
University of Wisconsin Milwaukee University of Wisconsin Milwaukee

UWM Digital Commons UWM Digital Commons

Theses and Dissertations

May 2023

Future of Functional Reactive Programming in Real-Time Systems Future of Functional Reactive Programming in Real-Time Systems

Anisha Tasnim
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Tasnim, Anisha, "Future of Functional Reactive Programming in Real-Time Systems" (2023). Theses and
Dissertations. 3219.
https://dc.uwm.edu/etd/3219

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more
information, please contact scholarlycommunicationteam-group@uwm.edu.

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F3219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F3219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/3219?utm_source=dc.uwm.edu%2Fetd%2F3219&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarlycommunicationteam-group@uwm.edu

FUTURE OF FUNCTIONAL REACTIVE PROGRAMMING

IN REAL-TIME SYSTEMS

by

Anisha Tasnim

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Computer Science

at

The University of Wisconsin-Milwaukee

May 2023

ABSTRACT

FUTURE OF FUNCTIONAL REACTIVE PROGRAMMING
IN REAL-TIME SYSTEMS

by
Anisha Tasnim

The University of Wisconsin-Milwaukee, 2023
Under the Supervision of Professor Tian Zhao

The evolution of programming paradigms and the development of new programming

languages are driven by the needs of problem domains. Functional reactive programming

(FRP) combines functional programming (FP) and reactive programming (RP) concepts that

leverage asynchronous dataflow from reactive programming and higher-level abstractions

building blocks from functional programming to enable developers to define data flows and

transformations declaratively. Declarative programming allows developers to concentrate

more on the problem to be solved rather than the implementation details, resulting in efficient

and concise code. Over the years, various FRP designs have been proposed in real-time

application areas. Still, it remains unclear how FRP-based solutions compare with traditional

methods for implementing these applications.

In this survey, we studied the usefulness of FRP in some real-time applications, such as

game development, animation, graphical user interface(GUI), and embedded system. We

ii

conducted a qualitative comparison for game development and studied various applications

in animation, GUI, and embedded systems. We found that using FRP in these applications

is quite difficult because of insufficient libraries and tools. Additionally, due to high learning

curves and a need for experienced developers, the development process in FRP takes time and

effort. Our examination of two well-known games: Asteroid and Pong, in three programming

paradigms: imperative programming using the Unity game engine, FP in Haskell, and FRP in

the Yampa library, showed that imperative programming is effective in terms of performance

and usability. The other two paradigms for developing games from scratch are inefficient

and challenging. Despite the fact that FRP was designed for animation, the majority of

its applications are underperforming. FRP is more successful for GUI applications, where

libraries like RxJS have been used in many web interfaces. FRP is also applied in developing

embedded system applications for its effective memory management, maintainability, and

predictability.

Developing efficient solutions from scratch is not suitable in FRP due to several fac-

tors, such as poor performance compared to other programming paradigms, programming

complexity, and a steep learning curve. Instead, developers can be benefited from utilizing

FRP-supported modular platforms to build robust and scalable real-time applications.

iii

To

my parents,

and brothers

iv

TABLE OF CONTENTS

1 Introduction 1

2 Background Studies 4

2.1 Imperative and Functional Programming . 4

2.2 Reactive Programming . 6

2.3 Functional Reactive Programming . 7

3 Comparison Methodology 10

3.1 Resource Collections . 10

3.2 Exampled-based Comparison for Game Development 12

3.3 FRP in Animation, GUI, and Embedded System 13

4 Game Development 14

4.1 Game Architecture . 14

4.1.1 ECS in Unity Engine . 15

4.1.2 Game in FP and FRP . 17

4.2 Installation Process . 19

4.2.1 Unity . 19

4.2.2 Haskell with Gloss . 20

4.2.3 Haskell with Yampa . 20

v

4.3 Asteroid Game . 21

4.3.1 Asteroid Game Elements . 21

4.3.2 Unity . 21

4.3.3 Functional Programming . 25

4.3.4 Functional Reactive programming-Yampa 29

4.4 Pong Game . 46

4.4.1 Pong Game Elements . 46

4.4.2 Unity . 47

4.4.3 Functional Programming . 50

4.4.4 Functional Reactive programming-Yampa 56

5 Animations, GUIs, and Embedded Systems 69

5.1 Animation . 69

5.1.1 Types of Animation . 70

5.1.2 How to create animation . 72

5.1.3 FRP and Animations . 73

5.2 Graphical User Interface . 74

5.2.1 FRP and GUIs . 75

5.3 Embedded Systems . 76

5.3.1 FRP and Embedded Systems . 77

6 Discussion and Conclusion 79

6.1 Game Development . 79

6.1.1 Similarities . 79

6.1.2 Comparisons . 80

6.2 Animations, GUIs, and Embedded Systems . 85

6.3 Conclusion . 85

vi

LIST OF FIGURES

4.1 Entity Component System Game Architecture[1] 16

4.2 Game Architecture in FP and FRP [1] . 18

4.3 The main loop execution for Asteroid in FP . 25

4.4 The main loop execution for Asteroid in FRP . 30

4.5 The endlessLoop function . 43

4.6 The main loop execution for Pong in FP . 51

4.7 The main loop execution for Pong in FRP . 56

vii

LIST OF TABLES

6.1 Comparison among Unity, Functional Programming with Haskell, and Func-

tional Reactive Programming with Yampa . 81

6.2 The game features comparison among Unity, Functional Programming with

Haskell, and Functional Reactive Programming with Yampa 83

viii

ACKNOWLEDGMENTS

First and foremost, I express my deepest gratitude and appreciation to my advisor and

thesis supervisor, Dr. Tian Zhao. His guidance, expertise, and support throughout the

research journey have been invaluable. Without his insightful feedback and constant encour-

agement, I could not think of completing this research.

I would also like to thank my classmates and friends for their valuable input, discussions,

and suggestions.

Lastly, I must extend my gratitude to my parents and brothers for their unconditional

love, support, and encouragement. Their belief in me has been a constant source of motiva-

tion. Their unwavering support made this accomplishment possible.

ix

Chapter 1

Introduction

Information and communications technology (ICT) has grown significantly in recent

years, providing more robust, flexible applications that meet all modern demands, ensur-

ing instantaneous response and uninterrupted service. Traditional programming is no longer

sufficient to meet all the needs of large-scale data alone, and scientists are discovering new

approaches for building irrepressible modern applications. Scientists introduced reactive

systems that are effective for real-time applications to create more scalable, efficient, and

responsive software. RP was initially developed to solve complex event-driven systems.

However, with the complex and vast number of events, systems become difficult to manage.

Fran [2] was introduced as the first FRP language to simplify the development of reactive

systems, particularly for animation utilizing FP concepts. Functional reactive programming

provides a declarative and composable approach well-suited to solving real-time interactive

applications. However, Fran is implemented in Haskell, which inherits memory management

characteristics of the language, including lazy and pull-based evaluation leading to space-

time leaks. A time leak in a real-time system is when a time-dependent computation falls

behind the current time because it requires time to compute and respond [3]. Scientists

solved the problems in NewFran [4] employing a new evaluation model named the push-pull

1

or hybrid model and solved space-leak in Yampa [5] by limiting the expressiveness using the

signal function [6].

Game development is a complex and interactive process of creating video games. Without

user interaction, a game would be an animated movie. An excellent game will consider high-

user interaction, high-resolution graphics support, and amusing animation, which makes it

more realistic and appealing to gamers, especially children. Unity and Unreal engines are

widely adopted in game development due to the engines’ flexibility and performance. Unity

is popular among indie developers because of its low cost. These game engines also pro-

vide animation facilities. However, animators find some animation tools efficient, including

Blender, Animate, and Maya, because of their versatile supports. Animation engineers may

provide animation to the game development team to integrate those into the game or market-

ing team for an advertisement. Animations work as a storyteller in the game. Performance

and feature flexibility are the fundamental requirements for animations and games.

Graphical user interfaces (GUIs) are essential to application development. It deals with

several key features, including real-time response. A user’s main focus in using a GUI appli-

cation will be the real-time response and performance. Among several GUI libraries widely

used are React and RxJS. Embedded systems highly depend on real-time response, including

satisfying hard real-time constraints. Engineers often choose responsiveness over performance

if any trade-off is necessary. Developers prefer C or C++ languages for embedded systems

due to their low-level abstractions and performance.

These real-time applications require frequent user interactions with a timely response.

Real-time applications are designed to process events or user inputs immediately as they oc-

cur. FRP is designed to handle real-time applications focusing on data flow and time-varying

relationships among data and behaviors. FRP uses declarative programming concepts, event

streams, and reactive values to describe the behavior of a system over time. It allows devel-

opers to model the dynamic nature of real-time systems clearly and concisely. FRP concepts

2

can improve the responsiveness and interactivity of real-time applications and simplify the

development process in every real-time application. Because of this consideration, develop-

ers have found it effective in real-time systems and have been utilizing it in development.

However, several complexities, such as lack of resources, steep learning curve, and lack of

development tools, make the paradigm challenging for developing applications from scratch.

Our primary focus in the survey is to investigate the effectiveness of FRP in various

domains, such as game development, animations, GUIs, and embedded systems. To achieve

this, we conducted a thorough study by implementing two demo games in Unity, collecting

existing implementations in FP and FRP, and reviewing related research papers in FRP

for animations, GUIs, and embedded systems. Our survey results provide valuable insights

into the potential benefits and limitations of using FRP in these domains, providing future

research and development direction.

The report is organized as follows. The background information on programming paradigms

is in Section 2. Section 3 represents how we gathered resources to perform the survey and

based on what criteria, we conducted the comparison. Section 4 presents the implementa-

tion of Asteroid and Pong games in Unity, FP, and FRP. We provide the usefulness of FRP

in animations, GUIs, and embedded systems, including adopted languages and libraries in

Section 5. We discuss the results in Section 6 and conclude in Section 6.3 with future

directions.

3

Chapter 2

Background Studies

This section describes the fundamental concepts of imperative programming, functional

programming, reactive programming, functional reactive programming, and their application

areas.

2.1 Imperative and Functional Programming

Imperative programming focuses on solving the program by composing explicit com-

mands in a specific order. The computer executes these instructions in the defined order

to produce the desired output and side effects using the control flow statements, including

iterations. It may involve mutable states (variables) that refer to the values stored in the

memory. A function or method may produce side effects by updating mutable variables.

Imperative programming may be divided into procedural programming and object-oriented

programming (OOP). For example, C and Fortran are procedural languages, while Java,

C++, and C# are OOP languages.

Because of their flexibility, low-level programming constructs, and efficiency, impera-

tive languages, especially C and C++, are widely used in high-performance and real-time

4

domains, including system programming, game development, and scientific computing. Im-

perative languages enable the efficient use of memory and CPU resources that ensure per-

formance. Computing languages such as Fortran also offer high-performance scientific com-

puting libraries. Despite the performance, imperative languages are only suitable in some

application domains due to their limitations, such as heavy reliance on mutable states, which

can lead to intricate programming errors and code that is difficult to understand, refactor,

reuse, integrate, or extend.

Functional programming (FP) is a declarative-style programming paradigm where

programs are constructed by applying and composing functions, and functions are treated

as first-class citizens. The main focus of FP is what to solve rather than how to solve,

and it is suitable for solving complex mathematical problems without extensive side effects.

FP offers clean and efficient code with abstractions, such as pure functions that depend

only on input parameters. A single-threaded functional program is deterministic in always

returning the same output for the same input parameters. Its immutable states help control

the changes in an application’s states. It promotes referential transparency, which is the

ability to modify an expression in a program and its result without affecting its result or

behavior such that the program always delivers the same result for a given input parameter.

The first functional programming language is Lisp (list processing), designed to manipulate

data strings easily. Haskell, Erlang, Elixir, etc., are widely used languages in FP.

FP has been gaining popularity in recent years because of its productivity in particular

application domains. For example, Whatsapp, which is a widely used messaging app, uti-

lizes Erlang in its implementation so that it only needs 50 engineers to support 500 million

users [7]. FP languages such as Erlang are superior in concurrency functionalities partly due

to their use of immutable states. FP ensures comprehensibility through its pure functionali-

ties, and testing and debugging are easy in functional programming with an immutable state

and no hidden output. However, since FP mostly relies on garbage collection, which can add

5

additional overhead compared to imperative programming, it can lead to poor performance.

Beginners may find coding in a recursive style challenging.

Imperative and functional paradigms are different in approaches to problem-solving, and

both are successful in specific areas. Many programming languages, like Python and Kotlin,

use both paradigms’ concepts and are great at managing complex computing problems.

Rather than selecting a language based on its popularity, it is essential to consider what a

program needs to accomplish when choosing the correct language and approach. It ensures

that the solution best fits the application and makes it more effective and efficient.

2.2 Reactive Programming

Reactive programming (RP) is based on asynchronous data streams and the propagation

of changes through streams. The fundamental concept of RP is the stream of events. It is

particularly well-suited for developing applications involving real-time data processing and

event-driven user interfaces. Reactive systems are highly responsive, providing interactive

feedback. As stated in the Reactive Manifesto [8], reactive systems are more flexible, loosely-

coupled (which refers to the independence of components that provides flexibility), scalable,

and fault tolerant.

Recently, RP has been getting popular in handling event-driven code efficiently, espe-

cially in web, mobile, and IoT applications. Reactive libraries, such as ReactiveX [9], Ob-

servableComputations [10], Svelte [11], ReactiveCocoa [12] are being used largely in creating

responsive applications effectively. Despite the benefits of reactive programming, drawbacks,

such as the steep learning curve, make the system challenging to adopt and implement. Ad-

ditionally, the lack of well-performed tooling sometimes demotivates the developers.

6

2.3 Functional Reactive Programming

Functional Reactive Programming (FRP) is a programming paradigm that emphasizes

the use of FP concepts for reactive systems. FRP highlights higher-order functions to ma-

nipulate data streams efficiently, such as map and filter, to solve reactive programs. These

functions may be used to modify and combine data streams, making it easier to express

complex activities in a concise and composable manner. It was initially used in Fran [2] for

animation. Despite its apparent flaws, it has inspired many scientists. FRP languages and

libraries are designed for specific problem domains. But still, just a few are successful and

well-adopted.

FRP inherits features from FP and RP, which makes it a powerful programming paradigm.

FRP adopts the declarative style from FP, where the programmer specifies what the sys-

tem should do rather than how it should do it. The declarative style makes the program

easy to understand. Immutability is another key feature adopted from FP. The use of im-

mutable data structures ensures consistency and predictability. Immutable data structures

also make it easier and avoid concurrency problems. FRP utilizes the event-driven system,

which reacts to changes in data streams as they occur. This feature makes FRP well-suited

to applications with a high volume of real-time events, such as user interfaces. FRP uses

higher-order functions to compose simple behaviors into more complex ones, which makes it

easier to build reusable and maintainable code.

Fran introduced two abstractions: Events and Behavior. Events are streams of values

that occur at a particular time. Behaviors are time-varying values that continuously change

over time. Behavior is treated as a first-class value.

Event α = Time × α (2.1)

Behavior α = Time → α (2.2)

7

In Arrowwized-FRP [6], two different abstractions were introduced: Signal and Signal Func-

tion (SF). Signals are continuous data streams that change over time, similar to Behavior.

The only difference is Signals are not a first-class value here. SFs transform a time-varying

input into a time-varying output and are treated as first-class citizens.

Signal α = Time → α (2.3)

SF α β = Signal α → Signal β (2.4)

The evaluation model concerns how the changes are propagated across a dependency

graph of values and computations. The evaluation models of FRP must ensure that change

propagation works correctly and efficiently. With pros and cons, three types of models are

pull-based, push-based, and push-pull (Hybrid) models. A pull-based or demand-driven

evaluation model requires a value to pull itfrom the source, which leads to a time-leak.

Additionally, when there are too many devices to check for the value, the time required to

pull them can exceed the time available to service the IO device. This model is easy to achieve

in Haskell-based programs due to Haskell’s lazy evaluation. Push-based model is called the

data-driven model, where the data is pushed to its dependent computation when the source

has newly available data. The push-based model does not have the time leak problem though

it introduces glitches. The problem with the push-based model is the wasteful recomputation

of everything there is available data. However, languages implementing a push-based model

need an efficient solution to handle the recomputation. The hybrid model solves the problem

by utilizing both models.

Fran was introduced for interactive multimedia animation that supports 2D animation.

The fundamental abstractions are Event and Behavior. These notations are captured as

datatypes, not as values. Fran is embedded in Haskell and uses a pull-based model. It has

a space-time leak. As an extension to Fran, in 1997 and 1998, the author presented [13] and

8

[14] on 3D animation containing space-time leaks because of the notations and evaluation

model. Yampa [5, 3, 15] was introduced as an Arrowwized-FRP that uses Signal and SF as

an abstraction. New notation solves the space-leak but uses the pull-based model that leads

to time-leak. Several Arrowwized-FRPs are proposed [16, 17, 18, 19, 20]. FrTime [21, 22] was

introduced in 2006, which uses Events and Behavior and a push-based model. To prevent

recomputation, the language ensures that computations dependent on unchanged values are

not scheduled for execution. Flapjax [23, 24] is a language for web programming embedded

in javascript inspired by FrTime. It uses the Event and Behavior and pure push-based model.

