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ABSTRACT  

UNDERSTANDING POPULATION GAPS AND USING EXPLAINABLE MACHINE 

LEARNING TO PREDICT RISK OF FALLS FOR SENIOR ADULTS 

 

by  

 

Ling Tong 

 

The University of Wisconsin-Milwaukee, 2023  

Under the Supervision of Professor Jake Luo 

 

 

Senior adult falls are one of the leading causes of injury and death. The analysis of social 

determinants and healthcare utilization for senior patients with a history of falls is limited. Most 

healthcare outcome studies focus on risk factors for falls. There is a lack of studies on patients’ 

socioeconomic and demographic effects on healthcare utilization. With unequal utilization of 

healthcare adoption, clinical developments, such as clinical decision-making tools, cannot reach 

people equally, which limits the potential of improving healthcare coverage. 

To close the healthcare utilization gap, this dissertation includes two studies focusing on 

healthcare disparities and the use of innovative technology to provide solutions. 

1) To understand the population gaps in healthcare adoption: the first study examines 

socioeconomic disparities and their impact on healthcare utilization for senior patients with a 

history of falls in southeast Wisconsin and the Milwaukee metropolitan area, one of the most racial 

segregated communities in the United States. This study found that disadvantaged social 

conditions, including under-insurance, residing far from a hospital, lower education, and lower 

income, were associated with a lower healthcare utilization rate. These findings indicate the need 

to address healthcare inequities to facilitate equitable care for all patients. 
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2) To improve the clinical decision support model using an interpretable machine learning 

framework: The clinical decision support model has been demonstrated to be an effective method 

to improve healthcare and reduce inequality; however, the mechanisms of the clinical decision 

support model are difficult to interpret for clinical practitioners. To address this problem, the 

second study discusses interpretable machine learning uses and applications. The second study 

discussed an example of machine learning-based text classification for clinical computed 

tomography reports, specifically for temporal bone fractures, one of the severe outcomes of senior 

adult falls. This study develops a solution to use an interpretable artificial intelligence framework 

and computer-based methodology to understand the mechanisms of clinical decision models to 

close the inequality gap for senior adults. Machine learning models were used to classify fractures 

based on text reports, and two methodologies were used for interpretation, which resulted in high 

interpretability, possibly improving the physicians’ trust in the clinical decision-making model. 

This study can assist physicians in using technology more effectively to aid decision-making and 

increase trust in computerized models. In addition, this study demonstrates machine learning 

classification models can process a large quantity of clinical texts to reduce the physician’s 

documentation processing workload, possibly leading to high-quality healthcare. 

Together, the two papers in this dissertation underscore the importance of addressing 

healthcare disparities. The study shows it is feasible to use machine learning, a computer-based 

technology, to form a pathway for better care for patients. By addressing disparities and leveraging 

technology effectively, it is possible that healthcare providers could provide equitable and high-

quality care for all patients, regardless of socioeconomic status or diagnosis. 
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1.1 Senior Adult Falls Overview: A Major Public Health Concern 

Falls are one of the top causes of injury and death in older adults, which becomes a major 

public concern.[1], [2] Every year, one in three adults over the age of 65 falls.[3] Over fifty percent 

of adults over the age of 80 had a history of falls.[2] Twenty to thirty percent of patients with falls 

suffer from moderate to severe injuries, limiting their ability to live independently in the 

community. The severe injury of falls requires hospitalization and increases the risk of death[4]. 

In 2018, there were 2.4 million non-fatal fall injuries among older adults in the United States that 

required treatment in emergency rooms, with over 700 thousand patients being hospitalized.[5] 

Over 34 thousand older adults die from unintentional fall injuries. [5] As a result, it is estimated 

that falls are the fifth leading cause of death in adults over the age of 65,[6] and will become a 

continuing issue in senior adult care.  

Because of the high prevalence of age-related physiological changes, comorbidities, and 

delayed functional recovery, older people are more vulnerable to injury, leading to further 

deconditioning and more falls [1]. While 30 to 50 percent of falls result in minor injuries, such as 

bruises or lacerations, five to ten percent of falls result in major injuries, including fractures and 

traumatic brain injuries [7]. Falls are the leading cause of traumatic brain injury in older people, 

accounting for 46 percent of fall-related deaths in the cohort [8]. Seventy-six percent will slightly 

lose mobility, and 50 percent will lose the ability to perform activities of daily living. Falls are also 

the leading cause of injury-related death in older adults [9]. The risk of death from fall-related 

injuries is 2.33 times higher than the risk of death from other causes [10]. Approximately 50 

percent of older adults who fall are unable to stand up and remain on the ground [11]. Pressure 

sores, pneumonia, and dehydration can result from the inability to stand up. Approximately one-

half of older adults will fall again within six months [12]. This enables many older adults to have 
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a fear of falling [13]. Research indicates that up to 40% of them will limit their daily activities to 

prevent further falls [14]. Restricted activity can lead to social isolation and depression. Further 

declines in physical fitness and social isolation, in turn, increased the risk of falls [15]. 

As the United States population is projected to reach 80.8 million by 2040 and 94.7 million 

by 2060 [16], senior adults are one of the fastest-growing demographics. The prevalence of falls 

and fall-related injuries in this demographic is projected to escalate, placing substantial strain on 

healthcare systems. Therefore, it is essential to provide an overview of the elderly fall problem to 

improve healthcare. 

The etiology of falls in older adults is multifactorial, encompassing intrinsic factors, such 

as age-related declines in muscle strength, balance, and cognitive functioning, as well as extrinsic 

factors, such as environmental hazards and medication side effects [7]. Furthermore, chronic 

conditions, such as osteoporosis, arthritis, and Parkinson's disease, have been identified as 

contributing factors to the increased risk of falls in the elderly population [17]. In light of these 

complex interactions, it is imperative to develop a comprehensive understanding of the underlying 

causes and potential interventions to effectively address this growing public health concern [18]. 

Despite the considerable body of research on falls in older adults, there remain significant 

gaps in knowledge related to the most effective prevention strategies and interventions [19], [20]. 

While certain measures, such as strength and balance training, home safety modifications, and 

medication reviews, have demonstrated efficacy in reducing fall risk, the optimal combination of 

interventions and their applicability to diverse populations are not yet fully understood [21]. 

Additionally, the implementation of such interventions in real-world settings is often hindered by 

barriers such as inadequate funding, a lack of professional training, and insufficient collaboration 

between healthcare providers and community organizations [22]. The economic burden of falls 
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among older adults is substantial, with direct medical costs reaching billions of dollars annually 

[23]. This financial strain is compounded by indirect costs, including lost productivity, informal 

caregiving, and reduced quality of life for both patients and their caregivers [24]. As a result, 

investing in research and policy initiatives focused on fall prevention is not only a moral imperative 

but also an economically prudent strategy to mitigate the long-term consequences of this public 

health challenge [25]. 

In conclusion, the issue of falls among older adults is a complex and multifaceted problem that 

warrants a comprehensive and interdisciplinary approach. By addressing the existing gaps in 

knowledge and overcoming barriers to the implementation of evidence-based interventions, it is 

possible to make significant strides in reducing the incidence and impact of falls in this rapidly 

growing population. Ultimately, this will contribute to the promotion of healthy aging, the 

preservation of independence and quality of life, and the optimization of healthcare resources. 

Upon investigation, there are major gaps in the treatment, diagnosis, and prevention of falls in 

clinical care. Identifying these gaps can significantly help find a solution to address them and 

optimize health care resources. Providing a clear background investigation also provides a clear 

path for new healthcare improvements for elderly fall prevention to reduce potential elderly falls 

[20]. 

1.2 Inequality of Socioeconomic Conditions and Healthcare Utilizations  

The risk factor of falls has been identified from a clinical perspective, with many 

comprehensive evaluations available [9], [20], and [26]. The major two factors are related to 

person-specific factors and environmental factors. Environmental factors include poor-fitting 

footwear, slippery floors, tripping hazards, loose rugs, a lack of stair railings, poor lighting, and so 

on [27]. Improving the environment has been demonstrated as an effective method to reduce fall 
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risk [28]. Public health studies have come up with interventions to measure in-home fall risk 

detection, walking path planning, and robot-based alerts and preventions. Personal factors include 

individual characteristics such as age, functional abilities, chronic diseases, and gait disturbances. 

[1]. Most risk factors found in a literature review were intrinsic and included a wide range of risk 

categories: demographic profile, lower extremity strength, vertigo and dizziness, vision, cognition, 

cardiovascular disease, medications, depression, gait, and balance caused by normal aging and 

pathological effects. Additionally, each risk category had several risk factors that, when co-

existing, might increase the chances of falling. [29], [30] For instance, orthostatic hypotension, 

hypertension, and atrial fibrillation fall under the cardiovascular disease category. For example, 

Gangavati et al. found that older adults with systolic orthostatic hypotension and uncontrolled 

hypertension had a higher risk of falling than those with uncontrolled hypertension alone. [31]  

While fall risk factors have been comprehensively studied, socioeconomic factors have 

received less attention. [32] Those with lower socioeconomic status may not have equal access to 

care following a fall. [33] The socioeconomic status of the elderly refers to an individual's social 

standing, which is typically measured by several indicators such as education, occupation, income, 

and location. [32] Because higher socioeconomic status is associated with better well-being and 

lower nutritional risk, older people with lower socioeconomic status may be more vulnerable to 

falls. [34]. Despite this, very few studies have looked into the relationship between the elderly's 

fall risk and socioeconomic factors, and it is unknown how socioeconomic factors affect the 

patient’s healthcare adoption rate for patients with falls. 

Health equity is a significant gap to ensure all patients can receive equitable healthcare. 

Offering equitable health care leads to more efficient healthcare systems overall, as a healthier 

population requires less medical care. [35] For patients with lower socioeconomic status, there 
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might be a chance they received a lower level of healthcare compared to the average. [36] 

Investigating the gaps in health disparities in the population can benefit a large population, 

especially those of lower socioeconomic status. [37] This study aims to discover the equity 

problems in healthcare utilization and provide guidelines, ensuring different outcomes and 

recommendations for specific populations. Guidelines can potentially help practitioners address 

inequitable variations in health care and the allocation of services, which might result in health 

disparities [36, 37]. 

Falls among older adults, while already a significant public health concern, are further 

compounded by disparities in socioeconomic status and access to healthcare [38]. Although 

numerous studies have focused on the clinical and environmental aspects of falls, there remains a 

paucity of research examining the interplay between socioeconomic factors and the risk, 

prevention, and management of falls in older adults [39]. This gap in knowledge hinders the 

development of equitable interventions and policies, ultimately exacerbating health disparities and 

perpetuating cycles of disadvantage among vulnerable populations [35]. 

