

solvent molecules oriented with the electric field created by the electrode surface, as well as 

the specifically adsorbed ion that has attached itself to the electrode. The Outer Helmholtz 

Plane remains unchanged.   
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3.5.3 Pseudocapacitance  

In a departure from the previously understood theory of Grahame, the exact nature of 

specifically adsorbed ions changed due to another crucial addition to EDL theory: 

pseudocapacitance17. Essentially, between the two extremes of a simple capacitor, where all 

applied charge builds on an electrode but doesn’t transfer across, and a simple battery, where 

all applied charge fuels a chemical redox reaction that either depletes or deposits the electrode 

material, is a region of ambiguity. Between the two extremes, there is a spectrum of 

pseudocapacitance where there is both charge build-up and depletion, as well as a weaker form 

of ionic deposition18. 

In a simplified standard battery, both the electrodes and the solution between them 

contain the same specific elements, either in solid or ionic form. As the electron transfer occurs, 

the ions undergo an irreversible chemical redox reaction that either creates or breaks 

covalent/ionic bonds. This is then a semi-permanent structure, or at least until another charge 

transfer occurs in the opposite direction, another irreversible change. Up until now, it was 

generally understood that this same effect must be occurring to the specifically adsorbed ions, 

but this is slightly incorrect: while there may be a charge transfer between the electrode and 

the ion, a bond is not formed. Instead, the ion can become highly polarized and restructured via 

an internal charge transfer, a reversible change17. This gives the effect of becoming attached to 

the electrode and functioning as part of it, but as soon as the potential on the electrode is 

removed, the ions can gradually return to the solution by reversing the internal polarization. 

Thus, depletion of the electrode can occur without inducing an opposite applied charge, as in 

the case of a battery.  
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Figure 3.7: Characteristic depictions of capacitors, pseudocapacitors, and Faradic batteries by Gogotsi et al.18  

(a, b, d, e, g, h): cyclic voltammograms and their (c, f, i) corresponding galvanostatic discharge curves. 

Voltammograms of electrode material and ionic mediums will have characteristics that is some combination of 

these graphs. Note the lateral symmetry of capacitors and pseudocapacitors. 

 

This was first observed for transition metals in the oxides of ruthenium in 1971 by Trasatti 

and Buzzanca when they noted that there was an incredibly symmetrical voltammogram19. 

Batteries, by comparison, depict very non-symmetrical voltammograms due to the 

irreversibility of the redox reactions involved. By using hydrous ruthenium oxide nanoparticles, 

instead of ruthenium ions, this allowed for the internal polarizability without causing ionic 

charge transfers. 

Work by Conway and Gileadi sought to further refine the concept of pseudocapacitance20, 

with an increased emphasis on the highly reversible electrochemical charge transfer reactions 

observed, using the Langmuir model. This model crucially makes several assumptions which are 
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extremely optimistic: the surface contains a limited number of adsorption sites, these sites do 

not interfere with each other, the adsorption is local and immobile, the surface is ideal and 

smooth, and only a single monolayer of adsorbed material is formed21. Clearly, most of these 

assumptions start to fail when considering real-world experiments of the EDL, but it at least 

provided a solid starting point. 

If 𝜃 is the fraction of occupied active sites at equilibrium, Langmuir’s equation is given by 

the following22, with 𝐿 as the rate of incidence, 𝑃𝐴 as the probability of adsorption, and 𝐿𝐷 as 

the rate of desorption at full saturation: 

 
𝜃 =

𝐿𝑃𝐴

𝐿𝐷
 

(3.6) 

 

Taking this framework, it can be expanded into the Langmuir adsorption isotherm equation, 

where 𝑀𝐴 is the concentration of the ion, 𝐾𝑒𝑞 is the equilibrium constant, 𝐹 is the faraday 

constant, 𝑉𝑞 is the applied electrode potential, and 𝑇 is the temperature in Kelvin: 

 𝜃

1 − 𝜃
= 𝐾𝑒𝑞𝑀𝐴𝑒

𝑉𝑞𝐹

𝑅𝑇  
(3.7) 

 

This can then in turn be adapted by a bit of rearrangement17 and taking the derivative with 

respect to potential to find the pseudocapacitance 𝐶𝜑, with a required charge of coverage, 𝑞𝐶: 

 
𝐶𝜑 = 𝑞𝐶

𝑑𝜃

𝑑𝑉
=

𝑞𝐶𝐹

𝑅𝑇
𝜃(1 − 𝜃) 

(3.8) 

 

Thus, the pseudocapacitance for a such a process is a function of both the applied potential and 

the surface coverage of adsorbed material, which again highlights the theoretical 

understanding of the position of pseudocapacitance existing between a standard capacitor and 

a simplified battery23. 
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Chapter 4 

Nanoscale Microscopy and Fluorescence 
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4.1. Chapter Overview 

This chapter describes the laser-based and digital components of the research presented 

here. While it is important to understand the physics and chemistry that is occurring in the 

experiments, it is just as important to understand that the exact nature of the nanoscale world 

cannot be directly observed with brightfield microscopy; nanoscale particles are too small to be 

resolved by the limitations of light’s photon size and wave characteristics. 

First, we will discuss the different functions of the various glass components used in our 

microscope, as well as their limitations when using light in the visible range. Then we will 

discuss the workaround for these limitations: fluorescence signals captured through a 

photosensitive camera. While this is a vast improvement upon simple light scattering, this 

brings its own set of complications which must be accounted for: signal-to-pixel discrepancies 

and frame effects. By using subpixel localizations and particle tracking, we can pull out the vital 

information that we will use in Chapters 6 to 9 of this thesis. 

 

4.2. Telescopes to Microscopes 

Writings on the refractive and reflective properties of glass and water exist throughout 

history, but the first time that lenses were finely detailed, hypothesized, and experimented on 

were by Ibn al-Haytham in the 11th Century, who is considered by many historians to be the 

first true scientist1 and the father of modern optics2. Ibn al-Haytham’s work was limited to 

single optics, like magnifying an image with a convex lens, but his extensive writings on the 

nature of light and lenses greatly influenced and inspired scientists centuries later in Europe.  



66 
 

   

Figure 4.1: 17th Century telescopes3 (left) and tripod microscope4 (right). Both use lenses to magnify images.  

 

The first constructed instrument that utilizes compound optics (the use of multiple lenses in 

succession) occurred just 400 years ago in the Netherlands5, and improved upon just a year 

later by Galileo6. By using a series of eight lenses, in what we now would call a telescope, 

Galileo was able to magnify the incoming light from space to make human-eye observations of 

extraterrestrial bodies, noting the revolution of Jupiter’s moons and the phases of Venus3, 

which completely upended the core philosophies of astronomy at that time. 250 years later, as 

previously discussed, Robert Brown was able to use a compound microscope to magnify images 

of pollen grains7. Because optical microscopy is at the core of all observations made in our 

research, I will briefly discuss these principles.  

The geometrical laws of reflection and refraction are the foundation on which light-based 

microscopes are based. Reflection occurs on mirrored surfaces, where an incoming beam of 

light will “bounce” in a manner that maintains the angle of incidence. Refraction, in contrast, 
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occurs when a beam of light passes from one medium to the next, often from air to glass or 

vice-versa, which bends the light rays in a reliable manner. This process occurs because light 

travels at different speeds through air and glass, which leads to a change in the direction at the 

interface that is dependent on the relative speeds of light travelling through glass and air. This 

is then reversed as the light ray leaves the glass on the other side, returning the light ray to the 

original travel direction, but now displaced by a small distance. This, however, only works if the 

glass surfaces are both flat and parallel; if one of the surfaces is curved, like in convex or 

concave lenses, it instead causes the light to have a different angle of refraction upon leaving 

the glass, thus causing the light to be either convergent or divergent.  

 

Figure 4.2: The difference between reflected (left) and refracted (right) light. The incoming light (green) interacts 

with a surface at a specific point (purple line), and then either reflects off of a surface (grey) or passes through the 

material (blue). The angle of reflection θ1 or refraction θ2 determines the outgoing light. For refraction, if the light 

then leaves a parallel surface, the angle of refraction restores the original propagation direction. 
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Figure 4.3: Convex Lenses and Concave Lenses. An incoming set of parallel light rays (green) when passing 

through a convex lens will converge onto the focal point (red) at a specific distance known as the focal length. 

Similarly Parallel light rays passing through a concave lens will diverge from a common focal point. 

 

Figure 4.4: Compound Microscope diagram. An object (left, dark red) has its image refracted through two 

convex lenses (blue) which creates a magnified observed image (left, red) for an observer (right, eye). The two 

shades of green lines represent light coming off of the object. 
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By using a series of lenses, an image can be magnified by “capturing” the diverging light 

with a lens at the right distance, as seen in Figure 4.4 with the 2nd lens. This allows very small 

objects to appear far larger, or for wide beams of collimated light to be focused into a tighter 

collimated beam. This simple idea allowed Galileo to see the moons of Jupiter because the 

Sun’s light reflected off their surface, travelled to Earth, and could then be magnified to a 

degree that the human eye could differentiate. More modern telescopes, such as the Hubble 

and Webb Telescopes, can now resolve objects billions of light-years away (1025 meters)8,9. 

 

Figure 4.5: NASA’s image of galaxy cluster SMACS 0723 using the James Webb Space Telescope9. The dots with the 

prominent hexagonal diffraction spikes are stars10, while all the circular and ovular objects in this image are distant 

nebulae and galaxies billions of light-years away from Earth. 
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4.3. Resolution Limits and the Airy Disk 

When observing the moons of Jupiter, Galileo was relying on sunlight reflecting off the 

massive celestial bodies, but after travelling a great distance towards Earth, the light’s signal 

has become very weak, making it undetectable to the naked eye; only by magnifying the signal 

were they detectable. In a similar fashion, incredibly small objects under a microscope scatter 

and reflect light, but their small size means that reflection becomes less and less feasible, 

resulting in a weak signal and we rapidly approach the limit to which the wave of light is larger 

than the molecule.  

 

Figure 4.6: Depiction of the resolution limit of a point-source of light. As light passes through a glass objective, the 

objective aperture blocks all but a subset of the incoming light. These light waves pass through the aperture 

interfere with each other, constructively (red) and destructively (green). Location P is the central maximum, while 

P1 is the first minimum ring. Original image created by Silfies, Schwartz, and Davidson for Nikon MicroscopyU15 
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While large objects scatter light in all directions (constructively and destructively interfering 

with each other to produce a rough uniform continuum of light), small object or very distant 

objects11 behaving like functional point-sources, such as stars12, will instead have their captured 

light result in interference patterns, which in the ideal case results in a pattern known as an Airy 

disk13–15, named after Sir George Airy for his contributions in research in these diffraction 

patterns16, as seen in Figures 4.6 and 4.7. 

 

 

Figure 4.7: (left) Depiction of several Airy disks either resolved, at the Rayleigh resolution limit, or unresolvable. 

(right) Intensity profiles of Airy disks, with the majority of signal (84%14) in the central primary peak, decreasing 

after every subsequent diffraction ring. Image created by M. Ulrich in Confocal Laser Scanning Microscopy11 

 

These Airy disks are many magnitudes larger than the source signal, which can result in 

multiple Airy disks of an extended object made up of multiple point emitters to overlap and 

mask each other. In 1873, Ernst Abbe17 proposed that to separate two particle signals as 
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sufficiently distinct, the particles must be separated by a distance dAbbe that is some function of 

the wavelength of light 𝜆𝐿 and the numerical aperture of the objective NA, which is itself a 

function of the refractive index of the medium 𝑛𝑚 (1.00 for air) and the aperture angle 𝜃𝐴. He 

estimated it, somewhat arbitrarily and without much explanation18, as:  

 
𝑑Abbe =

1

2
 

𝜆𝐿

𝑁𝐴
 

(4.1) 

 𝑁𝐴 = 𝑛𝑚 ∗ sin (𝜃𝐴) (4.2) 

 

Figure 4.8: illustrations of a microscope objective and the diffraction limit by R. Dijkstra19  

(a): illustration of a microscope objective, including the aperture angle. The beam waist is the minimum beam 

radius, which is a function of the physical optics and the incoming beam quality20. (b): two illuminated points, 

blurred by diffraction, at the diffraction limit. 

 

In contrast to the Abbe limit’s seemingly arbitrary restriction with a ½ factor included, Baron 

John William Strutt, more commonly known as Lord Rayleigh, instead proposed that the 

resolution limit is instead determined by ensuring that the primary peaks do not overlap. He 
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suggested that the minimum distance, dRayleigh, at which two particles can still be resolved is 

obtained when the intensity center of the Airy disk of the first particle coincides with the first 

dark ring of the Airy ring of the second particle; any closer, and the central peaks will merge and 

will become unresolved. This distance leads to a multiplication factor of approximately 1.22 

onto the Abbe Resolution21,22:  

 
𝑑Rayleigh = 1.22 ∗ 𝑑𝐴𝑏𝑏𝑒 =  0.61

𝜆𝐿

𝑁𝐴
 

(4.3) 

As a brief calculation, the numerical aperture for the 40x objective used in our experiments 

is given from the manufacturer as 0.75 and our emission wavelength is roughly 500 nm. This 

means that the Rayleigh resolution for this is 407 nm. If we instead use the 100x objective, 

which has a numerical aperture of 1.3, the Rayleigh limit is approximately 235 nm.  

 

Figure 4.9: A logarithmic scale bar showing the location of the diffraction limit created by Huang, Babcock, and 

Zhuang in Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells23. Above the diffraction limit (left) is a 

mammalian cell and bacteria, at the diffraction limit is mitochondria, and below the diffraction limit are viruses, 

ribosomes, proteins, and molecules. 
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A common approximation for the resolution limit is set as roughly one-half the wavelength 

of light24, and considering that the all the wavelengths of visible light are tightly clustered in the 

400-700nm range25, it suggests that two small particles less than 200 nm apart cannot properly 

be resolved by standard light-based microscopy without resorting to the dangerous and 

extreme short wavelengths of x-ray and gamma. While the quick estimate of one-half the 

wavelength isn’t scientifically meticulous, it still gives an approximate value that is efficient in 

its simplicity: a quick estimation of 500/2 ≈ 250 nm, as compared to the previously calculated 

407 and 235 nm. The most important thing to remember is that reflected or refracted light will 

consistently fail to overcome the Abbe and Rayleigh limits because diffraction is an inherent 

and immutable aspect of light-waves. 

 

4.4. Fluorescence Microscopy 

The largest issue when attempting to view the nanoscale world is that of size: smaller 

objects become difficult or impossible to view because the scattering of light causes small 

objects to blur to such a degree that it becomes functionally impossible to view anything 

smaller than ~250-500nm23. One solution is to move away from light entirely, utilizing 

techniques that rely on the more particle-like nature of electrons in Scanning Electron 

Microscopy (SEM) and Transmission Electron Microscopy (TEM)26. These systems, however, rely 

on high vacuum conditions and are therefore unsuitable for our aqueous-based experiments.  

Taking a step back, we can reflect upon the origins of microscopy: astronomy. Stars do not 

reflect light but are instead sources of light; instead of relying on light to bounce off of a 

nanoparticle we can instead have it be emitted by the nanoparticle.  
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For many nanoparticles, the absorption of energy causes an electron to be excited to a 

virtual state, or one in which there is no stable energy level for the nanoparticle’s electron to 

occupy. This then near-instantly returns the absorbed energy as an emission of the same 

wavelength in a random direction, known as elastic scattering27. If instead this absorbed light 

reaches a real excited singlet energy state, it can undergo an internal relaxation before emitting 

a lower wavelength of light, a process known as fluorescence (FL)28,29. Using a monochromatic 

excitation light, these particles become the sole source of these lower energy wavelengths, 

which can then be selectively isolated from the incoming excitation wavelength of light using a 

color-selective filter. Due to the necessity of lens apertures for the capture process, the light 

still results in an Airy disk, which is results in a digitized signal when captured by a camera, with 

each pixel representing the sum of captured photons from a given object area.  

 

Figure 4.10: Incoming light (dark blue) excites an electron to a higher energy state (black lines). For elastic 

scattering, the emission is unchanged in wavelength (light blue). For fluorescence, the electron undergoes an 

internal non-emissive relaxation (grey, ~10-9 seconds) before the emission of lower energy light (green and yellow). 
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Figure 4.11: Airy disks (top) and resulting pixelated camera image (bottom) of a fluorescing particle (blue dot). 

Each pixel corresponds to the amount of photon signals in each area of the Airy disk. The Centered particle (left) is 

at an axis point, corresponding with a symmetrical pixel image. The Off-Set particle (right) has been displaced by a 

small amount, resulting in a non-symmetrical pixel image. 

 

Due to the Airy disk being much larger than the FL nanoparticle source, the pixel signal 

falsely implies that the particle is much larger than it truly is, as in Figure 4.11. The fastest 

method of locating the particle’s true position is to assume that it will be somewhere within the 

brightest pixel. However, because an off-set particle creates an asymmetric pattern in the 

surrounding pixels, the particle can be localized with sub-pixel accuracy by using the uniquely 

characteristic point spread function of the entire data set, as seen in Figure 4.12. There are 

several possible fitting methods for these algorithms, based on how the surrounding pixels have 

varying intensity according to the fitting models, such as Gaussian or Airy31, but these analytical 

tools are still restricted by the Abbe and Rayleigh diffraction limits.  



77 
 

 

Figure 4.12: Point spread functions created by Small and Stahlheber in Fluorophore Localization Algorithms for 

Super-Resolution Microscopy30. (a) Airy disk of a fluorophore, two wavelengths across, and (b) its corresponding 

pixelated image as it would be captured by a camera, with each pixel representing an area of 1/5th of the 

wavelength. (c) The cross section of the pixels in (b) with an overlayed approximation for the Airy and Gaussian 

models. (d) The logarithmic scale of (c) to highlight the discrepancy in the tails between Airy and Gaussian models. 

 

Crucially, FL microscopy allows for a unique solution that was not present with simple light 

scattering: the near absence of background signal and therefore a huge improvement in signal 

contrast. For brightfield imaging, the scattering of light of equal wavelength made particles 

difficult to distinguish. In contrast, even with very weak signals, fluorescence can be isolated 

from the excitation light, and then detected and distinguished from the background noise. 