Processing the dependency graph in topological order avoids recomputation and enhances

efficiency. Newfran [4] is an extension of the original Fran developed in 2009 to solve the

space-time leak. It is a Domain Specific Language (DSL) for animation and uses a hybrid

model embedded in Haskell.

FRP is well-suited for building user interfaces, as it allows developers to create reac-

tive, dynamic interfaces that respond to user input and changes in the underlying data with

successful libraries like RxJS and Elm. FRP allows developers to develop reactive game

mechanics that respond to user input and events in real-time. Some FRP libraries and

game development tools include Frag [25], Haskanoid [26], Bogre-Banana [27], FunGEn [28],

Gloss [29, 30], and Helm [31]. FRP also fits in robotics applications, allowing developers

to build reactive control systems that respond to sensor input. Tools and libraries include

YFrob [32] and swarm [33]. Additionally, FRP has been used in other application domains,

including animation [2, 13, 14, 4], graphical user interface [34, 35, 36, 37, 38], embedded

systems [39, 40, 41, 42], robotics [43, 44, 45], vision [46, 47], security [48], time-domain appli-

cations: synchronous system [49, 50, 51], asynchronous system [52, 53, 54] and priority-based

task scheduling [55, 56, 57, 58, 59, 60, 61], fault tolerance [62, 63, 64, 65, 66], refactoring [67],

and testing and debugging [68, 69, 70].

9

Chapter 3

Comparison Methodology

This section describes how we collected the review materials, how we evaluated the

application of FRP in game development using examples, and how we surveyed the use of

FRP for animation, GUI, and embedded systems.

3.1 Resource Collections

This survey focused on game development, animation, GUI, and embedded systems.

We used two types of resources to perform the study: examples for game development

applications and research papers. Additionally, we used numerous online resources. Due to

the paradigm characteristics and lack of published works, we used two demo implementations

of age-old games (Asteroid1 and Pong2) to compare the results among three paradigms

(Imperative, FP, and FRP).

We implemented a simple Asteroid game in imperative programming using Unity and

C# [71] and collected source codes implemented in FP [72] and FRP [73]. We used two

reference implementations collected from GitHub for Pong, one in FP [74] and the other in

1asteroid, https://en.wikipedia.org/wiki/Asteroids (video game)
2https://en.wikipedia.org/wiki/Pong

10

FRP [75], and implemented a simple version of it in imperative programming in Unity [76]

with the help of [77].

The research papers are divided into game development, animation, GUIs, and embed-

ded systems. We collected publications from various sources, including IEEE Xplore3, ACM

Digital Library4, ResearchGate5, and Google Scholar6, and found numerous published works

on FRP languages, libraries, frameworks, and applications. Our search criteria included

functional reactive programming, game development, animation, GUIs, and embedded sys-

tem. We collected papers in functional reactive programming from the beginning (1997) to

2022.

A Survey [78] was focused on the effectiveness of functional reactive programming lan-

guage, especially on Elm in Game development. To conduct the survey, they implemented a

shooting game named aa7. They found several improvements are necessary for Elm, including

flexible features like Haskell and testing and debugging facilities.

In 2013, a survey was performed on reactive programming [79], where the authors focused

on programming languages. They surveyed two types of languages: the FRP languages as

siblings of reactive programming and the cousins of reactive programming that do not provide

the primitive abstraction for time-varying value but provide automatic propagation of state

changes and offer other reactive programming features such as glitch avoidance. Siblings of

RP include Fran, Yampa, Frappe, FrTime, NewFran, Flapjax, Scala.React, AmbientTalk/R,

and cousins are Cells, Lamport Cells, Trellis, SuperGlue, Radul/Sussman Propagators, Co-

herence, and .NET Rx. They performed a comprehensive study on the languages using six

criteria, including basic abstractions, evaluation model, lifting, multi-directionality, glitch

avoidance, and support for distribution. They found that multi-directionality is not sup-

3https://ieeexplore.ieee.org/
4https://dl.acm.org/
5https://www.researchgate.net/
6https://scholar.google.com/
7https://www.generaladaptive.com/

11

ported by any FRP languages they examined, whereas a few cousins of RP support multi-

directionality features. There is still an open area for research in the interactive distributed

application for FRP and cousins of RP. They also stated that reactive and distributed pro-

gramming could raise glitches that need to be investigated. In comparison, our work is

not a comprehensive survey of FRP-related languages but focuses on FRP’s usefulness in

application domains, especially in game development.

3.2 Exampled-based Comparison for Game Develop-

ment

We examined two games: Asteroid and Pong, and compared the results among three

programming paradigms: imperative programming (the Entity Component System or ECS

design), FP, and FRP, in two ways, including the internal functionalities of the paradigms

and the development process flexibilities.

The internal differences among the three paradigms include performance, workflow, live

coding, unit testing, feature extension, debugging single component or logic, understanding

code environment, environment setup, scalability, and learning curve. Table 6.1 represents

the comparison.

The comparison among the paradigms in terms of game features and development flexi-

bilities include game object creation, importing an image, destroying a game object, collision

detection, reaction after a collision, detecting game objects, re-positioning, re-scaling, and

game loop. The development process flexibility for the game is in Table 6.2.

12

3.3 FRP in Animation, GUI, and Embedded System

We examined the effectiveness of FRP languages, libraries, and frameworks in animation,

GUIs, and embedded systems. We included adopted applications, libraries, and languages.

13

Chapter 4

Game Development

This section represents the game development process in different programming paradigms,

which is the process of transforming real-life or fictional activities into a game. The process

is complex and involves a variety of computer science disciplines, including artificial intel-

ligence, graphics design, and algorithms. The procedure entails comprehending the game’s

fundamental ideas and its design and development, testing, and release. Every stage is signif-

icant, especially game design that picks the right programming paradigm such as imperative,

functional, or reactive functional programming) and the host language.

4.1 Game Architecture

Software game production is expanding and becoming more and more well-liked every

day. One of the problems with game creation is to create high-caliber games, where devel-

opers must adhere to the best practices and processes from the software engineering field.

Games can be classified into many genres, which include action, shooters, combat, racing,

adventure, sports, role-playing, strategy, simulations, puzzles, dancing, and music. Game

development is a complicated process with diverse collaborative team activities and pro-

14

cesses, including sound, game-play, art, artificial intelligence, control systems, and human

factors. Fundamentally, game development is a subset of the software development process

that includes a few extra steps for artistic design, creative presentation, and visual appeal.

Visualization or attracting audiences is a crucial job for game developers.

4.1.1 ECS in Unity Engine

Entity Component System (ECS) is a new design pattern that plays an important role

in modern real-time interactive systems. ECS aims to decouple objects into separated data

and logic. Objects are divided into three elements: entities, components, and systems.

This pattern is similar to data-oriented programming (DOD), which favors composition over

inheritance. The three elements of ECS are composed of a context manager, which helps to

keep track of which component belongs to which entities and which system should be used.

It has the following characteristics:

• Entities that are unique identifiers.

• Components are logical representations of an entity’s properties and data.

• Systems are functions associated with entities that have a certain set of components.

• Entities can contain zero or more components.

• Entities can change components dynamically.

ECS game architecture is shown in Figure 4.1. ECS allows highly optimized memory

management, parallelization, and flat, easy-to-manage class hierarchies [80, 81]. The system

does not return any value. It changes the state of different components by performing data

transformation instead. ECS ensures modularity by using DOD composition, which makes

the development process easier to manage by keeping the functions small and independent

15

SystemsComponentsEntities

Render gameTake action

Start game

Destroy

Game

Game loop

ECS

Objects logic

Delta timeInput Entities

Figure 4.1: Entity Component System Game Architecture[1]

by avoiding dependencies between different parts. It also improves readability. Focusing

on transforming the data from the input makes testing and debugging easy [82]. Generally,

game developers prefer Entity Component System (ECS) architecture to develop games [83]

because of the platform availability, tooling flexibility, and resources.

The top most popular game engines that use ECS are Unity [84] and Unreal Engine

(UE) [85]. UE is used to develop 3D first-person shooting games and First-person role

(FPR) games. Unity is a widely used cross-platform game engine popular among indie game

developers because of its detailed documentation, flexibility, portability, and rich resources.

To use Unity efficiently, developers need to know the ECS architecture, C# language, and

sufficient knowledge of game logic.

Unity has a computation loop that performs a number of iterative tasks, including reading

user inputs, updating animation graphics, and calculating the attributes of the game objects.

Unity uses a polling evaluation model that checks the game state during each animation

16

frame. To mitigate the effects of the variable speed of frame update, Unity has a fixed

update method that allows certain computations, such as physics be updated in regular

intervals regardless of the frame speed. To improve performance, Unity also allows interval

events such as collision to be handled using callbacks to detect these events centrally, while

user logic only needs to react to these events if they occur. Thus, while Unity has a pull-

based model, it achieves good performance by avoiding excessive checking of internal events.

In comparison, push-based models, which only react to events when they occur, have to deal

with potential glitches [86]. Unity has ScriptableObject, a serializable unity class that allows

storing a large quantity of shared data independently. It makes it easier to make changes,

debug, and test.

Unity has a large developer community, a well-documented tutorial, and a user-friendly

engine. Developers can develop toy games by dragging and dropping and creating entities

and components the engine provides. Unity also allows the runtime ordering of an entity. For

games with a large number of entities, the game performance will deteriorate. To address

this, Unity employs the Data-Oriented Tech Stack (DOTS) [87], a data-oriented design

approach to game development in Unity. DOTS is a combination of the ECS framework,

C# Job system for multithreading, and Burst compiler for optimized native code. However,

DOTS has a steep learning curve, and it is suitable only if the performance requirement

justifies it.

4.1.2 Game in FP and FRP

Functional programming is constructed by applying and composing functions. Functional

programming is popular for its immutable state and clean and elegant code base. FRP

combines functional and reactive programming and is used in real-time applications.

Animation can be handled using libraries. There are numerous libraries in Haskell for

game development. Game development in FP and FRP uses similar game architecture. The

17

game development process can be divided into three sections: initial state, game loop, and

destroy (or end) state. Three sections have individual tasks. The first step is creating the

initial state or initial world. It will be used when the game starts for the first time. The

second and most crucial step is the game loop, which includes several tasks. Lastly, the end

or destroy state is responsible for the end game state. Figure 4.2 shows the game architecture

for FP and FRP.

Render game

Sampling the game

state

Take action

(calculate logic and object

position)

Game loop

FP/Haskell

Start game

Previous state Inputs Calculate

delta time

Destroy

Game

worlddata/objects

/characters logic

Current Game State

Updated

world

Updated position

data/objects/
characters

Updated-time
logic

New Game State

Create an Initial state

Figure 4.2: Game Architecture in FP and FRP [1]

The game loop includes three steps. The first step is determining delta time, user input,

and previous state. The second step is to take action based on the first step. There will

be two types of actions: exit the game state or calculate the current and the new game

states using the previous game state, time, and logic. The last step is to render the game

by sampling the game state. In the next loop, the new game state will become the previous

state.

Haskell is rich in libraries to develop games [88], including FP and FRP libraries and

game engines. Among several libraries, Gloss [89] is popular and widely used. Both (FP

18

and FRP) paradigms have the Gloss library. Gloss is primarily used for graphics, animation,

and simulation-related works and can also handle game loops, game states, and I/O in

Haskell [90]. Each language has a different gloss play library. For instance, Yampa [16] has

a gloss interface [29] where the update state uses a signal function from the Yampa library,

and Reactive-banana has a gloss interface [30]. To handle the game loop, Yampa has the

reactimate [91] function, which is an input-process-output loop. It interfaces between pure

Yampa SF and the potentially impure external world.

Gloss is popular in the graphical application field, including animation and game devel-

opment, and Haskell has Gloss packages for 2D vector graphics, animations, and simulations

containing many useful modules. Gloss uses OpenGL1. Haskell also has a library named

apecs [92], which is a fast and type-driven Entity-Component-System library. A few game

engines [93, 94] are in FP and some FRP game engines [95, 96, 31] using OpenGL. However,

these engines need common functionalities such as audio and 3D.

4.2 Installation Process

This section highlights the installment process for Windows OS to develop Asteroid and

Pong games in Unity, Haskell in the FP, and Haskell with the Yampa library in FRP.

4.2.1 Unity

Unity is a well-developed tool for game development with paid and free tools. From the

Unity website, download Unity Hub for the appropriate OS. After downloading, install it with

a specific Unity version where the latest is preferable. Unity has some device dependencies

that can be found on the download page [97].

1openGL, https://www.opengl.org/

19

4.2.2 Haskell with Gloss

The installation process for Haskell is provided in [98]. It is straightforward in Windows

using GHCup. Users can download all the necessary tools to manage the Haskell project

using the Cabal or Stack at the same time.

The next step is to install the Gloss library [89]. Gloss uses OpenGL, which requires an

OpenGL toolkit GLUT [99]. Users should get the .dll file, rename it to glut32.dll, and move

it to the System32 directory in Windows.

4.2.3 Haskell with Yampa

The installation process for Yampa is similar. After installing Haskell, Gloss, and GLUT,

we need to install Yampa. After a successful installation of Haskell, Yampa should be

installed.

$ cabal update

$ cabal install --lib Yampa

Additional libraries need to be installed. For example, the Asteroid game uses the Haskell

Graphics Library (HGL)2 instead of the Gloss library. To install HGL, the following com-

mand should be executed.

$ cabal install HGL -version

All the installation processes can be done with either Cabal or Stack. The HGL for

Windows has some base or basic library dependencies. Developers should be aware of the

appropriate version of the base and HGL and dependencies of tools, and devices.

2HGL, https://www.haskell.org/hugs/pages/libraries/HGL/Graphics-HGL.html

20

4.3 Asteroid Game

Asteroid [100] is a space-themed multi-directional shooter arcade game designed in 1979

by Lyle Raines. It uses high-resolution and black-and-white vector-scan screens, where

Delman originally wrote the program code in the machine language of the MOS 6502 CPU.

4.3.1 Asteroid Game Elements

The Asteroid game contains three main elements: players, asteroids, and bullets. A

player has several functionalities, including position changing and bullet shooting. When a

player shoots and destroys asteroids, they get points. Asteroids are spawned randomly and

fall downwards after spawning. If a player collides with an asteroid, the player dies, and the

game ends.

4.3.2 Unity

We developed the asteroid game in Unity 2021.3.12f1 editor on Windows 10 [71]. A

sample scene has been created with three entities (Player, Asteroid, and Bullet), custom

scripts (components), and built-in components. Asteroids and Bullets will be spawned over

time. We positioned the asteroid in six random positions from which they will be spawned.

Transform, SpriteRenderer, and RigidBody2D are built-in components. By default, every

object has a Transform component along with the other properties to manipulate its position

and size. SpriteRenderer renders 2D graphics, and RigidBody2D is a physics component

for 2D sprites, which provides functionalities that affect the sprite by gravity and can be

controlled from a script using the appropriate collider component. Additionally, we have a

canvas component named score, which shows the player’s score that increments by one when

the player destroys an asteroid. This functionality is handled in Score.cs script.

Several scripts are created and attached to the entities, including PlayerMovement, Play-

21

erShooting, Score, Bullet, Asteroid, Spawner, and SpawnManager. Each script contains cus-

tomized methods. The Player entity uses the PlayerMovement and PlayerShooting scripts,

the Spawner entity uses the Spawner script, the SpawnManager entity uses the SpawnMan-

ager script, and the Score entity uses the Score script. The Spawner and SpawnManager

scripts handle the asteroid spawning feature.

The input devices for a game can be a keyboard, mouse, touchpad, or custom input

devices. EventSystem processes the input and sends events to objects. The input device

for this game is the keyboard, where input keys are ‘W’, ‘S’, ‘A’, and ‘D’ to change the

player’s position to up, down, left, and right, respectively. The input functionalities are in

the PlayerMovement script shown in Listing 4.1.

if (Input.GetKey(KeyCode.W)){

transform.position += transform.up * Time.deltaTime * _speed;

transform.eulerAngles = new Vector3 (0f, 0f, 0f);

}

else if (Input.GetKey(KeyCode.S)){

transform.position += transform.up * Time.deltaTime * _speed;

transform.eulerAngles = new Vector3 (180f, 0f, 0f);

}

else if (Input.GetKey(KeyCode.A)){

transform.position += transform.up * Time.deltaTime * _speed;

transform.eulerAngles = new Vector3 (0f,0f, 90f);

}

else if (Input.GetKey(KeyCode.D)){

transform.position += transform.up * Time.deltaTime * _speed;

transform.eulerAngles = new Vector3 (0f, 0f, -90f);

}

Listing 4.1: Player movement I/O in Asteroid

22

if (Input.GetKeyDown(KeyCode.Space)){

Instantiate(_bullet ,transform.position ,transform.rotation);

}

Listing 4.2: Shooting bullets I/O in Asteroid

A player shoots with the space key from the keyboard, implemented in PlayerShooting.cs

file and shown in Listing 4.2. We handled two types of collisions: an asteroid colliding with

a player and a bullet hitting an asteroid. Every entity, such as Player, Asteroid, and Bullet,

has a Collider2D component attached, and the OnTriggerEnter2D method is used to verify

if the game object collides with another Colloder2D object. The CompareTag method makes

the process easier to find the appropriate object.