Socioeconomic factors, such as education, income, and neighborhood characteristics, have 

been shown to influence health outcomes and access to healthcare services in older adults [40]. 

For instance, those with lower levels of education may have limited health literacy, resulting in 

suboptimal engagement with healthcare providers and reduced adherence to fall prevention 

strategies [41]. Similarly, older adults residing in socioeconomically disadvantaged neighborhoods 

may face additional barriers to accessing appropriate healthcare services, including transportation 

difficulties, inadequate health insurance coverage, and a lack of culturally competent providers. 

Moreover, socioeconomic disparities may influence the availability and quality of 

resources within the home and community environments, further exacerbating the risk of falls [42]. 
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Older adults with limited financial means may be unable to afford necessary home modifications 

or assistive devices, such as grab bars and walkers, which have been demonstrated to reduce fall 

risk [28]. Additionally, those residing in underprivileged communities may experience higher 

levels of environmental hazards, such as poorly maintained sidewalks and inadequate public 

lighting, further increasing the likelihood of falls and associated injuries [43]. 

Addressing the issue of health equity in the context of falls among older adults requires a 

multifaceted approach that considers the interplay between clinical, environmental, and 

socioeconomic factors [44]. This may involve the development and implementation of targeted 

interventions that address the unique needs and challenges faced by socioeconomically 

disadvantaged older adults, as well as broader policy initiatives aimed at reducing health disparities 

and promoting equitable access to healthcare services [39]. Such strategies may include the 

provision of affordable and accessible home modification programs, the expansion of community-

based fall prevention initiatives, and the promotion of cultural competence among healthcare 

providers [45]. Furthermore, the integration of social determinants of health into fall risk 

assessments and care plans can facilitate the identification of at-risk individuals and the tailoring 

of interventions to their specific needs. 

In conclusion, the examination of socioeconomic factors in relation to falls among older 

adults is a critical yet underexplored area of research with significant implications for health equity 

and the optimization of healthcare resources. By addressing these gaps in knowledge and 

implementing targeted interventions and policies, it is possible to promote more equitable 

healthcare outcomes and foster the well-being of all older adults, regardless of their socioeconomic 

status. 
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1.3 Senior Adult Falls and Bone Fractures  

Studies show older adults’ falls are associated with bone fractures, a severe outcome with 

one of the worst prognoses. [46] Approximately 30% of falls result in an injury that requires 

medical attention, and fractures occur in approximately 10% of total falls. [47] People over the age 

of 65 experience significantly increased morbidity and mortality [2]. In addition, falls cause 90 

percent of all hip fractures, significantly increasing the death rate of older adults [48]. In the first 

year after a hip fracture, 20 percent of older patients will die. The presence of a bone fracture has 

been linked to 40% of deep vein thromboembolism and 10% of delirium. [49] The complications 

resulted in longer hospital stays, increased mortality, and the risk of nursing home placement. The 

death is primarily due to pneumonia, cardiac disease, pulmonary embolism, and surgical 

complications. [18] It is estimated that women before the age of sixty tend to extend their arms as 

they fall, which increases the risk of forearm fractures. Women tend to fall sideways after that age 

and have a higher incidence of hip fractures [14]. 

Falls and their consequences account for a significant portion of avoidable health care costs. 

In the United States, the cost of medical resources spent on falls and related injuries is estimated 

to be close to $30 billion in 2018 [23]. In the United Kingdom, the cost of falls is 1.6 billion pounds 

[50]. As the global population ages, expenditures are expected to approach $55 billion by 2030. 

[51] Furthermore, fall-related medical events account for 40% of nursing home placements, 

contributing to even higher healthcare costs. [52] The national costs of fall-related treatments 

account for 0.85 to 1.5 percent of total healthcare expenditures [53]. 

An issue with bone fracture treatment is that it requires significant medical resources [54]. 

Fractures frequently necessitate multidisciplinary care, including visits to the emergency 

department, radiology, and orthopedics, which consume significant medical resources on 
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documentation and take a large amount of time for clinicians [54]. The documentation increases 

the burden on the health care system. In this situation, it has been demonstrated that the burden 

of clinical documentation on professionals is the major cause of negative effects on health care. 

Reducing the documentation burden on U.S. clinicians is an urgent priority within the healthcare 

community [55].  For example, the American Medical Informatics Association, the leading 

association for health care administration, has prioritized the documentation overload problem 

[566]. The American Medical Informatics Association has taken leadership in the 25x5 initiative 

to address this nation-wide documentation issue. This initiative leverages the collective expertise 

of key stakeholders in health care, industry, and policy to prioritize and implement the mission of 

the initiative. The mission is to reduce the documentation burden for U.S. clinicians to 25% of 

the current level in the next 5 years. 

1.4 Using Explainable Machine Learning to Reduce the Burden of Documentation 

Elderly falls are controllable. [57] There are predictive patterns for them based on known 

risk factors and defined demographics. A study has shown that the physiological changes 

associated with aging account for 72% of falls, whereas the other 18% are unpredictable and 

categorized as accidental because they are the result of environmental hazards [1]. The fact that 

cognitive and motor performance deficiencies are significantly associated with fall risk suggests 

that falls can be predicted through clinical assessments. Conventionally, the most accurate health 

monitoring occurs in a laboratory or hospital setting, but such hospital-based health monitoring is 

prohibitively expensive and not regularly undertaken. [58] The automatic fall detection approach, 

on the other hand, allows for the early detection of elderly individuals in danger of falling or the 

detection of those who have already fallen so that subsequent interventions can be made. This 

capability can reduce the incidence of initial and subsequent falls and mitigate physical and mental 
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suffering. Therefore, machine learning-based methods utilizing known risk factors and 

demographics can be developed to predict the risk of falls, and a fall prevention program based on 

the prediction model has the potential for clinical intervention. 

Currently, several machine learning detection and risk assessment models have been 

developed for the prediction of future falls in individuals without a history of falls. [59]–[64] The 

studies demonstrate that machine learning has the potential to be applied to a wide variety of 

medical applications, including but not limited to clinical decision-making. A large number of 

successful artificial intelligence applications in healthcare have been used in prediction tasks, such 

as predicting adverse events [65], [66], drug responses [67], complications [68], and medical 

diagnoses [69], [70]. While many fall detection algorithms have been developed, the prediction 

accuracy must still be approved to fully realize the model’s potential in clinical practice. There is 

a foreseeable future when artificial intelligence can fully leverage electronic health records, which 

can develop complex models to assess the risk of a patient based on their medical history [71]. 

Therefore, further studies of AI in fall prediction can provide clinicians with alerts for high-risk 

patients, reducing the occurrence of future falls [72]. 

Electronic health records have been acknowledged as a key to improving healthcare quality 

[73]. Computerized decision-making models are widely used in clinical applications for disease 

discovery, identification, and prediction [74]. However, most current studies use structured 

features to build models. Unstructured data, such as free-text clinical notes, is rarely used. The 

limited use of free-text data is due to format issues [75], [76]. For example, clinical texts require 

human-level intelligence to process complex linguistic rules that go beyond the scope of simple 

classification. To leverage clinical texts and build an accurate model, a common method is to label 
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the clinical text. The manual process of creating free-text clinical notes and labels was inevitably 

expensive. The cost limits the wider use of free-text clinical notes. 

Natural language processing [76] techniques are commonly used to build clinical 

classification models using free texts. Natural language processing mimics how humans learn a 

language by comprehending its semantics. Understanding natural language requires linguistic 

knowledge such as morphology, syntax, and pragmatics [77]. We have seen considerable progress 

in natural language processing and AI-based clinical decision-making classifiers [73]. However, 

understanding a model’s mechanism requires extensive computer-domain knowledge [78]. 

Clinical practitioners need a simple method to understand the mechanisms of decision-making 

models. 

Even though machine-learning clinical classification models have improved, only a few of 

them are used in clinical settings because doctors don’t trust them [79]. A validation set is a 

common way to ensure that a machine learning classification is generalizable [80]. However, a 

validation set must not replace real clinical contexts. Before using a computerized model in clinical 

practice, physicians must be confident that the decision-making model is applicable to patients in 

clinical settings. It is impossible to establish trust unless physicians understand how a model makes 

decisions based on medical domain knowledge. The lack of trust and transparency in decision-

making models raises concerns about making incorrect decisions [75]. 

It is possible to address this distrust by visualizing classifier interpretations. [81] A set of 

untemplated narrative reports from temporal bone computed tomography was used in our case 

study. These reports differentiate between those with and without fractures. Our visualization 

demonstrates that many aspects of clinical texts, including word frequency and word selection, 

impact the final classification decision. For example, we demonstrate that the presence of some 
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words, such as ‘fracture’, is the reason a classifier makes a positive classification. Using our 

visualization, physicians can combine medical domain knowledge with visualization to assess the 

validity of the highlighted keywords. Therefore, we believe that our visualization can boost 

physicians’ confidence in using classification models. This study could accelerate the adoption of 

machine learning-based decision-making systems in clinical settings and reduce the 

documentation burden for clinical practitioners. 

1.5 Problem Statement 

This dissertation includes two studies to address the two gaps in the topic of older adults’ 

falls. The first study starts with association studies to identify the socioeconomic gaps influencing 

health care adoption in the southeastern Wisconsin area. The second study's goal is to reduce 

clinicians’ documentation burden and build trust using interpretable machine learning models. The 

second study developed a clinical document documentation classification system to process natural 

language text and make an automatic classification of temporal bone fractures. The evaluation 

shows the interpretable framework can successfully highlight the most impactful word that 

contributes to the classification results. Therefore, the machine learning model has the potential to 

be deployed in a hospital environment to process clinical documents. The explainable model can 

also increase clinicians’ trust in clinical decision-making tools. A clinician’s trust may form a 

pathway to higher healthcare quality using the automated tool. 

1.5.1 Investigating the Inequality of Health Care for the Older Adult Population 

Despite many studies on fall risk factors, physicians at Froedtert Hospital reported that 

hospital admissions due to falls appear not to be proportional to race and gender distribution. 