Additional resolution techniques that allow for a large number of FL signals to be resolved 

have been developed to accomplish the separation of multiple point sources that normally 
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make up an object, including Photoactivated Localization Microscopy (PALM)32, Fluorescence 

PALM (fPALM)33, Fluorescence Speckle Microscopy (FSM)34, and Stochastic Optical 

Reconstruction Microscopy (STORM)35. Each utilizes a different mechanism to introduce 

multiple-frame analysis to overcome the resolution limit, but the premise is similar between all 

of them. Instead of capturing all possible FL signal from all particles at the same time, it is 

instead possible to collect single particle signals in distinct frames, which avoids any resolution 

overlap issues, and then reconstructing the final image from the total of all localized signals.  

 

Figure 4.13: Simplified mechanism of STORM. Fluorescing particles (red) cannot be resolved with all particles 

fluorescing at the same time. By only allowing one particle to emit a signal while the other particles remain inert 

(grey), this allows for one particle to be localized (green) at a time. By repeating the process, eventually all particles 

can be localized, despite being at a distance below the Abbe resolution limit. 

 

While the PALM and STORM methods are ground-breaking, the research presented later in 

this dissertation does not use the enhanced multi-particle resolution methods presented here 

for a very important reason: these techniques are not required for single emitters with large 

distances of separation and low incidence of overlap. In addition, the multiple-particle 

localization techniques mentioned above require relatively immobile and stable fluorophores, 

ideally as part of a much larger structure that does not migrate over time. Localizing multiple 
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fluorophores over an extended period of time only works if the particles can be assumed to 

continue existing in that location during their “dark” state. As previously discussed, Brownian 

motion and the force of an electric field are such large factors when it comes to small particles 

that a particle can be tens or hundreds of micrometers away after just a few seconds. Very 

quickly, our use of these localization techniques transitioned to tracking the particle over an 

extended period of time.  

 

4.5. Particle Tracking 

As a FL nanoparticle moves, it now becomes a function of two different time-based 

measurements: exposure time and frame capture rate36. With longer exposure times, there is 

an increase in the amount of signal gained from the particle, enough to overcome the static 

noise present in cameras, but this simultaneously increases the uncertainty in the position of 

the particle37. On the opposite end, knowing the absolute position of the particle for the 

entirety of its movement requires having multiple frames for multiple positions. With a low 

frame rate, there are large sections of time where the particle’s position is largely unknown, but 

an incredibly high frame rate results in a low exposure time, decreasing the number of 

detectable photons per frame38. These two measures must be carefully balanced to achieve 

optimal data acquisition: enough exposure time to properly detect the fluorescent signal and 

enough frames to accurately measure the particle’s trajectory39. The precise method of 

balancing these two competing measurements depends upon several factors, including the 

camera type, microscope setup, fluorescent particle parameters, excitation beam parameters, 

and microfluidic cell design40.  
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Figure 4.14: Exposure differences for a single moving fluorophore.  

(Low Exposure): the weak signal is barely detectable above the static noise of the camera.  

(High Exposure, Low Mobility): the ideal case for particle localization, but unrealistic for Brownian particle tracking.  

(High Exposure, High Mobility): the worst-case scenario for an over-exposed particle as it moves, where the 

position of the particle is ambiguous and blurred. 

 

Figure 4.15: Depiction of a particle undergoing Brownian motion by P. Pusey in Brownian Motion goes Ballistic38. 

The particle follows a chaotic but smooth trajectory (black line), with measured positions of the particle (red dots) 

with either A) low or B) high relative frame rates. For low frame rate, the particle’s speed and direction (blue 

arrows) appear to change dramatically between measurements and with a large loss in its true position.  
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It is important to remember that no single set of frame rate and exposure time is universally 

applicable and that the two parameters are in direct conflict. For any given particle, enough 

exposure time must be achieved to properly locate and isolate a particle’s signal without 

overexposing and blurring the position, with enough frames-per-second as to chart as much of 

the true path as is allowed by the exposure rate.   
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Chapter 5 

Contemporary Inspiring Research 
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5.1. Chapter Overview 

This chapter is dedicated to highlighting more contemporary on-going research and the 

particularly inspiring research papers that have had direct influences towards our analysis of 

the Electric Double Layer. These include particle manipulation, particle tracking, microfluidic 

trap synthesis, solution-ion concentration analysis, non-Brownian movements, volumetric 

analysis, and directional fluid flow. Obviously, it would be impossible to discuss every single 

influential research topic, but the topics presented here are of such substantial impact and 

importance towards my own analysis chapters that I felt they warranted their own chapter. It is 

the goal of this chapter to be brief but tantalizing. I strongly encourage any reader to dig further 

on any of the papers presented here if they find themselves curious, as well as any other works 

created by other members of The One Molecule Group. 

 

 

Figure 5.1: The official banner for Woehl Lab: The One Molecule Group 
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5.2. The Anti-Brownian Electrophoretic (ABEL) Trap by Cohen and Moerner (2006)1–5 

 

 

Figure 5.2: The ABEL Trap. a) The trapping region of four gold electrodes. b) Side view of the microfluidic device.   

c) 1-Dimensional displacement vs. time graph of a particle depending on whether the trap is on or off.                     

d) A trapped particle analyzed over 45 seconds, with its real and reconstructed 2-Dimensional trajectory. 

 

Seeking to simultaneously limit the movement and analyze the effects of Brownian motion 

on a particle, Cohen and Moerner created a unique trapping mechanism that uses a 2-axis 

electric field, where the two sets of gold electrodes can apply an electrokinetic force to a 

particle within the trap. By accurately measuring the particle’s position, a brief feedback 

voltage can be applied to the electrodes to induce a counter-drift that returns the particle to 

the original position. While the corral trap is on the particle will be effectively stationary, the 

small displacements it would have undergone (but were countered) can be stitched together to 

create a hypothetical trajectory that it would have followed had it been free to do so.  
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5.3. Electrostatic Corral Trap by Woehl, Carlson, and Udad (2019)6–8 

              

 

Figure 5.3: a) 40x magnification of 2 μm polystyrene beads in solution. b) The same sample after 27 seconds with 

10V applied to the nickel chromium electrodes. c) COMSOL calculation of the dielectrophoretic potential as a 

logarithmic electric field, showing areas of high DEP potential (orange) and low (blue) 

 

The Corral Trap can trap by applying either AC or DC potentials. With an AC field, 

dielectrophoretic forces guide the particles using non-uniform fields. By creating a unique set of 

trap geometries, particles can be attracted towards or repelled from specific areas. Switching 

between positive (towards increasing electric field) or negative (towards decreasing electric 

field) dielectrophoresis can be accomplished by tuning the frequency of the AC potential. 

Trapping with a DC field, a main motivator for this dissertation, instead relies on static 

potentials on a single electrode: a negative potential on the electrode repels negatively charged 

particles. Inside non-conductive regions or voids in the metal, this will cause repulsion to push 

particles further into the non-conductive region until they reach a localized minimum, with the 

strength of the trap dependent on the applied voltage. 

        a)                                              b) 

 

 

 

 

 

c) 
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5.4. Undamped 3D Brownian Motion of Nanoparticles using Liquid-Cell (Scanning) 

Transmission Electron Microscopy (LC(S)TEM) by Welling et al. (2020)9 

 
Figure 5.4: 350nm titanium oxide nanoparticles suspended in glycerol carbonate a) Liquid-cell diagram of the 

incident STEM focused electron beam and suspended particles. b) Particle trajectories over 100 seconds. c) MSD 

trajectories of 14 particles using a logarithmic scale. d) Averaged MSD showing subdiffuse motion. 

 

During LC(S)TEM, a high energy electron beam is passed through a sample and the resulting 

scattering is analyzed. This high energy beam causes particles to have dramatically slower 

diffusion (up to 8 orders of magnitude away from theoretical values) as the particle is 

effectively held in place, much like optical tweezers. By utilizing a lower electron dosage rate 

(0.6-2.4 e- nm-2 s-1) on two specific sets of particles, 77nm neutral gold nanoparticles in glycerol 

and 350nm titanium oxide particles in glycerol carbonate, the perturbations were minimized.  

Finally, by analyzing the particle’s pixel clarity and comparing it to a set of standardized images, 

rough estimations on the z-axis position in addition to x and y axes can be made. 
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5.5. Confined Brownian Tracking with Motion Blur by Mortensen et al. (2021)10 

  
Figure 5.5: Variance (left) and mean-square-displacement (right) of a simulated particle undergoing Brownian 

motion in a 1D Box with a characteristic timescale of 0.01, comparing the limits, simulation, and exact values. 

 

As measurements of particle positions are limited by image capture, motion blur causes the 

exact positions of a tracked particle to become inaccurate, favoring unrealistically low mobility. 

Mortensen thus derived exact expressions, accounting for this blurring effect, for the mean 

square displacement and variance of Brownian particles within finite spaces, such as a 1D Box:  
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(5.2) 

Here, τ ≡ 𝐿2 4𝐷⁄ , 𝐿 is the length of the confinement, 𝐷 is the diffusion coefficient, 𝛥𝑡 is the 

image capture time, and 𝑝 is the initial position. While lengthy, these equations are valid for all 

expression times, regardless of the size or geometric complexity of the confinement or the 

diffusion coefficient of the particle. These can also be simplified at high/low values of 𝛥𝑡
𝜏⁄   to 

provide the appropriate limits, although not presented here. 
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5.6. Accounting for Electric Double Layer and Pressure Gradient-Induced Dispersion Effects 

in Microfluidic Current Monitoring by McCallum and Pennathur (2016)11 

          
Figure 5.6: A) Normalized COMSOL simulations of 100 nm, 10 μm, and 100 μm separated electrodes when 50 mM 

KCL displaces 1 mM. B) Comparison of COMSOL simulation to experimental results. C) COMSOL color map of KCl 

ionic strength at a normalized timestep of 0.54 of (a) 100nm, (b) 10 μm, and (c) 100 μm 

 

As a concentrated solution displaces another, the change in the zeta-potential of the EDL is 

a linear function determined by the flow rate as measured by current monitoring. Utilizing a 

100nm electrode distance, a small increase in concentration results in a linear increase of 

current, while high concentration ratios (e.g. 50:1) result in non-linear increases in current.  

If the Debye length constitutes a large percentage of the electrode distance, then the EDL 

no longer becomes negligible. With small distances, the concentration gradient is guided by 

convective dispersion, while with larger distances, advective diffusion becomes dominant.   

A)     

 

 

 

 

 

B)                                                            C) 
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5.7. Surface Potential at the Electrolyte-Nanoparticle Interface by Brown et al. (2016)12,13 

 
 

Figure 5.7: (left) Surface potential of the nanoparticles, showing the XPS results (red) are in line with the hydration 

model (squares) of the Poisson-Boltzmann theory. (right) Stern layer thickness as a function of cation radius.   

 

While X-ray photoelectron spectroscopy (XPS) typically requires the sample be in vacuum, 

Brown et al. instead used a microjet of suspended silica nanoparticles to capture emitted 

photoelectrons, which can be analyzed to find the surface potential on the nanoparticles. The 

emitted photoelectrons are dependent upon the binding energy, which is either accelerated or 

decelerated depending on the surface potential.  

The energy spectra’s shifts were analyzed with several different cations in different pH 

ranges to impart differing surface-solution potentials to find the surface potential of the 

nanoparticles. They found that the experimental results greatly conflicted with the classical 

Poisson-Boltzmann model, but a modified model adding a hydration repulsion component 

removes this error. By then incorporating this into the GCS model, Brown et al. computed the 

structure and depth of the Stern layer: the radius of the ion plus a single monolayer of 

hydrating water molecules, consistent with other direct methods.  
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5.8. Structure of the Electrical Double Layer Revisited: Electrode Capacitance in Aqueous 

Solutions by Khademi & Barz (2020)14 

                  

             
Figure 5.8: EDL capacitance vs log scale concentration of a) NaCl and b) large molecules, TDAPS and SDS.                  

c) Real factor of the complex capacitance vs frequency with varying concentrations of NaCl.                                         

d) Experimental (dots) vs theoretical values (dashed line) of the Debye length vs concentration of NaCl 

 

While the GCS model has capacitance determined by the diffuse layer, Khademi and Barz 

found the Stern Layer to be the dominant factor, which remains at a constant magnitude 

regardless of concentration. Utilizing sinusoidal AC voltage, they found that at either high or 

low frequencies, the capacitance plateaus to a constant value. As low frequency is DC-like, 

where the current has to pass all ohmic and charge transfer resistance, they were able to 

determine that the Debye length does not linearly change with varying concentration as the 

current theoretical model asserts, instead tapering off to a much lower value. 

a)                 b) 

 

 

 

 

 

c)                            d) 
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5.9. Rapid Particle Tracking by Calculation of Radial Symmetry by R. Parthasarathy (2012)15 

 

     

Figure 5.9: A simulated point-source, where X is the true center position. The pixelated image (a) is based on the 

noise-free simulated image (b). The orange intensity gradient lines (c) are calculated from each pixel’s shared 

borders, which give the estimation in (d) as the yellow circle. (e) The localization error from simulated particles 

over a range of signal-noise ratios, each point representing 1000 tests. (f) and (g) are localized microscopy images 

of E. coli bacterium, reconstructed from radial symmetry and Gaussian MLE, respectively. The scale bar is 500 nm. 

 

As discussed in Chapter 4, typical sub-pixel localization uses two-dimensional least-squares 

Gaussian fitting. Parthasarathy proposes an approach using the intensity distribution of radial 

symmetry: any line drawn parallel to the gradient will intersect the particle’s center. With a 

simple matrix of points around the particle, an array of lines can quickly estimate the central 

position of any emission-symmetrical particle. It was found that radial symmetry is close to the 

Cramer-Rao Bound limit16, the theoretical limit on error, while also being roughly 100 times 

faster than other techniques. 

e 
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5.10.  General Defocusing Particle Tracking (GDPT) by Barnkob, Kahler, and Rossi (2015)17 

 

 

Figure 5.10: (top) A target particle image It is compared and correlated to a library of calibration images. The 

correlation function Cm
 is highest at the coordinate value zt. (bottom) Images as a function of depth. Case 1 is a 

spherical particle, Case 2 has a 1-dimensional astigmatism, and Case 3 has a non-uniform astigmatism.  

 

GDPT extracts additional data from the shape and size of a particle to form an 

approximation on the z-direction depth of a particle. By combining it with the standard x-y 

coordinates, particles can thus be tracked in 3-dimensions while using a single camera. This is 

done by creating a reference calibration library of particle images at varying depths, which can 

then be compared to a sample image. Using cross-correlation analysis, the image will be 

matched to a specific particle depth via its maximized correlated value. This analysis can be 

done on several particles within a single image, providing quick and efficient measurements 

with minimal error, if the particle profiles are uniform and roughly spherical.  
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6.1 Chapter Overview 

This chapter is dedicated to discussing the precise materials, amounts, and mechanics used 

for analyzing the EDL for the purpose of this dissertation. The chapter is outlined in the order of 

creation that I used when preparing the microfluidic devices used to analyze the various 

sections of the EDL. Whenever possible, I will include the manufacturer and part number for 

each piece the first time each part is referenced. If something was custom-made by UWM staff, 

there will be a brief schematic description included.   

 

6.2 Glass Cleaning Procedures 

Due to the specifications of our microscope stage and how the excitation light is collected, 

which will be discussed later in Section 6.12, the options for a sample microfluidic device are 

heavily restricted. Therefore, the cells were constructed on 25x25 mm glass coverslips (VWR 

micro cover glass, #48366-249) due to their sufficient thinness.  To ensure an absolutely clean 

surface, small impurities or microscopic glass fragments present on the raw out-of-the-box 

slides were removed from the coverslip by placing into the slats of a custom-made Teflon slide 

holder, as shown in Figure 6.1, and subjected to a specific rinsing regiment. 

Successive washes of acetone (Sigma-Aldrich, 99.5% purity), methanol (Sigma-Aldrich, 

99.9% purity), and two sets of isopropanol (Sigma-Aldrich, 99.9% purity), from here forward 

referred to as an AMII wash, were completed as follows: with the slide holder in a standard 250 

mL Pyrex glass beaker, a sufficient amount of the solvent was added to fully cover the slides. 

Depending on the slide size and orientation, the precise amount is variable, but care was made 

to ensure full submersion. The beaker was then placed within a sonicator (Branson Model 1510 
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Ultrasonic Cleaner) and sonicated for 10 min each and at a temperature of ~30 0C. 

 

Figure 6.1 – Slide holder (grey) as viewed from the side inside a 250 mL beaker. Glass coverslips (light blue) are 

inserted into the slats to prevent overlap and to ensure solvent (dark blue) circulates properly. 

 

After each sonication, the beaker was removed from the sonicator, and the slide holder was 

taken out of the solution via the attached handle. By slightly angling the slide holder, excess 

solvent would run-off back into the beaker to ensure minimal solvent mixing. The slide holder 

would then be placed into a fresh 250 mL beaker and filled with the next solvent. As an added 

precaution to possible solvent adhesion effects, the slide holder’s handle also acted as a crude 

rotation-handle, allowing for a few quick rotations within the beaker to stir and mix the solvent 

to dilute the previous solvent that might be sticking to the slides and thus impeding proper 

cleaning. This process is repeated for each successive wash, with the extra isopropanol step at 

the end to ensure that it has been fully cleaned from any residual acetone or methanol from 

the previous steps. Each of the solvents targets a different set of impurities commonly found, 

while sonication helps dislodge any larger debris from the surface. 
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6.2.1 Slide Drying 

After the final wash, the still-submerged slide holder is taken to a nitrogen tank (Airgas 

Nitrogen compressed, UN1066) where it will be air-purged. With a regulator (Concoa Inert Gas 

Regulator) and a nozzle through a filter (Millex-FA Filter, 1 um) attached to the nitrogen tank, it 

allows for a controlled steam of nitrogen onto the slide surface, as shown in Figure 6.2. 

 

Figure 6.2 – (left) Nitrogen gas tank with attached hosing and nozzle. (right) As the gas pushes down onto the 

coverslip with sufficient force, it purges the solution (blue) from the surface. 