The game is over if an asteroid collides with the player. The player object and collided

asteroid object must be destroyed in the state. The relevant code is in Listing 4.3.

private void OnTriggerEnter2D(Collider2D collision){

if (collision.CompareTag("Player")){

Destroy(collision.gameObject);

Time.timeScale = 0;

Destroy(gameObject);

}

}

Listing 4.3: Collision between player and asteroid

The bullet-asteroid collision is handled in Bullet.cs, and Listing 4.4 contains the code.

The score needs to be incremented when the bullet hits an asteroid. Score.cs script includes

the functionality, and Listing 4.5 shows the relevant code.

private void OnTriggerEnter2D(Collider2D collision){

if (collision.CompareTag("Asteroid")){

23

OnAsteroidHit ?. Invoke ();

Destroy(collision.gameObject);

Destroy(gameObject);

}

}

Listing 4.4: Destroy the asteroid

void UpdateScore (){

_currentScore ++;

_text.SetText($"Score: {_currentScore}");

}

Listing 4.5: Updating Score when a bullet hits a asteroid

A static event OnAsteroidHit is created and registered to the Bullet script.

public static event Action OnAsteroidHit;

Listing 4.6: Static Action event

The event callbacks are in Listing 4.7 from two source files (Bullet.cs and Score.cs). These

callbacks are related to the polling stage. Deregistering the static event after destroying the

bullet is not associated with polling.

OnAsteroidHit ?. Invoke ();

Bullet.OnAsteroidHit += UpdateScore;

Bullet.OnAsteroidHit -= UpdateScore;

Listing 4.7: Callback methods

24

4.3.3 Functional Programming

This game was developed in 2015 [72] using Haskell and Gloss. As shown in Figure 4.3,

the architecture of the game is a state machine that includes the initial game state, a game-

over state, and a main loop driven by Gloss. The main loop uses the simulateWorld function

to check for collisions between game objects and update game states, and it also uses the

handleEvents function to react to user inputs.

Check for Collision

Initial Game State

 initialWorld

Draw Game World

 drawWorld

Input

 handleEvents

Simulate Game

 simulateWorld

Updated Game State

Game Over

GameOver

Yes

AsteroidWorld +

 timeStep

No

Render to the screen

Figure 4.3: The main loop execution for Asteroid in FP

The game objects are defined using type constructors shown in Listing 4.8, which includes

Ship, Bullets, Rocks, and UFO.

data Ship = Ship PointInSpace Velocity deriving (Eq ,Show)

data Bullet = Bullet PointInSpace Velocity Age deriving (Eq ,Show)

25

data Rock = Rock PointInSpace Size Velocity deriving (Eq ,Show)

data UFO = UFO PointInSpace Velocity deriving (Eq ,Show)

Listing 4.8: Type Constructors for Ship, Bullets, Rock, and UFO

The game state is defined in the AsteroidWorld type constructor shown in Listing 4.9.

data AsteroidWorld = Play [Rock] Ship UFO [Bullet]

| GameOver deriving (Eq,Show)

Listing 4.9: AsteroidWorld type constructor

Some related type variables are defined in Listing 4.10.

type Velocity = (Float , Float)

type Size = Float

type Age = Float

Listing 4.10: Necessary Type Aliases

The play function from Pure.Game module of Gloss handles the game loop and is shown

in Listing 4.11, where the initial world type is AsteroidWorld. The game starts with spawning

five rocks from different positions, a ship in the middle of the screen, a UFO, and an empty

list of bullets. Listing 4.12 shows the initalWorld game state.

main = play

(InWindow "Asteroids!" (550 ,550) (20 ,20)) black 24

initialWorld drawWorld handleEvents simulateWorld

Listing 4.11: Main game loop for Asteroid in FP

initialWorld :: AsteroidWorld

initialWorld = Play

26

[Rock (150 ,150) 45 (2,6)

,Rock (-45,201) 45 (13,-8)

,Rock (45 ,22) 25 (-2,8)

,Rock (-210,-15) 30 (-2,-8)

,Rock (-45,-201) 25 (8,2)

] -- The default rocks

(Ship (0,0) (0,0)) -- The initial ship

(UFO (75, 75) (2, 5)) -- The initial UFO

[] -- The initial bullets (none)

Listing 4.12: Initial state/ Initial game world for Asteroid in FP

The drawWorld function converts a game world (AsteroidWorld) to a Picture. When

drawWorld takes a gameplay state, it returns a picture with the transformed ship, asteroids,

UFO, and bullets. It produces a picture with the text “Game Over” and “Click right

mouse button to restart” when the parameter is GameOver state. The relevant code is in

Listing 4.13 and 4.14.

drawWorld (Play rocks (Ship (x,y)(vx,vy))(UFO (ux,uy)(uvx , uvy))bullets)

= pictures [ship , asteroids , ufo , shots]

where

ship = color red (pictures [translate x y (circle 10)])

asteroids = pictures [(color orange(polygon(asteroidShape x y s)))

| Rock (x,y) s _ <- rocks]

ufo = color green (pictures [translate ux uy (circle 10)])

shots = pictures [translate x y (color red (circle 2))

| Bullet (x,y) _ _ <- bullets]

Listing 4.13: The drawWorld: Game play world for Asteroid in FP

27

drawWorld GameOver = pictures [

scale 0.3 0.3 . translate (-400) 0 . color red . text $ "Game Over!",

scale 0.1 0.1 . translate (-1150) (-550) . color white

. text $ "Click right mousebutton to restart"

]

Listing 4.14: The drawWorld: game over for Asteroid in FP

The handleEvents function takes an Event (user input), an AsteroidWorld, and generates

an AsteroidWorld. The Game interface has an efficient data constructor named EventKey,

which takes Key, KeyState, Modifiers, and (Float, Float) as input. When a player clicks the

right key of the mouse and the AsteroidWorld is GameOver state, it returns to its initial

state. If the player clicks the left key and the world is in some gameplay state, it will produce

a new AsteroidWorld with a released bullet towards the mouse direction. Otherwise, it will

remain in the same game world. The source code is provided in Listing 4.15.

handleEvents :: Event -> AsteroidWorld -> AsteroidWorld

handleEvents (EventKey(MouseButton RightButton)Down _ _)GameOver =

initialWorld

handleEvents (EventKey (MouseButton LeftButton) Down _ clickPos)

(Play rocks (Ship shipPos shipVel) ufo bullets)

= Play rocks (Ship shipPos newVel) ufo (newBullet : bullets)

where

newBullet = Bullet shipPos (negate 150 .* norm (shipPos .-

clickPos)) 0

newVel = shipVel .+ (50 .* norm (shipPos .- clickPos))

handleEvents _ w = w

Listing 4.15: IO Events in Haskell for Asteroid

28

The simulateWorld handles the game state transformation, which converts AsteroidWorld

to AsteroidWorld based on the timestep and input AsteroidWorld. When the AsteroidWorld

is the GameOver, it will return to the GameOver world. Otherwise, it will process time steps

and a game world and detect collision. If a collision happens with a ship and rock, it will be

GameOver. Otherwise, it will return to another gameplay world containing updated rocks,

a newly positioned ship, UFO, and bullets. This method has several internal functions, and

calculations are not included in Listing 4.16. A bullet-rock collision generates two scenarios:

both will destroy, or a rock can be divided into some pieces according to its size. The

minimum size of the rock is 7, and the maximum age of a bullet is 5 seconds. If the bullet

hits the rock, it will destroy it or break it based on its size, and the bullet will be destroyed.

If the bullet misses a rock and the age of the shot is 5 seconds, the bullet will be destroyed

automatically. Listing 4.16 shows the relevant code.

simulateWorld :: Float -> AsteroidWorld -> AsteroidWorld

simulateWorld _ GameOver = GameOver

simulateWorld timeStep (Play rocks(Ship shipPos shipV)(UFO ufoPos ufoV

)bullets)

| any (collidesWith shipPos) rocks = GameOver

| otherwise = Play (concatMap updateRock rocks) (Ship newShipPos

shipV)

(UFO newUFOPos ufoV) (concat (map updateBullet

bullets))

Listing 4.16: Update/Simulate the game world in Haskell Asteroid

4.3.4 Functional Reactive programming-Yampa

Haskelloids [73] is a recreation of the original Asteroid game in Yampa. It uses the HGL

Graphics library, FRP Events, and HGL key module for IO. Unlike the FP version of the

29

Asteroid game, the main loop of Haskelloids is implicit, while the game elements are more

modular and combined through the FRP operators. The main abstractions in Yampa FRP

are signal functions, which are instances of the Arrow type class. Each SF transforms one

or more time-varying signals. As shown in Figure 4.4, Haskelloids runs the endlessLoop

SF, which takes inputs through the sense function and makes game state decisions with the

actuate function. The endlessLoop SF is composed of several SFs responsible for tasks such

as generating random asteroids, updating the attributes of ships and bullets, checking for

collisions, and producing dust effects.

Game Over

Game Input

Game state

Update game state
False

TrueSignal Function

 endlessLoop
Actuate

 actuate

Initial Input
t = 0

 initUI

Process

 sense

Figure 4.4: The main loop execution for Asteroid in FRP

Haskelloids defines user inputs as FRP events, where the procWindowEvs function col-

lects all user inputs and folds them into the UserInput record, which together with interval

events (i.e., asteroid hits) form the ObjectInput record. The ObjectOutput record includes

information such as the game object positions, collision results, and spawned objects. The

primary data type Object is a SF that maps ObjectInput to ObjectOutput.

The data type for UserInput defines the input types. Listing 4.17 shows the record type

data structure. Yampa has two events to model discrete events: Event () when an event

occurs and NoEvent.

30

data UserInput = UserInput { -- events that correspond to user input

uiLeftClick :: FRP.Event (),

uiFire :: FRP.Event (),

uiHyperSpace :: FRP.Event (),

uiTurnLeft :: FRP.Event Bool ,

uiTurnRight :: FRP.Event Bool ,

uiThrust :: FRP.Event Bool

}

Listing 4.17: User Input Data Structure

Listing 4.18 includes the source code for inputInit, where the initial user input type is

UserInput, and the field values are NoEvent because, at time 0, nothing happens.

inputInit :: UserInput

inputInit = UserInput {

uiLeftClick = FRP.NoEvent ,

uiFire = FRP.NoEvent ,

uiHyperSpace = FRP.NoEvent ,

uiTurnLeft = FRP.NoEvent ,

uiTurnRight = FRP.NoEvent ,

uiThrust = FRP.NoEvent

}

Listing 4.18: Initial User input at t=0 for Asteroid in FRP

The getWindowEvs function collects all the events since the last window tick based on

any pending events on the window using maybeGetWindowEvent from the HGL Window

module. If there is any pending event, it will return a list of IO events; otherwise an empty

list. The procWindowEvs function processes the window events and applies to the game

input using another function named procWindowEv. The procWindowEv works on a single

31

event, which handles two discrete events: mouse clicks and keyboard presses. The source

code is in Listing 4.19, and Input.hs contains functions related to input events.

procWindowEvs :: UserInput -> [Event] -> UserInput

procWindowEvs gi evs = foldl procWindowEv gi evs

procWindowEv :: UserInput -> Event -> UserInput

procWindowEv gi Button{ isLeft = left , isDown = down }

| left && down = gi{ uiLeftClick = FRP.Event () }

procWindowEv gi Key{ keysym = k, isDown = down }

| isLeftKey k = gi{ uiTurnLeft = FRP.Event down }

| isRightKey k = gi{ uiTurnRight = FRP.Event down }

| isUpKey k = gi{ uiThrust = FRP.Event down }

| isShiftLKey k && down = gi{ uiHyperSpace = FRP.Event () }

| isCharKey k && keyToChar k == ’ ’ && down = gi{uiFire = FRP.Event ()}

procWindowEv gi _ = gi

Listing 4.19: Handling User input

Every data constructor, type, and function related to geometry is in Geometry.hs. It uses

several HGL modules (Draw, Units), Data (Ratio, List), and many more. The type of Angle

is Double, Point2 is (Double, Double), a Segment is (Point2, Point2). Type constructor for

Shape including polygon, circle, and the line defined in Listing 4.20.

data Shape = Poly [Point2]

| Circ Point2 Double

| Ln [Point2] deriving (Show)

Listing 4.20: Geometric data constructor for Shape

data Figure = Polygon [Point2]

| Circle Point2 Double

| Line [Point2]

32

| Translate Point2 Figure

| Scale Double Figure

| Rotate Angle Figure deriving (Show)

Listing 4.21: Geometric data constructor for Figure

A purely functional representation for linear mapping is shown in Listing 4.21. The type

constructor named Figure handles polygons, circles, lines, translate, scale, and rotate.

Graphics.hs uses Haskell Control Arrow library, HGL Draw module with Graphics con-

structor, which is a special type of Draw monad, Picture constructor, and Geometry module.

This file contains two functions: one is to draw a figure, and the other is to draw a shape.

The source code is in Listing 4.22.

drawFigure :: Figure -> Graphic

drawFigure f = drawShape . shape $ f

drawShape :: Shape -> Graphic

drawShape (Ln ps) = polyline . map (round *** round) $ ps

drawShape (Poly ps) = polyline . map (round *** round) $ ps

drawShape (Circ (x,y) r) = ellipse (x’-r’, y’-r’) (x’+r’, y’+r’)

where

x’ = round x

y’ = round y

r’ = round r

Listing 4.22: Transform Figure or Shape to Graphic for Asteroid in FRP

Asteroids, a ship, bullets, and dust are this game’s four types of objects or characters.

The data constructor of the ObjectClass contains these. ObjectInput is a record type con-

structor with oiUserInput and oiHit. Listing 4.23 contains the source code of ObjectClass

and ObjectInput.

33

data ObjectInput = ObjectInput {

oiUserInput :: !UserInput ,

oiHit :: Event ()

}

data ObjectClass = Asteroid

| Bullet

| Ship

| Dust deriving (Eq)

Listing 4.23: The ObjectClass and ObjectInput type constructor for Asteroid in FRP

The data constructor for the output object type is in Listing 4.24. It uses an Object type

as a SF of ObjectInput and ObjectOutput. The data constructor has a position, collision,

graphics, spawn, object class, and kill.

data ObjectOutput = ObjectOutput {

ooPos :: Point2 ,

ooCllsnBox :: !Shape ,

ooGraphic :: !Graphic ,

ooSpawnReq :: Event [Object],

ooObjClass :: ObjectClass ,

ooKillReq :: Event ()

}

type Object = SF ObjectInput ObjectOutput

Listing 4.24: Constructors for Output Object (ObjectOutput) and the Object SF

The teleport and reload are the other helper SFs shown in Listing 4.25. The teleport

wraps coordinates around a one-dimensional coordinate system with a fixed buffer size. The

reload yields an Event on the first Event to arrive and then waits for the specified interval

until yielding another Event again.

34

teleport :: Int -> Int -> Double -> SF Double Double

teleport sz buf x0 = switch(init &&& (init >>> evt))

(\(f, x) -> teleport sz buf . f $ x)

where

init :: SF Double Double

init = (integral >>^ (x0+))

evt :: SF Double (Event (Double -> Double , Double))

evt = proc x -> do

let sz ’ = fromIntegral sz

buf ’ = fromIntegral buf

lt = (\d -> if d then Event (2*buf ’ + sz ’ +)

else NoEvent).(< 0 - buf ’)$x

gt = (\d -> if d then Event ((2*buf ’ + sz ’) ‘subtract ‘) else NoEvent)

.(> sz’ + buf ’) $ x

returnA -< flip attach x . merge lt $ gt

reload :: DTime -> SF (Event ()) (Event ())

reload intvl = proc e -> do switch (constant NoEvent &&& identity)

(_ -> pause) -< e

where

pause :: SF (Event ()) (Event ())

pause = switch(once &&& after intvl ())(_ ->reload intvl)

Listing 4.25: Auxiliary SFs for Asteroid in FRP

This file contains some additional functions to check which object collides with another

object and return that is defined in the hits function. The hits function uses another helping

function named hits’. Listing 4.26 contains the source code. This method uses another

new type (ILKey), defined in the Data/IdentityList.hs file. The type of ILKey is Word32

and represents the maximum number of Objects that are 232 after initialization. The actual

35

collision function is in Listing 4.27.

hits :: [(ILKey , ObjectOutput)] -> [ILKey]

hits objs = hits ’ objs []

hits ’ :: [(ILKey , ObjectOutput)] -> [(ILKey , ObjectOutput)] -> [ILKey]

hits ’ [] _ = []

hits ’ ((k, oo):rest) seen =

let cllsn = any (\x -> (collideObj (ooObjClass oo)

. ooObjClass . snd $ x) &&

(intersect (ooCllsnBox oo).ooCllsnBox.snd $ x))

(seen ++ rest)

in if cllsn then k : hits ’ rest ((k,oo):seen)

else hits ’ rest ((k,oo):seen)

Listing 4.26: Object collision functionality For Asteroid in FRP

collideObj :: ObjectClass -> ObjectClass -> Bool

collideObj Dust _ = False

collideObj _ Dust = False

collideObj Asteroid Asteroid = False

collideObj Asteroid _ = True

collideObj Ship Bullet = False

collideObj Ship _ = True

collideObj Bullet Ship = False

collideObj Bullet _ = True

Listing 4.27: Collision detection For asteroid in FRP

Mandatory objects or characters and their properties are mentioned in the src/Haskelloid-

s/Object folder. Asteroid, Ship, Bullet, and Dust properties are defined in the Asteroid.hs,

Ship.hs, Bullet.hs, and Dust.hs, respectively.