Therefore, the patient demographic may be a factor in fall-related care. Also, patients with low 
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socioeconomic status cannot receive the same level of care as those with high socioeconomic status, 

which may exacerbate health care disparities. To uncover the inequality issue for patients with fall 

diagnoses, an association study investigating socioeconomic variables that involves fall-admitted 

students is required. These socioeconomic factors, such as the patient's location, income, and type 

of insurance used, will play an important role in health care adoption following a patient's fall. The 

study can help to understand how socioeconomic factors influence patients with a history of falling, 

revealing potential disparities in health care access. It is also important to understand the 

relationship between socioeconomic factors and fall risk factors, which can help identify the most 

vulnerable population and provide targeted interventions to reduce the risk of falls. Understanding 

the causes of disparity and promoting a solution to improve equal access to care for all patients is 

critical. 

1.5.2 A Transparent Text Classifier Can Reduce the Documentation Burden 

The burden of clinical documentation on professionals has had a proven negative impact 

on health care [82]. This burden leads to a variety of negative outcomes, including clinician 

burnout and decreased job satisfaction, increased medical errors, and hospital-acquired conditions. 

The use of computed tomography (CT) documentation to diagnose fall-related fractures has 

resulted in a large number of documents and highly specialized narratives. To reduce the burden, 

machine learning (ML) can successfully leverage free-text clinical notes to classify patients' 

diagnostic outcomes. However, the interpretation of a classification result remains challenging due 

to the model’s complexity. A complex machine learning model is often called a black box, which 

causes difficulties in understanding the mechanism. To increase the transparency of the machine 

learning model even further, we used word frequency analysis and a comprehensible text explainer 

to provide simple visualizations of how the machine learning model makes predictions and 
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ultimately to improve the mutual trust of computerized models, finally leading to the adoption of 

automatic computer-based systems in clinical practice. 

1.6 The Contribution of Two Studies 

The first contribution is on the findings of healthcare disparities. We investigate 

socioeconomic disparities and their impact on healthcare utilization in Southeast Wisconsin for 

senior patients with a history of falls. We designed a cohort study and acquired data from the 

electronic health records of Froedtert Health Care Center. We analyzed the association between 

elderly falls and medications, vital signs, a list of diagnoses, and a number of socioeconomic 

factors, including age, education, race, insurance coverage, and individual income. This study 

discovered that disadvantaged social conditions, including a lack of insurance, living far from a 

hospital, a lack of education, and a lower income, were associated with lower healthcare utilization. 

These findings highlight the importance of addressing healthcare inequities in order to provide 

equitable care to all patients. The statistical methodology of the study can also be applied to 

discover the association between socioeconomic status and healthcare utilization problems in other 

specialties and diagnoses. Using this method, we have extended our studies into other aspects of 

healthcare, including the inequality of telemedicine visits [83], [84], obesity care [85], tertiary 

rhinology care [86], idiopathic sudden sensorineural hearing loss [87], treatment of dysphonia [88], 

Meniere’s disease [89], unilateral vocal fold paralysis [90], vestibular schwannoma [91], and post-

tympanotomy tube otorrhea [92]. Therefore, we have demonstrated the methodology's broad 

applicability in finding healthcare inequality from electronic health records. 

The second contribution emphasizes the significance of creating interpretable machine 

learning models for clinical text classification, specifically in the context of clinical computed 

tomography (CT) reports concerning temporal bone fractures. By developing an automated text 
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classification system to classify patients' diagnostic outcomes for bone fractures, this study seeks 

to reduce the spending of healthcare resources on physician documentation, which can lead to 

improved efficiency in healthcare delivery. Utilizing a large dataset of CT reports, the machine 

learning model is trained to classify patients' diagnostic outcomes accurately. The incorporation 

of word frequency analysis and a comprehensible text explainer provides simple visualizations of 

the model's decision-making process. This increased transparency fosters better understanding and 

trust in computerized models among physicians and other healthcare professionals. 

The significance of the second research lies in its potential to help physicians use 

technology more effectively to aid decision-making and reduce documentation workload, allowing 

them to focus more on patient care. By increasing trust in computerized models through 

interpretable machine learning, healthcare professionals can become more receptive to the 

adoption of advanced technology in clinical practice. Ultimately, this can lead to more accurate 

and efficient diagnoses, improved patient outcomes, and optimized healthcare resources. 
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2. Related Work 
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2.1 Senior Adult Falls Problem and Clinical Outcomes 

Falls are a major clinical problem among older adults, contributing to significant morbidity 

and mortality. In fact, falls are the leading cause of injury-related death and hospitalization among 

adults aged 65 years and older [93]. Falls can lead to serious injuries, such as hip fractures, head 

injuries, and lacerations, and can result in long-term disability or even death. Falls can also have a 

psychological impact on older adults, leading to fear of falling, social isolation, and decreased 

quality of life [94]. Given the significant impact of falls among older adults, researchers have 

focused on understanding the factors that contribute to falls and developing effective prevention 

strategies. Several risk factors have been identified for falls among older adults, including 

advanced age, female gender, cognitive impairment, visual impairment, and mobility impairment. 

[95], [96] Additionally, social determinants of health, including socioeconomic status, race, and 

geography, may also contribute to falls among older adults [97]. 

To address the clinical problem of senior adult falls, healthcare providers have 

implemented several fall prevention strategies. These strategies may include exercise programs, 

medication management, environmental modifications, and patient education [21]. However, the 

effectiveness of these interventions can be limited by a lack of healthcare access or other social 

determinants of health. Machine learning has emerged as a potentially powerful technique for 

identifying risk factors for falls among older adults and developing personalized fall prevention 

strategies. Researchers have used machine learning to predict falls among older adults [98], 

identify factors that contribute to falls [99], and develop personalized rehabilitation plans for fall 

victims [100]. These studies suggest that machine learning may be a promising approach for 

addressing the clinical problem of senior adult falls. 
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2.2 The Socioeconomic Inequality Gaps in Healthcare Adoption 

In addition to being a major clinical problem, falls among older adults also highlight the 

issue of healthcare inequality. Socioeconomic factors, including income, education level, and 

insurance coverage, can significantly impact healthcare adoption and utilization among older 

adults [101], [102]. Older adults with limited financial resources or inadequate insurance coverage 

may face barriers to accessing necessary healthcare services, such as assessment and management 

of fall risk. 

Previous studies have demonstrated that socioeconomic disadvantage is associated with 

increased fall risk among older adults [103], [104]. Additionally, studies have shown that 

socioeconomic factors also impact healthcare utilization among older adults with falls. For 

example, older adults with lower income, lower education levels, and inadequate insurance 

coverage were less likely to access rehabilitation services and were more likely to experience poor 

outcomes after a fall [105]. These studies suggest that addressing socioeconomic factors is crucial 

for reducing healthcare inequality in the management of senior adult falls. 

To address the issue of healthcare inequality in the management of senior adult falls, 

healthcare providers and policymakers have implemented several strategies. For example, 

healthcare providers can use telemedicine to improve access to healthcare services for older adults 

with limited mobility or inadequate insurance coverage [106]. Additionally, community-based 

interventions, such as fall prevention programs, transportation services, and healthcare navigation 

services, may also help reduce healthcare inequality and improve healthcare utilization among 

older adults with falls. [107], [108] 
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Machine learning has also shown promise for addressing healthcare inequality in the 

management of senior adult falls. Machine learning algorithms may help identify socioeconomic 

factors associated with fall risk, improve identification of high-risk individuals, and develop 

targeted interventions for those at highest risk [109]. By integrating socioeconomic factors into 

machine learning algorithms for fall prevention, healthcare providers can help address healthcare 

inequality in the management of senior adult falls. 

2.3 Reducing Physicians’ Workload May Close the Inequality Gap  

One potential approach to reducing healthcare inequality and improving healthcare access 

and quality is to leverage technology to reduce physicians' workload. Many healthcare providers, 

particularly in underserved areas, face a high patient-to-provider ratio, which can lead to burnout 

and reduced quality of care. Furthermore, the COVID-19 pandemic has emphasized the 

importance of telehealth and digital health technologies in addressing healthcare access issues, 

particularly for vulnerable populations. [110] 

Several studies have found that telehealth and digital health technologies can reduce 

physician workload and improve healthcare access and quality. For example, telehealth 

consultations have been found to be equivalent to in-person consultations in terms of diagnostic 

accuracy and patient satisfaction [111]. Digital health technologies, such as mobile health apps 

and patient portals, can also improve healthcare access and quality, particularly for patients with 

chronic conditions [112]. 

Moreover, studies have shown that reducing physician workload through the use of 

technology can help address healthcare inequality by improving access to care for underserved 

populations. For example, a study by Reed [113] found that telehealth consultations improved 

access to specialist care for patients in rural areas. Another study found that a telehealth program 
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for diabetic patients led to improved glycemic control among low-income and Hispanic patients 

[114]. 

Machine learning can also be leveraged to reduce physician workload and improve 

healthcare access and quality. For example, machine learning algorithms have been used to 

identify patients at high risk for adverse health outcomes, such as hospital readmissions, and 

develop personalized care plans [115]. Additionally, natural language processing (NLP) 

techniques can be used to extract valuable information from unstructured clinical notes, reducing 

the time and effort required for physician documentation. 

Overall, reducing physician workload using technology, including telehealth, digital health 

technologies, and machine learning, can help address healthcare inequality and improve healthcare 

access and quality. By increasing efficiency and reducing barriers to care, these approaches can 

help ensure that all patients receive the high-quality care they need and deserve. 

2.4 Clinical Decision-Making Tools Can Reduce the Burden and Improve Care Quality 

Managing clinical documentation is a critical aspect of healthcare delivery, but it can also 

be a significant burden on providers, leading to burnout and reduced quality of care. Many 

healthcare systems struggle with clinical documentation overload, with providers feeling 

overwhelmed by the amount of documentation required for each patient encounter. This problem 

can be particularly acute in resource-limited settings, where there are fewer providers to handle a 

larger caseload [116]. 

Machine learning has the potential to alleviate some of the burden of clinical 

documentation and improve healthcare quality by automating parts of the documentation process. 

For example, machine learning algorithms can be used to automatically extract information from 

electronic health records (EHRs) and other clinical documents, reducing the time and effort 
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required for providers to manually input this information [117]. Additionally, machine learning 

algorithms can be used to identify high-risk patients, predict clinical outcomes, and develop 

personalized treatment plans, all of which can enhance the quality of care delivered to patients 

[118]. 

One promising application of machine learning in clinical documentation is the 

development of automatic decision-making tools that can help providers make more accurate and 

informed decisions in real-time. These tools can be integrated into EHRs or other clinical systems 

and can provide real-time recommendations based on patient data and other relevant clinical 

information. For example, a machine learning algorithm could be used to flag patients who are at 

high risk for medication errors or adverse drug reactions, alerting providers to potential issues 

before they occur [119]. Similarly, machine learning algorithms can be used to classify clinical 

notes and extract relevant information, allowing providers to access key information more 

efficiently [120]. 