 

If the slide were simply allowed to air-dry, it was found that even the smallest amount of 

impurities would concentrate as the solvent evaporated, eventually leaving behind an 

unnoticeable to the eye, but still detrimental, layer of impurities wherever the solvent 

evaporated last, akin to the “coffee-stain” effect1. Instead, by air-purging, the controlled and 

sustained steam of nitrogen gas acts to create a shockwave like effect: the rapidly moving 

“wall” of solvent drags impurities to the edge of the slide, away from the center area in which 

the experiments take place. If there are impurities along the edge, it is sufficiently removed 

from the experimental area and thus completely negligible. The precise speed and timing of the 

nitrogen blast is variable depending on slide size, but it is easily repeatable if one ensures that 
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the solvent is being removed, and not simply dried. The rough amount of time used was a 

sustained steam of nitrogen for 3-5 seconds. 

 

6.2.2 Preliminary Hexamethyldisilazane (HMDS) Layer 

Ideally, the following several steps would be taken inside of a clean room. Lacking this, 

however, it is still possible to obtain satisfying synthesis if one moves quickly between each 

step. The longer the wait-time between steps, the higher the chance that a random flake of 

dust might interact with the surface. Considering that dust flakes are often hundreds of 

micrometers in diameter, far larger than our eventual goal for our channel height of <1 

micrometer, it can be catastrophic for even a single piece of dust to land in our working-area of 

the slide. Speed and efficiency are essential.  

 

Figure 6.3 – Hexamethyldisilazane vapor (blue) allowed to permeate within a sealed chamber. Glass slides (light 

blue) are lightly coated with vapor atop a slide holder (yellow) 
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After all slides are cleaned, they are then placed onto a flat surface within a vapor-chamber 

where hexamethyldisilazane or HMDS (Sigma-Aldrich, 99.9% purity, #379213) is applied via 

simple evaporation from the bottle. The vapors within the bottle will spread throughout the 

chamber, creating a rough monolayer of HMDS on the slides. This layer is vital for the next step: 

without the HDMS proper adhesion of the polymer is not possible and would cause many of the 

nanostructures to be malformed or become unattached during the successive steps. 

 

6.3 Application of Positive Photoresist 

After the vapor-deposition of HMDS, a thin layer of positive photoresist, specially S1813 

Photoresist (Microposit S1813 Positive Photoresist, Dow Chemical), was applied via a spin-

coater system (Laurell Tech Model WS-400B-6NPP) to a thickness of 1.50 μm.   

Firstly, a brief explanation of photolithography: it is a method of patterning intricate solid 

structures onto surfaces by utilizing either the breakdown or formation of chemical bonds upon 

exposure to ultraviolet (UV) light. Only very specific chemicals can achieve this and there are 

two major types: positive and negative. These two systems roughly follow the same setups 

(although the time and speed differ due to the differing chemical properties) and the key 

difference between these is dependent on their interaction with UV light. 

Positive photoresist reacts upon UV-exposure: the high-energy light causes the long-chain 

polymers to completely break apart into shorter fragments which are at least partially soluble 

in water. Any region that isn’t exposed is unaffected, leaving behind complete polymer chains. 

Negative photoresist, in contrast, works in almost the exact opposite pattern: upon UV-

exposure, the high-energy light causes a mass of monomers to chaotically cross-link with the 
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surrounding chains, creating a tangled web of chemical bonds. For many negative photoresists, 

such as SU-8 (SU8 2000 Series by Microchem), these are permanent structures. This method is 

thus not typically recommended for metal deposition. While not used directly in this 

dissertation, it was used to great effect in many of Woehl Group’s other projects. 

 

Figure 6.4 – Simplified depiction of photolithography. UV Light (yellow) is blocked by a metal mask (grey), creating 

an exposed region (purple) and an unexposed region (green). After development, a positive photoresist keeps 

unexposed substrate, while a negative photoresist keeps only the exposed regions. 

 

Photoresists are typically coated onto a substrate surface via spin-coating, which is a 

process of high-speed rotation of a platform with an attached sample. In our case, this 

attachment was done via a vacuum pump built into the center of the platform. After solution is 

added to the surface at larger-than-desired amounts, the piston is then spun at high rotations 

per minute, RPM, (typically 1000-7000), which causes the bulk of the solution to be ejected off 

the surface via centripetal force effects. The solution that is in contact with the glass slide (and 
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aided by the previously applied HMDS) however will feel an opposed frictional force keeping it 

attached to the glass. Thus, the amount of polymer left on the slide is dependent on both the 

viscous nature of the solution used and the RPM. Higher RPM means a higher ejective force and 

thus less polymer. 

 

Figure 6.5 – Spin speed vs photoresist thickness for S1813 Photoresist, as provided by the manufacturer, Shipley2. 

The photoresist used in our experiments is S1813, designated as triangles. 

 

The sequence used for spin-coating S1813 polymer were as follows: 

1. Preliminary Spin:  500 RPM for 10 seconds.  Ramp-speed: 500 RPM/s 

2. Target Spin:  4000 RPM for 30 seconds.  Ramp speed: 1000 RPM/s 

3. Deceleration:  0 RPM for 0 seconds.   Ramp speed: -500 RPM/s 
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By referencing the manufacturer’s guidelines in Figure 6.4, this gave us the ideal photoresist 

thickness of 15000 Å, or 1.5 μm.  

With photoresist at the appropriate thickness, the glass slides were then placed inside of a 

convection oven at 115 0C for 10 min to evaporate any solvent present within the polymer. 

After removal from the oven, the slides were allowed to cool down to room temperature.  

It is important to note that the time-dependence of the slides is now temporarily paused: 

any dust that interacts with the slide will be effectively blocked by this polymer “shield” and will 

not have any meaningful effect on the device integrity, as long as they are held within opaque 

plastic boxes to block stray dust particles and ambient sunlight. As such, these now have a 

rather stable shelf-life with no noticeable detriments. Anecdotally, slides can be used a year 

later and perform exactly as well as freshly prepared slides.  

 

6.3.1 Patterning via UV Exposure 

Solidified with polymer, the slides can be masked and UV-exposed to create any desired 

pattern. For the best results, a custom-made professional mask can be made to exacting 

specifications, and our group’s mask was purchased from and fabricated by Photo Sciences Inc 

(#116760). A thin sheet of lime-glass is patterned with chromium metal with incredibly high 

resolution down to the nanoscale.  

The second important component of proper UV exposure is the UV-source. With crude 

sources, this then causes odd faults and flaws in the pattern if there is even the slightest 

variation in angle. While this is not a large issue for larger millimeter-scale patterns, it does 

cause dramatic issues where the mask’s features are from micro-to-nanoscale, namely 
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penumbra effects (which will be discussed at length in the Metal Deposition section) and 

interference patterns. 

   

Figure 6.6: Actual picture of the photoresist mask. In the center red box, nearly undetectable with the naked eye, 

are a series of Corral Traps. The blue boxes to the sides are used for the 175 μm and 75 μm channels, respectively. 

The other structures on the mask are irrelevant for this thesis. 

 

The absolute best method of UV-exposure is therefore to have perfectly collimated light: 

perfectly parallel light that evenly exposes the entire surface. For our experiments, we used the 

professional lithography aligner (Suss MicroTec Model MJB4) inside The Global Water Center in 

Milwaukee, an affiliate of the UWM campus. 

After exposure, the monomer can be efficiently removed by using the water-based 
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developer sold by the manufacturer, MF-321 (Microposit MF-321 Developer, Dow Chemical) 

that is precisely created for speed and efficiency in this solubility. By submerging the entire 

slide into a small bath of developer, the monomers easily dissolve while leaving behind the 

long-chain polymers as a still-rigid structure.  

 

6.4 Metal Deposition Chamber 

Upon removal of the polymer, the slides are immediately placed within a custom-built slide 

holder, built by engineering staff member Mike Condon at UWM. This slide holder, milled out 

of aluminum, can then be placed directly into our lab’s custom-built metal deposition chamber. 

By decreasing the pressure inside the chamber, the vapor point of a metal will be dramatically 

reduced. Pushing a strong current through a tungsten wire acting as a cup causes the wire cup 

to heat to 900-1400 0C, vaporing the target metal.  

    

Figure 6.7: Solidworks schematic (left) and real image (right) of the custom slide holder. Each slot is 25.5 x 

25.5 mm. The corners have been rounded off in the final product for ease-of-use. Real image shows the holder 

slotted into the evaporation chamber, with the work-surface pointed down towards the metal source. 

  



109 
 

In a vacuum, the liquid metal is then able to eject atoms radially from the source, coating 

the surroundings with an approximately even layer of metal. By positioning the slides directly 

above the source, this ensures that only atomized-metal coats the surface; if the slides are 

placed below, it will catch any bulkier and heavier slags of oxidized metal ejected off, causing an 

uneven and flawed surface.  

 

Figure 6.8: Metal evaporation at three different time points (1, 2, 3) As the metal vapor expands (grey, with 

arrows depicting the direction of expansion), the effective coverage thickness decreases. By placing a glass 

coverslip (blue) at a specific distance, a specific thickness of metal is deposited. 

 

Figure 6.9: Metal lithography: positive photoresist (green) structure blocks metal deposited onto a glass sample. 

 

To obtain a repeatable, reliable, and accurate measurement for the thickness of the metal 

layer, we assembled an evaporation chamber using a rough pump (Emerson Model C83CXGZZ-

4786), a custom-made diffusion pump using glassware created by UWM glassblower Neil 
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Korfhage, metal piping, fittings, and connectors (A&N Corporation, model C4100-OF25), the 

chamber itself (TNBX Ultek P-E DI Pump), and an attached glass dome (Pyrex No. 6886). 

 

 

Figure 6.10: (Top) Picture of the metal evaporation chamber with attached pumps. (Bottom) A simplified 

schematic of the chamber’s setup. The green boxes are gate valves to control which pump is drawing vacuum at 

any given moment, while the red arrow is the location of the atmospheric bleed valve. 
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The vacuum chamber houses a quartz crystal monitor that measures exact metal deposition 

rates, allowing for Ångstrom level accuracy, with an attached power source (TDK-Lambda) and 

a current monitor (Sigma Instruments, SQC-222 CoDeposition Controller) that allows for custom 

programs that can automatically evaporate metal to a specified thickness using a pre-loaded 

alumina coated tungsten wire basket (Ted Pella Inc, Style 2, #84-22) with an appropriate 

amount of Nichrome pellets (Ted Pella Nichrome, #29-2824). Specific care, however, should be 

taken as to not overload the cup: the greater the mass of metal, the more heat is required to 

fully melt and heat the target metal, which would invariably damage the tungsten filament. If 

the degradation is severe enough, to the point of breakage, it renders the whole cup and its 

contents worthless. 

In addition, this cup has the advantage in its shape. Whereas a thin filament would eject 

material in all directions, and therefore dramatically increase the amount of wasted material, 

the cup only ejects atoms upwards towards the target substrate. This increases efficiency and 

reduces the amount of metal required to get a set thickness. Lastly, the distance from source-

to-substrate helps to reduce the effects of the penumbra to manageable levels.  
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Figure 6.11: Simplified schematic of the Woehl Group Chamber. The metal source (yellow) is housed within an 

aluminum oxide cup, which directs metal vapor towards the coverslips (blue) above. 

 

The final step after evaporation is also one of the most crucial steps: time. Immediately 

after evaporation, the metal source is still going to be hundreds of degrees Celsius, and thus if 

quickly exposed to air the chromium in the Nichrome source will unerringly react with 

atmospheric oxygen. While not immediately dangerous, if one doesn’t foolishly try to touch it, 

the bigger issue is that the chromium oxide layer will have a dramatic effect on future 

experiments: the oxidation layer acts a shell on the surface of the metal, keeping the rest of the 

metal in its liquid form. This leads to uneven coating and worsening results over time. Even a 

small amount of chromium oxide with each evaporation will be detrimental, as the impurities 

will continue to concentrate over time. It is vital that the source be allowed to fully cool down 

to room temperature while still under vacuum, but thankfully during this time the samples are 

also protected from the dust and debris of normal atmosphere. 
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6.4.1 Removal of Patterned Photoresist 

After removal from the metal chamber, the slides are immediately washed with Polymer 

Remover PG (Microchem Remover PG, G050200) and sonicated for 2 minutes. More aggressive 

sonication can cause metal flaking, which could ruin the device if flaked in an inopportune 

location, but the light sonication does ensure that the metal that was evaporated onto the 

polymer is shaken loose and appropriately removed, so it is not advised to ignore this step. This 

remover solution will quickly dissolve the polymer structures, leaving behind cavities in the 

metal surface.  

A successive rinse in isopropanol ensures that no polymer remains behind, as any structure 

left behind would be multiple orders of magnitude larger than both the channel and the 

particles, as well as protecting the slides from dust as we move to the next step. 

 

6.5 Attachment of Top Coverslip 

As the metal evaporator cools a set of top coverslips, smaller 18x18 mm glass slides (VWR 

micro-cover glass, #48368-040), are AMII cleaned. Then both the metalized slides and the top 

coverslips are dried using the previously discussed technique of air-blasting with nitrogen gas. 

The top coverslip is then placed over the channel created in the metalized slide and a 65 g 

stainless steel weight is placed on top of the assembly. This weight helps ensure that the two 

slides are set as close as possible, which will be important for later. Once set and weighted, 

then UV glue (Norland Optical Adhesive #81) is added to two edges of the top coverslip to 

fasten it securely to the metalized surface. 
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Figure 6.12: Top coverslip attachment steps. 1) A clean glass coverslip is placed on top of the metalized slides. 2) A 

65 g stainless steel weight is added to press the two slides together. 3) UV Glue is added to two sides of the slide 

(not covering the channel) and exposed to UV light. 4) After weight removal, the microfluidic device is complete. 

 

Unlike previously, collimated UV-light is not essential. Instead, any amount of light can be 

used in any direction. Thus, a series of UV blacklights are used to illuminate the entire glue 

surface for 60 seconds to ensure complete hardening and rigidity.  

The top coverslip is multifunctional. Firstly, it ensures that the microfluidic device is rigid in 

its dimensions and won’t be influenced by fluctuating heights from introducing fluids. Secondly, 

the top coverslip protects the area-of-interest from particulate matter and ensures that the 

experimental setup is as sanitized as possible. Once this step is completed, the slides are now 

fully assembled and stored for later use. 
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Figure 6.13: (left) Assembled Microfluidic Device, with attached 18x18 mm top coverslip. (center) Alternative 

model that uses a 10x20 mm top coverslip. (right) The older “wide” channel model, made using an aluminum mask 

instead of photolithography, with a 1.5 mm electrode separation and without its attached top coverslip. 

 

6.6 Fluorescent Nanoparticle Solution Preparation 

As a generalized procedure, sodium hydroxide was prepared in large bulk via a very 

standard manner: to prepare 1.000 L of solution, 39.997 grams of solid sodium hydroxide 

(Sigma-Aldrich 211465) is mixed with ultra-pure water (18 MΩ resistance) inside of a volumetric 

flask. The ultra-pure water is purified using a water purification system (Sartorius Arium Model 

611) and used immediately to ensure no carbon dioxide contamination. This results in a base 

stock solution of 1 M solution (pH 13), which can then be diluted in a 1:1000 ratio with 

ultrapure water to obtain 0.001 M sodium hydroxide (pH 10). Once completed, a small sample 

is taken and measured with a benchtop pH meter (VWR symphony SB80PC) as added 

verification. 

This standardized solution is then used for all dilutions: a manufacturer stock solution of 

target particles is sonicated for 10 minutes, using the same sonicator previously mentioned, 

and then diluted with the stock sodium hydroxide solution in successive 1:10 or 1:100 ratios 
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using calibrated pipets of varying sizes, 1-10 μL, 10-100 μL, and 100-1000 μL (Transferpette, 

Model S), mixed and stored within 1.00 mL sealed containers (Weaton Science 1 mL vials) to 

reduce carbon dioxide contamination. The final concentrations are listed as 1:10X based off the 

dilutions used to obtain that result.  

For example, a stock sample diluted with 3 successive dilutions of 1:100 and 1 dilution of 

1:10 would be listed as 1:107. This example is summarized in the graphic below. Calculating the 

“true” concentration would simply require knowing the concentration of the stock solution, 

which varies largely between the differing bead sizes. 

As a group, the primary solution used in our various experiments are all differing forms of a 

suspension of polystyrene microbeads functionalized with carboxy groups. Work done by my 

predecessors was carried out with 1.5 μm diameter microbeads (Phosphorex polystyrene 

#138), diluted with pH 10 sodium hydroxide solution. In a basic solution, these carboxy groups 

deprotonate and become negatively charged, allowing for interactions with AC/DC electronic 

potential fields. 

 

Figure 6.14: Logarithmic scale from 1 Angstrom to 10 cm, with depictions at specific intervals, such as a virus at 

~100 nm. Two arrows have been added for the ~20 nm nanoparticles (yellow) and ~1.5 μm particles (red) 
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For the research done in this dissertation, unfortunately, 1.5 μm diameter particles are not 

sufficient to resolve the electric double layer, which has size constraints due to the length of the 

Debye layer. Instead, ~20 nm carboxy-modified fluorescent polystyrene nanoparticles 

(FluoSpheres, yellow-green, 505/515 F8787) were used, 100x smaller, to add nanometer-level 

detail to the exact movements of nanoparticles interacting to form the EDL. This adds yet 

another factor to consider: the nanoparticles are so small that they are difficult to view via 

brightfield optical microscopes because the scattering of light presents too much background 

noise, as discussed previously in Chapter 4. Thus, in addition to the carboxy groups, they were 

also internally functionalized with fluorescent (FL) tags with an excitation wavelength of 505 

nm, enabling the nanoparticle to emit light as opposed to simply scattering light, allowing for us 

to have greater detectability of the particle when compared to brightfield microscopy.  

These nanoparticles, according to the manufacturer, are about 2% by weight and about 27 

nm in diameter. Assuming they’re perfectly spherical and the density is roughly 1.0 g/cm3, then 

this would end up as roughly 3 μM. The nanoparticles were prepared in the same generalized 

procedure described above to obtain a 1:106 dilution, which results in a roughly 3 picomolar 

concentration. Seeing as this number is based on numerous assumptions with few (if any) 

significant figures, this number should not be taken as at all accurate, but at least gives a rough 

estimate for the concentration.  

To prepare for analysis, the solution is shaken vigorously and sonicated again for 5 minutes. 