36

The Asteroid.hs contains the constructor for the asteroid, SFs, and other necessary func-

tions. Three different sizes of asteroids: small, medium, and large, are named RdSmall,

RdMedium, and RdLarge, respectively. These have some specific Double type values handled

by the Scale function. The size of RdLarge is 1, RdMedium is 0.5, and RdSmall is 0.25. The

speed range of an asteroid is (30, 100). The asteroidSF SF randomly generates asteroids in

different places with different shapes depending on the asteroid’s size. Listing 4.28 contains

the asteroidSF.

asteroidSF :: RandomGen g => g -> Point -> Point2 -> Double

-> Angle -> RoidSz -> Double -> Object

asteroidSF g (w, h) (x0, y0) s o sz fig =

let s’ = minSpeed + ((maxSpeed - minSpeed) * s)

!vx = s’ * cos o

!vy = s’ * sin o

!buf = round $ fromIntegral buffer * scale sz

(fg ’,cllsnFig) = case fig of

r | r <= 0.25 -> (roidFigure1 , roidCllsnFigure1)

| r <= 0.5 -> (roidFigure2 , roidCllsnFigure2)

| r <= 0.75 -> (roidFigure3 , roidCllsnFigure3)

| otherwise -> (roidFigure4 , roidCllsnFigure4)

in proc oi -> do

x <- teleport w buf x0 -< vx

y <- teleport h buf y0 -< vy

let roidShape = shape . Translate (x,y) . Scale (scale sz) $ fg’

hit <- arr oiHit -< oi

returnA -< ObjectOutput {

ooPos = (x,y),

ooCllsnBox = roidShape ,

ooGraphic = drawShape roidShape ,

ooSpawnReq = hit ‘tag ‘ (flip evalRand g $ do {

frag <- replicateM 2. makeFragment(w,h)(x,y)s $ sz

37

;dust <- replicateM 8. makeDust$(x,y)

;return(dust++ if sz/= RdSmall then frag else [])

}),

ooObjClass = Asteroid ,

ooKillReq = hit

}

Listing 4.28: Asteroid SF (asteroidSF)

Ship.hs contains the properties, including the SFs. The initial ship object (shipFigure),

thrusting ship object (thrustersFig), and the collided ship (cllsnFigure) source codes are in

Listing 4.29.

shipFigure :: Figure

shipFigure = Polygon [(15 ,0) ,(-15, 10) ,(-9, 8) ,(-9, -8) ,(-15, -10) ,(15, 0)]

thrustersFig :: Figure

thrustersFig = Polygon [(-9, 8), (-16, 0), (-9, -8)]

cllsnFigure :: Figure

cllsnFigure = Polygon [(15, 0), (-15, 10), (-15, -10), (15, 0)]

Listing 4.29: Definition of three different types of ships

Listing 4.30 contains the SF (shipSF), which uses several functions, including teleport,

translate, shipFigure, and oiHit importing from the other files. The parameter for the teleport

function is 30 as the buffer. To make the ship’s movement more realistic, it uses acceleration

and friction loss due to the velocity, turning rate, and thruster flicker period. The default

values of these variables are 350, 0.6, 4, and 0.05, respectively. The reload time is 0.1 to

check whether the player is firing or needs to reload the gun. Additionally, this function has

a bullet SF bulletSF, which helps spawn the bullet with the ship object. The bulletSF uses

38

a constant value that is the size of the bullet named bulletBox. The default value of the

bulletBox is 15.

shipSF :: Point -> Point2 -> Object

shipSF (w, h) (x0, y0) = proc oi -> do

let ui = oiUserInput oi

l <- (\d -> if d then -turnRate else 0.0) ^<< hold False -< uiTurnLeft

ui

r <- (\d -> if d then turnRate else 0.0) ^<< hold False -<

uiTurnRight ui

-- calculate orientation ...

o <- ((-pi/2)+) ^<< integral -< l + r

-- ... velocity and acceleration ...

t <- hold False -< uiThrust ui

th <- arr (\d -> if d then accel else 0.0) -< t

let tx = th * cos o

ty = th * sin o

rec

ax <- uncurry(-)^<<(returnA ***((* frictionLoss)^<< integral))-< (tx

, ax)

ay <- uncurry(-)^<<(returnA ***((* frictionLoss)^<< integral))-< (ty

, ay)

vx <- integral -< ax

vy <- integral -< ay

-- ... position

x <- teleport w buffer x0 -< vx

y <- teleport h buffer y0 -< vy

-- is the user firing? have we reloaded our guns?

f <- reload reloadTime -< uiFire ui

-- are we drawing the thrusters?

dt <- reload thrusterFlickerPeriod <<^ gate (Event ()) -< t

-- check for crash

39

die <- arr oiHit -< oi

-- ... return observable state

returnA -<

ObjectOutput {

ooPos = (x,y),

ooCllsnBox = shape . Translate (x,y) . Rotate o $ cllsnFigure ,

ooGraphic = do { drawFigure . Translate (x,y) . Rotate o $

shipFigure

; if isEvent dt then drawFigure . Translate (x,y)

. Rotate o $ thrustersFig else return () },

ooSpawnReq = f ‘tag ‘ [blltSpwn (x,y) (vx,vy) o],

ooObjClass = Ship ,

ooKillReq = die

}

where

-- blltSpwn - create a new bullet signal function

blltSpwn :: Point2 -> Point2 -> Angle -> Object

blltSpwn (x0,y0) (vx, vy) o =

let (x, y) = (x0 + (bulletBox * cos o), y0 + (bulletBox * sin o))

in bulletSF (w, h) (x,y) (vx , vy) o

Listing 4.30: SF for the ship to come from the opposite direction when it goes out of the

window

Bullet.hs contains the SFs for the bullet and other constants. The SF uses the teleport

function that uses two as buffer size. The speed of the bullet is 500 pixels per second. The

maximum age of a bullet is 0.75 seconds. The shape of the bullet is the Figure type, which

is a Circle with a radius of 2. The source code is in Listing 4.31.

bulletSF :: Point -> Point2 -> Point2 -> Angle -> Object

bulletSF (w, h) (x0, y0) (vx0 , vy0) o =

40

let !vx = vx0 + bulletSpeed * cos o

!vy = vy0 + bulletSpeed * sin o

in proc oi -> do

x <- teleport w buffer x0 -< vx

y <- teleport h buffer y0 -< vy

let bulShape = shape . Translate (x,y) $ bulletFigure

die <- edge <<< (> bulletMaxAge) ^<< time -< ()

hit <- arr oiHit -< oi

returnA -<

ObjectOutput {

ooPos = (x,y),

ooCllsnBox = bulShape ,

ooGraphic = drawShape bulShape ,

ooSpawnReq = NoEvent ,

ooObjClass = Bullet ,

ooKillReq = merge die hit

}

Listing 4.31: SF for the Bullet

The developers used the dust to provide a realistic view defined in Dust.hs. This file

contains two functions. The first function (makeDust) is randomly generating dust, and the

second and most important is the dust SF (dustSF). Additionally, it has other necessary

constants. For example, creating dust requires a minimum and maximum dust age of 0.1

and 0.5, respectively. The dust will move automatically without any other particular func-

tionalities. The speed of dust is 200 pixels per second. The source code of the makeDust

is in Listing 4.32, and Listing 4.33 contains the dustSF. Dust does not collide with other

objects or request a spawn.

makeDust :: RandomGen g => Point2 -> Rand g Object

makeDust (x, y) = do

41

age <- getRandomR (minAge , maxAge)

x0 <- (x+) ‘liftM ‘ getRandomR (-10.0 ,10)

y0 <- (y+) ‘liftM ‘ getRandomR (-10.0 ,10)

o <- getRandomR (0, 2*pi)

return (dustSF (x0 ,y0) o age)

Listing 4.32: Dust generation (makeDust)

dustSF :: Point2 -> Angle -> Double -> Object

dustSF (x0 ,y0) o age = proc _ -> do

let vx = speed * cos o

vy = speed * sin o

x <- (x0+) ^<< integral -< vx

y <- (y0+) ^<< integral -< vy

die <- after age () -< ()

returnA -< ObjectOutput {

ooPos = (x,y),

ooCllsnBox = shape figure , -- doesn ’t collide with anything

ooGraphic = drawFigure . Translate (x,y) $ figure ,

ooSpawnReq = NoEvent ,

ooObjClass = Dust ,

ooKillReq = die

}

Listing 4.33: SF for the Dust (dustSF)

main = do

g <- newStdGen

runGraphics $ do

w <- openWindowEx ("Haskelloids v" ++ verNo) Nothing (wWidth , wHeight)

DoubleBuffered (Just refreshPeriod ’)

42

reactimate initUI (sense w) (actuate w) (endlessLoop g)

Listing 4.34: Haskelloids game loop

The main game loop is in Haskelloids.hs. The reactimate function handles the main loop.

It takes an initial input, game input and delta time, signal functions related to the window

events, and game state. Listing 4.34 shows the main loop for the game.

The main loop executes as Figure 4.4. The loop execution requires several functions,

including sense (collects window events and returns game inputs and delta time) shown

in Listing 4.36, actuate (renders the collections of SFs in the window until it gets a True)

included in Listing 4.37, and endlessLoop (game state) SF. The endlessLoop comprises several

SFs and functions to validate and update the game state by checking collision and updating

the score to the screen. The functionality of endlessLoop is in Figure 4.5. The source code

is in Haskelloids.hs. The initial user input function is in Listing 4.35.

Start Menu

 menu

Click the left button

 arr uiLeftClickPlay a single round

 playRound

Responsible for detect collision
and update state

 gameRound

endlessLoop internal necessary functions

Create initial game Obeject

 initGameObjects

Figure 4.5: The endlessLoop function

43

initUI :: IO UserInput

initUI = return inputInit

Listing 4.35: Initial user input for Haskelloids game loop

sense :: Window -> Bool -> IO (DTime , Maybe UserInput)

sense w _ = do

evs <- getWindowEvs w

let gi = procWindowEvs inputInit evs -- fold window events over game

input

getWindowTick w

return (refreshPeriod , Just gi)

Listing 4.36: Haskelloids sense function

actuate :: Window -> Bool -> Graphic -> IO Bool

actuate w _ out = do

setGraphic w out

return False

Listing 4.37: Haskelloids actuate function

endlessLoop :: RandomGen g => g -> SF UserInput Graphic

endlessLoop g = let (initObjs , g’) = flip runRand g initGameObjects

(g’’, _) = split g

in switch (menu g &&& arr uiLeftClick)

(_ -> switch (playRound g’ initObjs)

(\sc -> switch(gameOver sc &&& arr uiLeftClick)

(_ -> endlessLoop g’’)))

Listing 4.38: Haskelloids game loop SF (endlessLoop)

44

Initially, game objects are generated randomly through the initGameObjects shown in

Listing 4.39, which uses the shipSF SF to generate ship and initAsteroids to create initial

asteroid objects where the initAsteroidsCount is 5.

initGameObjects :: RandomGen g => Rand g (IList Object)

initGameObjects = do

let ship = shipSF (wWidth , wHeight) centre

rds <- initAsteroids initAsteroidsCount centre

return (IL.fromList $ ship : rds)

Listing 4.39: Initial game objects creation

Listing 4.40 shows the routing function that routes the object input to the appropriate

SF.

route :: forall sf. (GameInput , IList ObjectOutput) -> IList sf

-> IList (ObjectInput , sf)

route (gi ,oos) sfs = IL.mapWithKey routeAux $ sfs

where

routeAux :: ILKey -> sf -> (ObjectInput , sf)

routeAux k obj = (ObjectInput {

oiHit = if k ‘elem ‘ hs then Event () else NoEvent ,

oiUserInput = giUserInput gi }, obj)

hs = hits . IL.assocs $ oos

Listing 4.40: Routing for the SF

The gameCore SF uses the route function mentioned in Listing 4.41.

gameCore :: RandomGen g => g -> IList Object

-> SF(GameInput ,IList ObjectOutput)(IList ObjectOutput)

gameCore g objs = let (g’,_) = split g

in dpSwitch route objs(arr(killOrSpawn g)>>> notYet)

45

(\sfs f -> gameCore g’ (f sfs))

Listing 4.41: SF that collects the visible SF objects

The playRound function handles a single-round game that takes a random number and

a list of game objects, and gameRound SF is responsible for a single-round game, checks for

collisions, and update the game state with the score.

playRound :: RandomGen g => g -> IList Object

-> SF UserInput(Graphic , Event Score)

playRound g init = proc ui -> do

go <- gameRound g init -< ui

returnA -< (goGraphic go , goGameOver go)

Listing 4.42: Play a single round game

Haskelloids.hs contains several SFs to maintain the game state and update the score.

4.4 Pong Game

Pong [101] is one of the earliest table tennis-themed 2D video games created by Allan

Alcorn in 1972 and manufactured and published by Atari3. It was the first commercially

successful video game.

4.4.1 Pong Game Elements

The original Pong has three main elements: two paddles and a small ball. The game can

be multiplayer by providing paddles access to two users or a single-player game by playing

with the computer. A player can move the paddles using keyboard keys.

3Atari, https://atari.com/

46

4.4.2 Unity

We developed a 2D pong game in Unity 2021.3.12f1 editor on Windows 10 machine [76]

with the help of [77].

Pong has four entities a ball, a left racket, a right racket, and walls requiring pictures of a

ball, wall, and racket. We named four walls LeftWall, RightWall, TopWall, and BottomWall,

representing the left, right, top, and bottom walls, respectively. Two different entities for

rackets named LeftRacket, and RightRacket, and a ball entity named Ball. Canvas elements

are also added to represent the separate left and right player scores.

The built-in components are the same as we used in the Asteroid game: the Transform,

SpriteRenderer, and RigidBody2D. The left racket is on the left, the right racket is on the

right side of the game scene, and the ball is in the center at the initial stage of the game. The

left player controls the racket using the keyboard button ‘W’ and ‘S’, and the right player

uses the ‘up’ and ‘down’ keys to move the racket up and down. Unity’s input manager

handles the user input functionality.

The six scripts for the game are Ball.cs, Racket.cs, HumanRacket.cs, GameManager.cs,

GameOverPanel.cs, and TagManager.cs. Each entity uses one or multiple scripts according

to its functionalities and requirements. For instance, the Ball entity uses the Ball.cs script,

LeftRacket, and the RightRacket entities use the HumanRacket.cs and TagManager.cs scripts,

and so on.

TagManager.cs script has a variable named wallTag typed Tag. Tag is an enum type

variable containing four tag values: leftWall, rightWall, leftRacket, and rightRacket for left

wall, right wall, left racket, and right racket, respectively.

The racket game object uses the HumanRacket.cs script, which extends the Racket.cs

abstract class. The Racket.cs script contains one event named OnGameOver, one abstract

method named Movement, and several necessary variables and methods.

The source code of Movement implementation is given in Listing 4.43. AxesName is a

47

String variable that takes the direction in which the racket will move.

public class HumanRacket : Racket{

protected override void Movement (){

float moveAxesValue = Input.GetAxis(AxesName) * moveSpeed;

rb.velocity = new Vector2(0, moveAxesValue);

}

}

Listing 4.43: Racket movement

To update the game score on the game scene is shown in Listing 4.44. The game is

over when one of the players scores 5 points. The maxScore is 5 and is declared in the

GameManager.cs.

public void GetScore (){

Score ++;

scoreText.text = Score.ToString ();

if (Score >= GameManager.Instance._maxScore){

OnGameOver ?. Invoke ();

Time.timeScale = 0f;

}

}

Listing 4.44: Score on the game scene

The GetScore method is called from the OnCollisionEnter2D implemented in the Ball.cs

script. When a ball hits the left wall, the right player gets one point, and when the Ball hits

the right wall, the left player scores one point. However, when the ball hits the left or right

rackets, it calls another method named wayBall that defines the direction the ball should

move. This script also uses TagManager.cs to get the correct game object. Listing 4.45 is

the source code for hitting the ball with other game objects (walls or rackets).