Overall, using machine learning to develop automatic decision-making tools can help 

reduce the clinical documentation load and improve healthcare quality. By automating parts of the 

documentation process and providing real-time decision support, providers can focus on providing 

high-quality, patient-centered care rather than struggling with the administrative burden of clinical 

documentation. These tools can also reduce errors and improve clinical outcomes, ultimately 

benefiting patients and providers alike. 

2.5 Clinical Text Classification  

To reduce error and improve efficiency, many studies have begun to explore the adoption 

of text classification systems since the 1990s. [121]. Early studies focused on rule-based methods 

to build classifiers for medical documents [121]. For example, Aronow et al. [122] developed 
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NegExpander, a computerized system that distinguishes between positive and negative evidence 

in radiological reports. The system recognizes nouns and conjunctive phrases that define negation 

boundaries. The proposed classifier had a precision value of 93%. Thomas et al. [123] developed 

a text search algorithm based on association rules and implemented a computerized text 

classification system. The fully computerized way that radiographic reports were categorized as 

"normal," "neither normal nor fracture," and "fracture". A rule-based system is a simple and 

effective AI-based application. However, the speed and ability to handle complex tasks are limited. 

On the other hand, ML-based classifiers can adjust their parameters to adapt to the ever-

changing word usage in medical documents. In recent years, machine learning studies have begun 

to use complex statistical models to classify clinical texts. In decision-making, Bayesian networks 

[124]–[129], support vector machines [127], [130]–[133], and decision trees [125], [128], [134]–

[137] have been widely used. These models outperformed the rule-based system in terms of 

classification accuracy. In 2006, de Bruijn et al. [127] used supervised machine learning 

approaches to develop classifiers that automatically detect acute wrist fractures in radiological 

reports. They reported that the support vector machine (SVM)-based text classifier performed best 

overall, with 94% accuracy. Zuccon et al. [132] experimented with feature engineering in 

SNOMED CT concepts to improve medical image classification accuracy. The classifier 

developed by Guido Zuccon et al. could correctly identify fractures from radiological reports. It is 

also stated that when using bigram or SNOMED+bigram features, the Nave Bayes classifier had 

the highest F1-score. Dai et al. [138] created a classifier for bone fracture detection using regular 

text classification in 2017. Topic modeling and document similarity measurement are used to train 

the classifier. 
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The lack of transparency in the classifier remains an unresolved issue. As a result, 

physicians struggle to understand why the classifier makes positive or negative classifications. A 

recent study [139] used a large dataset to implement name entity recognition and bone fracture 

classification. There are some attempts at machine learning models’ interpretation of clinical texts. 

For example, a recent study [126] built five machine learning algorithms to classify Alzheimer’s 

drugs’ mechanisms of action. The author visualized a decision tree and tried to provide some 

textual interpretations. Obviously, more attempts are needed to fully reveal how machine learning 

models interpret the classification results. In these studies, the model’s interpretability issues have 

not been fully resolved. To help people understand how decision-making systems work, it is 

important to build an interpretable model that is clear and easy to understand. 

2.6 Interpretable Machine Learning 

Methods based on machine learning are effective for classifying free text reports. An ML 

model, as opposed to a rule-based system, consists of an algorithm that can learn latent patterns 

without hard-coding fixed rules [140]f an algorithm that can learn latent patterns without hard-

coding fixed rules [140]. One disadvantage of machine learning models is the difficulty of 

interpreting classification results [141]. To address this weakness, recent studies have begun to 

interpret machine learning models. This field of study is known as "interpretable machine learning" 

[141]. An ideal solution for interpretable machine learning is to provide the evidence and reasoning 

for the user. Furthermore, users can discover knowledge and justify predictions based on provided 

evidence [142]. Therefore, interpretable machine learning models increase user trust in classifiers. 

Researchers have developed two types of model interpretation techniques: model-agnostic and 

model-specific approaches [143]. The model-agnostic approach explains the prediction of an ML 

model by approximating the output of the model’s algorithms. Shapley Values, Independent 
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Conditional Expectation Plots, Local Interpretable Model-Agnostic Explanations, Permutation 

Feature Importance, and Partial Dependence Plots are a few examples [143]. Model-specific 

explanation methods, on the other hand, excel at explaining complex models like tree ensemble 

models and artificial neural networks [142]. There is also open-source software available, such as 

SHAP [144], Eli5 [145], and InterpretML [146]. These tools can perform a variety of tasks, 

including image and text classification. Interpretable machine learning has recently been used in 

clinical practice for a variety of medical applications, such as predicting mortality risk [147], [148], 

predicting abnormal ECGs [149], and finding different symptoms from radiology reports that 

suggest limb fracture and wrist fracture [127], [132]. These studies have demonstrated the potential 

of interpretable machine learning in medical applications. 

Interpretable machine learning models may be able to provide accurate predictions while 

also being interpretable, which can increase user trust and improve the understanding of the 

underlying features that influence the predictions. One study used interpretable machine learning 

to predict the risk of developing heart disease [149]. The authors developed a model that used 

patient data to predict the risk of developing heart disease in the next ten years. The model was 

made interpretable by using SHAP values to identify the features that contributed the most to the 

prediction. The study found that interpretable machine learning models can be used to develop 

accurate and interpretable models for predicting heart disease.  

Another study used interpretable machine learning to identify patterns in electronic health 

records (EHRs) to predict the risk of hospital readmission [150]. The authors developed a model 

that used patient data from EHRs to predict the risk of readmission within 30 days. The model was 

made interpretable by using SHAP values to identify the features that contributed the most to the 

prediction. The study found that interpretable machine learning models can be used to develop 
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accurate and interpretable models for predicting readmission risk. In addition, one study used 

interpretable machine learning to classify diabetic retinopathy from fundus photographs [151]. The 

authors developed a model that used machine learning to classify retinal images as positive or 

negative for diabetic retinopathy. The model was made interpretable by using a combination of 

gradient-based and model-based methods to identify the features that contributed the most to the 

classification. The study found that interpretable machine learning models can be used to develop 

accurate and interpretable models for classifying diabetic retinopathy. 

Despite the value of model interpretability in machine learning models, model 

interpretation developments are still in the preliminary stages. There is a significant gap between 

physicians’ desire to understand the prediction and the model’s lack of interpretability. In response 

to this need, we developed a study investigating interpretable classification models in radiological 

texts the preliminary stages. There is a significant gap between physicians' desire to understand 

the prediction and the model's lack of interpretability. In response to this need, we developed a 

study investigating interpretable classification models in radiological texts. The research was 

divided into two parts: First, we created a text classifier to classify text radiological reports 

automatically. Then we conducted model interpretations at the text level. We explored how 

keywords affect model classification results. To the best of our knowledge, this is the first study 

that interprets classification results based on temporal bone CT reports. 

The study found that interpretable machine learning can be used to create effective text 

classifiers in radiological reports. The model-agnostic approach was used to interpret the text 

classifier, with the partial dependency plot and permutation feature importance methods being 

particularly effective in identifying key features in the data. The study also found that the use of 

interpretable machine learning models increased user trust in the classification results. 



 

 26 

Furthermore, we found that certain keywords were more strongly associated with certain 

classifications. For example, the presence of the keyword "fracture" was strongly associated with 

a classification of "positive for fracture". This information can be used to improve the text classifier 

by including these keywords as features in the model. 

Overall, we demonstrate the potential of interpretable machine learning in the field of 

radiology and suggest that further research in this area could lead to improved text classification 

models and increased understanding of the underlying features that influence classification results.  
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3. Study One: Socioeconomic Gaps of Senior Adult Falls and Utilizations 

 

Abstract: To examine the social determinant factors of healthcare utilization for senior patients 

with a history of falls We analyzed the effects of socioeconomic factors on the utilization rate of 

healthcare in a tertiary care center, including 495,041 senior adults. We included zip code 

tabulation areas to measure socioeconomic factors on a community level. Cohort group 

comparison and multiple linear regression models evaluated the association between healthcare 

service utilization and age, sex, education, race, insurance type, distance, and income levels. The 

result shows patients with a history of falls were older than those without a history of falls (79.4, 

standard error = 12.1 vs. 75.4, standard error = 11.6 years old), predominantly female (odds ratio 

[OR]: 1.26, 95% confidence interval [95% CI]: 1.24-1.28), and white (OR: 1.35, 95% CI: 1.32-

1.38). Patients with a fall history were predominantly retired (OR: 2.53, 95% CI: 2.49–2.58), 

publicly insured (OR: 2.88, 95% CI: 2.82-2.93), and more likely to require an interpreter during a 

hospital visit (OR: 2.40, 95% CI: 2.35-2.44). Using a geospatial analysis, healthcare utilization 

was higher in areas close to the care center. A regression model showed that community median 

income, private insurance rate, and college education rate were positively associated with 

healthcare utilization. We conclude that lower utilization of healthcare is associated with 

disadvantaged neighborhood social conditions, including under-insured status, residing far from a 

hospital, lower education, and lower income. We revealed the current inequities and disparities in 

the healthcare of senior adult fall patients in Southeast Wisconsin. 
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3.1 Methodology 

The objectives of this study are as follows: first, to investigate the relationship between 

socioeconomic status and fall risk in the elderly population. Second, to examine the healthcare 

utilization rate and healthcare disparities among elderly fall patients with different socioeconomic 

statuses. Third, to identify the gaps and inequities in healthcare utilization for elderly fall patients 

and provide recommendations for improving healthcare delivery and equity. Finally, to develop 

guidelines for practitioners to address inequitable variations in healthcare and allocate services to 

reduce health disparities among the elderly fall population, 

To understand the health equity challenges and close the gap for senior adult patients, this 

study aimed to evaluate the impact of socioeconomic factors upon access to healthcare facilities 

for patients older than 60 years old, with and without a history of falls. This study employed 

association analysis to determine how health care utilization is related to a variety of 

socioeconomic factors. The study was conducted in a health system within the Southeastern 

Wisconsin area. The investigated facility currently serves the majority of the elderly population 

residing in Southeast Wisconsin, in the United States of America. This study would be helpful to 

provide recommendations for healthcare policymakers and providers in order to address the 

inequities and disparities in healthcare for senior adult fall patients. 