This is then taken to our laser microscopy lab along with the prepared microfluidic devices.  
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6.7 Microfluidic Device Set-up 

The microfluidic devices are attached onto a non-conductive sample-holder platform 

specific for our microscope. Copper wires, attached to the power source, are threaded into 

metal clamps on the sides of the sample-holder platform and a small piece of conductive 

carbon tape (Nisshin NEM Tape) is attached to the metal slides to both ensure conductivity and 

to act as a small cushion to prevent cracking of the device. The clamps are then tightened, 

which connects the power source to the electrodes through the carbon tape adhesive.  

 

Figure 6.15: (top) Side view of the non-conductive sample-holder (dark red) with a glass microfluidic device 

(light blue) and metal (light grey). The metal posts (dark grey) are attached to the surface via carbon tape (red) and 

connected to the voltage source via copper wires. (bottom) A real image of the platform, without attached copper 

wires, with highlights for the clamp, carbon tape, and solution injection point (blue). 



119 
 

After attaching the microfluidic device to the sample-holder platform, the 1 mL vial of 

fluorescent nanoparticle solution is given one final vigorous shake and 1.000 μL of solution is 

drawn with a calibrated pipet (Transferpette Model S, 1-10 μL) and injected into the 

microfluidic device via capillary action. The thin space between the top coverslip and the 

electrodes, if created correctly, will rapidly draw the solution without any effort. If capillary 

action is not sufficient, a very light amount of pressure on the edge of the top coverslip using 

the pipet tip will help wet the surface and draw the rest of the solution in. 

The space created between the electrode surface and the top coverslip is also a very useful 

way of quickly determining how close the two surfaces are. Using very basic geometry, if the 

entire 1.000 μL solution is in an 18x18 mm cavity, the height of the solution would be about 3.0 

μm. Thus, if the solution is fully drawn in and any amount of solution visibly remains outside the 

sample cell, it can be safely assumed that the heigh of the channel is in the micron range, or 

even sub-micron, depending on the amount of fluid remaining. If the microfluidic device 

requires more than 1.000 μL to fill, then the height would be greater than 3.0 μm and thus 

outside the parameters of the experiment. Attempts have been made to accurately measure 

the channel height, but the results were inconclusive at best. 

Once the solution has been injected, the device is quickly sealed along the edges with 

Vaseline (Vaseline 100% Pure Petroleum Jelly). At such small volumes, water can quickly 

evaporate from the microfluidic device, anecdotally observed on the order of a few minutes, 

and thus any experiment that isn’t sealed would be incredibly time-sensitive and practically 

worthless: evaporation effects would cause such massive lateral movement that Brownian 

motion would be unobservable. Thus, by sealing the edges with non-soluble Vaseline, the 
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solution can avoid evaporation effects. 

The sample-holder platform is then placed into the microscope and locked in place with 

another set of adjustable clamps, specifically avoiding the clamps used for the electrodes to 

prevent shorting the circuit. 

 

6.8 Excitation Laser Intensity and Stabilization 

The nanoparticles, in order to fluoresce, must be illuminated with a specific excitation 

wavelength, at or lower than 505 nm, to activate the fluorescence emission. To achieve this, an 

Argon laser (Spectra-Physics Stabilite 2017-AR) is used to provide a consistent beam at a 

wavelength of 514 nm and with a final output reading of 500-1000 μW. 

 

Figure 6.16: Absorbance (blue) and Emission (red) bands for the 20 nm polystyrene fluorospheres, as provided by 

ThermoFisher3. Absorbance peak is roughly 505 nm, and peak emission is roughly 515 nm.  

 

The output from the laser is passed through a series of neutral density filters (Chroma) to 

bring the power down to a non-destructive level. To prevent vibrations from the laser emitter 

interfering with experiments, the laser is stationed on a floating table using air-cushioned 

stabilizers (Newport 12000 Laminar Flow Isolator) and the beam is transferred over to the 
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microscope table using a 3-axis optical fiber injection mount (Newport UST Series 561) with a 

focusing objective lens (Leica 439) and a single mode fiber (FiberTech Optica QSMJ-3A3A).  

By maximizing the output of this fiber optic cable through careful adjustments of each axis, 

we can ensure optimal laser injection into the fiber. It is then passed through an intensity 

stabilizer (Brockton Electro-Optics Laser), which reduces the maximum power output, but 

provides a stable beam without randomized fluctuations in power. 

After the noise eater, the beam passes through a linear polarizer and a Fresnel rhombus to 

create circularly polarized light before finally entering the back of the microscope. The laser 

then passes through an excitation filter (Chroma) that blocks all but a very specific wavelength 

of light; the argon laser emits mostly 514 nm light, but this is just the maximum peak. It is 

important to keep in mind that perfect mirrors do not exist, and thus none of the mirrors (Casix 

CAG0201) or neutral density filters can perfectly transmit the laser and minor errors will always 

compound. Additionally, if other wavelengths of light enter the fiber optic cable, then the stray 

light and minor fluorescing impurities within the fiber will add noise to the fluorescent signal. 

After the excitation filter is a dichroic mirror (literally: “two colors”) that will reflect the 

incoming laser light but allow other light to pass through it. This then enters the optical 

objective, which then transmits light onto the sample. 
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Figure 6.17 (top): The Argon Laser emits a beam that passes through several neutral density filters before entering 

a fiber optic cable, transferring to the microscope table, and passing through an intensity stabilizer before entering 

the microscope. (bottom) A real image of the laser table. The intensity of the beam can be seen diminishing across 

the neutral density filters. 
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Figure 6.18– Side view of the inside of the microscope. The incoming laser light (green) passes through the 

excitation filter, reflects off of the dichroic mirror, passes through the objective, and interacts with the sample 

specimen (grey). This then fluoresces (yellow), and some of the signal re-enters the objective, passes through the 

dichroic mirror and emission filter, before reaching the detector. 

 

A fluorescing sample emits light in all directions; most of this signal is lost as it emits away 

from the objective, but some of the fluorescent light does re-enter the objective. This 

fluorescent signal will then pass through the dichroic mirror and an emission filter, which blocks 

any other ambient light, and finally reaches the detector. 
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6.9 Brightfield and Fluorescent Microscopy 

The microscope (Zeiss Axiovert 200M), the most crucial instrument, is rather 

straightforward: using simple bright-field microscopy or fluorescence microscopy and observing 

through the ocular lens or an attached camera, a sample can be viewed using either a 10x 

objective (Achroplan 10x/0.25 #44-00-30), 40x objective (Zeiss EC Plan Neoflaur 40/0.75) or a 

100x immersion oil objective (Zeiss Alpha Plan-Flaur 100x/1.45 Oil). Unless otherwise stated, 

experiments were done using the 40x objective.  

 

Figure 6.19: Real image of the microscope table, with noise eater in the foreground and the Zeiss microscope in 

the background. Laser light enters through the back of the microscope. 

 

The sample’s electrodes can be viewed via brightfield microscopy with a built-in halogen 

lamp, but as previously discussed, light-based microscopy is insufficient for viewing the 
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nanoparticles. Viewing the sample and focusing on the electrode’s edge allows for finding the 

correct focusing parameters of the objective, and a toggle allows for switching between 

binocular viewing and an Electron-Multiplying Charge Coupling Device (EMCCD) camera 

(Photometrics Cascade II 512) installed into the base of the microscope. The EMCCD camera 

then sends the information directly to the computer (Dell) for viewing and recording. 

Another toggle function allows for the 514 nm laser light to illuminate the sample, as well as 

capturing the fluorescent light emitted by the sample. Due to the setup of the microscope, the 

laser light is both transmitted through and collected into the objective lens set below the 

sample. Due to this, as well as the required focusing distance of the objective, this limits the 

type of samples allowed to be viewed with both the 100x and 40x objectives, as mentioned at 

the start of this chapter. 

        

Figure 6.20: (left) Brightfield and (right) FL camera images of two different corral traps, 50 μm in diameter. In 

brightfield, the metal blocks some of the light and the trap is brighter in the unmetallized region. In the FL image, 

the metal doesn’t fluoresce, but light from fluorescing particles can be seen in the unmetallized region. The 

particles in the brightfield image are 1.5 μm, while the nanoparticles in the FL image are 20 nm. 
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All functions of the microscope are controlled on the computer using a custom LabView 

(Version 2016) program, which allows for stage x-and-y-axis movements, objective z-axis 

movement, voltage control via an external power source, visualization of the camera output, 

electron multiplication for the EMCCD camera, and camera frame recording.   

The voltage applied to the electrodes is controlled via the external power source (BK 

Precision 9123A DC Power Supply) and is used during most of the experiments. It is capable of a 

wide range of voltages, up to 30 V, but most commonly the voltages used are on the order of 

100 to 1000 mV. The source is integrated into the LabView program, and when making changes 

to the voltage, LabView automatically tags the exact timestamp, even between camera frames, 

and includes the data in all recordings made.  

The recordings are created as a series of frames in TIF files, which are then analyzed using 

the ImageJ/FIJI programs for particle tracking. The coordinates from particle tracking are then 

exported to Excel for further analysis. 

 

 

 

 

(1) Suppressing the coffee-stain effect. Universiteit Twente. 
https://www.utwente.nl/en/news/2020/7/688864/suppressing-the-coffee-stain-effect 
(accessed 2022-10-17). 

(2) Shipley-DOW. Microposit S1800 Series Photo Resists. 
(3) FluoSpheresTM Carboxylate-Modified Microspheres. 

https://www.thermofisher.com/order/catalog/product/F8787 (accessed 2022-10-20). 
Reprinted with permission. 
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Chapter 7 

Troubleshooting and Initial Results 
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7.1 Chapter Overview 

This chapter is dedicated to detailing the various analytical tools used to characterize the 

results shown later in Chapter 8, as well as the obstacles encountered in the process of creating 

a viable and reliable microfluidic sample cell. These obstacles have already been accounted for 

and integrated into Chapter 6: Methods, but I believe it to be a necessary chapter to highlight 

that the results obtained were accomplished via a non-stop iterative process. This chapter also 

functions as a way of being realistic about the limitations of the microfluidic cell, as well as 

providing an area to discuss the physical characteristics of the cell.  

 

7.2 The Penumbra Problem 

Referenced several times so far, one of the unavoidable aspects of any metal evaporation 

chamber setup is that there is going to be a penumbra applied to the metal. As one of my 

committee members quipped: “unless the source is out on the moons of Jupiter, it’s going to be 

a problem.” A penumbra is an inevitability due to finite-sized sources, as opposed to 

infinitesimally small point sources, and is best explained via a common example: sunlight 

casting shadows onto the ground. Thankfully, as the sources used in both evaporation 

chambers are roughly spherical, the mathematics provided is transitive between the two cases.  

  The shadow of a large building cast by the sun is not perfectly crisp; this is because right 

between total shadow and total illumination is a middle ground, where the part of the sun 

partially illuminates. In much the same way, for any metal evaporation chamber there will be a 

section of area where the polymerized photoresist acts as a large structure, and thus casts a 

“shadow” where the metal source still partially illuminates. The Sun, at a distance of 94.49 
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million miles and a diameter of 0.86 million miles, is mathematically comparable to a 

theoretical evaporation chamber, with a distance of 25.0 cm, as having a metal source of 2.30 

mm (a rather accurate estimation to my own chamber, with a metal source of 2-5 mm 

depending on the amount of metal in the cup). This effect is summarized below, assuming a 

worst-case scenario of a 4 mm source:  

 

Figure 7.1: Simplified diagram showing a metal source (yellow) ejecting metal vapor (light grey) towards a glass 

sample (light blue). The photoresist (purple) partially obscures the vapor, leading to an unexposed gap between 

the polymer and metal (75 nm), a gradient deposition region (20 nm) and a full deposition layer (dark grey) 

 

Both the length of the penumbra and the distance between the penumbra and the polymer 

edge can be calculated using simple geometry ratios of similar triangles based on the 

dimensions of our evaporation chamber: the penumbra gradient length is 20 nm, and the 

polymer-to-penumbra distance is 75 nm. Considering that the channel itself can be either 1000, 
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175, or 75 μm, this is far less than the rounding error. 

The second component of the penumbra is the thickness gradient. While it might be easy to 

write it off as a line from 100% illumination to 0% illumination over the length, it is still 

necessary to verify, albeit with some assumptions. Our first assumption is that each part of the 

source has the same intensity and that it is only the percentage area visible by the source that 

determines the illumination. For the sun, this is roughly true, but for our metal source this can 

vary wildly: uneven heating or a thin metal-oxide film blocking evaporation from a specific 

section can cause the source to not be a flat value. Our second assumption is that the source is 

analogous to a perfect circle. For the Sun, this is certainly a very good approximation, but for 

the metal source in an aluminum-oxide cup, it is far less approximate. With these in issues 

mind, we can at least make an ideal-case estimation, presented below: 

 

Figure 7.2: Sideview of a 20 nm penumbra at 5% increments of the source’s diameter. Assuming the source to be a 

circle, this can be calculated as the growing area exposed by a circle’s chord as a function of diameter. 
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The resulting curve is remarkably flat. For our purposes in future COMSOL calculations, we used 

the approximation of a linear slope filleted at both ends.  

 

7.3 EDL Estimates via COMSOL calculations 

Previously discussed in Chapter 2, COMSOL is a Multiphysics program that is great for 

analyzing a stable stationary electrostatic potential according to a specific geometry. The 

calculations shown here were exclusively done in the Electrostatics Module with a Stationary 

Study. As a refresher, we found that the electrostatic potential between parallel plates 

decreases linearly across the gap between them. By using a top-down view of our microfluidic 

cell, we can create an approximation of the electrostatic potential field between the plates. This 

model assumes an idealized static and stationary potential difference. 

 

Figure 7.3: Electrostatic potential between two parallel plates, previously shown in Chapter 2, with an arbitrary 

0.500 V potential, and the positive electrode on the right and the negative electrode on the left. 
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Figure 7.4: Real image of a microfluidic cell, with a thin 75 μm channel between the two electrodes.  

 

Figure 7.5: 2D COMSOL simulation of the electrostatic potential for a microfluidic cell with a 175 μm channel, with 

an arbitrary 0.500 V potential, and the negative electrode on the left and positive on the right. 
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Figure 7.6: Enhanced view of the 175 μm channel shown in Figure 7.5 highlighting that the field is strongest 

between the electrodes, as evidenced by the dramatic increase of field line density within the channel. 

 

Figure 7.7: 1D line graph of the electric potential across a 175 μm channel, showing it as a linear function. 
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For the uninitiated (or those who skipped Chapter 2), this COMSOL simulation implies that 

the electric potential decreases linearly across the channel at a singular smooth rate. This static 

model, however, makes a few critical assumptions: it assumes that the channel between the 

two plates is perfectly sealed, it is a flat 2-dimensional shape (which completely ignores the 

influence of a penumbra), and that the aqueous medium between them does not contain a 

charge and does not change. While one solution is certainly to increase this analysis to 3 

dimensions, for our system at least this is inadvisable due to the rather heavy computational 

load required and the low return on investment. Instead, shifting to a 2-dimensional cross-

sectional view allows for us to analyze the potential decrease while considering both the 

penumbra and the solution’s height. 

 

Figure 7.8: Side view of a zoomed in section of the COMSOL model, showing the glass (light blue), aqueous 

solution layer (dark blue) and the negative electrode on the left side (red). Both electrodes are 50 nm high and 

have 20 nm gradient penumbras, and the solution height is set to 1.00 μm. Displaying the entire proportional 

model for the electrodes is not feasible, but there is a similarly mirrored positive electrode 175 μm to the right. 
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Figure 7.9: 2D COMSOL simulation of the side-view of a 175 μm channel that has a 20 nm metal penumbra. While 

the solution layer can be barely seen between the two glass slides, the 0.500 V electrodes are too small to be seen 

at this magnification; their positions can be discerned at the dark red and dark blue sections on either extreme.  

 

Figure 7.10: 1D line graph of the electric potential, both with a penumbra (black) and without (blue). The black line 

is calculated from Figure 7.9, while the blue line is from Figure 7.7. 
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As seen in Figure 7.9, with the electrodes being so much smaller in scale than the rest of the 

channel when viewed from the side, it was necessary to provide a zoomed-in view for the 

electrodes to show their position and their penumbra slant. The electric potential in Figure 

7.10, at least visually, appears to be very similar to the previous top-down visualization, but by 

using a 1D line graph, the penumbra’s effect is far more prevalent. As seen with the 

penumbra’s black curve, the non-vertical electrode faces mean that the electric field has a 

slightly sharper potential change in the first ~10 µm of the solution, before returning to a 

relatively flat slope (~2.40 mV/µm) for the majority of the channel. Compared to the ideal case 

of the blue line (2.85 mV/µm), it is not an overly dramatic effect, but it would mean that there 

are additional effects to consider when a particle approaches the electrode.  

This naturally brings us to the third model that fixes the final assumption made previously: 

the presence of an electrolyte solution and sufficient time has passed to establish electric 

double layers around both electrodes. In COMSOL, this was done by including the following 

parameters: a bulk ion concentration of 1E-4 M, an ion valency of 1 (assuming symmetry for 

NaOH), a permittivity of water of 80.1, and a calculated Debye length of 30.47 nm. 



137 
 

 

Figure 7.11: 1D plot of the electric potential across a 175 μm channel filled with pOH 4 NaOH ionic solution. 

The green line highlights the rapid change in potential between the electrodes according to conventional EDL 

theory, while the blue line is again a reference for the electrostatic potential without a solution.  

 

To accomplish this, we add a bulk ion concentration of 1.0 ∗ 10−4 M to match the pOH 4 

NaOH ion concentration and an estimated Debye length of 30.4 nm calculated in Chapter 2. 

This model follows the theories discussed previously and suggests that at an equilibrium 

position the electric field drops to zero after 300 nm, just a few Debye lengths. Figure 7.11 also 

gives us the two possible extremes and any experimental results must be somewhere between 

the green and blue lines.  
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7.4 Simulated Brownian and Data Bootstrapping from Lag Times 

On the macro-scale, finding the particle trajectories for a system only requires an 

accounting of all the physical forces acting upon the system and solving the resulting 

differential equations. As a brief example: gravity accelerates an object at 𝑔 = 9.8
𝑚

𝑠2, the 

equation for distance fallen is 𝑑𝑓 =
1

2
𝑔𝑡2 and so after a set time of t = 3 seconds the ball has 

fallen 𝑑𝑓 =
1

2
(9.8

𝑚

𝑠2) (3𝑠)2 = 44.1 meters. A direct solution to an elementary problem. 