48

private void OnCollisionEnter2D(Collision2D collision){

TagManager tagManager = collision.gameObject.GetComponent <TagManager >()

;

if (tagManager == null){

return;

}

Tag tagName = tagManager.wallTag;

if (tagName.Equals(Tag.leftWall)){

RightRacket.GetScore ();

}

if (tagName.Equals(Tag.rightWall)){

LeftRacket.GetScore ();

}

if (tagName.Equals(Tag.leftRacket)){

wayBall(collision , 1);

}

if (tagName.Equals(Tag.rightRacket)){

wayBall(collision , -1);

}

}

Listing 4.45: Functionalities when ball hits with rackets or walls

The wayBall function is shown in Listing 4.46, which handles the ball movement after a

collision with one of the rackets. When the ball hits the left racket, the second parameter will

be 1, and it will be -1 if it hits the right racket. The direction will be calculated according

to the angle it makes.

private void wayBall(Collision2D collision , int x){

float a = transform.position.y - collision.gameObject.transform.

position.y;

49

float b = collision.collider.bounds.size.y;

float y = a / b;

ballRb.velocity = new Vector2(x, y)*moveSpeed;

}

Listing 4.46: Ball bounces after hitting (wayBall)

4.4.3 Functional Programming

This Pong game was redeveloped in 2018 [74], inspired by the original Pong using Haskell

and Gloss. It also used the Exit and Random libraries from the System library to destroy

the game state and generate a random position for the initial state, respectively.

Pong in FP uses the PlayIO function from Gloss to handle the game loop. The loop

execution is in Figure 4.6. In the initial state, the ball generates in a random position.

The handleKeys function takes user input, processes, and responds to the game world. The

render converts the game world into a Picture. The update is responsible for updating the

game world using multiple functions, including two types of collisions: wallCollision and

paddleCollsion, response functions for both: wallBounce and paddleBounce, and update the

ball position using the moveBall.

The type constructor for the game world is presented in Listing 4.47, and the required

types are mentioned in Listing 4.48. PongGame is a record type constructor with four fields

named ballLoc, ballVel, player1, and player2 with the appropriate type. The Position type

is a pair of Floats, and the radius of the ball is 10.

50

Initial Game State

 randomInitialState

Draw Game World

 render

Input

 handleKeys

Simulate Game

 update

Game Over

Render to the screen

Left-right wall

 gameEnded Update game State

 moveBallYes

No

Figure 4.6: The main loop execution for Pong in FP

data PongGame = Game

{ ballLoc :: Position -- ^ Pong ball (x, y) location.

, ballVel :: (Float , Float) -- ^ Pong ball (x, y) velocity.

, player1 :: Float -- ^ Left player paddle height.

-- Zero is the middle of the screen

.

, player2 :: Float -- ^ Right player paddle height.

} deriving Show

Listing 4.47: Type Constructor PongGame in Haskell

51

type Radius = Float

type Position = (Float , Float)

Listing 4.48: Types in Haskell Pong game

The initial state uses the stdGen instance and getStdGen function to generate numbers

to position the paddles and ball randomly and returns a PongGame state. The initial state

is given in Listing 4.49.

randomInitialState :: StdGen -> PongGame

randomInitialState gen = Game

{ ballLoc = (a, b)

, ballVel = (c’, d’)

, player1 = 0

, player2 = 0

}

where

a:b:c:d:_ = randomRs (-50, 50) gen

c’ = c * mag

d’ = d * mag

mag = 300 / sqrt (c^2 + d^2)

Listing 4.49: Initial State Generator in Haskell Pong game

The width, height, and offset are 1480, 780, and 100, respectively, with a Fullscreen

window and black background. The playIO function from IO.Game module handles the

game loop, and the execution of the loop is shown in Figure 4.6. Listing 4.50 shows the

game loop, where a random value is generated from the getStdGen function and passed as

an argument to the randomInitialState function that generates the initial state. The frame

per second (fps) is 60.

52

main :: IO ()

main = do

gen <- getStdGen

let initState = randomInitialState gen

playIO window background fps initState render handleKeys update

Listing 4.50: Pong Game loop in Haskell

The render converts the game world to an IO Picture is presented in Listing 4.51. It takes

the game world (PongGame) and returns a Picture with two white-bordered blue paddles, a

white ball, and two top-down white-bordered walls. The ball can only bounce between two

walls. Listing 4.52 shows the ball bounce functionality.

render :: PongGame -> IO Picture

render game = return $

pictures [ball , walls ,

mkPaddle white 700 $ player1 game ,

mkPaddle white (-700) $ player2 game]

Listing 4.51: Pong render function to convert Game world to an IO picture

wallBounce :: PongGame -> PongGame

wallBounce game = game { ballVel = (vx, vy ’) }

where

-- The old velocities.

(vx , vy) = ballVel game

vy ’ = if wallCollision (ballLoc game) ballRadius then -vy else vy

Listing 4.52: Pong ball bounces when it touches top-down walls

53

Listing 4.53 shows the game over state. If a paddle misses the ball and the ball touches

one of the walls (left and right), the game will be over.

gameEnded :: PongGame -> Bool

gameEnded game = farLeft || farRight

where

(x, _) = ballLoc game

farLeft = x < -fromIntegral width / 2 + 2 * ballRadius

farRight = x > fromIntegral width / 2 - 2 * ballRadius

Listing 4.53: Collision with left or right wall

The collision of the ball and paddle is represented in Listing 4.54. When a ball collides

with the paddle, it changes its velocity to the opposite direction. The paddleBounce handles

the functionality and uses paddleCollision to verify the collision of the ball and paddle.

paddleCollision :: Position -> PongGame -> Bool

paddleCollision (x, y) game =

(x + ballRadius > 700 && abs (y - player1 game) < 40) ||

(x - ballRadius < -700 && abs (y - player2 game) < 40)

paddleBounce :: PongGame -> PongGame

paddleBounce game = game { ballVel = (vx ’, vy) }

where

-- The old velocities.

(vx , vy) = ballVel game

vx ’ = if paddleCollision (ballLoc game) game then -vx else vx

Listing 4.54: Collision of Ball and Paddle

The user input is handled by the handleKeys function, which takes an Event (keyboard

event), PongGame world, and returns PongGame world. Player1 presses ‘E’ and ‘D,’ and

54

Player2 presses the ‘Up Key’ and ‘Down Key’ to move the paddle up and down. Input events

are shown in Listing 4.55.

handleKeys :: Event -> PongGame -> IO PongGame

handleKeys event game = case event of

EventKey (Char ’q’) _ _ _ -> exitSuccess

EventKey (Char ’e’) _ _ _ -> return $

game { player2 = player2 game + 15 }

EventKey (Char ’d’) _ _ _ -> return $

game { player2 = player2 game - 15 }

EventKey (SpecialKey KeyUp) _ _ _ -> return $

game { player1 = player1 game + 15 }

EventKey (SpecialKey KeyDown) _ _ _ -> return $

game { player1 = player1 game - 15 }

_ -> return game

Listing 4.55: IO Event Handler in Haskell Pong game

Lastly, the update is shown in Listing 4.56, where the function returns a string ”Game

ended!” if the game ends. This termination is performed using the exitSuccess from Sys-

tem.exist. Otherwise, it updates the game state with the updated ball position.

update :: Float -> PongGame -> IO PongGame

update seconds game =

if gameEnded game ’ then do

putStrLn "Game ended!"

exitSuccess

else return game ’

where

game ’ = paddleBounce . wallBounce . moveBall seconds $ game

Listing 4.56: Update game state in Haskell Pong

55

4.4.4 Functional Reactive programming-Yampa

Vladimir Lopatin reproduces the classic pong game in Haskell using Yampa and SDL2

libraries [75]. The game structure is not the same as the prior discussed versions. It only

covers a few functionalities of the game. It uses the SDL library to handle user input. In

addition to FRP Yampa, and SDL2, the developer uses several Haskell libraries, such as

Data, Linear, Control Monadonad, and Control Exception.

Figure 4.7 illustrates the custom game loop function named animate that uses reactimate

to handle the actual game loop, calculates sense (senseInput) and actuate (renderOutput)

values, and feeds to the reactimate function. The animate takes Text, CInt, CInt, and SF,

where Text, CInt, and CInt are used to define the window. The initial input for reactimate

is return NoEvent.

The parseWinInput takes user input and maps it with the (mainGame, handleExit) using

the Yampa sequence (⋙) operator. The mainGame and handleExit are both SFs that

produce the (Game, Bool) using the Yampa operator (&&&). mainGame SF is responsible

for processing the user input, handling the collision, and updating the game states using

several functions.

loop function: animate

Initial State

 return NoEvent

Sense Input

 senseInput

Actuate

 renderOutput

Signal Function

 sf
(input and game state)

Game Over

Figure 4.7: The main loop execution for Pong in FRP

56

User input has been defined in /src/input.hs. This game has two types of input events:

mouse event and keyboard event. The type constructor for input is AppInput, which has six

fields shown in Listing 4.57.

data AppInput =AppInput{

inpMousePos :: (Double , Double) -- ^ Current mouse position

, inpMouseLeft :: Maybe (Double ,Double) -- ^ Down button currently down

, inpMouseRight :: Maybe (Double ,Double) -- ^ Right button currently down

, inpQuit :: Bool -- ^ SDL ’s QuitEvent

, inpKeyPressed :: Maybe SDL.Scancode

, inpKeyReleased :: Maybe SDL.Scancode

}

Listing 4.57: Data constructor for user input

The input file contains several supporting SFs, such as the current mouse position (mouse-

Pos), the left button is pressed (lbp), the left button is clicked and tagged with the mouse

positions (lbpPos), and the left button is down (lbDown). Same functionalities for the right

button (rbp, rbpPos, rbDown), a key function (key) that takes Scancode and String values

and returns a SF of AppInput, where Scancode handles ScancodeLeft, ScancodeRight, and

ScancodeSpace values and String values are pressed or anything else. Listing 4.58 shows the

signal functions for left and right mouse button clicks. Listing 4.59 contains function com-

position based on the event and returns a SF, and Listing 4.60 represents the signal function

for a quit event (quitEvent).

mousePos :: SF AppInput (Double ,Double)

mousePos = arr inpMousePos

lbp :: SF AppInput (Event ())

lbp = lbpPos >>^ tagWith ()

57

lbpPos :: SF AppInput (Event (Double ,Double))

lbpPos = inpMouseLeft ^>> edgeJust

lbDown :: SF AppInput Bool

lbDown = arr (isJust . inpMouseLeft)

rbp :: SF AppInput (Event ())

rbp = rbpPos >>^ tagWith ()

rbpPos :: SF AppInput (Event (Double ,Double))

rbpPos = inpMouseRight ^>> edgeJust

rbDown :: SF AppInput Bool

rbDown = arr (isJust . inpMouseRight)

Listing 4.58: SF for left and right mouse event

key :: SDL.Scancode -> String -> SF AppInput (Event ())

key code mode

| code == SDL.ScancodeLeft ||

code == SDL.ScancodeRight ||

code == SDL.ScancodeSpace

= (inpKeyMode ^>> edgeJust) >>^ filterE (code ==) >>^ tagWith ()

where

inpKeyMode

= if | mode == "Pressed"

-> inpKeyPressed

| otherwise

-> inpKeyReleased

Listing 4.59: SF for key pressed

58

quitEvent :: SF AppInput (Event ())

quitEvent = arr inpQuit >>> edge

Listing 4.60: SF for quit event

Input.hs contains several additional functions to filter and transform SDL events into

relevant game events. The current mouse position is initially at (0,0), and the default value

for the other fields is Nothing. The Quit event is False. Scanning app input and based on the

EventPayload function, nextAppInput returns another AppInput value. There are five types of

EventPayLoad events: QuitEvent, MouseMotionEvent, KeyboardEvent, MouseButtonEvent,

and anything. Based on the EventPayload event and processing the event, nextAppInput

mutate the app input field. Listing 4.61 contains the source code.

nextAppInput :: AppInput -> SDL.EventPayload -> AppInput

nextAppInput inp SDL.QuitEvent = inp { inpQuit = True }

nextAppInput inp (SDL.MouseMotionEvent ev) =

inp { inpMousePos = (fromIntegral x, fromIntegral y) }

where P (V2 x y) = SDL.mouseMotionEventPos ev

nextAppInput inp (SDL.KeyboardEvent ev)

| scancode ev == SDL.ScancodeEscape = inp { inpQuit = True }

| scancode ev == SDL.ScancodeLeft || scancode ev == SDL.ScancodeRight

||

scancode ev == SDL.ScancodeSpace =

if | SDL.keyboardEventKeyMotion ev == SDL.Pressed

-> inp { inpKeyPressed = Just $ SDL.keysymScancode

$ SDL.keyboardEventKeysym ev , inpKeyReleased = Nothing }

| otherwise

-> inp { inpKeyPressed = Nothing

, inpKeyReleased = Just $ SDL.keysymScancode

$ SDL.keyboardEventKeysym ev }

59

nextAppInput inp (SDL.MouseButtonEvent ev) =

inp { inpMouseLeft = lmb , inpMouseRight = rmb }

where motion = SDL.mouseButtonEventMotion ev

button = SDL.mouseButtonEventButton ev

pos = inpMousePos inp

inpMod = case (motion ,button) of

(SDL.Released , SDL.ButtonLeft) -> first (const Nothing)

(SDL.Pressed , SDL.ButtonLeft) -> first (const (Just pos))

(SDL.Released , SDL.ButtonRight) -> second (const Nothing)

(SDL.Pressed , SDL.ButtonRight) -> second (const (Just pos))

_ -> id

(lmb ,rmb) = inpMod $ (inpMouseLeft &&& inpMouseRight) inp

nextAppInput inp _ = inp

Listing 4.61: Input event processing

Shaders and rendering are in ../src/Shaders.hs and ../src/Rendering.hs. A shader [102]

is a computer program that calculates the appropriate levels of light, darkness, and color

while rendering a scene. The developer used fragment shader (frag) and vertex shader (vert)

among different types of shaders. OpenGL uses frag and frag shaders to render 2D and 3D

graphics. These files are written in C-like code Graphics Library Shading Language (GLSL).

The initial game scene and gameplay scene are the two different frag and vert files of the

game.

The../app/Main.hs contains the game functionalities. The type constructor for the game

is named Game, which includes three properties: player position (pPos), ball position (bPos),

and game state (gstg). There are four game states, including game menu (GameMenu), game

introduction (GameIntro), game playing mode (GamePlaying), and exit state (GameFin-

ished). Listing 4.63 and Listing 4.62 contain the type constructor and game state source

code, respectively.

60

data GameStage = GameIntro

| GamePlaying

| GameFinished

| GameMenu deriving Show

Listing 4.62: Data constructor for game

data Game = Game{

pPos :: Double -- Player Position

, bPos :: Pos -- Ball Position

, gStg :: GameStage -- Game Stage

} deriving Show

Listing 4.63: Data constructor for Game state

The data type for physics (PhysicsContext) is defined in Listing 4.64, and the (defPhysics)

is defined in Listing 4.65. The window constructor (Bounds) and initial window (bounds) are

defined in Listing 4.66 and 4.67, respectively. The type of acceleration(Acc), velocity(Vel),

Direction(Dir), and coefficient of restitution(COR) are (Double, Double), (Double, Double),

(Double, Double), and Double, respectively.

data PhysicsContext = PhysC{

gee :: Acc -- A unit of acceleration due to gravity

, cor :: Double -- coefficient of restitution

} deriving Show

Listing 4.64: Data constructor for Physics for Pong in FRP

61

defPhysics = PhysC{

gee = (0.0 , -4.9)

, cor = 1.01

}

Listing 4.65: Physics Definition

data Bounds = Bounds{

xMin :: Double

, xMax :: Double

, yMin :: Double

, yMax :: Double

}

Listing 4.66: Data constructor for Window Bound for Pong in FRP

bounds :: Bounds

bounds = bounds ’ xMin xMax yMin yMax

where

xMin = -400 -- minX

xMax = 400 -- maxX

yMin = 0 -- minY

yMax = 600 -- maxY

Listing 4.67: Window Bounds for Pong in FRP

The playerPos determines the player position, which takes a Double value of the player

position and returns a SF. The playerPos uses another helper function named movePlayer,

which takes the current position and velocity and produces a SF. If a left mouse button is

clicked, the velocity will be -0.5; otherwise, 0.5. Listing 4.68 and Listing 4.69 contain the

source code for both functions.