This study population included all patients aged 60 or older who received care at Froedtert 

Hospital and Medical College of Wisconsin between March 1, 2020, and March 1, 2022. The 

electronic health record is acquired through the Clinical Translational Science Institute. The 

Clinical Research Data Warehouse maintains a database of the Froedtert and Medical College 

Electronic Health Records. The database currently contains 2.3 million individual patient records. 

Clinical data is available upon registration for institutional members at the Clinical and 
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Translational Science Institute. Non-institutional researchers may register as community members 

for data access. The study was approved by the Institutional Review Board of the Medical College 

of Wisconsin. 

This study identified patients with a history of falls using diagnostic codes in their 

electronic health records and classified patients into two groups: fall patients and non-fall patients. 

Fall patients were defined as those who had at least one diagnosis code for a fall-related injury 

during the study period. Non-fall patients were defined as those not diagnosed with falls and related 

injuries during the study period. 

This investigation collected demographic and clinical data, including age, gender, race, 

insurance type, co-morbidities, and medication use, for all patients. To evaluate socioeconomic 

status, this study also collected socioeconomic data at the zip-code tabulation area (ZCTA) level, 

including median household income, educational attainment, and rural and urban residence. 

Multivariable logistic regression models were employed to examine the association between 

socioeconomic factors and healthcare utilization for fall patients compared to non-fall patients, 

together with determining odds ratios (ORs) and 95% confidence intervals (CIs) to quantify the 

association. The zip-code area-based variables were from the United States Census Bureau’s 2018 

American Community Survey. The data linking to the zip-code tabulation area allowed a 

community-level socioeconomic analysis throughout the southeastern Wisconsin area. The 

multiple regression model was adjusted by patients based on age, gender, race, insurance type, and 

co-morbidities to examine potential effects. 

3.1.1 Study Cohort and Patient-Based Variables 

The study cohort included all senior adult patients (>60 years old) who have visited the 

hospital and registered as in-person visits between 2020 March and 2022 March. This study split 



 

 30 

the patients into two exclusive groups. Patients with a history of falls, defined as having at least 

one fall-related ICD-10 diagnosis in Table 1, during the study period, were identified as the falls 

group. Patients with non-fall-related diagnoses in their electronic health records were classified 

into the non-fall group. Within each group, this study collected the age, gender, race, insurance, 

ethnicity, employment status, and interpreter assistance records during a visit. Age was calculated 

as the date of visit minus the date of birth for each patient. Sex, race, ethnicity, employment status, 

and the requirements of an interpreter during a clinical visit were acquired from electronic health 

records. Insurance status was classified into public, private, other, and uninsured based on the 

payer's information from the database. 
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Table 1. List of ICD-10 codes for the Falls Group 

ICD Code ICD Type Description 

W00   ICD-10  Fall due to ice and snow 

W01   ICD-10  Fall on same level from slipping, tripping and stumbling 

W03   ICD-10  Other fall on same level due to collision with another person 

W04   ICD-10  Fall while being carried or supported by other persons 

W05   ICD-10 

 Fall from non-moving wheelchair, nonmotorized scooter and motorized 

mobility scooter 

W06   ICD-10  Fall from bed 

W07   ICD-10  Fall from chair 

W08   ICD-10  Fall from other furniture 

W09   ICD-10  Fall on and from playground equipment 

W10   ICD-10  Fall on and from stairs and steps 

W11   ICD-10  Fall on and from ladder 

W12   ICD-10  Fall on and from scaffolding 

W13   ICD-10  Fall from, out of or through building or structure 

W14   ICD-10  Fall from tree 

W15   ICD-10  Fall from cliff 

W16   ICD-10  Fall, jump or diving into water 

W17   ICD-10  Other fall from one level to another 

W18   ICD-10  Other slipping, tripping and stumbling and falls 

W19   ICD-10  Unspecified fall 

E880 ICD-9 Accidental fall on or from stairs or steps 

E881 ICD-9 Accidental fall on or from ladders or scaffolding 

E882 ICD-9 Accidental fall from or out of building or other structure 

E883 ICD-9 Accidental fall into hole or other opening in surface 

E884 ICD-9 Other accidental falls from one level to another 

E885 ICD-9 Accidental fall on same level from slipping tripping or stumbling 

E886 ICD-9 

Fall on same level from collision, pushing, or shoving, by or with other 

person 

E887 ICD-9 Fracture, cause unspecified 

E888 ICD-9 Other and unspecified fall 

Z91.81 ICD-10 History of falling 

781.2 ICD-9 Abnormality of gait 

R26.89 ICD-10 Other abnormalities of gait and mobility 

R26.81 ICD-10 Unsteadiness on feet 

R26.9 ICD-10 Unspecified abnormalities of gait and mobility 

ICD = International Classification of Diseases. ICD is the classification standard to share, report, and monitor disease from 

different medical systems in a consistent and standardized way between hospitals, regions, and countries. 
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3.1.2 Zip Code Tabulation Areas and Community-Based Variables 

In addition to patient-based variables, we collected socioeconomic variables from 5-digit 

zip code tabulation areas. For zip code tabulation area-based variables, this study collected 

socioeconomic variables from eight counties: Jefferson, Kenosha, Milwaukee, Ozaukee, Racine, 

Walworth, Washington, and Waukesha, which included 126 zip codes (Appendix A). If a patient 

resided in one of eight counties, the patient’s socioeconomic variables would be added into the 

calculation of zip code tabulation area-based variables. Each zip code was used to connect the 

community information to the 5-year estimate data from the Census American Community Survey. 

We summarized the socioeconomic variables of the white rate, median household income, college 

educated rate, and privately insured rate (Appendix B). The socioeconomic data is publicly 

available through the U.S. Census Bureau. The variables and the calculations of variables are as 

follows: 

3.1.2.1 The Percentage of Whites 

To obtain the 126 zip-level-based percentage of whites using the American Community 

Survey (ACS), we downloaded the data from the United States Census Bureau's website, using the 

2014–2018 5-Year Estimates Data Profile, and chose the ZIP Code Tabulation Area as the 

geography of interest. We selected the data field with "Race" and "White Alone" under the "Topic" 

button to show the overall number of whites under each zip code. Then, we also selected the total 

number of populations under each zip code. The zip-based percentage of whites is the number of 

whites divided by the total population under each zip code. Therefore, the defined white rate for 

each zip code is: 

𝑊ℎ𝑖𝑡𝑒 𝑟𝑎𝑡𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝐶𝑒𝑛𝑠𝑢𝑠 , 𝑊ℎ𝑖𝑡𝑒 𝑎𝑙𝑜𝑛𝑒

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝐶𝑒𝑛𝑠𝑢𝑠
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3.1.2.2 The Percentage of College-Educated Residents 

To obtain the 126 zip-level-based percentage of college-educated residents, we acquired 

data from the United States Census Bureau's website, selected the "Data Profiles" option under the 

ACS page, selected the 2014-2018 5-Year Estimates Data Profile, and chose the ZIP Code 

Tabulation Area as the geography of interest. We chose the "population 25 years and over with a 

bachelor’s degree or higher" as a numerator and selected the similar number of populations under 

each zip code as a denominator: 

𝐶𝑜𝑙𝑙𝑒𝑔𝑒 𝑒𝑑𝑢𝑐𝑎𝑡𝑒𝑑 𝑅𝑎𝑡𝑒 =
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝐶𝑒𝑛𝑠𝑢𝑠, 𝐵𝑎𝑐ℎ𝑒𝑙𝑜𝑟′𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑟 ℎ𝑖𝑔ℎ𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝐶𝑒𝑛𝑠𝑢𝑠
 

3.1.2.3 A Tabulation Area's Median Household Income 

To obtain the 126 zip-level-based household income, we visited the United States Census 

Bureau's website, selected the "Data Profiles" option under the ACS page, selected the 2014-2018 

5-Year Estimates Data Profile, and chose the ZIP Code Tabulation Area as the geography of 

interest. We chose the "median household income" to be included in our analysis. 

3.1.2.4 The Percentage of the Population with Insurance  

As the insurance status was unavailable through the American Community Survey, we 

estimated the insurance coverage using the data from electronic health records from the Clinical 

Translational Science Institute. Insurance status was classified into public, private, other, and 

uninsured based on the payer's information from the electronic health records. Insurance status 

was classified into public, private, other, and uninsured based on the payer's information from the 

database when the patient was registered during the most recent visit. To obtain the 126 zip-level-

based percentage of insurance coverage, we estimated using the zip-level calculation. Firstly, we 
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calculated the number of patients who visited the hospital during the study period from electronic 

health records; then, we summarized the number of patients who are publicly, privately, and non-

insured separately for each zip code. The percentage is calculated by dividing the number of 

patients with each type of insurance by the total number of patients in each zip code. 

𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒(𝑝𝑢𝑏𝑙𝑖𝑐) =
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠, 𝑤𝑖𝑡ℎ 𝑝𝑢𝑏𝑙𝑖𝑐 𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
 

𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒(𝑝𝑟𝑖𝑣𝑎𝑡𝑒) =
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
 

𝑁𝑜𝑛 − 𝑖𝑛𝑠𝑢𝑟𝑒𝑑 𝑅𝑎𝑡𝑒 =
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠, 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
 

3.1.2.5 Area Deprivation Index 

The Area Deprivation Index (ADI) was based on a measure created by the Health 

Resources and Services Administration and developed by Dr. Amy Kind [152]. It allowed for 

rankings of neighborhoods by socio-economic disadvantage in a region of interest. ADI ranged on 

a scale of 0 to 100, from the most affluent to the most disadvantaged, and according to mixed 

factors including income, education, employment, and housing quality. ADI was used to inform 

socioeconomic status, health delivery, and policy conditions, especially for the most disadvantaged 

neighborhood groups. 

The ADI is built using American Community Survey (ACS) five-year estimates. The 2018 

ADI, for example, uses ACS data for 2018, which is a 5-year average of ACS data obtained from 

2014 to 2018. All limitations of the source data will be carried over into the ADI; results are subject 

to the accuracy and errors contained in the American Community Survey data release. The choice 

of geographic units will also have an impact on the ADI value. Because the Census Block Group 

is the closest approximation to a "neighborhood" in the case of the ADI, it is the geographic unit 
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of construction. Therefore, it is suggested that the Area Deprivation Index be used only along with 

the 2014–2018 5-Year Estimates Data Profile from the American Community Survey. The result 

and summary of population and categorizations of the Area Deprivation Index are available in 

Appendix C, which shows the 4 quartile gaps of the fall and non-fall cohort groups of patient 

distributions. 