Unfortunately for microscopic solutions, the ever-present chaotic Brownian motion means that 

such a simplified view is not feasible.  

So, before we even begin to delve into the movements of a suspended particle in a 

microfluidic system, it is first necessary to find a way to account for a stochastic process. As 

Brownian motion is a fully stochastic process, we can create any number of examples by using a 

normalized random-number generator. For our purposes, I used Matlab’s “randn” function to 

create a list of 10,000 random values representing a one-dimensional random walk, ranging 

from 3.5 to -3.5, and then plotted the cumulative sum after each step to create a series of 1-

dimensional position vs. time graphs. Comparing these to the idealized Einstein-Smoluchowski 

equation, 𝜆𝑥  = √2𝐷𝑡, it is quite clear that none of these are anywhere close a perfect match: 
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Figure 7.12: Four simulated 1D particles undergoing Brownian motion using normalized random displacements  

 

Figure 7.13: The ideal result of the Einstein-Smoluchowski equation, where 𝜆𝑥  = √2𝐷 ∗ √𝑡 
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It is unfortunately not possible to find a rough estimation of the diffusion coefficient based 

entirely on any single plot’s stitched movements; it is just too chaotic. Thankfully, there is a 

function of stochastic processes that is extremely valuable to us: combining two or more 

stochastic steps creates yet another stochastic step. This gives two different ways to analyze a 

series of points: individually, where each step only considers the previous position, and 

cumulatively, where all future positions consider the first point as the origin.    

The best option, however, is combining these two into “lag-time”1 where the number of 

frames between each step increases: a lag-time of 1 would correspond to passing from Step 1 

to Step 2, Step 2 to Step 3, etc. A lag-time of 2 would skip one step between each set of values: 

Step 1 to Step 3, Step 2 to Step 4. Thus, for a simple four step process, there exists six stochastic 

steps: [1-2, 2-3, 3-4], [1-3, 2-4], and [1-4]. Expanding this to a 10-step process results in 45 

individual stochastic steps, and a 10,000-step process expands to 49,995,000 stochastic steps. 

This allows a relatively small number of data points to be greatly increased. 

 

Figure 7.14 (top left): a series of 9 individual steps from 10 points, (bottom left): a series of 9 cumulative steps 

from a single origin position. (right): the combination of both series into lag-steps, resulting in 45 stochastic steps. 

Lag-steps 4 to 8 have been skipped for simplicity. 
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Using this process on our previous randomly generated 10,000 values (to a ludicrous 

amount of nearly 50 million step values) unfortunately tends to cause an overflow error. 

Instead, we’re going to reduce this to a bit more of a manageable 1000 values and 499,500 

individual steps. Each lag-time’s values are then averaged into a single distance value using a 

Root-Mean-Square (RMS) function and these RMS distance values are then plotted against their 

lag-time. In Excel, the function “=(SQRT(SUMSQ(range)/COUNTA(range)))” is able to do find 

each lag-time’s value in one concise step. 

 

Figure 7.15: Comparison of the Einstein-Smoluchowski Equation (orange) and the RMS values of Simulated 

Brownian motion (blue). This represents 84% of all values, despite being only 60% of the possible lag-times. 

 

In Figure 7.15, it is important to note two key ideas: first, the strong correlation of the RMS 

values to the Einstein-Smoluchowski Equations estimate of 𝑥 ∝ √𝑡. This correlation occurs 
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because while small individual steps are stochastic the average value is not. When there are 

enough values, a high variance will still find the true RMS value. Secondly, while 1000 data 

points has up to 999 lag-times, only 600 lag-times are shown. This is because as the lag times 

get larger and larger, the amount of data points within each set decreases: while a lag-time of 1 

has 999 data points, a lag-time of 999 only has 1 data point. As the lag-time increases, the 

accuracy dramatically decreases, and the high variance of values becomes increasingly 

detrimental. So, we have prioritized that there are sufficient data points within each lag-time 

and are less focused on finding the maximum lag-time. 

We will expand upon these calculations in Chapter 8 when we start discussing using 2-

dimensional values to find the effect of the electrostatic field on actual particles to find their 

ballistic component. For the rest of this chapter, however, it is sufficient to have just an 

understanding of how Brownian RMS values relate to the Einstein-Smoluchowski equation. 

 

7.5 Hardware and Software Calibration for Particle Viewing 

The microscope/camera setup used has two main parts that require calibration to view a 

nanoscale fluorescent particle: the input laser and the EMCCD Camera. This subchapter will 

briefly discuss the conditions and calibrations for each of these.  
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Figure 7.16: Newport LBP HR program window showing the symmetry and Gaussian fit of the 514 nm laser. 

 

Firstly, the 514 nm argon laser is analyzed using a Newport Laser Beam Profilometer (LBP) 

camera, which measures and shows that our laser has great beam symmetry between its 

vertical and horizontal widths, with only about a 4.5% error in circularity, and fits well to an 

expected Gaussian function. This is achieved by meticulously adjusting and cleaning all optics in 

the optical train leading into the entry port of the microscope, shown previously in Chapter 6. 

Secondly, the EMCCD camera combined with a 40x optical objective must be properly 

calibrated to determine the pixel-to-micron ratio. To achieve this, a small 1.00 mm ruler with 

10-micron level markers was used and fitted to the camera’s view-window. With a 514 x 514 

pixel window it is a simple process to estimate this ratio, but using the calibration tool of the 

ImageJ or FIJI programs can give better and more accurate results.  
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Figure 7.17: Viewing window of a micrometer ruler used for calibration at 40x magnification via brightfield 

illumination. The red line indicates 100 μm. The window is 514x514 pixels and has dimensions of 104x104 μm. 

 

This calibration is applied throughout the rest of this dissertation: there are proper 

calibration bars in the bottom right of each image, and proper pixel-to-micron ratios have been 

applied to the data. 

 

7.6 Solution Refinement and Edge Sealing 

When dealing with incredibly dilute solutions, it becomes rather cumbersome to reference 

amounts of fluorescent in terms of molar concentrations: precise and exact picomolar 
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concentrations of fluorescent nanoparticles are difficult to achieve when the starting stock 

concentration is labelled as “about 2% solids3” (roughly 3 μM.)  

     

Figure 7.18 (Left): Ultrahigh concentration of fluorescent particles, roughly 100 nM. 

(Right): a more dilute set of particles, with some particle trajectories, at roughly 100 pM. 

 

At higher concentrations, as seen in Figure 7.18 (left), keeping track of a single particle is 

impossible for anything above 100 nM, and particles are difficult to keep resolved and distinct 

at anything above 100 pM. For particle tracking, an ideal concentration would be ~1-10 

particles in any given viewing window. Using a concentration of about 1 pM appears to give 

satisfactory results, but even with careful dilution using μL-level accurate pipets there is a high 

variance in solution results: any small changes in concentration results in a significant 

difference at the end. Thankfully, a sample solution can be quickly assessed by observing it in 

any flawed microfluidic cells that are unfit for actual experimentation. 

Of course, once an ideal concentration batch is found, there are additional challenges: 

solution injection must be carefully done without compromising the integrity of the 
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nanoparticles or microfluidic cell. By means of anecdotal trials, allowing the solution to non-

forcibly siphon into the electrode space via capillary action gives the best results. This is easily 

done by placing a 1.0 μL drop of solution along the edge of the cell. Gentle tapping of the top 

coverslip can help speed up the process by acting like a miniature bellows, but this requires a 

practiced hand: too forceful and the polystyrene nanoparticles will become impacted and 

immobile against the glass surfaces. 

    

Figure 7.19 (Left): polystyrene particles immobilized and impacted onto glass. The particles appear much more in-

focus and vibrant because they are immobile. (Right): particle-tracking lines of three different particles undergoing 

Brownian motion. Scalebars: 10 μm. 

 

The last effect of the solution that must be controlled is evaporation of the solvent. As the 

amount of solution is only 1.0 μL, it tends to evaporate very quickly when exposed to ambient 

atmosphere. After being injected into the microfluidic cell, the minor and subtle differences of 

the glass cell’s edges mean that one side of the cell will inevitably evaporate faster than the 

others, creating directional flow of solution towards that area. Additionally, evaporation will 
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gradually increase the concentration of both nanoparticles and sodium hydroxide solutes, 

leading to anomalous electrostatic interactions and solution viscosities.  

 

Figure 7.20: A 20 nm diameter fluorescent particle undergoing both Brownian motion and directional flow. The 

Brownian motion can be seen as the small chaotic movements, while the flow is a large additive factor that gives 

the particle a preferential direction from left-to-right. The path shown is ~1.35 μm over 30.994 s. 

 

This solution flow can vary from a subtle effect to a much stronger effect, but in either case 

it completely dominates any subtle Brownian movement or electrostatic effects we are seeking 

to analyze. While there are many methods to prevent solvent evaporation, the simplest 

method is sealing the sides and locking the solution inside. For our purposes, we used plain 

Vaseline petroleum jelly to great effect: the timeframe to stably analyze samples increased 

from a few minutes to hours and reduced direction flow to a complete stand-still, as seen 
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previously in Figure 7.19 (right) as well in the following figure, showing a single particle 

undergoing stochastic Brownian motion. 

   

Figure 7.21: Trajectories of a Brownian 20 nm FL nanoparticle at two times: 38.731 s (left) and 74.079 s (right). 

  

7.7 Z-Direction: Solution Height Importance 

In our calculations, we assume that the Brownian motion observed is only 2-dimensional, 

but this is obviously a gross approximation. In truth, as seen in Figure 7.8, our sample has a 

variable and a relatively large solution height: initial tests using the methodology for our corral 

trapping experiments had a controlled 10 μm solution height, which is 200x larger than a 50 nm 

metal electrode and 500x larger than a 20 nm diameter particle. Very quickly it became 

apparent that such a massive solution height was inadvisable: a nanoparticle’s fluorescent 

image varies with height and if the particle moves too far outside of the focal plane it is 

undetectable, and therefore the goal became to minimize the solution height as much as 

possible. 
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Figure 7.22: Zoomed-in fluorescent images of a nanoparticle as it diffuses vertically at selected positions: (left) 

above the focal plane, (middle) in focus, and (right) below the focal plane. Scalebars: 10 μm. 

   

Figure 7.23: Frames of a fluorescent nanoparticle (red) emerging from behind the electrode (black bar on the left) 

and moving down into focus. The solution space above the electrode is too large in this case. Scalebars: 10 μm. 

 

Figure 7.24: Simplified side-view depiction of the particle’s trajectory in Figure 7.23. 
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While there are numerous ways to decrease the channel height, each with varying 

efficiency, the simplest and fastest method was to slightly alter the attachment procedure of 

the top coverslip. By gently placing a small stainless-steel weight onto the top coverslip, it 

presses the two slides together without causing any worry of cracking the glass. Then, using a 

UV-curing glue, the top coverslip is attached to the electrodes while under this weighted stress 

and locked into position. The metal weights are then removed, and the height is at a sub-

micrometer level. 

Each microfluidic cell is slightly different when it comes to the exact height, but slides can 

be eliminated for being too large using a quick volume conversion. Since 1.00 μL is 109 μm3 and 

each top coverslip is 18x18 mm, if 1.00 μL perfectly fills this space, then the height must be at 

maximum 3.0 μm. If more than 1.0 μL is required, it is rejected and thrown out. By anecdotal 

evidence this appears to be a satisfactory to keep fluorescent particles within the focus region. 

 

7.8 Voltage Assessment and Electrode Issues 

The final hurdle for ensuring consistent reliable results is finding the right potential: too low 

and nothing happens, too high and the system falls apart. Applying too many volts will even 

cause the electrolysis of water, completely breaking the microfluidic cell. To test the specific 

bounds of the sample cells, a series of scout experiments was thus conducted to test the 

extreme bounds of the system.  

Firstly, a standard solution (~10 pM) of nanoparticles was subjected to a DC potential tuned 

to 5.00 V to see how quickly particles would react to such a strong field, their maximum speed, 

as well as whether a strong electrolysis reaction would occur under normal conditions. The 
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results of this were barely caught on video: a particle reacted so incredibly strongly that it is 

viewed for just two frames, resulting in an incredible speed of ~580 μm/s. To put it mildly: 

that’s too fast (and the solution quickly undergoes electrolysis). 

   

Figure 7.25: two frames of a 20 nm FL particle after the application of 5.000 V across a 250 μm channel. The 

second frame is only 0.1495 seconds later. Scalebars: 10 μm 

 

The second voltage scouting experiment we’ll discuss is that of what happens after the 

electrode is turned off: EDL theory only considers what occurs along the electrode after the 

system has reached an equilibrium, whereas our interest is in the area of ambiguity between 

fully disperse and homogenous solution at time zero and the build up of a double layer 

equilibrium. This will often necessitate turning the electrode on-and-off to analyze the same 

system at different conditions, and thus it is important to understand the conditions once the 

potential is removed. 
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Figure 7.26: Two frames of an electrode (right side of image) after voltage has been turned off on an electrode that 

has nanoparticles clustered on it. Scalebars: 10 μm 

 

As seen in Figure 7.26, if there is a significant concentration of particles adhered to the 

electrode, then once the electrode is turned off, the particles will dislodge and disperse away. 

But as these particles can themselves cause additional force effects as they migrate, they create 

their own microcurrents of solution. The particles dispersing are unidirectional and of nearly 

the exact same magnitude, suggesting that the particles are being affected by the same 

directional flow component. As these flow effects are an added complexity factor, this 

reinforces the need for keeping nanoparticle concentrations as low as possible. 

The last scouting experiment was seeing whether a slightly lower voltage, 2.000 V, but a 

higher concentration (~10 nM) would cause the solution to saturate the electrode and see how 

far the potential voltage “reaches” into the bulk solution.  
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Figure 7.27: Time lapse of nanoparticles aggregating along an electrode after the application of 2.000 V. The 

increasing brightness is due to the increasing concentration of fluorescent particles. The times, in order, starting at 

the top left: (a) 0.00 s (b) 6.47 s (c) 13.08 s (d) 19.70 s. Scalebars: 10 μm 

 

As seen in Figure 7.27, the results were rather dramatic: over the course of 20+ seconds the 

nanoparticles rapidly depleted from the bulk solution and formed a massive particle aggregate 

along the electrode, several hundred micrometers in depth, where they were quickly 
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immobilized into what appeared to be a thick gel-like structure, leaving the bulk completely 

devoid of fluorescent particles. This structure could possibly be analogous to the Stern Plane 

from EDL theory, just far more massive in scale. The overlapping signals of billions of 

nanoparticles further stresses the need for dilute solutions using far reduced voltages. 

With these extreme parameters better understood, we can now move away from 

troubleshooting the double electrode microfluidic cells, and head towards our true goal and our 

next chapter: direct observation and analysis of nanoparticles and separating the stochastic 

Brownian force from the ballistic force of the electric double layer. 
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Chapter 8 

Potential Reduction and EDL Establishment Results 
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8.1 Chapter Overview 

This chapter focuses on the data that is the result of an optimal microfluidic double 

electrode cell. First, we will start with characterizing simple Brownian motion and comparing 

the experimental diffusion values to theory, before then moving on to applying an electrostatic 

potential and extracting the ballistic component from the displacement data. We’ll then 

transition from there to include multi-particle attraction and Brownian agreement, and then 

extrapolate the effective voltage, which will be expanded upon in Chapter 9. 

 

8.2 Brownian Motion and Calculated Diffusion Coefficient 

As discussed earlier, theorized in Chapter 1 and simulated in Chapter 7, a particle 

undergoing Brownian motion displays a characteristic displacement as a function of the square 

root of time: 𝜆𝑥 =  √2𝐷𝑡. While not immediately obvious for a particular particle displacing 

over time, the function emerges by taking the RMS deviation of a collective set of lag-times.  

 

Figure 8.1: RMS deviation vs increasing lag time for a 20 nm FL particle undergoing Brownian motion. The 

exponential value was calculated using a power law fit function. 
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Extracting the diffusion coefficient out of a t1/2 function is rather complicated: Brownian 

motion (f(x) = (2Dt)α), can be ideal (α = 0.50), sub-diffuse (α < 0.5), or super-diffuse (α > 0.5) 

depending on whether an external condition helps or hinders the particle’s movement, and the 

value seen in Figure 8.1, 𝛼 = 0.51, indicates that the particle is remarkably close to “ideal” 

Brownian. This is not always the case, however, and it can be difficult to find a good 

approximation with large magnitude stochastic scenarios. While affixing the value of α to be 

exactly 0.50 is certainly possible, it masks any sub-or-super-diffuse behavior. Instead of 

worrying about such intricacies, it is far easier to instead take the mean-square value of 

diffusion, or MSD, because this is a much cleaner function, 〈𝑥2〉 = 2𝐷𝑡, where the slope of the 

line is equal to twice the diffusion coefficient. If movement is either sub-or-super diffuse, the 

line will not be linear.  

 

Figure 8.2: Linear MSD plot of the experiment seen in Figure 8.1. The slope is twice the diffusion coefficient, D.  
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Figure 8.3: Two more MSD plots of additional experiments on different samples of 20 nm FL nanoparticles, taken 

months apart using different microfluidic cells, with values in the same approximate range. 

 

Taking this estimation, as well as many more from other experiments, we can find that our 

20 nm fluorescently tagged polystyrene nanoparticles will have a diffusion coefficient of 

roughly 3.9 μm2/s. By referring to Equation 1.8, we can calculate an effective particle radius: 

 
𝐷 =

𝑅𝑇

𝑁𝐴

1

6𝜋𝜂𝑎
 

(1.8) 

 
𝑎 =

𝑅𝑇

𝐷𝑁𝐴6𝜋𝜂
 

(8.1) 

Using an R value of 8.314 m3 Pa K-1 mol-1, a temperature of 293 K, and assuming the viscosity of 

a 10-4 M sodium hydroxide solution being roughly similar to water at 1.00 mPa s, we can then 

find that the effective radius of our “20 nm diameter” nanoparticles (manufacturer radius 

estimate: 14 nm) comes out to around 50 nm.  