62

playerPos :: Double -> SF AppInput Double

playerPos pp0 = switch sf cont

where

sf = proc input -> do

keyLeft <- key SDL.ScancodeLeft "Pressed" -< input

keyRight <- key SDL.ScancodeRight "Pressed" -< input

let res :: (Double , Event (), Event ())

res = (pp0 , keyLeft , keyRight)

returnA -< (pp0 , mergeEvents [keyLeft , keyRight] ‘tag ‘ res)

cont (x, keyLeft , keyRight) =

if | isEvent keyLeft -> movePlayer x (-0.5)

| otherwise -> movePlayer x 0.5

Listing 4.68: To determine player position for Pong in FRP

movePlayer :: Double -> Double -> SF AppInput Double

movePlayer pp0 v0 = switch sf cont

where

sf = proc input -> do

p <- (pp0 +) ^<< integral -< v0

keyLeft <- key SDL.ScancodeLeft "Released" -< input

keyRight <- key SDL.ScancodeRight "Released" -< input

returnA -< (p, mergeEvents [keyLeft , keyRight] ‘tag ‘ p)

:: (Double , Event Double)

cont = playerPos

Listing 4.69: To move player function (movePlayer)) for Pong in FRP

To determine the ball position, a method named ballPos takes the current position and

velocity of the ball and returns a SF with a pair of position and velocity. It uses a helper

function ballPos’ that uses other functions, such as the collision function (collidingBall’), to

63

determine the collision. Listing 4.70 and Listing 4.71 are the source codes for ballPos and

ballPos’ functions. The value of resX and resY are 800 and 600 pixels.

ballPos :: Vel -> Pos -> SF () (Pos ,Vel)

ballPos v0 p0 = ballPos ’ cor ’ rad p0 v0

where

cor ’ = cor defPhysics

rad = 10 / (fromIntegral resY)

Listing 4.70: To determine ball’s position

ballPos ’ :: COR -> Radius -> Pos -> Vel -> SF () (Pos ,Vel)

ballPos ’ cor rad p0 v0 = bouncingBall ’ p0 v0

where

bouncingBall ’ p0 v0 = switch sf cont

where

sf = proc () -> do

((p,v), col) <- collidingBall ’ rad p0 v0 -< ()

returnA -< ((p, v), col ‘tag ‘ fromEvent col)

:: ((Pos , Vel), Event (Dir ,(Pos ,Vel)))

cont (dir ,(p,v)) = bouncingBall ’ p (reflect dir ((-cor) *^ v))

reflect l v = (2*(v ‘dot ‘ l)/(l ‘dot ‘ l)) *^ l ^-^ v

Listing 4.71: Helper function for ballPos for Pong in FRP

The collision function (collidingBall’) calculates the collision of the ball with the four

walls or edges of the screen. When the ball hits the bottom-left wall, it will update the

XMin and YMin by adding the radius value. When the ball hits the top-left edge of the

screen, it will add the radius value with XMin and subtract the radius from YMax. When the

bottom-right hit occurs, it will mutate the XMax by subtracting the radius from XMax and

adding the radius value with YMin, and lastly, top-right hits will be handled by subtracting

64

the radius from XMax and YMax. This function uses fallingBall, which returns a SF with a

pair of positions and ball velocity based on the gee force and physics definition. Listing 4.72

and Listing 4.73 contain the source code.

collidingBall ’ :: Radius -> Pos -> Vel ->

SF () ((Pos , Vel), Event (Dir ,(Pos ,Vel)))

collidingBall ’ rad p0 v0 = proc () -> do

pv@(p,v) <- fallingBall p0 v0 -< ()

hitXMin <- edgeTag (1, 0) -< fst p <= xMin bounds + rad

hitYMin <- edgeTag (0, 1) -< snd p <= yMin bounds + rad

hitXMax <- edgeTag (-1, 0) -< fst p >= xMax bounds - rad

hitYMax <- edgeTag (0,-1) -< snd p >= yMax bounds - rad

let hitInfo = foldr1 (mergeBy mergeHits) [hitXMin ,hitYMin ,hitXMax ,

hitYMax]

returnA -< (pv , hitInfo ‘attach ‘ pv)

where

mergeHits = (^+^) -- simply add the two collision directions together.

Listing 4.72: Collision function for pong in FRP

fallingBall :: Pos -> Vel -> SF () (Pos , Vel)

fallingBall bp0 bv0 = proc () -> do

v <- (bv0 ^+^) ^<< integral -< gee defPhysics

p <- (bp0 ^+^) ^<< integral -< v

returnA -< (p,v)

Listing 4.73: SF for ball when it is falling

The default game state is shown in Listing 4.74. It takes GameInro as a game state, and

the player and ball positions are 0 and (0.0,0.4), respectively. The GameIntro is defined in

Listing 4.75.

65

defaultGame :: Game

defaultGame = Game pp0 bp0 GameIntro

where

pp0 = 0 :: Double

bp0 = (0.0 ,0.4) :: (Double , Double)

Listing 4.74: Default game scene for Pong

gameIntro :: SF (AppInput , Game) Game

gameIntro = switch sf cont

where sf = proc (input , gameState) -> do

introState <- returnA -< gameState

playState <- returnA -< gameState { gStg = GamePlaying}

skipE <- key SDL.ScancodeSpace "Pressed" -< input

waitE <- after loadDelay () -< ()

returnA -< (introState ,(skipE ‘lMerge ‘ waitE)‘tag ‘ playState)

cont game = proc input -> do returnA -< game

Listing 4.75: Definition of initial game state SF for Pong

Listing 4.76 contains the code for gameplay that uses two other functions: mainGame

shown in Listing 4.77 and gameSession included in Listing 4.78.

gamePlay :: SF AppInput Game

gamePlay = switch sf (const mainGame)

where

sf = proc input -> do

gameState <- gameSession -< input

reset <- key SDL.ScancodeSpace "Pressed" -< input

returnA -< (gameState , reset)

Listing 4.76: SF forGame play state

66

mainGame :: SF AppInput Game

mainGame = loopPre defaultGame $ proc (input , gameState) -> do

gs <- case gStg gameState of

GameIntro -> gameIntro -< (input , gameState)

GamePlaying -> gamePlay -< input

returnA -< (gs , gs)

Listing 4.77: The mainGame SF definition

The mainGame uses loopPre function from Yampa, which is a loop with an initial value

for the signal being feedback. The value for loadDelay is 5.0. The gameSession returns a SF.

gameSession :: SF AppInput Game

gameSession = proc input -> do

ppos <- playerPos $ pPos defaultGame -< input

(bpos , bvel) <- ballPos bv0 $ bPos defaultGame -< ()

returnA -< Game ppos bpos GamePlaying

where bv0 = (0.5 ,0.5) :: (Double , Double)

Listing 4.78: Game Session

The main loop is in Listing 4.79, where the loop uses Yampa’s library function reactimate

with the help of another custom function animate showed in Listing 4.80. Additionally, the

definition of handleExit is in Listing 4.81.

main :: IO ()

main = do

window <- openWindow "e1337" (resX , resY)

animate "Pong" resX resY (parseWinInput >>> (mainGame &&& handleExit))

Listing 4.79: Pong game loop in Yampa

67

animate :: Text -- ^ window title

-> CInt -- ^ window width in pixels

-> CInt -- ^ window height in pixels

-> SF WinInput (Game , Bool) -- ^ signal function to animate

-> IO ()

animate title winWidth winHeight sf = do

window <- openWindow title (winWidth , winHeight)

lastInteraction <- newMVar =<< SDL.time

-- Input Logic

let senseInput _ = do

currentTime <- SDL.time

dt <- (currentTime -) <$> swapMVar lastInteraction currentTime

mEvent <- SDL.pollEvent

return (dt , Event . SDL.eventPayload <$> mEvent)

-- Output Logic

--

renderOutput _ ((gameState), shouldExit) = do

draw window gameState

return shouldExit

-- Reactimate ---

reactimate (return NoEvent) senseInput renderOutput sf

closeWindow window

Listing 4.80: Game loop helper function (animate)

handleExit :: SF AppInput Bool

handleExit = quitEvent >>^ isEvent

Listing 4.81: Definition of handleExit

68

Chapter 5

Animations, GUIs, and Embedded

Systems

Real-time applications are designed to process and respond to data to events in real

time without significant delay. Real-time application domains such as animations, GUIs,

and embedded systems require a deep understanding of the problems to provide more accu-

rate and instant responses. This section represents these applications in functional reactive

programming.

5.1 Animation

Animation is a collection of images that express a sense of motion when displayed. In

today’s world, animation is one of the most pervasive and permeating visual communica-

tion. It can be found everywhere, from the countless TV channels entirely dedicated to

cartoons to the opening titles of our favorite films to the responsive graphic interfaces on

our smartphones. Émile Cohl [103] is called The Father of the Animated Cartoon,

and Fantasmagorie, the first entirely finished animated film produced by him and known

69

as traditional (hand-drawn) animation.

5.1.1 Types of Animation

The animation used to be made by creating pictures of the characters for each action

frame. Storyboards, which are sketches describing the sequence of key acts and the char-

acters’ facial expressions, are initially provided to the animator. The animator also uses a

completed soundtrack that sets the timing for the composition. Characters in earlier anima-

tions were painted on cels, which are sheets of transparent celluloid that can be stacked on

top of the background landscape but are frequently stationary in older films. A lead animator

makes the key, or most crucial frames, and a second animator creates the in-between frames

in keyframing, which is the method used to generate most hand animation. Regardless of

the platform, the animator’s task is to produce images that give the character emotion and

life.

Computer animation developed in the early 1940s and 1950s when people began exper-

imenting with computer graphics. The most fundamental computer animation technologies

help with traditional animation by automatically producing some of the animation’s frames.

Similar to how layers of cels are used in hand animation. The tools have been designed

to composite several layers of scenes together. Another significant and effective strategy is

utilizing algorithms to create images from a geometric scene description. Through computer

technologies, it is now possible to specify how images should evolve rather than having to

design sequential images. Among several animations, animation includes the following five

categories.

1. Traditional Animation: A traditional animator must sketch each frame of an ani-

mated scene by hand in cell animation, which is done on a light table so the artists can

see the preceding drawing through the top layer of paper. Traditional animation can be

70

done today on computers with specialized tablets and is used by the most well-known

companies, including Disney.

2. 2D Animation: A 2D vector-based animation, 2D animation is becoming increasingly

popular due to technology accessibility. Instead of constantly redrawing the characters,

it allows the artist to build rigs for them and move specific body parts at a time.

Because 2D animation technology is flexible and beginners do not have to rely heavily

on drawing skills, it is popular with them.

3. 3D Animation: The most widely utilized type of animation today is 3D or computer

animation. Unlike 2D and traditional animation, 3D animation has a different pro-

duction method. Both, nonetheless, adhere to the same movement and compositional

basis. It has more to do with the animated character and less with the drawing. The

National Science Foundation highlights how strongly 3D animators must use physics to

produce realistic animations. The animator makes keyframes or specified movements,

and the computer fills in the remainder.

4. Motion Graphics: Motion graphics focuses on the ability to move graphic elements,

shapes, and text instead of characters or storylines. This procedure is frequently ap-

plied to animated logos, instructional films, and television promotions. Motion graphics

don’t require the same skill set as other types of animation because it’s unnecessary

to emulate facial expressions or body language.

5. Stop Motion: Stop-motion animation utilizes a succession of slightly altered still

images to create the illusion of movement, much like traditional animation. When

creating stop motion, the artists first photograph a scene or an object, then slightly

move the subject before snapping another picture. The artist repeats this process until

the scenario is finished.

71

Though it is authentic and naturally appealing, stop motion animation requires a lot of

work, can take a long time to complete, and requires special skills. Traditional animation

can be a fantastic choice for artists who wish to exercise their full artistic license. But, it also

demands extensive skills and can be supplanted by 3D animation. Each kind of animation

has benefits and drawbacks, depending on the preferences of the animator. It is impossible

to say that one type of animation fits all animation projects the best.

5.1.2 How to create animation

In addition to animation tools’ new capabilities that are auto-generating frames and

the use of algorithms, it increases the range of applications. Real-time applications like

games and interactive media can take advantage of computer animation. The production

of computer actors that may be seamlessly merged with real-world film is made possible

by realistic rendering and animation techniques. A complicated computer animation like

Disney and Pixar ’s Toy Story uses various techniques. Two basic kinds of these strategies

can be distinguished: two-dimensional (2D) and three-dimensional (3D). Although there are

considerable overlaps between the two classifications, 3D techniques typically create virtual

worlds with moving characters and objects, while 2D approaches typically concentrate on

image modification.

An animator must model, animate, and render the scene in order to produce an anima-

tion. When modeling, the components of a scene are described and placed appropriately.

Rendering turns the description of the objects and their motion into visuals, while animation

explains how the object should move in the world. Except for a few necessary adjustments,

modeling and rendering are mostly independent of their involvement in the animation pro-

cess.

Animations usually display 24 or 30 frames per second. Motion blurring plays a vital role

in making it realistic. However, providing motion to animation is surprisingly tricky and

72

complex because humans are skillful at observing the motion and quickly detect unnatural

and implausible motion. Therefore, the animator must be able to specify subtle details of

the motion to convey a character’s personality or the mood of an animation in a compelling

fashion. Numerous techniques have been developed; however, everything has some trade-

offs between automation and control. According to [104], if one can merge keyframing,

procedural methods, and motion capture, these three techniques to generate motion

can take advantage of each technique which solves the trade-off between automation and

control.

5.1.3 FRP and Animations

Animation can be implemented in different paradigms using several languages. Devel-

opers create animations based on tasks, scalability, and performance in several paradigms,

including imperative programming, FP, and FRP.

Animation tools allow developers to create and manipulate visual content. Animation

tools, including Maya [105], Animate [106], Blender [107], and Unity [108] are widely used.

Some common features are a timeline-based interface [109], which provides control to the

developers over the timing and sequencing of the animations, key-frame animation, 2D and

3D animation, painting and drawing, etc. In addition to these core features, many animation

tools also provide specialized features for specific types of animation, such as character

rigging [110] that allows creators to create and manipulate virtual skeletons that control the

movement of the characters or objects in the animation through the network of movements,

particle effects, and physics simulation that allows importing motion captured data to make

the content realistic. Moreover, tools are flexible to integrate with other software applications

to enable more complex workflows.

Animation tools are increasingly sophisticated and powerful in recent years, enabling

animators to create highly complex and realistic animations. However, to be an expert on a

73

tool to utilize its features efficiently requires significant time and effort.

JavaFX [111, 112] library offers smooth graphics that render quickly through Prism,

a high-performance hardware-accelerated graphical pipeline. It is used with a supported

graphics card or graphics processing unit (GPU). Prism utilizes the software render path

to process the graphics when the hardware systems do not have sufficient graphics support.

Prism can also render 2-D and 3-D graphics. Python is often used for scripting in animation

software, and a few Python libraries, for example, pygame and OpenCV, can be used to

create complex animations.

FRP was the first DSL for interactive animation in FRP. The extensions of Fran are [4,

13, 14], but not widely adopted. ReactiveX [9], a collection of libraries, provides a set of

operators for manipulating and combining streams of synchronous and asynchronous data.

The libraries of ReactiveX are implemented in multiple languages, such as Java, JavaScript,

and Python. One of the animation languages developed using FRP is Flapjax [23]. which is

for web programming built on top of JavaScript and uses FRP to enable highly interactive

and reactive web applications. Flapjax provides a wide range of features for developing

animated and interactive web content. It supports reactive data streams, event handling, and

animation timelines. Additionally, it provides a range of built-in animation and visualization

tools, such as canvas drawing, SVG graphics, and charting libraries. Flapjax has a library

for animation named Flan [113].

Though Flapjax is a powerful and flexible tool for creating an animated and interactive

web application using FRP, it may only be suitable for some types of animation projects.

5.2 Graphical User Interface

A Graphical User Interface (GUI) is a type of user interface (UI) that allows users to

interact with software applications or Human-computer interaction (HCI) applications us-

74

ing visual elements. GUI was first introduced as a solution to challenging Command-line

Interfaces (CLIs) and gained popularity in every aspect of modern application domains.

5.2.1 FRP and GUIs

The traditional approach to a graphical user interface manages the state of the system

using mutable variables. However, it can make the system complex, hard to interpret, and

error-prone. The states of the system are the stream of events, user input, timers, mutating

data sources, etc. The events can easily be handled using FRP’s higher-order functions, such

as map, filter, and fold in the appropriate output.

The fundamental benefit of FRP in GUI is FRP allows developers to express the behavior

of a system in a declarative way. Declarative programming can be contrasted with impera-

tive programming, which involves writing detailed instructions on how to complete a specific

task. In the imperative paradigm, the developers usually follow a procedural approach that

includes step-by-step instructions and will be executed in sequences. Declarative program-

ming keeps the code base concise, readable, and more scalable to handle large and complex

programs though it requires experienced programmers. Rather than defining a set of muta-

ble states in imperative programming, developers can design a set of composable functions

that transform and combine streams of events and keep a clean and understandable code

base.

Some of the widely used libraries and frameworks for GUI in FRP are RxJS [34], Ba-

con.js [37], and Cycle.js [38]. Libraries provide a set of abstractions and higher-order func-

tions to make the system easy to manage streams and function compositions, provides mod-

ularity, easy testing and debugging features, and better user experiences. React [114, 115] is

popular for GUI applications. While React does not strictly require RxJS, there are a few

reasons to use RxJs in React. React uses a unidirectional data flow model, which follows

a top-down tree approach via props. Props are used to configure the child components. It

75

works well for small-scale applications. However, it is complex and challenging to manage

a large-scale project. RxJS provides a simple way to manage the states in a React appli-

cation. RxJS provides a declarative way to express complex data flows to manage a large

project. Moreover, RxJS allows a flexible way to handle asynchronous data. Providing

higher-order functions, it offers a flexible environment making the system simple and under-

standable. Bacon.js and Cycle.js can be used with React to create reactive user interfaces,

and the framework also supports other front-end libraries and frameworks and use RxJS in

the background to provide reactive features.

Elm is a functional programming language especially well-suited for web applications,

originally designed as FRP [35, 36]. Elm provides higher-order features and abstractions to

build interactive, responsive, and scalable interfaces. Elm offers a declarative approach with

numerous built-in features for creating elements and updating properties. Developers can

achieve everything without the signal function. Therefore, the Author of Elm declared it

a functional language [116] in 2016. Elm is popular for a robust and safe environment for

building web applications, which detects errors during compilation time rather than run time,

provides good performance and scalability characteristics, is easy to learn and code [117],

and has a strong and active community.