3.1.2.6 Rural-Urban Continuum Codes 

The 2013 Rural-Urban Continuum Codes [153] defined metropolitan counties by the 

population size of their metro area and nonmetropolitan counties by their degree of urbanization 

and proximity to a metro area. The official metro and non-metro categories of the Office of 

Management and Budget have been subdivided into three metro and six non-metro categories. One 

of the nine codes is assigned to each county in the United States, municipality in Puerto Rico, and 

Census Bureau-designated county-equivalent area of the Virgin Islands or other inhabited island 

territories of the United States. This scheme enables researchers to subdivide county data into finer 

residential groups other than metro and nonmetro, which is especially useful for analyzing trends 

in nonmetro areas that are related to population density and metro influence. The Rural-Urban 

Continuum Codes were created in 1974. Since then, they have been updated every decade (1983, 

1993, 2003, and 2013) and were slightly revised in 1988. Because of the new methodology used 

in developing the 2000 metropolitan areas, the 2013 Rural-Urban Continuum Codes are not 

directly comparable with the codes prior to 2000. Details and a code map can be found in the 

documentation. 

The Rural-Urban Continuum Codes (RUCC) reflect a classification scheme that 

distinguishes metropolitan counties by the population size of their metropolitan areas and non-

metropolitan counties by the degree of urbanization and adjacency to a metropolitan area. 
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This study split RUCC into six categories of metropolitan and non-metropolitan counties. 

Metropolitan counties referred to counties in all metropolitan areas defined by the Office of 

Management and Budget as of February 2013; non-metropolitan counties included all non-

metropolitan counties as well as completely unlisted rural areas. RUCC can be used to assess a 

patient's living environment and to inform rural and urban differences in relation to other social 

and economic variables. For the convenience of this study, we split the area into metropolitan and 

non-metropolitan areas according to the RUCC code. 

3.1.2.7 Definition of Healthcare Utilization 

The healthcare utilization rate (UR) is defined at the zip code tabulation area level. The 

utilization rate is defined as the number of unique patients that had a fall-related diagnosis in the 

electronic health system from one of the eight counties during the study period. The utilization 

rates are calculated using these formulas: 

URfall =
𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 𝑜𝑓 𝑓𝑎𝑙𝑙𝑠 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
 

URgeneral =
𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 𝑜𝑓 𝑓𝑎𝑙𝑙𝑠 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
 

The diagnosis of falls in medical records was determined from the presence of ICD codes in 

Appendix A: List of ICD-10 Codes for the Falls Group. The utilization rate in each zip code of the 

southeast Wisconsin region was assessed to determine the impacts of median income, white rate, 

college educated rate, and private insured rate. The utilization rate was calculated in the fall patient 

group and the non-fall patient group in order to make a comparison between the associations 

between utilization and socioeconomic variables. 
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3.1.3 Geographical and Statistical Analysis 

The number of patients with a history of falls divided by the total population in each zip 

code block area is how this study defined a predictor variable called a utilization rate. The 

utilization rate for non-fall patients (UR-non-fall) was deemed to be the number of patients without 

a fall history divided by the total population in each zip code block area. Consequently, this study 

associated the utilization rate variable with socioeconomic variables to evaluate the effect of each 

socioeconomic factor. All patient-based variables were merged from the patient level to the zip-

code tabulation area level in order to generate a geographical analysis. 

For geographical analysis, we plotted the utilization rate of senior adult falls and the 

socioeconomic variables in 126 zip codes. The area with a darker color shows a higher utilization 

rate and a varying degree of socioeconomic status. The map plotting was completed using 

Microsoft Excel (2016) and the creation of map charts, in which zip code and utilization rate were 

provided to generate the map. 

To further quantify the association between socioeconomic variables and utilization rates, 

this study completed a multiple linear regression analysis. The multiple linear regression used the 

utilization rate of falls and the utilization rate of other care as predictor variables, employing 

socioeconomic analysis as an independent variable. This study plotted scatter plots and calculated 

the coefficient for each socioeconomic variable. Finally, multiple regression analysis was used to 

analyze the collective impact of social determinant factors on healthcare utilization rates. 

All statistical analyses were performed using the R programming language. Statistical tests 

were two-sided, and the alpha was set at 0.05. This study calculated P-values using chi-square tests 

for categorical variables. Within table 1 of the comparison for two cohorts, this study used the 

odds ratio (OR) to measure the association with patient characteristics. ORs were calculated 
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through a two-by-two contingency table. The table compares the size of the effect between the fall 

history group and the non-fall history group. Concerning each patient characteristic, an OR value 

larger than 1 indicated that patients with the corresponding characteristics were more likely to 

experience falls and visit the hospital, while an OR value smaller than 1 indicated that patients 

with the corresponding characteristics were less likely to experience falls. The 95% confidence 

interval demonstrated the 95% likelihood range of the OR based upon a normal distribution. A P-

value of less than 0.05 indicated the difference in patient characteristics between the two groups 

to be statistically significant. 

3.1.4 An Example and Calculation of Odds Ratios 

Here we show an example of an odds ratio calculation. We use the odds ratio and the 95% 

confidence intervals to evaluate the association between the socioeconomic variables and fall 

adoptions. The odds ratio is the odds of success in the treatment group relative to the odds of 

success in the control group. This method is used in cases where the data is binary. 

In a typical scenario where an odds ratio is used to evaluate the intervention effect, e.g., in 

a clinical trial, a two-by-two table can be presented as follows:  

 

Table 2. two-by-two table showing associations between intervention and fall utilization 

Treatment  With falls Without falls 

Intervention Group  a b 

Control Group  c d 

The odds ratio (OR) and confidence interval can be calculated using the following formulas: 

𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =
𝑎 × 𝑑

𝑏 × 𝑐
 

𝐿𝑜𝑤𝑒𝑟 95% 𝐶𝐼 = 𝑒
(ln 𝑂𝑅−1.96(√1

𝑎
+

1
𝑏

+
1
𝑐

+
1
𝑑

 ))
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𝑈𝑝𝑝𝑒𝑟 95% 𝐶𝐼 = 𝑒
(ln 𝑂𝑅+1.96(√1

𝑎
+

1
𝑏

+
1
𝑐

+
1
𝑑

  ))

 

Where 𝑎 is the number of treatment group with falls, 𝑏 is the number of treatment group 

without falls, 𝑐 is the control group with falls, and 𝑑 is the control group without falls.  OR is the 

odds ratio calculated from the first formula, and 1.96 is the approximate z-value of the 95-

percentile point of the standard normal distribution. In this example, the odds ratio shows the 

intervention effect. Therefore, the odds ratio demonstrates that patient in the intervention group 

have a  
𝑎×𝑑

𝑏×𝑐
  likelihood of fall, compared with control group. The 95% confidence interval of the 

odds ratio ranges from 𝑒
(ln 𝑂𝑅−1.96(√

1

𝑎
+

1

𝑏
+

1

𝑐
+

1

𝑑
 ))

 to 𝑒
(ln 𝑂𝑅+1.96(√

1

𝑎
+

1

𝑏
+

1

𝑐
+

1

𝑑
  ))

.  

For an effect from binary variables, when we use one of the socioeconomic variables to 

evaluate the socioeconomic factors, we can consider the target variable as a form of intervention. 

Therefore, we can provide statistical interpretations regarding the associations between target 

variables and fall utilization. For example, if we choose ‘female’ as a target binary variable, the 

two-by-two table can show as follows: 

 

Table 3. A two-by-two table showing associations between gender and fall utilization for binary 

variables 

Sex With falls Without falls 

Female 38739 225518 

Male 27617 203086 

Therefore, the odds ratio calculation is as follows: 

𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =
38739 × 203086

27617 × 225518
= 1.26 

𝐿𝑜𝑤𝑒𝑟 95% 𝐶𝐼 = 𝑒
(ln 1.26−1.96(√ 1

38739
+

1
225518

+
1

27617
+

1
203086

 ))

= 1.24 

𝑈𝑝𝑝𝑒𝑟 95% 𝐶𝐼 = 𝑒
(ln 1.26+1.96(√ 1

38739
+

1
225518

+
1

27617
+

1
203086

 ))

= 1.28 
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Under a normal distribution, the p-value of the odds ratio is  0.001. Therefore, it is 

demonstrated that gender is significantly associated with fall utilization based on the provided data. 

We state that female patients were 1.26 times more likely than males to have used fall healthcare 

adoption compared to male patients. Similarly, we can change the effect of gender to other binary 

socioeconomic variables to evaluate the associations between fall utilization and other binary 

socioeconomic variables. 

From a statistical perspective, we conclude that females are 1.26 times more likely to utilize 

healthcare services after a fall (odds ratio [OR]: 1.26, 95% confidence interval [95% CI]: 1.24–

1.28). Other categorical variables, including age groups, race, ethnicity, type of insurance, 

employment, language assistance, area deprivation index, and rural-urban continuum codes, can 

be calculated using the same formula and methodologies. 

For an effect from category variables, we can consider the target as one of our most 

interested fields as an intervention group. The subject of interest was considered an individual 

group in the two-by-two table, and the rest of the subjects were summarized into another group. 

The two-by-two table can be shown as follows: 

 

Table 4. A two-by-two table showing associations between gender and fall utilization for 

categorial variables 

Employment Status With falls Without falls 

Retired 42474 176855 

All other non-retired 

(including full time, part 

time, self-employed, not 

employed and disabled. ) 

23883 251829 

Therefore, the odds ratio calculation is as follows: 

𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =
42474 × 251829

23883 × 176855
= 2.53 
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𝐿𝑜𝑤𝑒𝑟 95% 𝐶𝐼 = 𝑒
(ln 2.53−1.96(√ 1

42474
+

1
251828

+
1

23883
+

1
176855

 ))

= 2.49 

𝑈𝑝𝑝𝑒𝑟 95% 𝐶𝐼 = 𝑒
(ln 2.53+1.96(√ 1

42474
+

1
251828

+
1

23883
+

1
176855

 ))

= 2.58 

Under a normal distribution, the p-value of the odds ratio is 0.001. Therefore, it is demonstrated 

that retirement is significantly associated with fall utilization based on the provided data. We show 

that retired patients were 2.53 times more likely than males to have used fall healthcare adoption 

compared to male patients. The 95% confidence interval is (2.49, 2.58), meaning that in 95% of 

cases, the estimation will generate an odds ratio between these ranges. Similarly, we can change 

the effect of employment status to other categorical socioeconomic variables to evaluate the 

associations between fall utilization and other socioeconomic variables. 