At first glance, this might seem rather alarming, as it implies that the radius is off by a factor 

of four, but it is important to remember that this is an effective particle radius which includes 

not only the particle, but the solvation shell and any counterions that make up its own EDL 

around the particle. Essentially: the effective radius of the nanoparticle is going beyond just the 



159 
 

physical structure of the nanoparticle by incorporating rigid and semi-rigid layers of solvent and 

counter-ions attracted to the carboxy groups, creating a larger dynamic radius as it moves 

through solution.  

Considering that in Chapter 2 we found that the Debye length for a pH 10 sodium hydroxide 

solution was 30 nm, the combination of a 14 nm radius particle with a 30 nm “solvation shell” 

comes remarkably close to the calculated value of 50 nm (although this is not to suggest that 

the Debye length is equivalent to the size of the solvation shell). However, the calculation of the 

diffusion coefficient is not the end goal of this research. 

 

8.2.1 Simulated Ballistic Component Extraction 

Much like in Chapter 7.4, before we even begin to incorporate mathematical functions into 

experimental results it is first necessary to create a theoretical framework via simulated results. 

To achieve this, we only need to introduce an additive factor to the stochastic Brownian 

motion’s perturbations.  

Taking the same values found earlier, we can now add a secondary effect: a small 

directional value added to every step. Using very large values (anything greater than the 

standard deviation) becomes a trivial solution as the Brownian motion component fades from 

importance and becomes nothing more than noise: a difference of +/- 1.0 μm/s means little 

when the ballistic component is a massive 1000 μm/s. When small directional components are 

used (for example something as small as 10% of the standard deviation) then the ballistic 

component is not as immediately recognizable and requires a bit more effort. 
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Figure 8.4 (left): Simulated trajectory of a particle undergoing Brownian motion from Chapter 7. (right): the same 

simulated values with an added perturbation of +0.1000 units, or 10% of the standard deviation. 

 

In Figure 8.4, the Perturbed Brownian graph shows many of the same Brownian hallmarks 

as the Simulated Brownian Movement, but with a slight overriding direction layered on top. An 

experimental example would be something akin to Figure 7.17, where a particle undergoing 

Brownian motion also had a single directional ballistic flow. The rough estimated value of the 

ballistic component can be found by taking the start-and-end points of a particle and 

performing a simple distance/time calculation, but this only works on smaller scales and the 

error is quite large: Figure 8.4 (right) is certainly not a perfectly straight line, and on any small 

timescale there are several cut-backs in the opposite direction of the additive as well as regions 

where the Brownian component is noticeably larger. 

This perturbed data set can then have the same data boot-strapping method done as in 

Chapter 7.4 to create a Ballistic-Brownian MSD value 〈𝛥𝑥Perturbed
2 (𝑡)〉, and then subtract the 

purely Brownian MSD value 〈𝛥𝑥Brown
2 (𝑡)〉 found previously to find the MSD ballistic component 

〈𝑉(𝑡)2〉, or the RMS component 𝑉RMS(𝑡): 
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 〈(𝛥𝑥)Perturbed
2 (𝑡)〉   =   2𝑛𝐷𝑡 + 〈𝑉(𝑡)2〉 (1.22) 

 〈(𝛥𝑥)Brown
2 (𝑡)〉   =   2𝑛𝐷𝑡 (1.19) 

 〈(𝛥𝑥)Perturbed
2 (𝑡)〉 − 〈(𝛥𝑥)Brown

2 (𝑡)〉 = (2𝑛𝐷𝑡 + 〈𝑉(𝑡)2〉) − 2𝑛𝐷𝑡  =  〈𝑉(𝑡)2〉 (8.2) 

 
√〈(𝛥𝑥)Perturbed

2 (𝑡)〉 − 〈(𝛥𝑥)Brown
2 (𝑡)〉   =   𝑉RMS(𝑡) 

(8.3) 

Thus, by subtracting the MSD of Brownian motion from the MSD of ballistically perturbed 

Brownian motion, we can find the Root of the “MSD subtraction” (R-MSD subtraction) deviation 

value of just the ballistic component: 

 

Figure 8.5: Mean-Square Displacement vs Lag-time. Comparatively, a pure Brownian function should be linear. 
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Figure 8.6: The calculated ballistic component VRMS , found by subtracting the values in Figure 8.5 by the MSD from 

Figure 8.4, and taking the square root of the result, or R-MSD subtraction. The actual perturbation was +0.1000 

units (10% of the standard deviation) which matches the slope of |0.1052| units with a 5% error. 

 

This system is of course an ideal case: the simulated Brownian values are known, and we 

are just adding the ballistic component onto the raw data. When it comes to real experimental 

values, we will not have this opportunity to pre-emptively know the magnitude of Brownian 

motion or its “true” value.  

Thankfully, the microfluidic cell is structured in a very specific way to eliminate as much 

uncertainty as possible by using two distinct and independent axes: perpendicular to and 

parallel with the electrode. The perpendicular axis xaxis will have both ballistic and Brownian 

components, while the parallel axis yaxis will be unaffected by the field and thus be purely 

Brownian. By the means of this simulated example, we now have a verified pathway to extract 

and calculate the ballistic component of an experimental set of values: subtracting 〈𝛥𝑦𝑎𝑥𝑖𝑠
2 (𝑡)〉 
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from 〈𝛥𝑥𝑎𝑥𝑖𝑠
2 (𝑡)〉, and taking the square root, to find VRMS for a given particle.  

 

Y-axis (Brownian) 〈𝛥𝑦axis
2 (𝑡)〉 = 2𝐷𝑡 (8.4) 

X-axis (Perturbed) 〈𝛥𝑥axis
2 (𝑡)〉 = 2𝐷𝑡 + 〈𝑉(𝑡)2〉 (8.5) 

Ballistic Component 
√〈𝛥𝑥axis

2 (𝑡)〉 − 〈𝛥𝑦axis
2 (𝑡)〉 ≈ 𝑉RMS(𝑡) 

(8.6) 

 

8.2.2 X-and-Y Axis Brownian Similarity 

Naturally, an immediate concern is whether 〈𝛥𝑦𝑎𝑥𝑖𝑠
2 (𝑡)〉 and 〈𝛥𝑥𝑎𝑥𝑖𝑠

2 (𝑡)〉 are truly 

comparable. Theoretically, it makes perfect sense, but for the sake of verification we’ll go 

through a brief example. Often, multiple particles are observed undergoing Brownian motion in 

a given sample and their movements, while stochastic, are roughly of the same magnitude. We 

can use one such example to illustrate the similarity of not only the x-and-y axes, but also 

agreement between different particles within the same solution. 
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Figure 8.7: Trajectories of three 20 nm FL particles undergoing pure Brownian motion. The scale bar is 10 μm. 

 

These three particles have their own unique movement profiles, without any unidirectional 

flow mechanics or overriding factors. If the x-axis movements are independent from y-axis 

movements, then each of these particles should result in roughly similar diffusion coefficients 

for both axes. As a brief reminder, the stochastic nature of Brownian motion means that on 

short time scales they won’t be perfectly equivalent, but there shouldn’t be a wild deviation. 

 

Figure 8.8 (next page): The X-axis and Y-axis mean square displacements of the three freely diffusing particles 

(blue, green, red) shown in Figure 8.5. The slopes were calculated using the bootstrapped MSD method shown in 

Chapter 7. The darker color in each graph depicts the Y-axis, while the lighter color is the X-axis. 



165 
 

 

 

 



166 
 

These slopes, while not perfect, show strong agreement between the x-and-y axes, and a 

good agreement between the different particles. The microscopic differences in effective radius 

between each particle, the randomized nature of Brownian motion, and the shorter timescale 

of this data set are the most probably causes for any slight variation in the diffusion 

coefficients, but it should still be clear that the x-and-y axes are determined by the same 

diffusion coefficient for each particle.  

 
Diffusion coefficient (μm2/s) Effective  

Radius 
 

X-Axis Y-Axis Average 

Blue 5.434 4.800 5.117 41.7 nm 

Green 5.157 5.708 5.432 39.3 nm 

Red 4.690 4.994 4.842 44.1 nm 
 

Table 8.1: Calculated diffusion coefficients, for the particles shown in Figure 8.5, as well as their average. The 

values are then used to find an approximate particle radius, using Equation 8.1 

 

8.3 Single-Direction Ballistic Component 

There are three primary regions where the magnitude of the ballistic component compared 

to Brownian: much greater, on the same order of magnitude, and much smaller. As 

demonstrated in Chapter 8.2.1, a ballistic component that is at least ~10% of the standard 

deviation of Brownian motion can be directly observed, but anything below this threshold 

becomes indistinguishable to Brownian’s ever-present randomness, and the stochastic nature 

of Brownian motion places a hard lower bound. (For the purposes of this dissertation, we won’t 

go through the countless examples of this region: seeing nothing happen gets very boring very 

quickly.) 
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For ballistic components greater than Brownian, the opposite holds true: Brownian motion 

becomes so insignificant that it is hardly worth calculating: if a particle is moving at 500 μm/s, 

Brownian deviation of ±2 μm/s will hardly make a difference. In the following experiment, as a 

particle is observed undergoing stochastic Brownian motion, a voltage is applied to initiate the 

formation of the EDL. In this extreme case, the particle immediately moves towards the 

oppositely charged electrode before impacting it, becoming immobilized. We can still calculate 

the VRMS value, but it can be just as easily calculated by taking the slope of the line: 

 

Figure 8.9: Particle Tracking showing the difference between Brownian (blue) and Ballistic (green) movements. 

The electrode and charge (yellow) have been added for emphasis. The particle moves towards the electrode after 

an application of 5.00 V. The channel between the electrodes is 1500 μm wide. 
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Figure 8.10 (top): The X-axis movements of the particle shown in Figure 8.9, with the voltage turning on 

represented as the change in color from blue to green. The slope of 22.87 μm/s is calculated via Excel’s linear fit 

function. (bottom): The ballistic component using the R-MSD subtraction method, calculated to be 23.19 μm/s. 
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The third region, where Brownian and ballistic motion are similar in magnitude, is a 

transitory section between the two extremes, which is why the calculation of VRMS via R-MSD 

subtraction becomes necessary: the Brownian randomness becomes significantly larger, and 

the particle’s trajectory becomes unavoidably erratic. 

To highlight this transition, we’re going to consider two examples, shown in Figures 8.11a 

and 8.11b. In both cases, the distance between the electrodes is 175 μm, the applied 

electrostatic potential is 0.3000 V, and both use negatively charged 20 nm FL particles at the 

same concentration. The only difference between these two cases appears to be that Figure 

8.11a has a smaller Brownian motion magnitude. This discrepancy could come from several 

factors, including a difference in temperature, viscosity (due to slightly higher/lower sodium 

hydroxide concentration), and different solution heights leading to glass-solution interactions.  

    

Figure 8.11: Two different particle trajectories of negatively charged 20 nm FL particles. The red (left, a) and blue 

(right, b) lines represent the movement of the particles without any applied potential on the electrodes. Green 

lines in both represent the movement after the application of 0.30 V, with the positive electrode depicted on the 

left. In both cases, the electrode distance is 175 μm. 
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Figure 8.12 (top): Plots of X-axis movement vs time and (bottom) RMS displacement vs lag time of the particle 

shown in Figure 8.11a, along with their R2 values. The ballistic component was calculated using the R-MSD 

subtraction method. The slopes and R2 values were calculated using Excel’s fit function, with the ballistic 

component resulting in 1.581 and 1.600 μm/s with R2 values of 0.941 and 0.998 respectively. 
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Figure 8.13 (top): Plots of X-axis movement vs time graph (bottom) RMS displacement vs lag time of the particle 

shown in Figure 8.11b, along with their R2 values calculated using Excel’s fit function. The ballistic component is 

calculated via root of the R-MSD subtraction method. The grey line is a start-to-end slope to show the overall 

change in position over time. The ballistic components are 1.619 and 1.7438 μm/s with R2 values of 0.771 and .997 

respectively. The start-to-end slope is 1.829 μm/s but has no R2 value because it is only two data points. 
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The first case, shown in Figure 8.11a, is right on the cusp of the transitory period. With a 

relatively low diffusion and Brownian magnitude, the sudden application of electrostatic 

potential creates a linear movement towards the electrode with minimal fluctuations. This is 

reflected in Figure 8.12, where both slopes (time-based movement and R-MSD subtraction) are 

in close agreement and with high coefficient of determination values, R2. (The R2 value 

describes how well the slope fits the raw data, on a scale of 0.000 to 1.000, with high numbers 

indicating high agreement.) In a case such as this, the rigorous R-MSD subtraction method 

might not be completely necessary, but it does carry a slight increase in R2 as well as the nearly 

100-fold increase in boot-strapped raw data points, as described in Chapter 7.4. 

The second case, shown in Figure 8.11b, is instead a case where the R-MSD subtraction 

method is necessary. With a higher variability in Brownian motion magnitude, massive 

fluctuations can be seen not only in the x-axis, but in larger movements along the y-axis. This 

fluctuation causes the movement after application of the electric voltage in Figure 8.13 (top) to 

be quite random with an R2 value of 0.771 and a slope of 1.619 μm/s. For the sake of an 

additional viewpoint, a start-to-end line was included (shown in grey). It represents the 

absolute displacement between when the electrode is turned on and when the particle reaches 

the electrode, at an average speed of 1.829 μm/s. These lines, however, do not account for 

how the larger Brownian motions might have influenced the overall speed. The stochastic 

deviations are just too large to obtain a single reliable value using traditional methods, giving 

two values that are off by about 12%. 

In dramatic contrast, the R-MSD subtraction method reduces the more extreme and erratic 

movements and filters out the Brownian deviations to provide a much smoother line with a slim 
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R2 fit of 0.997, much better than the previous 0.771, and a slope of 1.744 μm/s. This consistent 

and reproducible method, while certainly more time consuming, is a far superior method in 

calculating the effective ballistic motion induced by an electrostatic potential.  

 

8.4 Multi-particle Analysis 

Similar to Chapter 8.2.2 when it came to agreement between the X-and-Y axes, another 

concern that naturally arises is that of the ballistic component induced by the electric field; two 

similar particles being affected by the same force should behave similarly. If the particles react 

to the induced field differently, then the framework would be unreliable. 

To illustrate that the calculated ballistic component is comparable between particles, we 

can consider the following case in which two particles are freely diffusing for 11 seconds before 

an electrostatic potential is applied to the electrodes: 

 

Figure 8.14: Trajectories of two negatively charged 20 nm FL particles (blue and green), over 25 seconds. Both 

particles started freely diffusing until a 0.300V potential is applied, indicated on each with a red dot with a red 

arrow in the direction of attraction towards the positive electrode (yellow +). The electrode distance is 175 μm. 
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Figure 8.15 (top): X-axis movements of the two particles shown in Figure 8.12. The darker green and blue lines 

signify when there was no electrostatic potential, while the lighter colors signify when the 0.300 V was applied. 

(bottom): Ballistic values for the two particles calculated using R-MSD subtraction. 
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As seen in Figures 8.14 and 8.15, the two particles are affected similarly after application of 

the electrostatic potential: the green particle moved at 2.572 μm/s, while the blue particle 

moved at 2.545 μm/s, which is a difference of just 1.05%. Just by looking at the particle 

trajectories in Figure 8.14, this dramatic correlation is not immediately obvious, and if one were 

to only use the X-Axis trajectories, the overlayed effects of Brownian motion cause the 

particles’ movements to be too chaotic to be considered equivalent. This reinforces both the 

case that the applied ballistic force is uniform between particles as well as further validates the 

R-MSD subtraction method’s ability to extract the Brownian component and isolate the ballistic 

component.  

 

8.5 Effective Voltage Calculations 

Now that we have validated the framework and methodology, we can now use these 

calculated values to find out how the EDL is affecting the electrostatic potential between the 

two electrode plates. To accomplish this, we will first consider Stokes’ law, where the drag 

force 𝐹𝐷 is a function of viscosity of the liquid 𝜂, the radius of the particle 𝑎, and the terminal 

velocity of the particle 𝑣𝑡: 

 𝐹𝐷 = 6𝜋𝜂𝑎 ∗ 𝑣𝑡 (8.7) 

We can briefly consider a negative particle moving through the medium towards a positive 

electrode as comparable to finding the force on an object falling through air towards the 

ground at its terminal velocity. Thus, we can find the ballistic component by using the terminal 

velocity of the particle as it moves through the solution. To find the terminal velocity, we would 

need to find the attractive force 𝐹𝐴 of the electrode. 
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We can combine Equation 2.3 with the definition of a charge as the number of charges per 

particle with the principle elementary charge, and the electric field between two plane-parallel 

electrodes as being equal to the voltage applied 𝑉𝑞 divided by their distance 𝑑: 

 𝑭𝐴 = 𝑞𝑬 (2.3) 

 
𝑬 =

𝑉𝑞

𝑑
 

(8.8) 

 𝑞 = 𝑧𝑒0 (8.9) 

 
𝑭𝐴 = 𝑞𝑬 =

𝑉𝑞𝑞

𝑑
=

𝑉𝑞𝑧𝑒0

𝑑
 

(8.10) 

Because the only forces acting on the particle are the attractive force and the drag force, we 

can find a direct relationship between the terminal velocity of the particle, the effective voltage 

𝑉eff, and the effective electric field, 𝐸eff 

 𝑭𝐷 = 𝑭𝐴 (8.11) 

 
6𝜋𝜂𝑎 ∗ 𝑣 =

𝑉𝑞𝑧𝑒0

𝑑
 

(8.12) 

 
𝑉eff = 𝑑

6𝜋𝜂𝑎

𝑧𝑒0
∗ 𝑣𝑡 

(8.13) 

 
𝐸eff =

𝑉eff

𝑑
=

6𝜋𝜂𝑎

𝑧𝑒0
∗ 𝑣𝑡 

(8.14) 

Assuming the particles are of similar size and charge, doubling the electric field will double 

the terminal velocity of the particle. This is seen in Figure 8.16, where two particles were 

subjected to two different voltages, 0.500 V and 1.000 V, which is an increase of the electric 

field by a factor of 2. This resulted in an increase of the ballistic component from 2.0301 μm/s 

to 3.9485 μm/s, an increase by a factor of 1.945 (very close to what was expected). The slight 

decrease in ballistic speed may be due to several factors, including small differences in the 
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particles or solution, but the overall concept holds true. 