5.3 Embedded Systems

Embedded systems are designed to perform specific tasks to operate real-time responses,

typically consisting of microcontrollers or microprocessors responsible for executing functions

with various input-output (IO). Developing embedded systems requires understanding the

hardware and software designs and problem specifications to provide effective applications.

76

5.3.1 FRP and Embedded Systems

Emfrp [39] is a statically typed pure FRP language for reactive programs running on

small-scale embedded systems. Programs written in Emfrp intends to run on environments

such as microcontrollers with low-power CPUs and a few kilobytes of memory or bare metal

system without an OS. Emfrp is designed to solve the space-time leak problem. Program

written in Emfrp compiled into a pair of C source files that are platform independent, one

containing a single loop implementing continuous reactive process and the other containing

function skeletons for input and output. Filling the second file from the external environ-

ment, the user can complete an executable Emfrp module. It is an open-source GitHub

project [118].

Emfrp has several restrictions to ensure continuous reactive behavior safely, such as (1)

the authors do not follow the lambda-calculus tradition to make the language suitable for

resource-constrained environments. It lacks suitable capabilities to modularize adaptive be-

haviors, (2) termination of each node process after updating and determining the memory

required during runtime. Because of this, it imposes an unnatural representation of data

structures like lists or trees. These restrictions urge us to write poorly maintainable redun-

dant code or stop us from writing certain types of programs. The challenge in Emfrp is that

it is difficult to naturally express data structures where the number of elements changes at

runtime.

To solve (1), extended Emfrp [40], a mechanism with an implicit activation layer that

improves the modularity using Context-oriented Programming(COP) by separating the de-

scriptions of context-dependent behaviors, and hence eliminating various cross-cutting code

fragments that often appear in plain Emfrp programs. This extension does not affect the

semantics and execution model of the Emfrp [39] language. So, the programs written using

the extension are still purely functional and glitch-free. However, fake cyclic node depen-

dencies may arise and reject correct modules. It is an open issue and left for future work.

77

The author claims that no systems/languages employ context-oriented programming and

functional reactive programming to enjoy modularity, adaptability, and purely declarative

programming.

EmfrpBCT [42], an extended Emfrp with size annotated recursive data types [119], to

overcome problem (2). However, it still does have the aforementioned static properties.

Since the data size is checked statically as a part of the type checking, unlimited memory-

used programs will not be compiled and executed. The termination of a reactive process is

also guaranteed. The programs such as list and heap trees must be written in an unnatural

form using tuples in Emfrp. On the other hand, programs can be written in a concise and

maintainable manner in EmfrpBCT.

[42] has been divided into several tasks. The primary part is to design and develop

an FRP language containing a recursive data types property containing information on the

amount of memory to be used, along with an algorithm for estimating the memory usage of

a program written in the language. It formally defines the syntax, operational semantics,

and type system of EmfrpBCT, presents an algorithm for estimating the amount of memory

required to evaluate expressions, and proves its correctness and soundness. It also implements

a compiler from EmfrpBCT to C. It measures the needed time for type checking and estimates

the amount of memory and the time and space overhead of using recursive data types.

Authors want to improve it by introducing type polymorphism and size polymorphism,

mutually recursive definitions of functions and types, flexible measure functions other than

size for defining recursive functions, and a code optimizer that incorporates existing opti-

mization techniques and is left for future work.

78

Chapter 6

Discussion and Conclusion

This section represents the similarity and comparison in game development among Unity

(Imperative programming), FP, and FRP, and the success of FRP in other application do-

mains.

6.1 Game Development

We explored two games (Asteroid and Pong) in three different programming paradigms

(Imperative, FP and FRP) and listed a number of similarities and differences.

6.1.1 Similarities

Based on the programming language and game design, similarities are

• The game design is similar. The primary element consists of Entity/object, compo-

nent/logic, and system/game world.

• All use the same evaluation model: polling and callback. Unity also has a registered

callback.

79

• Every paradigm helps to divide the monolithic class and separate data from functions.

• Provides a clean design using the decoupling, encapsulation, modularization, and

reusability methods.

• Offers a friendly method for parallel processing and multi-threading.

• Difficult to apply correctly, easy to misuse. Appropriate components require more

thinking about the design.

• All provide event-driven functionalities.

• Priority-based ordering.

6.1.2 Comparisons

The main difference is performance. Unity offers better performance among the three.

Unity is a game engine, and most of the workflow is hidden. In contrast, FP with Haskell

and FRP with Yampa is direct. Most of the game task is defined by the developer though

there are some advantages of using Gloss, HGL, and SDL2 libraries that handle game loop,

Graphics and provide some flexibility.

We conducted two comparisons: The internal differences among the three paradigms

and the development process flexibility among the paradigms in terms of game features and

development flexibilities. The differences among paradigms include performance, workflow,

live coding, unit testing, feature extension, debugging a single component or logic, under-

standing code environment, environment setup, scalability and learning curve are presented

in Table 6.1.

The collision detection in Unity is handled by the engine using Collider2D and RigidBody

properties. The reaction of the object after the collision is handled by the developers with

80

Table 6.1: Comparison among Unity, Functional Programming with Haskell, and
Functional Reactive Programming with Yampa

Criteria Unity Functional Programming Functional Reactive Programming
Performance Excellent Less efficient Less efficient

Collision detection Implicit Explicit Explicit
Workflow Implicit Explicit Explicit
Live coding Limited Challenging Challenging
Unit Testing Easy Comparatively Difficult Difficult

Extending features Easy to add Comparatively difficult difficult
Debugging single
component or logic

Difficult Easy Comparatively Difficult

Understanding
code environment

Complex and
time consuming for beginners

Easy to understand
who understand Haskell

Comparatively difficult

Setting up
environment

Very easy.
It is all in a package.

Requires many steps and
libraries to be installed.

Requires many steps and
libraries to be installed.

Scalability
Suitable for

a large project
Difficult to manage Difficult to manage

Learning curve Less steep Steep Steeper

the help of built-in and custom functions. In Haskell and Yampa, the developers handle

collision detection and the reaction after a collision.

Unity is well-documented, and developers find the documentation helpful. The workflow

in Unity is hidden. Documentation is enough to develop a game without knowing how it

works. However, developers can tell how the program works except for the Gloss package

and some graphics libraries’ workflow in FP and FRP.

With some restrictions, live coding is available in Unity. Modifications made to the game

scene during play mode are visible; however, they are not stored after leaving play mode.

Developers can make changes to the project hierarchy, which will be stored after exiting the

play mode. The changes must be reloaded into the game scene. Visual Scripting additionally

offers live editing. In play mode, developers can change values and add and remove nodes

and edges. Everything may be done in both a conventional edit and live editing mode.

However, changes made to embeds are undone once the play mode is exited. Live coding in

FP and FRP is challenging but not impossible [120]. Haskell applies mostly to soft real-time

operations. Since Haskell is a lazy language, it is uncertain that all operations will consume

a predictable amount of time. Therefore, the user may find some sudden latency in a hard

81

real-time scenario. Additionally, it is easy to create a small number of game objects and run

the game scene to see the results. However, a large game project has hundred to thousands

of game objects. It would be a nightmare for developers to create all the game objects by

giving them position, scaling, and lasting the composition feature. Developers can utilize

the live coding feature efficiently to solve the problem in Unity. Some third-party tools are

available on Unity Asset Store, such as Livity.

Feature extension is a complex process in FP and FRP. A feature could be a single

function or a combination of multiple functions related to some previously defined functions

and some new functions. Function composition is a critical task in the FP. Additionally, in

the FRP, it is comparatively more complicated than the FP because developers have to find

a way to compose two functions and utilize the behavior of the signal function. But this task

is straightforward in Unity. Unity is a flexible tool that allows extending features smartly.

The debugging feature is available in Unity. However, debugging a single component is

problematic because it can be attached to many game objects or other components. There-

fore, it is hard to debug without knowing the proper behaviors of a component. On the

other hand, debugging is comparatively easy in FP and FRP. The challenging task would

be to learn the correct input for the function.

It is laborious for a beginner Unity developer to understand a game source code devel-

oped by others without having enough documentation of the code base. Many works are

performed in the Unity Editor. Drag and drop features and placing values to Unity’s built-

in components and methods make the understanding process obscure while it makes the

development process effortless. Unlike Unity, with a fair amount of effort, understanding

the game control flow is relatively straightforward for Haskell developers or who understand

Haskell. Some research is mandatory to understand the libraries.

The installation process is effortless in Unity. Unity is a complete package of everything.

Installing other necessary libraries when required is easy to manage from the UnityHub and

82

Table 6.2: The game features comparison among Unity, Functional Programming with
Haskell, and Functional Reactive Programming with Yampa

Game Features Unity Haskell Yampa
Object Creation Implicit with Sprite Explicit Expliit
Image Insertion Implicit with Sprite Implicit with library Implicit with library
Destroy game object Implicit Explicit Explicit
Collision detection Implicit Explicit Explicit
Reaction after collision Partially Implicit Explicit Explicit
Object detection Implicit Explicit Explicit
Re-positioning Partially Implicit Explicit Explicit
Re-scaling Partially Implicit Explicit Explicit
Game loop Implicit Implicit with library Partially implicit

Unity editor. Changing the Unity version is a simple process from UnityHub. However, in

Haskell and Yampa, the installation process consists of several steps, including some research

required on device and version dependencies.

The learning curve for Unity is less steep because developers are required to be familiar

with the Unity editor and C# language to develop a small-scale game. Haskell developers

need to know Haskell and its numerous libraries. Yampa developers have to be an expert in

Yampa to utilize it correctly, especially the signal function along with other libraries.

The development process flexibility among the paradigms in terms of game features

and development flexibilities include game object creation, importing an image, destroying

a game object, collision detection, reaction after a collision, detecting game objects, re-

positioning, re-scaling, and game loop. The comparison table of the features among the

three paradigms is in Table 6.2.

Asteroid and Pong are 2D games. Unity provides a built-in mechanism to create an

object, insert pictures with the 2D Sprite package, and position and scale an object with the

Unity Transform component. In Haskell and Yampa, developers define the data constructors

for the game objects. Image insertion is handled by the gloss or sdl2 libraries. Developers

must be aware of the dependencies and versions of the library.

83

The Unity engine handles the destruction of a game object after a collision or at some

particular time. In Haskell and Yampa, developers will handle the task using different custom

functions, data constructors in Haskell, and additional signal functions for Yampa.

To find the correct game object, Unity has an efficient built-in property named FindWith-

Tag. This function is associated with an object and takes a String parameter. Therefore,

it is implicit in Unity. Finding a game object in Haskell and Yampa is explicit. Developers

compare two objects with their type constructors and values.

Rescaling a game object means creating an object with a different size. In Unity, it

is easy to accomplish rescaling and repositioning using the Transform component, which

gives the flexibility to get the position and size of the object. Developers can change the

position and size with Transform. In Haskell and Yampa, the developers handle rescaling

and repositioning. Sometimes, developers create several game objects with different sizes

and positions in a small-scale game.

Unity handles the game loop. However, the asteroid and pong game in Haskell uses the

gloss library, Yampa uses the HGL library for the asteroid, and pong uses a custom game

loop with several functions from many libraries, including Yampa’s reactimate function.

Overall, game architecture in the imperative paradigm (ECS in Unity) is simple and

elegant. It is a framework where everything is hidden from the developer. Following each

step for a large project in FP or FRP is complex and challenging. A few game engines [93, 94,

95, 96] developed in FP and FRP paradigms, that are less popular and have many limitations

based on functionality and performance. Many libraries are not being maintained nowadays.

A simple toy game is easier to develop for a beginner; however, it is sometimes difficult for an

experienced programmer to develop a game in FP and FRP for a large project. Debugging

and testing are easy in FP for a small-scale project, a nightmare for a real-life AAA1 game.

1AAA, https://en.wikipedia.org/wiki/AAA (video game industry)

84

6.2 Animations, GUIs, and Embedded Systems

Several initiatives have been taken to integrate FRP in these application areas (Anima-

tions, GUIs, and Embedded Systems). Very few have succeeded, and most applications,

including platforms, languages, and libraries, are under-performed, not documented, and

need an active developing community. However, FRP is gaining popularity and success in

GUIs, especially web development.

FRP-based animation offers several benefits over traditional imperative programming

approaches, including better modularity, and composability, more readable code. It is dif-

ficult and time-consuming to learn and utilize FRP effectively since the learning curve is

very steep, especially for developers who are beginners and more comfortable with impera-

tive programming. Moreover, performance is a crucial problem in FRP. FRP in embedded

systems is still in its initial state. Researchers are exploring, and it is difficult to meet hard

real-time applications with Haskell-based FRP languages.

Developers prefer an imperative paradigm for animation and embedded systems due to

the flexibility of having platforms and performance.

6.3 Conclusion

Functional reactive programming is well-suited for real-time event-driven applications.

In the survey, we studied four real-time application domains, including game development,

animations, graphical user interfaces, and embedded systems. We examined two demo games

(asteroid and pong) in three paradigms (imperative, functional, and functional reactive pro-

gramming), conducted an example-based comparison in game development, and described

the success of FRP in the rest of the real-time domains.

Developers are comfortable using platform-based applications because of the flexibility of

providing many features and reducing the workload. Due to FRP’s steep learning curve, most

85

application domains do not have efficient platforms and an active community. Therefore,

researchers can focus on developing modular platforms instead of programming from scratch

and providing documentation to help beginners learn and use it in applications. Therefore,

a trade-off must be made between complexity, performance, versus modularity.

86

REFERENCES

[1] A. Smith, “Of boxes and threads: Game development in haskell.” https://aas.sh/

blog/of-boxes-and-threads/.

[2] C. Elliott and P. Hudak, “Functional reactive animation,” SIGPLAN Not., vol. 32,

p. 263–273, aug 1997.

[3] A. Courtney, H. Nilsson, and J. Peterson, “The yampa arcade,” Proceedings of the

2003 ACM SIGPLAN Haskell Workshop, 08 2003.

[4] C. Elliott, “Push-pull functional reactive programming,” in Haskell Symposium, 2009.

[5] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson, “Arrows, robots, and functional

reactive programming,” Defense, vol. 2638, 08 2002.

[6] J. Hughes, “Generalising monads to arrows,” Science of Computer Programming,

vol. 37, no. 1, pp. 67–111, 2000.

[7] C. Metz, “Why whatsapp only needs 50 engineers for

its 900m users — wired.” https://www.wired.com/2015/09/

whatsapp-serves-900-million-users-50-engineers/.

[8] J. Bonér, D. Farley, R. Kuhn, and M. Thompson, “The reactive manifesto.” https:

//www.reactivemanifesto.org/.

87

[9] “Reactivex.” https://github.com/ReactiveX.

[10] I. Buchelnikov, “Igorbuchelnikov/observablecomputations.” https://github.com/

IgorBuchelnikov/ObservableComputations.

[11] R. Harris, “Svelte • cybernetically enhanced web apps.” https://svelte.dev/.

[12] “Reactivecocoa.” https://github.com/ReactiveCocoa.

[13] C. Elliott, “Modeling interactive 3d and multimedia animation with an embedded

language,” in Conference on Domain-Specific Languages (DSL 97), (Santa Barbara,

CA), USENIX Association, Oct. 1997.

[14] C. Elliott, “Functional implementations of continuous modeled animation,” in Proceed-

ings of the 10th International Symposium on Principles of Declarative Programming,

PLILP ’98/ALP ’98, (Berlin, Heidelberg), p. 284–299, Springer-Verlag, 1998.

[15] “ivanperez-keera/yampa: Functional reactive programming domain-specific language

for efficient hybrid systems.” https://github.com/ivanperez-keera/Yampa/.

[16] H. Nilsson, A. Courtney, and J. Peterson, “Functional reactive programming, contin-

ued,” in Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell ’02,

(New York, NY, USA), p. 51–64, Association for Computing Machinery, 2002.

[17] H. Liu and P. Hudak, “Plugging a space leak with an arrow,” Electr. Notes Theor.

Comput. Sci., vol. 193, pp. 29–45, 11 2007.

[18] D. Winograd-Cort, H. Liu, and P. Hudak, “Virtualizing real-world objects in frp,” in

Practical Aspects of Declarative Languages (C. Russo and N.-F. Zhou, eds.), (Berlin,

Heidelberg), pp. 227–241, Springer Berlin Heidelberg, 2012.

88

[19] D. Winograd-Cort and P. Hudak, “Wormholes: Introducing effects to frp,” in Proceed-

ings of the 2012 Haskell Symposium, Haskell ’12, (New York, NY, USA), p. 91–104,

Association for Computing Machinery, 2012.

[20] I. Perez, M. Bärenz, and H. Nilsson, “Functional reactive programming, refactored,”

SIGPLAN Not., vol. 51, p. 33–44, sep 2016.

[21] G. H. Cooper and S. Krishnamurthi, “Embedding dynamic dataflow in a call-by-value

language,” in Programming Languages and Systems (P. Sestoft, ed.), (Berlin, Heidel-

berg), pp. 294–308, Springer Berlin Heidelberg, 2006.