3.1.5 Creation of the Scatter Plot 

We used a scatter plot to show the associations between utilization rate and four socioeconomic 

variables. The scatter plots are based on the utilization of fall patient groups and the utilization of 

non-fall patient groups. For each group, we associated the utilization rate with median household 

income, College educated rate, White ratio, and private insurance rate, which shows the regression 

analysis for utilization rate and socioeconomic variables across 126 zip code tabulation areas of 

the Southeast Wisconsin area. The R-squared value and p-value are calculated from a single linear 

regression using the utilization rate as a dependent variable and socioeconomic variables as 

predictors, using the total sum of squares. 
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3.1.6 A Calculation of Multiple Linear Regression Results 

In addition, we use multiple linear regression to quantify the socioeconomic effect on the 

utilization rate. A multiple linear regression result uses a quantifiable number to interpret the effect 

of socioeconomic variable changes. For example, when including income as a predictor in the 

multiple linear regression model, each $1,000 increase in median household income will be 

associated with a certain percentage increase in utilization rate. Such quantifiable numbers would 

be an effective way to conclude the impact of socioeconomic variables on healthcare utilization. 

We use the zip-based representation of utilization rates for fall patients and the zip-based 

representation of utilization rates for non-fall patients. As we call the multiple linear regression 

model, the model shows the statistical summaries on fall and non-fall patient cohorts separately: 

For patient with falls, the generated estimated are shown as follows: 

Call: 
lm(formula = df$falling_UR_rate ~ df$income +df$private_insured_rate + 

df$white + df$college_educated_rate) 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.041383 -0.005701 -0.000820  0.004356  0.058161  
Coefficients: 
                           Estimate Std. Error t value Pr(>|t|)     
(Intercept)               1.971e-02  4.567e-03   4.315 3.28e-05 *** 
df$income                 2.948e-07  9.132e-08  -3.228   0.0016 **  
df$private_insured_rate   1.132e-01  6.331e-03  17.881  < 2e-16 *** 
df$white                 -1.411e-02  6.768e-03  -2.085   0.0392 *   
df$college_educated_rate  1.748e-02  7.898e-03   1.766   0.0399 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 0.01225 on 121 degrees of freedom 
Multiple R-squared:  0.7579, 
F-statistic:  94.7 on 4 and 121 DF,  p-value: < 2.2e-16 

 

For patient without falls: 
 

Call: 
lm(formula = df$general_UR_rate ~ df$income + df$private_insured_rate +  
    df$white + df$college_educated_rate) 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.11621 -0.03726 -0.00978  0.01784  0.72898  
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Coefficients: 
                           Estimate Std. Error t value Pr(>|t|)     
(Intercept)               1.358e-01  3.263e-02   4.162 5.94e-05 *** 
df$income                 7.883e-07  6.525e-07   1.208   0.2294     
df$private_insured_rate   5.448e-01  4.524e-02  12.042  < 2e-16 *** 
df$white                 -1.075e-01  4.836e-02  -2.223   0.0281 *   
df$college_educated_rate  1.597e-01  7.073e-02  -2.258   0.0257 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 0.08754 on 121 degrees of freedom 
Multiple R-squared:  0.5926, 
F-statistic:    44 on 4 and 121 DF,  p-value: < 2.2e-16 
 

Therefore, we can summarize the results in Table 4 to present the multiple regression modeling of 

the impact of socioeconomic variables on falls and non-fall patients within the Southeastern 

Wisconsin area. 

3.2 Results 

Table 3 highlights that 495,041 patients visited the hospital between March 1st, 2020, and March 

1st, 2022. In Figure 1, this study visualizes the association between the utilization gap and 

socioeconomic variables in a forest plot. Among all patients, 66,357 (13.4%) were diagnosed with 

fall-related conditions. Patients with a history of falls were typically older compared with those 

without a history of falls (79.4 ± 12.1 vs. 75.4 ± 11.6 years old). Patients in an older age group had 

an increasing risk of falling. It was also observed that patients who were retired were 2.53 times 

more likely to experience falls and access healthcare facilities. 

The most important factor influencing healthcare utilization is age. Patients between the ages of 

60 and 64 are 0.58 times more likely than older patients to visit a healthcare facility. As a patient's 

age increases, so does their utilization. Patients over the age of 85 have a 1.93-times higher 

utilization rate than younger patients. 

The utilization of healthcare services is related to demographic factors. Within patients with a 

history of falls, the ratio of females was significantly higher in comparison to the ratio of females 

in patients without a history of falls. Females were 1.26 times more likely than males to have used 
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fall healthcare services, according to OR datasets. White patients were 1.35 times more likely to 

utilize healthcare services compared with other racial groups, resulting in a higher proportion of 

falls. Asian and black races had significantly lower utilization of hospital-based care. In terms of 

ethnicity, the non-Hispanic population was 3.22-fold more likely to utilize such services compared 

to the Hispanic population, highlighting that Hispanic groups are underserved in the healthcare 

system. 

Economic factors were also linked to the utilization of healthcare services. Patients with public 

insurance were 2.88 times more likely to use the services than those with other insurers. In addition, 

patients who were uninsured were less likely to use healthcare services. The OR value of 0.51 

demonstrated that uninsured patients are an underserved population in the healthcare system. The 

uninsured status of patients is an indicator of lower socioeconomic conditions. There was no 

association between the ADI and patient access to hospital-based care. 

The factor of location was also associated with a patient's access to health care. The hospital is 

situated in Wauwatosa, Wisconsin, which is in the suburban area of southeastern Wisconsin and 

is part of the great Milwaukee metropolitan area. Over 90% of patients in this study currently 

reside in the Milwaukee metropolitan area. Patients who live in metropolitan areas were 1.33-fold 

more likely to use the services in comparison to those living outside the metropolitan Milwaukee 

area, which shows that patients who live in rural areas are not likely to receive equal access to 

healthcare. 

3.2.1 Geographic Map-Based Analysis 

Fig. 2 shows the utilization rate of general and fall-based healthcare in the southeastern 

Wisconsin area to help understand the geographic distribution of utilization rates. The utilization 

rate map shows that utilization was significantly higher in the hospital's surrounding area. The 
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utilization rate was lower in suburban and rural areas, which are situated far away from the hospital. 

To understand the socioeconomic variables, this study also plotted the visualization of 

socioeconomic variables in Southeast Wisconsin in Fig. 3, highlighting the college education rate, 

the white rate, income, and the private insurance rate. This study also observed significant gaps in 

differing counties in college education rates, racial distribution, and median household income 

levels. According to the map analysis, the Northwest area had both a high utilization rate and a 

high private insurance rate, indicating the possibility of correlations between the utilization rate 

and private insurance variables. 
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Table 5. Overall patient characteristics, socioeconomic, and demographic variable comparisons 

for patients with or without fall history. 

  

Patient with  

History of Falls  

Patient without  

History of Falls OR 95% CI p-value 

Number of Patients 66357 428684     

Age               

Median, SD 79.4 ± 12.1 75.4 ± 11.6     

    60 - 64 years old 7626 11.5% 78797 18.4% 0.58 (0.56, 0.59) <0.001 

    65 - 69 years old 9879 14.9% 88288 20.6% 0.67 (0.66, 0.69) <0.001 

    70 - 74 years old 9686 14.6% 74970 17.5% 0.81 (0.79, 0.83) <0.001 

    75 - 79 years old 8255 12.4% 53008 12.4% 1.01 (0.98, 1.03) 0.585 

    80 - 84 years old 7556 11.4% 39304 9.2% 1.27 (1.24, 1.31) <0.001 

    >85 years old 23355 35.2% 94317 22.0% 1.93 (1.89, 1.96) <0.001 

Sex               

    Female  38739 58.4% 225518 52.6% 1.26 (1.24, 1.28) <0.001 

    Male 27617 41.6% 203086 47.4% 0.79 (0.78, 0.81) <0.001 

Race               

    White 54755 82.5% 333216 77.7% 1.35 (1.32, 1.38) <0.001 

    Black 8219 12.4% 59619 13.9% 0.88 (0.85, 0.9) <0.001 

    Asian 465 0.7% 4079 1.0% 0.73 (0.67, 0.81) <0.001 

    Other 1301 2.0% 8396 2.0% 1.00 (0.94, 1.06) 0.972 

    Unknown 1617 2.4% 23374 5.5% 0.43 (0.41, 0.46) <0.001 

Ethnicity               

    Hispanic 1196 1.8% 9148 2.1% 0.84 (0.79, 0.89) <0.001 

    Non-Hispanic 63680 96.0% 377610 88.1% 3.22 (3.09, 3.35) <0.001 

    Unknown 1481 2.2% 41926 9.8% 0.21 (0.2, 0.22) <0.001 

Type of Insurance               

    Private 11317 17.1% 143964 34.8% 0.41 (0.4, 0.42) <0.001 

    Public 53455 80.8% 253031 61.2% 2.88 (2.82, 2.93) <0.001 

    Other 532 0.8% 5639 1.4% 0.61 (0.55, 0.66) <0.001 

    Uninsured 871 1.3% 10955 2.6% 0.51 (0.47, 0.54) <0.001 

Employment Status               

    Retired 42474 77.6% 176855 59.7% 2.53 (2.49, 2.58) <0.001 

    Full Time 3937 7.2% 68125 23.0% 0.33 (0.32, 0.35) <0.001 

    Part Time 1157 2.1% 12331 4.2% 0.60 (0.56, 0.64) <0.001 

    Self Employed 953 1.7% 11443 3.9% 0.53 (0.5, 0.57) <0.001 

    Not Employed 2757 5.0% 17223 5.8% 1.04 (0.99, 1.08) 0.095 

    Disabled 3446 6.3% 10493 3.5% 2.18 (2.1, 2.27) <0.001 

Interpreter Needed?                