 

Figure 8.16: Particle trajectories (left) and calculated ballistic components (right) of two 20 nm FL particles (a, b) 

from different microfluidic cells with a 1500 μm electrode distance. The only alteration was that (a) used a 

potential of 0.500V and (b) used 1.000V (resulting in an electric field of 333 V/m and 667 V/m, respectively). 

 

By using the same value for viscosity in the Brownian calculations done in Chapter 8.2, 

including using the effective particle radius of 50 nm as obtained from the diffusion coefficient, 
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and using the manufacturer’s assumed concentration of charges as roughly 1000 per particle, 

we can calculate the effective electric field felt by the particles as determined by the ballistic 

terminal velocity.  

This gives a rather startling result: an applied 333 V/m electric field is reduced to an 

effective field of 12.6 V/m, while a 667 V/m field is reduced to 24.6 V/m. These values are much 

lower than the applied electric field, but a more curious discovery is when we consider how 

much the effective value has decreased from the original value: they have been reduced by 

roughly the same percentages, 96.21% and 96.31% respectively.  

 
%𝑅𝑒𝑑𝑢𝑐𝑡 = (1 −  

𝑉eff

𝑉0
) = (1 −

𝐸eff

𝐸0
) 

(8.15) 

We can apply this same calculation retroactively to the previous results in this chapter, as 

seen in the table below. Two different but consistent patterns emerge: the 1500 μm electrodes 

have a reduction of around 96.0%, while the 175 μm electrodes have a 99.1% or 99.4% 

reduction. 

Figure 8.10 8.16 8.16 8.12 8.13 8.15 8.15 

d (μm) 1500 1500 1500 175 175 175 175 
𝑣𝑡 (μm/s) 23.178 2.0301 3.9485 1.6003 1.7438 2.5718 2.5451 

V0 (mV) 5000 500 1000 300 300 300 300 
Veff (mV) 216.4 19.0 36.9 1.65 1.80 2.65 2.62 

E0 (V/m) 3333 333 667 1714 1714 1714 1714 
EEff (V/m) 144 12.6 24.6 9.43 10.3 15.1 15.0 
%Reduct 95.7% 96.2% 96.3% 99.4% 99.4% 99.1% 99.1% 

 

Table 8.2: Collection of data from different figures presented throughout the chapter. The green section accounts 

for the 1500 μm separated electrodes, and the blue accounts for the 175 μm electrodes. Equations 8.13, 8.14, and 

8.15 were used for the effective voltage, effective electric field, and the reduction percentage. 
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This begins our first curiosity: according to the proposed theoretical values shown in Figure 

7.8, there should be a near complete reduction of the electrostatic potential after just a few 

Debye lengths at 30.3 nm each. Yet in these experimental results there is still a significant 

percentage of the initial voltage that affects the suspended charged particles in the channel. 

This phenomenon, as well as many others, will be discussed in more detail in Chapter 9. 

Additional examples of calculated terminal velocities and effective voltages for both electrode 

setups have been provided in the following Supplemental section. These are included to 

reinforce the topic, not act as new information and will not be discussed in depth. 

 

8.6 Supplemental Examples 

Below is a summary of the supplemental examples shown in this subchapter. Comparing 

these values to those shown in Table 8.2 will highlight a consistent trend. 

Figure 8.17 8.18 8.18 8.19 8.20 8.21 8.22 8.22 8.23 8.23 8.23 

d (μm) 1500 1500 1500 175 175 175 175 175 75 75 75 

𝑣𝑡 (μm/s) 1.352 4.211 2.828 2.538 2.334 1.654 2.595 2.440 1.773 1.244 0.930 

V0 (mV) 500 1000 1000 300 300 200 300 300 200 200 200 

Veff (mV) 12.6 39.3 26.4 2.61 2.40 1.70 2.67 2.51 0.78 0.55 0.41 

E0 (V/m) 333 667 667 1710 1710 1140 1710 1710 2670 2670 2670 

Eeff (V/m) 8.40 26.2 17.6 14.9 13.7 9.71 15.3 14.3 10.4 7.33 5.47 

%Reduct 97.5
% 

96.1
% 

97.4
% 

99.1
% 

99.2
% 

99.2
% 

99.1
% 

99.2
% 

99.6
% 

99.7
% 

99.8
% 

 

Table 8.3: Summary of the Supplemental Figures, separated by color to signify different electrode distances: 1500 

μm (green), 175 μm (blue), and 75 μm (orange). The voltages are represented as mV for clarity, the electric field is 

highlighted as and the %Reduct was calculated using Equation 8.14. 
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Figure 8.17: Particle Tracking (left) and ballistic component (right) of a 20 nm FL particle. The electrodes are 1500 

μm apart, and the applied potential was 0.500 V, with the positive electrode shown on the left. 

 

Figure 8.18: Particle Tracking of two particles (left) and their ballistic components (right). Both are 20 nm FL 

particles. The 1st particle (top, in blue) was visible immediately as the potential was applied, while the 2nd particle 

(bottom, in red) appeared 60.1 seconds later. The electrodes are 1500 μm apart with 1.000 V applied potential. 
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Figure 8.19: Particle Tracking (left) and ballistic component (right) of a 20 nm FL particle. These electrodes, with 

the positive shown on the left of the image, are 175 μm apart, and the applied potential was 0.300 V.  

 

Figure 8.20: Particle Tracking of two particles (left) and their ballistic components (right). Both are 20 nm FL 

particles. The 1st particle (top, in blue) was visible immediately as the potential was applied, while the 2nd particle 

(bottom, in green) appeared immediately after (19.6 second after application). The electrodes are 175 μm apart. 
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Figure 8.21: Particle Tracking (left) and ballistic component (right) of a 20 nm FL particle. The electrodes, with the 

positive shown on the right of the image, are 175 μm apart, and the applied potential was 0.300 V.  

 

 

Figure 8.22: Particle Tracking (left) and ballistic component (right) of a 20 nm FL particle. The electrodes, with the 

positive shown on the right of the image, are 175 μm apart, and the applied potential was 0.300 V.  
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Figure 8.23: Particle Tracking (left) and ballistic component (right) of a single 20 nm FL particle. The electrodes are 

now 75 μm apart, and the applied potential was 0.200 V. Both electrodes are visible, on the left and right, and the 

0.2 V applied potential was toggled between them for varying times: green (45.36 seconds), red (9.83 seconds) and 

blue (8.316 seconds). The particle tracking shows the entire path for simplicity. 
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Chapter 9 

The Rebound Effect and Future Goals 
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9.1 Chapter Overview 

This chapter is dedicated to exploring the unexpected occurrences during experiments in 

the 75 μm and 175 μm channels, as well as providing some supportive hypotheses to explain 

them. We will begin with a brief overview of the electric field’s time-dependent decay before 

returning to our curious results from Chapter 8. After that will be an exploration of what occurs 

when the applied voltage is turned off as the charged particle attempts to return to Brownian 

motion, with an extended focus on what we colloquially refer to as the “rebound effect.” We’ll 

then suggest some possible explanations before discussing future endeavors and some 

preliminary experimental results that delve deeper into the establishment of and departure 

from the equilibrium position of the electric double layer. 

 

9.2 EDL Establishment Time 

As noted in Table 8.2 and the supplemental Table 8.3, there is a clear relationship between 

the applied voltage and the particle’s speed; when the applied voltage is reduced by half, the 

particle’s velocity was reduced by half. However, by using this velocity to calculate the effective 

potential via Stoke’s Law, the effective values would not be anywhere close to the applied 

values. For a 1500 μm channel, the effective voltage was somewhat consistent reduction of 

~96.0% of the applied voltage. For the 175 μm channel, it was ~99.2% of the applied voltage.  

One of the biggest similarities between the previous chapters’ examples is that the particles 

were analyzed just before the potential was applied, and for anywhere from 10 to 40 seconds 

afterwards. Naturally, a concern is that there was not sufficient time for the EDL to establish, 

which is indeed where the subtle differences between the experimental values emerge.  
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There is some inconsistency in exactly what occurs on longer timescales. According to most 

conventional theories1–7, the EDL charging time for a pH 10 NaOH solution should be on the 

order of tens or hundreds of milliseconds. Certainly, there is a very rapid reduction in the 

effective voltage over time, and the nanoparticles do not behave as if they are being affected 

by the full applied potential: after an initial jolt, the nanoparticles settle towards a roughly 

consistent velocity. However, charging time is not the same as completion time: charge time is 

how long it takes a capacitor to charge 1 −
1

𝑒5 = 99.32% of its supply8,9, which means that the 

EDL has not completely established after this time; instead, the EDL’s reduction of the applied 

potential would slowly continue trending towards 100% depletion until it becomes effectively 

undetectable. In fact, many of the examples were below the 99.3% charge time threshold. 

(As a quick aside, note the similarity between charge time and the discussion of Debye 

length in Chapter 2.8: after 5 Debye lengths, the potential should be reduced by 99.3%.) 

Thus, in the interests of exploring more of just how long it takes for the EDL to fully reach an 

equilibrium state, we must consider the change in velocity for particles within the channel. For 

our first case, Figure 9.1 and Table 9.1, we have a single electrode attracting multiple particles 

over the course of 65 seconds. The camera was positioned to capture incoming particles from 

out of frame, with one particle within the frame at the time of application of 0.300 V. The 

potential was applied for 1 minute, with the speeds of the particles indicating the effective 

voltage. 

The first two particles, tracked as green and blue, were closest to the electrode and had a 

slightly higher velocity than the later particles, Red and Teal. Red and Teal both have very 

similar velocities, despite being measured at 30-60 seconds after the application of the 0.300 V 
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potential. This indicates that the decreasing field does have a time-dependence, but at a much 

slower rate than is suggested by contemporary theory, before plateauing significantly.  

One minor but important concern is that the second particle, in green, was faster than the 

first particle, in blue. This could have been due to several factors, including a smaller effective 

radius or higher concentration of negative surface charges. 

 

Figure 9.1: Particle trajectories of four different particles, shown in order of appearance, in a 175 μm channel. Blue 

was present at the application of 0.300 V, with Green appearing 1.68 s later. Red appears at 10.38 s, and Teal 

appears at 35.90 s. The total time shown here is 52.75 seconds. 
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 Figure 9.2: Particle velocities calculated via R-MSD subtraction, with each color corresponding to the particle 

tracking color shown in Figure 9.1.  

 

 

Particle: Blue Green Red Teal 
Start time (s) 00:00 01:68 10:38 35:90 
End time (s) 07:20 12:04 27:04 52:75 

vt (um/s) 6.636 7.872 4.172 4.112 
Veff (mV) 4.10 4.86 2.58 2.54 
%Reduct 98.63% 98.38% 99.14% 99.15% 

 

Table 9.1: Summation of Figure 9.2. The start and end time, with 0:00 being the time point when 0.300 V were 

applied, are the times for which the nanoparticles are within frame and have their speed calculated. The velocities 

are from Figure 9.2, and both 𝑉eff  and %Reduct were calculated via equation discussed in Chapter 8. The electrode 

distance was 175 μm and the particle radii were calculated to be ~30 nm. 
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To assuage the issue of particles having slightly different particle radii and surface charges, a 

second experiment was done with the exact opposite idea: moving the camera to specific 

stationary positions to follow a single particle. A particle was chosen that was immediately next 

to the soon-to-be negative electrode. After a 0.300 V potential was applied, the particle was 

then attracted across the entire 175 μm channel towards the positive electrode. The camera 

was moved between three total viewing positions (negative electrode, bulk solution, and 

positive electrode), and the velocities were separately calculated for each position. 

 

Figure 9.3: Simplified view of the camera positions of the 20 nm nanoparticle (yellow) as it travelled 175 μm from 

the negative electrode (left, blue), through the bulk (center, green) to the positive electrode (right, red). The 

applied potential was 0.300 V. 
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Figure 9.4: (top) X-axis position vs time graph of the particle, with the colors corresponding to the camera 

positions shown in Figure 9.3. The shorter black lines on the trajectory are the camera reposition times, about 3 

seconds. (bottom) Ballistic component velocities for the three camera positions using R-MSD subtraction.  
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Position Negative Bulk Positive 
Start time (s) 02:27 27:88   85:98 
End time (s) 24:66 83:16 131:75 

vt (um/s) 2.259 1.247 0.876 
Veffective (mV) 2.33 1.28 0.90 
%Reduction 98.84% 99.36% 99.55% 

 

Table 9.2: Summation of Figure 9.4, for a 20 nm FL nanoparticle travelling through a 175 μm channel with a 

solution viscosity of 1.5 mPa-s after an applied 300 mV potential. The start and end times represent the exact 

times the particle was visible within each camera position, with roughly 3 second transitions between each. 

 

The results of this single-particle focus reveal an interesting phenomenon: the particle’s 

ballistic velocity appears to be dominated by a time-dependence, while a possible position-

dependence is either insignificant or insufficient to isolate. The constant rate of speed makes it 

appear that the electric field is constant throughout, although there might be significant 

increases very close to the electrodes. This effective potential, however, does decrease slowly 

over time, even on a scale of over 130 seconds, with the charge time threshold being passed at 

some point before 80 seconds. A decaying effective potential yields a decaying particle velocity, 

which can be seen in Figure 9.5 below. The plot was constructed using a rolling 100 frames, 

where the slope is considered as the average velocity from the previous 100 x-axis movements, 

with the resulting graph showing a clear decay function: 
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Figure 9.5: 100-frame average velocities of the nanoparticle shown in Figure 9.4. The later velocities were given 

less weight to increase the accuracy of the power-fit function for the earlier velocities.  

 

The duration of this decay is rather difficult to track using the methods presented in this 

dissertation: with low concentration of particles, the overall presence of fluorescing 

nanoparticles decreases over time, eventually resulting in large periods of time without any 

fluorescing particles being present. As an anecdotal case, one experiment was attempted with a 

stationary camera over a 1500 μm channel for an hour using a 0.500 V potential, with the last 

fluorescing nanoparticle being seen at the ~30-minute mark, still under the apparent effect of 

an electrostatic field.  

y = 8.1874x-0.428

R² = 0.9735

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140

V
EL

O
C

IT
Y 

(U
M

/S
)

TIME (S)

AVERAGE X VELOCITIES



193 
 

 

Figure 9.6: Velocities from Figure 9.5 converted into %Reduct of the applied voltage of 300 mV. The purple line 

represents the charge time definition of 99.32% reduction, here shown to waver between 60 to 100 seconds. 

 

Attempting to solve this issue by increasing the concentration of particles then encounters 

the issues presented in Chapter 7: if the concentration is too large, nanoparticles will begin to 

coagulate and cluster along the electrode, creating physical barriers that introduce flow 

dynamics to the solution. Secondly, as the potential decays below a certain threshold, the 

particle enters the region where the Brownian motion factor begins to dominate. On longer 

timescales, the effective potential could be extractable, but with a limited observation window 

this would be impractical to obtain. Thus, at present, it was not determined experimentally how 

long it takes for the electrostatic potential to fully reach equilibrium. The only conclusive 
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statement these methods can provide is that the charge time is far longer than the theoretical 

timescale of a few seconds and is instead in the order of minutes.  

 

9.3 Rebound Effect 

Having analyzed what occurs after the initiation of an applied potential, as well as 

discovering that the decay function of the effective voltage was magnitudes longer than initially 

anticipated, the next question we sought to answer was what would happen after the potential 

was turned off: would there be a noticeable halt to the nanoparticle’s trajectory as soon as the 

potential was cut? 

What instead occurred was something wholly unexpected: the nanoparticle immediately 

reversed course, heading in the opposite direction as it had been moving just moments prior. 

This effect is independent of which direction the field is applied; the nanoparticle consistently 

moves counter to the applied field as soon as the field disperses. If the nanoparticle is being 

attracted by the field towards the positive electrode, it will suddenly be repulsed from that 

same electrode when the voltage is turned off. However, this effect is short-lived; in most 

cases, it lasts only about 3-5 seconds before the nanoparticle returns to a purely Brownian 

motion pattern.  
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Figure 9.7: Two sets (a-b and c-d) of a nanoparticle’s trajectories as it is influenced by a 0.400 V potential (a, c) and 

the rebound of the particle immediately after the potential is set to 0.000 V (b, d). Red circles have been added as 

emphasis to the rebounding effect. 
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Figure 9.8: The full x-axis movements of the nanoparticle shown in Figure 9.7, with red boxes showing the exact cases. The top of the graph indicates the 

electrode (grey bar). The cool-colored lines (green/blue) indicate particle positions when a negative potential is applied to the electrode, and warm-colors 

(yellow/orange) indicate when a positive potential is applied. Any black line represents the potential being turned off. Highlighted regions (red/purple 

circles) show the apparent Rebound Effect. All potentials shown here are 400 mV 

1
9
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Figure 9.9: Ballistic components of the particle, with the colors matching the appropriate times where the 

potential was applied in Figure 9.8. The dominating factor for ballistic component magnitude appears to be length-

of-time, matching the expectation from the decaying %Reduction from Figure 9.6. The apparent outlier, V1 at 

1.7889 μm/s, had potential applied for an additional ~30 seconds, and is actually in-line with the expectation. 

 

These rebounding movements rapidly decay in proportion to the amount of time that the 

field was applied. A short-time application of potential of only 1-5 seconds has a visibly shorter 

Rebound Effect than one in which the field has been applied for 10-30 seconds, although the 

exact length does vary between experiments. Another complicating factor is that while there is 

some decay function, stochastic Brownian motion quickly dominates after a few seconds: the 

short time scale of response means that eliminating the Brownian factor using MSD subtraction 

is not viable. We can see several of these same behaviors in another experiment under similar 

circumstances (175 μm electrode distance with a switching series of 300 mV potentials): 
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Figure 9.10: The total x-axis movements of a 20 nm FL nanoparticle in a 175 μm channel, all with 300 mV applied potentials. The dark grey bar at the top of the 

graph indicates the rough position of the electrode. Green lines indicate a positive (attractive) potential on the electrode, while blue indicates a negative 

(repulsive) potential. Black lines indicate the voltage is turned off and observed rebound effects (red circles) occur immediately as the voltage is switched off. 