[22] G. H. Cooper and S. Krishnamurthi, “racket/frtime.” https://github.com/racket/

frtime.

[23] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg, A. Bromfield,

and S. Krishnamurthi, “Flapjax: A programming language for ajax applications,”

SIGPLAN Not., vol. 44, p. 1–20, oct 2009.

[24] L. Meyerovich, A. Guha, J. Baskin, G. Cooper, M. Greenberg, A. Bromfield, and

S. Krishnamurthi, “brownplt/flapjax: functional reactive programming for javascript.”

https://github.com/brownplt/flapjax.

[25] M. H. Cheong, “Functional programming and 3d games,” Master’s thesis, University

of New South Wales, Sydney, Australia, November 2005.

[26] “ivanperez-keera/haskanoid: A free and open source breakout clone in haskell using sdl

and frp, with wiimote and kinect support..” https://github.com/ivanperez-keera/

haskanoid.

[27] D. Eichmann, “bogre-banana.” https://hackage.haskell.org/package/

bogre-banana.

89

[28] A. Furtado, “Fungen: A lightweight, cross-platform, opengl-based game engine..”

https://hackage.haskell.org/package/FunGEn.

[29] I. P. Konstantin Saveljev, “Graphics.gloss.interface.frp.yampa.”

https://hackage.haskell.org/package/yampa-gloss-0.2/docs/

Graphics-Gloss-Interface-FRP-Yampa.html.

[30] J. T. Kay, “gloss-banana: An interface for gloss in terms of a reactive-banana behav-

ior..” https://hackage.haskell.org/package/gloss-banana.

[31] Z. Corr, “helm: A functionally reactive game engine..” https://hackage.haskell.

org/package/helm.

[32] H. Nilsson, “Yfrob: Yampa-based library for programming robots.” https://hackage.

haskell.org/package/YFrob.

[33] B. Yorgey, “swarm: 2d resource gathering game with programmable robots.” https:

//hackage.haskell.org/package/swarm.

[34] “Reactivex/rxjs: A reactive programming library for javascript.” https://github.

com/ReactiveX/rxjs.

[35] E. Czaplicki, “Elm : Concurrent frp for functional guis,” 2012.

[36] E. Czaplicki and S. Chong, “Asynchronous functional reactive programming for GUIs,”

in Proceedings of the 34th ACM SIGPLAN Conference on Programming Language

Design and Implementation, (New York, NY, USA), pp. 411–422, ACM Press, June

2013.

[37] “baconjs/bacon.js: Functional reactive programming library for typescript and

javascript.” https://github.com/baconjs/bacon.js/.

90

[38] “cyclejs/cyclejs: A functional and reactive javascript framework for predictable code.”

https://github.com/cyclejs/cyclejs.

[39] K. Sawada and T. Watanabe, “Emfrp: A functional reactive programming language for

small-scale embedded systems,” in Companion Proceedings of the 15th International

Conference on Modularity, MODULARITY Companion 2016, (New York, NY, USA),

p. 36–44, Association for Computing Machinery, 2016.

[40] T. Watanabe, “A simple context-oriented programming extension to an frp language

for small-scale embedded systems,” in Proceedings of the 10th International Workshop

on Context-Oriented Programming: Advanced Modularity for Run-Time Composition,

COP ’18, (New York, NY, USA), p. 23–30, Association for Computing Machinery,

2018.

[41] Y. Sakurai and T. Watanabe, “Towards a statically scheduled parallel execution of

an frp language for embedded systems,” in Proceedings of the 6th ACM SIGPLAN

International Workshop on Reactive and Event-Based Languages and Systems, REBLS

2019, (New York, NY, USA), p. 11–20, Association for Computing Machinery, 2019.

[42] A. Yokoyama, S. Moriguchi, and T. Watanabe, “A functional reactive programming

language for small-scale embedded systems with recursive data types,” Journal of

Information Processing, vol. 29, pp. 685–706, 10 2021.

[43] J. Peterson and G. Hager, “Monadic robotics,” SIGPLAN Notices (ACM Special In-

terest Group on Programming Languages), vol. 35, 11 1999.

[44] J. Peterson, G. Hager, and P. Hudak, “A language for declarative robotic program-

ming,” in Proceedings 1999 IEEE International Conference on Robotics and Automa-

tion (Cat. No.99CH36288C), vol. 2, pp. 1144–1151 vol.2, 1999.

91

[45] J. Peterson, P. Hudak, and C. Elliott, “Lambda in motion: Controlling robots with

haskell,” 07 1999.

[46] A. Reid, J. Peterson, G. Hager, and P. Hudak, “Prototyping real-time vision systems:

an experiment in dsl design,” in Proceedings of the 1999 International Conference on

Software Engineering (IEEE Cat. No.99CB37002), pp. 484–493, 1999.

[47] J. Peterson, P. Hudak, A. Reid, and G. Hager, “Fvision: A declarative language for

visual tracking,” in Practical Aspects of Declarative Languages (I. V. Ramakrishnan,

ed.), (Berlin, Heidelberg), pp. 304–321, Springer Berlin Heidelberg, 2001.

[48] A. Almeida Matos, G. Boudol, and I. Castellani, “Typing noninterference for reactive

programs,” The Journal of Logic and Algebraic Programming, vol. 72, no. 2, pp. 124–

156, 2007. Programming Language Interference and Dependence.

[49] D. N. Xu and S.-C. Khoo, “Compiling real time functional reactive programming,”

in Proceedings of the ASIAN Symposium on Partial Evaluation and Semantics-Based

Program Manipulation, ASIA-PEPM ’02, (New York, NY, USA), p. 83–93, Association

for Computing Machinery, 2002.

[50] L. Mandel, C. Pasteur, and M. Pouzet, “Time refinement in a functional synchronous

language,” in Proceedings of the 15th Symposium on Principles and Practice of Declar-

ative Programming, PPDP ’13, (New York, NY, USA), p. 169–180, Association for

Computing Machinery, 2013.

[51] G. Berry and M. Serrano, “Hiphop.js: (a)synchronous reactive web programming,” in

Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI 2020, (New York, NY, USA), p. 533–545, Association for

Computing Machinery, 2020.

92

[52] Z. Wan, W. Taha, and P. Hudak, “Real-time frp,” Proceedings of the ACM SIGPLAN

International Conference on Functional Programming, ICFP, vol. 36, 08 2001.

[53] I. Perez, “Back to the future: Time travel in frp,” SIGPLAN Not., vol. 52, p. 105–116,

sep 2017.

[54] M. Bärenz and I. Perez, “Rhine: Frp with type-level clocks,” SIGPLAN Not., vol. 53,

p. 145–157, sep 2018.

[55] R. Kaiabachev, W. Taha, and A. Zhu, “E-frp with priorities,” in Proceedings of the

7th ACM; IEEE International Conference on Embedded Software, EMSOFT ’07, (New

York, NY, USA), p. 221–230, Association for Computing Machinery, 2007.

[56] C. Belwal, A. M. Cheng, W. Taha, and A. Zhu, “Timing analysis of the priority

based frp system,” in Proceedings Work-In-Progress Session of the 14th Real-Time

and Embedded Technology and Applications Symposium : 22-24 April, 2008: St. Louis,

USA, no. TR-UNL-CSE-2008-0003 in Technical Report, pp. 89–92, University of Ne-

braska–Lincoln, Computer Science and Engineering, 2008. This work is supported in

part by the U.S. National Science Foundation under Award Nos. 0720856 and 0720857.

[57] J. Ras and A. M. K. Cheng, “Response time analysis for the abort-and-restart event

handlers of the priority-based functional reactive programming (p-frp) paradigm,” in

2009 15th IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications, pp. 305–314, 2009.

[58] H. C. Wong and A. Burns, “Schedulability analysis for the abort-and-restart (ar)

model,” in Proceedings of the 22nd International Conference on Real-Time Networks

and Systems, RTNS ’14, (New York, NY, USA), p. 119–128, Association for Computing

Machinery, 2014.

93

[59] H. Wong and A. Burns, “Priority-based functional reactive programming (p-frp) using

deferred abort,” in 2015 IEEE 21st International Conference on Embedded and Real-

Time Computing Systems and Applications, pp. 227–236, 2015.

[60] Z. Kazemi and A. M. Cheng, “A scratchpad memory-based execution platform for

functional reactive systems and its static timing analysis,” in 2016 IEEE 22nd Inter-

national Conference on Embedded and Real-Time Computing Systems and Applications

(RTCSA), pp. 176–181, 2016.

[61] J. D. Lin and A. M. K. Cheng, “P-frp task scheduling with preemption threshold,”

SIGBED Rev., vol. 15, p. 15–19, aug 2018.

[62] I. Perez, “Fault tolerant functional reactive programming (functional pearl),” Proc.

ACM Program. Lang., vol. 2, jul 2018.

[63] I. Perez, A. Goodloe, and W. Edmonson, “Fault-tolerant swarms,” in 2019 IEEE Inter-

national Conference on Space Mission Challenges for Information Technology (SMC-

IT), pp. 47–54, 2019.

[64] I. PEREZ and A. E. GOODLOE, “Fault-tolerant functional reactive programming

(extended version),” Journal of Functional Programming, vol. 30, p. e12, 2020.

[65] R. Mogk, L. Baumgärtner, G. Salvaneschi, B. Freisleben, and M. Mezini, “Fault-

tolerant Distributed Reactive Programming,” in 32nd European Conference on Object-

Oriented Programming (ECOOP 2018) (T. Millstein, ed.), vol. 109 of Leibniz Interna-

tional Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany), pp. 1:1–1:26, Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

[66] R. Mogk, J. Drechsler, G. Salvaneschi, and M. Mezini, “A fault-tolerant programming

model for distributed interactive applications,” Proc. ACM Program. Lang., vol. 3, oct

2019.

94

[67] M. Köhler and G. Salvaneschi, “Automated refactoring to reactive programming,” in

Proceedings of the 34th IEEE/ACM International Conference on Automated Software

Engineering, ASE ’19, p. 835–846, IEEE Press, 2019.

[68] G. Salvaneschi and M. Mezini, “Debugging for reactive programming,” ICSE ’16, (New

York, NY, USA), p. 796–807, Association for Computing Machinery, 2016.

[69] G. Salvaneschi and M. Mezini, “Debugging reactive programming with reactive in-

spector,” in 2016 IEEE/ACM 38th International Conference on Software Engineering

Companion (ICSE-C), pp. 728–730, 2016.

[70] I. Perez and H. Nilsson, “Testing and debugging functional reactive programming,”

Proc. ACM Program. Lang., vol. 1, aug 2017.

[71] A. Tasnim, “anisha150213/asteroid: A toy unity game: Asteroid.” https://github.

com/anisha150213/Asteroid.

[72] N. Heikkilä, K. Passi, and A. Väisänen, “asteroids/asteroids.hs at master · niko-

heikkila/asteroids.” https://github.com/nikoheikkila/asteroids/blob/master/

Asteroids.hs.

[73] M. Hayden, “Haskelloids/stack.yaml at master · keera-studios/haskelloids.” https:

//github.com/keera-studios/Haskelloids/.

[74] J. Rios and J. Burtet, “juan-burtet/haskellpong: The game pong make in haskell.”

https://github.com/juan-burtet/HaskellPong.

[75] V. Lopatin, “madjestic/pong: A pong game in haskell, using yampa frp, sdl2.” https:

//github.com/madjestic/Pong.

[76] A. Tasnim, “anisha150213/pong game unity.” https://github.com/anisha150213/

Pong_Game_Unity.

95

[77] Hooson, “How to make a glowing pong game for beginners - easy unity tutorial -

youtube.” https://www.youtube.com/watch?v=JZvNFrS7wTM.

[78] P. A. Salu, “Functional reactive programming for games,” Electronic Theses and Dis-

sertations, vol. 442, 2015.

[79] E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and W. d. Meuter, “A

survey on reactive programming,” ACM Comput. Surv., vol. 45, aug 2013.

[80] A.Martin, “Data structures for entity systems: Multi-threading and net-

working – t-machine.org.” https://t-machine.org/index.php/2015/05/02/

data-structures-for-entity-systems-multi-threading-and-networking/.

[81] A. Papari, “Introduction to entity systems · junkdog/artemis-odb wiki.” https://

github.com/junkdog/artemis-odb/wiki/Introduction-to-Entity-Systems.

[82] T. Härkönen, “Advantages and implementation of entity-component-systems - trepo.”

https://trepo.tuni.fi/handle/123456789/27593.

[83] “Entity component system - wikipedia.” https://en.wikipedia.org/wiki/Entity_

component_system.

[84] “Get your unity pro subscription today — unity.” https://unity.com/pages/

unity-pro-buy-now?

[85] “The most powerful real-time 3d creation tool - unreal engine.” https://www.

unrealengine.com/en-US.

[86] E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and W. d. Meuter, “A

survey on reactive programming,” ACM Comput. Surv., vol. 45, aug 2013.

[87] “Dots - unity’s data-oriented technology stack.” https://unity.com/dots.

96

[88] “Game development - haskellwiki.” https://wiki.haskell.org/Game_Development.

[89] “gloss.” http://gloss.ouroborus.net/.

[90] B. Lippmeier, “gloss: Painless 2d vector graphics, animations and simulations..”

https://hackage.haskell.org/package/gloss.

[91] “Yampa/game engine - haskellwiki.” https://wiki.haskell.org/Yampa/game_

engine.

[92] J. Carpay, “apecs: Fast entity-component-system library for game programming.”

https://hackage.haskell.org/package/apecs.

[93] A. Furtado, “Fungen: A lightweight, cross-platform, opengl-based game engine..”

https://hackage.haskell.org/package/FunGEn.

[94] L. z. Prezzavento, “fwgl-glfw: Fwgl glfw backend.” https://hackage.haskell.org/

package/fwgl-glfw.

[95] A. Gushcha and L. Oganyan, “gore-and-ash: Core of frp game engine called gore&ash.”

https://hackage.haskell.org/package/gore-and-ash.

[96] A. Gushcha, “gore-and-ash-actor: Gore&ash engine extension that imple-

ments actor style of programming.” https://hackage.haskell.org/package/

gore-and-ash-actor.

[97] “Start your creative projects and download the unity hub — unity.” https://unity.

com/download.

[98] “Downloads.” https://www.haskell.org/downloads/.

[99] “The freeglut project :: About.” https://freeglut.sourceforge.net/.

97

[100] L. Raines, “History of asteroids the classic arcade game.” http://www.

classicgaming.cc/classics/asteroids/history.

[101] “Pong game.” https://www.ponggame.org/.

[102] “Shader - wikipedia.” https://en.wikipedia.org/wiki/Shader.

[103] “Émile cohl - wikipedia.” https://en.wikipedia.org/wiki/\%C3\%89mile_Cohl.

[104] J. O’Brien, J. Hodgins, and R. Bodenheimer, “Computer animation,” 04 2001.

[105] “Maya software — get prices and buy maya 2023 — autodesk.” https://www.

autodesk.com/products/maya/overview?term=1-YEAR&tab=subscription.

[106] “2d animation software, flash animation — adobe animate.” https://www.adobe.

com/products/animate.html.

[107] “Animation & rigging — blender.org.” https://www.blender.org/features/

animation/.

[108] “Unity - manual: Animation.” https://docs.unity3d.com/Manual/

AnimationSection.html.

[109] “Timeline — blender manual.” https://docs.blender.org/manual/en/latest/

editors/timeline.html.

[110] “How to animate characters with animation rigging — unity.” https://unity.com/

solutions/rigging-in-animation.

[111] M. Pawlan, “What is javafx? — javafx 2 tutorials and documentation.”

https://docs.oracle.com/javafx/2/overview/jfxpub-overview.htm#:~:

text=JavaFX\%20graphics\%20are\%20based\%20on,graphics\%20processing\

%20unit\%20(GPU).

98

[112] J. Juneau, C. Dea, F. Guime, and J. O’Conner, “openjdk/jfx: Javafx mainline devel-

opment.” https://github.com/openjdk/jfx.

[113] N. Welsh, “noelwelsh/flan: An animation library for the javascript functional reactive

library flapjax.” https://github.com/noelwelsh/flan.

[114] “React – a javascript library for building user interfaces.” https://reactjs.org/.

[115] “facebook/react: A declarative, efficient, and flexible javascript library for building

user interfaces..” https://github.com/facebook/react.

[116] E. Czaplicki, “A farewell to frp.” https://elm-lang.org/news/farewell-to-frp.

[117] E. Czaplicki, “”code is the easy part” by evan czaplicki - youtube.” https://www.

youtube.com/watch?v=DSjbTC-hvqQ.

[118] “psg-titech/emfrp: Pure functional reactive programming language for small-scale em-

bedded systems.” https://github.com/psg-titech/emfrp.

[119] J. Hughes, L. Pareto, and A. Sabry, “Proving the correctness of reactive systems

using sized types,” in Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’96, (New York, NY, USA), p. 410–423,

Association for Computing Machinery, 1996.

[120] M. Bärenz, “essence-of-live-coding: General purpose live coding framework.” https:

//hackage.haskell.org/package/essence-of-live-coding.

99

	Future of Functional Reactive Programming in Real-Time Systems
	Recommended Citation

	tmp.1689089043.pdf.39svY