Two highlighted sections (A/purple and B/yellow) are presented in Figure 9.11. 

1
9

8
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Figure 9.11: Highlighted sections from Figure 9.10. (top, A) The rebound velocity is on a short timescale and of a 

similar magnitude to the ballistic component. (bottom, B) The rebound effect does have a characteristic decay 

function, lasting for at least 5-10 seconds, as it returns to pure stochastic Brownian. 
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Figure 9.12 (top): Y-Axis Brownian movements set to the same scale as Figure 9.10, for comparison to highlight 

“normal” Brownian motion. (bottom): Averaged R-MSD subtracted ballistic components of all the attractive 

(green) and repulsive (blue) applications. This is to highlight the similar ballistic velocities between the two 

directions, with attraction being slightly stronger.  
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Again, the rebounding effect reliably occurs as soon as the potential is cut, always in the 

opposite direction of the electric field’s directional push. The rebound effect is temporary, 

starting with a mirrored ballistic component, Figure 9.11.A, before rapidly decaying down to the 

characteristic Brownian motion of a null field, Figure 9.11.B. The magnitude of Brownian 

motion can be seen in the Y-Axis movements of Figure 9.12, which is comparable to the 

Brownian sections when the field has been turned off (black) in Figure 9.10.  

In addition, this effect appears to have an inverse relationship with electrode distance: the 

1500 μm channels have little-to-no noticeable rebound effect, while the 175 μm and 75 μm 

channels have consistently repeatable rebounds that are strongly prominent and independent 

of electrode proximity or field direction.  

 

9.4 The Effects of Increasing Viscosity 

To get a complete picture of the establishment of the electric double layer, namely the 

decaying field function and an exploration of the rebound effect, reconsider Equation 8.13: 

 
𝑉𝑞 =

6𝜋𝜂𝑎𝑑

𝑧𝑒0
∗ 𝑣𝑡  

(8.13) 

The alterable variables are electrode distance d, potential 𝑉𝑞, particle radius a, number of 

charges z, and solution viscosity 𝜂. Having previously explored altering both distance and 

applied potential (and considering that particle radius and surface charges are difficult to alter 

independently) the only remaining independent variable that can be easily altered is viscosity. 

Utilizing glycerol, a highly viscous polar chemical that is fully miscible in water, we can reliably 

increase the viscosity without dramatically altering any of the other variables.  

A series of solutions were made by adding glycerol to the normal pH 10 solution of 20 nm FL 
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nanoparticles to create an array of glycerol-water mixtures. Utilizing a viscosity calculator10–12 

the following viscosities were calculated: 0% glycerol (1.00 mPa s), 10% glycerol (1.38 mPa s) 

and 25% glycerol (2.41 mPa s). The increased viscosity will also lower the magnitude of the 

diffusion coefficient in a similar manner according to Equation 1.8: 

 
𝐷 =

𝑅𝑇

𝑁𝐴

1

6𝜋𝜂𝑎
 

(1.8) 

These two effects, a slowed terminal particle velocity and a minimized diffusion coefficient, 

results in the particle being observed for a longer time with a more consistent overall speed; 

increased viscosity improves the signal-to-noise ratio across the board. This can be seen in the 

following two examples, one with a 10% solution in a 175 μm channel and one with a 25% 

glycerol solution in a 75 μm channel.  

 

Figure 9.13: X-Axis movements of a 20 nm FL nanoparticle in a 175 μm channel and 10% glycerol solution. The 

particle was attracted towards (green) and repulsed from (blue) the electrode with a 300 mV potential. The purple 

circles highlight rebounding effects. The ballistic component and red highlighted area are presented in Figure 9.14. 
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Figure 9.14 (top, red): A highlighted section from Figure 9.13. The applied potential’s terminal velocity and the 

resulting rebound effect have a similar slope, even after a relatively short application time of just 6.69 seconds. 

(bottom) The ballistic components, from Figure 9.13, appear to be a function of time: the longer time intervals of 

applied potential result in a lowered average terminal velocity. This matches the results seen in Figure 9.6, 

suggesting an underlying characteristic decay function.  
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Figure 9.15 (top): The trajectories of two 20 nm FL nanoparticles (blue and green) in a 25% glycerol solution with 

the opposing electrodes (purple lines) 75 μm apart, with an applied potential of 300 mV in both cases. (bottom) 

The movements of the two particles, with highlighted rebounding effects (red). The position at 0.00s is an estimate 

because the tracking video had to be quickly realigned at the start, but all other points are accurate. 
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Using the Brownian MSD slope from the Y-axis components from Figure 9.15, the diffusion 

coefficient D was calculated to be 1.5 μm2/s. By comparing the diffusion coefficient for a 

sample without glycerol to its viscosity, previously calculated in Chapter 8.2 to be 3.9 μm2/s 

with a viscosity of 1.00 mPa s, this would correlate to a viscosity of 2.60 mPa s. As the 

theoretical value of a 25% glycerol solution was found to be 2.41 mPa s, this correlates 

reasonably well, with some minimal error occurring naturally from variability in effective 

nanoparticle radius, NaOH interactions, and the roughly approximated temperature. 

Although it is partially visible in all previous examples, there is another rebounding 

phenomenon readily visible for the blue particle in Figure 9.15 (bottom): there is some 

correlation between the length of time the electric potential is applied and the length of the 

resulting rebound effect. (Important note: due to the currently unknown length of the 

rebounding effect, we will only be considering the immediate linear rebound effect, and 

momentarily discounting the decay function discussed in Figure 9.11.) The first 0.30 V potential 

was applied for 17.94 seconds, and the rebound is a movement of 8.77 μm over 2.50 seconds. 

The second 0.30 V potential was applied for 64.73 seconds, and the rebound is 15.92 μm over 

6.11 seconds. Momentarily taking the rebound as a linear function (it’s not; see Figure 9.11), 

this suggests that a 4-fold increase in potential application time results in a doubling in rebound 

time and distance. Due to the greatly increased viscosity for Figure 9.15, these distances are 

considerably smaller than those seen in Figures 9.8, 9.10, and 9.13, although bizarrely the 

length of the rebound effects are still comparable between each example despite the change in 

viscosity. Clearly, more work is required to pull out the true underlying relationship.  

As one final example, another 25% glycerol sample was prepared and the potential was 
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varied for two different times to see if there was a correlation between longer charge times and 

the resulting rebound, which can be seen in Figure 9.16 below. The first 300 mV potential was 

applied for 112.39 seconds, which resulted in a 17.35 μm rebound over 5.56 s, seen in the red 

circle. The second potential, again 300 mV, was applied for 43.37 seconds, which resulted in a 

rebound of 8.98 μm over 4.73s. According to these results, there is again a correlation between 

increased charge time and the strength of the rebound, but in this case the difference is largely 

for total-distance travelled, with less impact on the length of time (although there is still some 

correlation between these as well).  

 

Figure 9.16: The X-axis movements of a 20 nm nanoparticle in pH 10 NaOH and 25% glycerol within a 75 μm 

channel, with two highlighted rebounding effects. The red circle highlights the rebound after 112.4 seconds of an 

applied 300 mV, while the purple circle highlights the rebound after 300 mV was applied for 43.4 seconds. The 

linear segment in the first voltage application is the result of readjustment of the camera during recording, stitched 

together and estimated for clarity on charging time. It has no effect on the resulting rebound.  
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The only conclusive statement these results can provide is that there is a repeatable 

rebounding response upon the removal of an applied potential, with some correlation between 

the charge time length and the magnitude of the response. The specifics are unfortunately 

unclear, although there is clearly a wealth of information to be gained with further research. 

 

9.5 Hypotheses and Future Goals 

This subchapter’s purpose is to propose a plausible explanation of these strange results. 

These initial hypotheses are made to serve as a starting point for the next investigator on the 

path towards understanding. When possible, I’ve included some suggestions for future 

experiments that could delve further into the phenomena seen here, and to quote Einstein13: 

“it is hoped that some enquirer may succeed shortly in solving the problem suggested here.” 

The first key hypothesis is that of difference between applied voltage and effective voltage. 

As discussed in Figure 7.8, there are two extremes: the electrostatic potential with and without 

an established Electric Double Layer. What Figure 9.6 suggests is that there is a transition 

period between these extremes at time scales much longer than initially thought, and that the 

potential undergoes a measurable time-dependent decay function. The length of time that this 

decay tapers off is unknown, but the data suggests that the full charge time of 99% of the 

applied potential is much larger than initially assumed, in some cases taking more than a 

minute, while the last remaining percent is still effective in inducing an attraction velocity for 

many more minutes afterwards. This is summarized in Figures 9.17 and 9.18, with emphasis on 

the non-equilibrium status of the observed potential, as seen by the slow reduction of the 

potential and the particle’s resulting terminal velocity.  
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Figure 9.17: Hypothetical 1D graphs of the electric potential across a 175 μm channel with pH 10 NaOH solution: 

with Stern Model EDL (green), without an EDL or in a vacuum (blue), and the observed experimental hypothesis 

(red). The experimental hypothesis is a reduction of less than 99% of the applied potential. 

  

Figure 9.18: Hypothetical 1D line graphs of the electric potential across a 175 μm channel with pH 10 NaOH 

solution. The purple line represents the potential at time = 0, while the red line represents the potential at 

equilibrium according to the Stern model, with the rest of the colors as a change-over-time spectrum. The black 

arrow represents the direction of change over some unknown time scale. (The exact values are pure conjecture). 
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The second hypothesis about the potential reduction concerns the solution’s non-uniform 

conditions and resulting electroosmotic flow. Importantly, this specifically concerns the positive 

sodium ions and their interactions with the glass surface, and not the negative nanoparticles. 

The hydroxide ions in solution will react with the -OH groups present on all glass surfaces as 

silanol groups, Si-OH. The hydroxide ions will deprotonate the silanol, acting like a weak acid 

and leaving behind Si-O-1, and the sodium ions in solution will then be attracted to the negative 

glass surface. This greatly depletes the free sodium ions in solution, creating an EDL along the 

glass surface.  

 

Figure 9.19: Side-view of an idealized microfluidic cell, with electrodes (grey), glass (light blue), solution (dark 

blue), sodium ions (red) and negatively charged 20 nm FL particles (green). Along the glass surface are several 

deprotonated silanol groups, depicted as an O-. The glass surface attracts sodium ions, creating an EDL, while 

leaving the solution with far fewer bulk sodium ions.  
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Figure 9.20: A simplified view of positive sodium ions (red circles) inducing electroosmotic flow within the 

electrode channel at five different times of an applied electric potential (orange box): electrode off, initial rate at 

the moment the electric field is activated, depletion of sodium ions from the glass surface, and the cessation of 

electroosmotic flow. The fifth image depicts when the electric field is deactivated: the sodium ions induce a 

directional flow that is antithetical to the observed rebound effect of the nanoparticle (green, negatively charged). 
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Under the influence of a strong electric field, however, the sodium ions will be drawn along 

the surface of the glass towards the negative electrode, “dragging” the water with it and 

inducing a hydrodynamic flow to the solution. Electroosmotic flow was not included in previous 

calculations for several reasons, primarily because there is a time-dependence on the 

electroosmotic flow: as the sodium ions are depleted from the glass surface, the electroosmotic 

flow decreases to zero. To maintain a constant flow rate, there would have to be a constant 

replenishment of counter-ions, otherwise there are no remaining ions present to continue.  

The second reason it was not included is due to the nature of the microfluidic cell: the cell is 

rigid and static with no inlets or outlets. If the electroosmotic flow were considered constant, 

this would imply that there is a continual migration of solution towards one electrode, which 

would create a nonsensical situation of having a far greater amount of solution in one half of 

the channel. This would necessitate some manner of circular convection currents to return the 

incoming water back to the bulk, much like an oceanic rip-current functions to return water to 

the ocean after it crashes against a beach. This becomes an increasingly complex system that is 

difficult to meaningfully analyze. Also, as the electroosmotic flow moves in the opposite 

direction to the negative nanoparticle, this would correspond to greater resistance to the 

ballistic component. As this results in a higher effective potential, this would mean the 

reduction is actually over-estimated, and that the decay rate is slower than initially assumed! 

The main focus of the electroosmotic flow hypothesis instead deals with the depletion of 

the positive ions from the solution. Assuming that a large portion of the sodium ions will be 

attracted and partially adhered to the glass instead of moving towards the negative electrode, 

the resulting EDL along the negative electrode would contain significantly fewer counterions 
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and cause the resulting effective potential would be far stronger than expected. Assuming a 

worst-case scenario that the solution is completely devoid of ionic salts, this would result in 

longer Debye lengths and longer equilibrium charge times for the electric double layer.  

While electroosmosis is an effect that does occur in the microfluidic cell and does have an 

influence on the terminal velocity of the nanoparticles, it requires much more work to integrate 

into the work presented in this dissertation. Slight variability in pH should have a negligible 

effect on the nanoparticle’s overall charge as the pK for carboxylate groups (pKa of ~5 or 

lower)14 is less than of silanol on glass (pK of ~7.5)15 and thus the nanoparticles will be fully 

deprotonated before the glass. As such, the time-dependence of the electroosmotic flow might 

be calculated by doing a series of experiments with larger pH values: increasing the 

concentration of sodium hydroxide increases the strength and duration of electroosmotic flow. 

The inclusion of electroosmotic flow, or the provisions to discount it entirely, would provide a 

more complete picture of the finite system presented here. 

Crucially, however, the electroosmotic effect does not explain the “Rebound Effect” as the 

returning sodium ions would induce a flow in the opposite direction to the observed 

nanoparticle’s rebound. There must be yet another factor that causes this unexpected result. 

The current hypothesis for the rebound effect is that of battery-like behavior: as electrons 

are added to the electrode, migrating counter-ions enhance the electric charge, which increases 

the self-capacitance of the electrodes, which in turn increases the amount of charge that can be 

added to the electrode. As a cyclic process, this effectively allows for specifically adsorbed ions 

to function like a miniature battery and increases the total charge density allowed when 

compared to vacuum. 
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Figure 9.21: A simplified view of the hypothetical cyclic electrode charging mechanism. The negative electrode 

(grey) receives electrons from the power source, which causes counter-ions (red) to migrate and form the EDL, 

which then increases the capacitance of the electrode, allowing for more charge to build. 

 

When the potential is then turned off, adsorbed ions do not immediately dissipate, but 

instead gradually desorb, detach, and diffuse over time. However, the electrode charge does 

dissipate quickly, resulting in a large coverage of counterions on both electrodes that now 

induce an electric field that is of the same magnitude as the imposed field, but in the opposite 

direction. This counter-field induces a ballistic motion onto the charged nanoparticles in the 

direction opposite to their previous direction, suddenly changing direction as a strong rebound. 

As the counterions on the electrode dissipate, the counter potential quickly drops to zero, and 

the particles return to pure Brownian motion. 
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Figure 9.22: An idealized microfluidic cell, with electrodes (grey), solution (blue), sodium and hydronium ions (red), 

hydroxide ions (yellow), and negatively charged 20 nm FL particles (green). In the Battery-like Charging, the 

electrons flow onto the negative electrode, which accumulates more positive ions over time and allows for more 

electrons to be added. In Capacitor Depletion, the electrons rapidly flow onto the positive plate, but the counter-

ions slowly dissipate. Once the counter-ions fully diffuse, the nanoparticle returns to pure Brownian motion.  

A white arrow shows the experimentally observed movement of the nanoparticle, including the rebound effect. 
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The hypothesis in Figure 9.21 explains the observed relationship between electrode 

charging time and the resulting rebounding effect: longer charge times result in a greater 

concentration of adsorbed ions in the electric double layer, which would then require more 

time to discharge and thus creates a longer lasting reversed field. 

The hypothesis presented in Figure 9.22 is consistent with both the observed longer 

required charge time of the EDL, as well as the observed movements of the rebounding effect: 

counter-ions introduce a time-dependent delay as the capacitor shifts into battery-like 

behavior, while the slow dissipation of counter-ions from electrodes induces a counter field 

that pushes the negatively charged nanoparticle in the direction of electron migration. This also 

explains why a higher viscosity solution results in longer rebounding effects: the reduced 

mobility of the counter-ions lengthens the time it takes to diffuse from the capacitor. 

Transitioning away from a parallel plate capacitor model and treating the electrodes as 

pseudo-capacitors could provide more insight into the exact processes occurring in these finite 

systems. Additional instrumentation to measure real-time current and capacitance while under 

direct particle observation would confirm or deny these hypotheses. Another future 

experiment could be conducted by changing the parameters of the nanoparticles themselves: 

changing the particle’s radius without altering the total net charge would provide insight into 

particle response speed and Brownian considerations, using neutral particles could confirm 

whether this is purely an electric field effect or an electroosmotic solution flow effect, and using 

positively-charged particles of similar dimensions could confirm whether this effect is uniform 

regardless of charge. As these further experiments move into the realm of repeating nearly all 

the previous experiments shown here, which would surely take many more years of research, it 
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is unfortunately here that I must end this dissertation with an unsatiated hunger for knowledge.  

It is my sincere hope that this is a sufficient starting point for the next researcher to unravel 

the answer that has eluded me for years. I look forward to your work. 

 

9.6 Conclusions 

This dissertation delves below the visible threshold of standard illumination-based 

microscopy, into the largely unexplored nanoscale level of non-equilibrium particle movements 

in microfluidics by using fluorescent emissions of 20 nm diameter nanoparticles. By utilizing a 

lag-time based approach to single particle tracking, the Brownian-based diffusion of these 

nanoparticles was extracted and compared to expected values. By using a rigid 2-dimensional 

microfluidic cell, with the application of an electric potential in only one axis, this allows for 

dynamic analysis of a single particle by simultaneously calculating the Brownian diffusion along 

the y-axis and the ballistic component of the electric field along the x-axis by using mean-

square-displacement subtraction. The resultant lag-time based ballistic components showed a 

reliable and repeatable percentage reduction of the applied potential to be higher than 

expected, while the time-dependent decay function of the potential took place over far longer 

timescales than had previously been estimated. Along with the unexpected result of an 

apparent rebound-like effect, these observations strongly indicate that there is more to explore 

on the nanoscale-level of particle microfluidics, with some preliminary hypotheses and future 

experiments proposed to give possible explanations and guidance. 
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