    N 52935 98.7% 266673 98.4% 2.40 (2.35, 2.44) <0.001 

    Y 679 1.3% 4374 1.6% 1.00 (0.92, 1.09) 0.944 

Area Deprivation Index               

    (Most Affluent) 0 - 25 4487 9.5% 31705 10.6% 0.91 (0.88, 0.94) <0.001 

    25 - 50  18256 38.6% 110056 36.6% 1.10 (1.08, 1.12) <0.001 

    50 - 75 14340 30.3% 95220 31.7% 0.97 (0.95, 0.98) <0.001 

    75 - 100 10215 21.6% 63511 21.1% 1.05 (1.02, 1.07) <0.001 

Rural-Urban Continuum Codes               

Metropolitan Area (> 1m) 45483 90.7% 264089 83.4% 1.36 (1.33, 1.38) <0.001 

Metropolitan Area (250k - 1m) 2321 4.6% 21061 6.6% 0.70 (0.67, 0.73) <0.001 

Metropolitan Area (< 250k) 210 0.4% 1905 0.6% 0.71 (0.62, 0.82) <0.001 

Micropolitan Area (>20k) 1022 2.0% 15270 4.8% 0.42 (0.4, 0.45) <0.001 

Small Town area (2.5k - 20k) 533 1.1% 7317 2.3% 0.47 (0.43, 0.51) <0.001 

Rural area (< 2.5k) 576 1.1% 7093 2.2% 0.52 (0.48, 0.57) <0.001 
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Fig. 1. forest plot of association between falls and socioeconomic variables 
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Fig. 2. utilization rate of general and fall-based care in southeastern Wisconsin 
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Fig. 3. visualization of four socioeconomic variables in southeast Wisconsin area in a zip code tabulated map. 
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3.2.2 Area-based Analysis: Linear Regression Assessment 

Based on the linear regression analysis in Figure 4, it appears that the private insurance rate 

was the most robust predictor of healthcare utilization rates for both fall-based and non-fall-based 

healthcare, with R-squared values of 0.68 and 0.79, respectively. The college educated rate and 

median household income also showed a positive association with healthcare utilization rates. 

From the multiple regression analysis in Table 4, the white ratio, college education rate, 

and private insurance rate were found to be associated with healthcare utilization for patients with 

a history of falls. Concerning patients without a history of falls, the college education rate and 

private insurance rate were positively associated with healthcare utilization. 

These results suggest that socioeconomic status plays an important role in determining 

healthcare utilization rates, particularly for fall-related care. Patients with private insurance and 

higher education levels appear to have better access to healthcare services, while those from racial 

and ethnic minority groups, lower-income households, and uninsured individuals may experience 

barriers to accessing care. 

Table 5. Multiple regression modelling of the impact of socioeconomic variables for falls and non-fall patients within 

Southeastern Wisconsin area 

Social Determinant factors Coefficient Estimate Standard Error P-value 

Patient of Fall History:     

    Income 2.948E-07 9.138E-08 0.0016 

    White Ratio -0.01411 0.006768 0.0492 

    College educated rate 0.01748 0.007898 0.0399 

    Private insurance rate 0.1132 0.006331 <0.0001 

Patients of general care     

    Income 7.883E-07 6.525E-07 0.2294 

    White Ratio -0.1075 0.04836 0.0281 

    College educated Rate 0.1597 0.07073 0.0257 

    Private insurance rate 0.5448 0.04524 <0.0001 
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Fig. 4. scatter plot and regression analysis for utilization rate and socioeconomic variables across 126 zip code tabulation areas of 

the southeast Wisconsin area 
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3.3 Discussion  

A majority of current healthcare outcome studies focus on risk factors for falls. However, 

there is a lack of studies on patient socioeconomic effects on healthcare utilization. The study 

reveals the potential socioeconomic inequities and disparities in the healthcare adoption of senior 

adults. With the growing percentage of senior adult populations, specific strategies are needed to 

address the disparities in adoption among underserved senior populations. 

We completed a cohort study based on a single tertiary care center in Milwaukee, including 

495,041 senior adults. This study’s results clearly demonstrated that lower socioeconomic status 

is associated with lower utilization of healthcare services for general healthcare and fall-based care. 

Data revealed that healthcare services did not reach all patients equally, especially those with lower 

socioeconomic status. This included those who were uninsured, living in a low-income and low-

education community, or living far away from the metropolitan area. The study results are 

consistent with previous studies on the association between demographic and socioeconomic 

factors and healthcare utilization. Many studies [31]–[33] have shown that older age, female 

gender, and certain racial and ethnic groups are more likely to utilize healthcare services, which is 

consistent with the findings of this study. Additionally, previous studies have found that 

individuals with lower socioeconomic status and uninsured individuals are less likely to utilize 

healthcare services [93], which is also consistent with the findings in this study. The geographical 

distribution of healthcare utilization has also been studied in previous research. Many studies show 

that access to healthcare services is often unevenly distributed [154], with urban areas having 

higher utilization rates than rural areas, which is again consistent with the findings of this study 

[93], [154]. Furthermore, socioeconomic factors such as median household income, college 

education, and private insurance rates were positively correlated with healthcare utilization, as 
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demonstrated by regression analysis on each zip code tabulation area. These findings suggest that 

economic conditions play a critical role in access to healthcare services and healthcare utilization. 

According to the U.S. Census Bureau, the US is facing a rapid aging trend [155]. There 

were a total of 76 million births in the United States from 1946 to 1964 [156]. The baby boomers 

are currently the most at risk for falling, and approximately 16.5% (54.1 million) of the total 

population reaches 65 years of age or older [19]. It is imperative to manage the risk of falls for the 

elderly. On the one hand, patient falls are associated with other ongoing clinical conditions, such 

as hypertension [157], physical or cognitive impairments [17], medication [158], and 

environmental hazards [93]. The analysis of elderly falls may reveal key correlations with other 

clinical risk factors. Additional studies can uncover the association between falls and various 

clinical factors. Leveraging these clinical factors can help reduce the fall condition systematically. 

While clinical factors have been demonstrated to be the centerpiece of care [30], the topic 

of equitable healthcare has been overlooked. [159] Few studies have investigated the association 

between fall risks and socioeconomic status, which may widen the gap between patients of 

different socioeconomic statuses. With this study’s findings, the authors believe it is critical to 

understand how social determinants of health can affect senior adults' access to healthcare. This 

study specifically emphasized the issue of social and economic disparities among patients in the 

Southeastern Wisconsin area. Since social determinant variables are publicly available in Census 

data, such an analysis can be easily replicated in other cities or counties in the United States. 

Furthermore, this study’s analysis provided quantitative results to measure the effect of social gaps 

on the utilization of healthcare services. The quantitative results revealed the indispensable value 

of closing socioeconomic gaps, which can lead to the realization of equal healthcare. 
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This study demonstrated that senior adult patients from socially marginalized groups face 

underutilization of healthcare services (Table 3). This study further showed that the healthcare 

utilization gap is significantly associated with many socioeconomic determinant factors (Table 4, 

Figures 2-4). Without the collaboration of healthcare professionals, it is unlikely that the utilization 

gap will be closed automatically. Since offering equitable healthcare leads to more efficient 

healthcare systems and better health outcomes, it is essential to systematically develop policies 

and practices to balance equity and efficiency for equal care. 

3.3.1 Gender Disparity 

According to Table 3, female patients are 1.23-fold more likely to have a fall history than 

male patients, which is consistent with other studies. This higher risk may be due to biological 

gender differences, as a study suggests that increased gait variability during dual-task assignments 

may contribute to the higher risk of falling in women. [160] While environmental hazards that 

cause falls can differ between men and women, further research is required to identify the clinical 

risk factors that differ between the two genders. 

Other studies support this observation, stating that the greater risk was associated with 

increased gait variability [161]. The increased gait variability in women during multi-tasking can 

contribute to their increased risk of falling and, thereby, to their known greater risk of fractures. 

Other studies also discussed the fact that the environmental hazards that cause falls in men and 

women can vary. Men were likely to fall due to a loss of support (of the floor when standing or of 

the chair when seated). Berg [43] found that women were more likely to trip or stumble. However, 

no research has been conducted on the clinical factors that differ between men and women and 

lead to such fall events. It is possible that the clinical risk of fall factors can also vary between men 
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and women. This study suggests that additional studies are warranted to reveal the gender 

difference in clinical factors that drive falls. 

By understanding the gender-specific clinical factors associated with falls, healthcare 

providers can develop targeted interventions and prevention strategies to reduce fall risks for both 

men and women. This approach can lead to more personalized care and improved outcomes for 

older adults, ultimately enhancing their overall health, well-being, and quality of life. 

3.3.2 Insurance Disparity 

Our study reveals that patients with public insurance have a 2.64-fold higher risk of falling 

than those with private insurance, emphasizing the significant influence of unequal healthcare 

access on fall risk. Elderly patients without private insurance are particularly susceptible to falls, 

and the healthcare utilization rate demonstrates that the distance to the care center substantially 

impacts access to healthcare services. This disparity in healthcare utilization is further exacerbated 

by economic factors. 

Considering that private insurers typically have a higher adoption of healthcare services, 

the adjusted odds ratio (OR) could be biased (higher than 2.64), which strongly suggests that public 

insurance is an essential risk factor for falls. It is crucial to address these disparities in insurance 

coverage, as they have a considerable impact on fall risk and access to healthcare services. 

Efforts to reduce the disparities in insurance coverage should include policy initiatives that 

aim to expand public insurance benefits or provide more affordable private insurance options to 

those in need. Additionally, collaboration between healthcare providers, community organizations, 

and policymakers is necessary to develop targeted interventions and resources to support at-risk 

populations. By addressing insurance disparities and working to ensure equitable access to 
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healthcare services, it is possible to reduce the risk of falls among senior adults and ultimately 

improve the overall health and well-being of this vulnerable population. 

3.3.3 Geographic Distribution Disparity 

Patients residing in the Northeast and in closer proximity to the care center demonstrate a 

higher overall utilization rate compared to those living further away. The distance to the care center 

significantly impacts utilization rates, irrespective of fall history. Utilization rates reveal that 

approximately 5–10% of the total population has visited the care center for diagnosing or treating 

falls, while 20–50% of the total population has previously visited the care center for non-fall-

related diagnoses. Patients living at a greater distance from the hospital area struggle to receive the 

same level of access as those residing closer to the hospital's vicinity. Utilization rates fluctuate 

depending on the distance to the care center, with patients living in metropolitan cities 

experiencing a 1.36-fold higher likelihood of receiving care. 

This geographic distribution disparity highlights the importance of addressing accessibility 

issues in healthcare services, particularly for elderly patients at risk of falls. Limited access to 

healthcare facilities can lead to delayed diagnosis, treatment, and interventions, potentially 

exacerbating the consequences of falls for patients living in remote or rural areas. To mitigate these 

disparities, healthcare systems and policymakers should consider implementing solutions such as 

telemedicine services, mobile healthcare clinics, and community-based fall prevention programs. 

These strategies can help bridge the gap in healthcare access for elderly patients, regardless of their 

geographic location, ultimately improving the overall health outcomes for this vulnerable 

population. 
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3.3.4 Rural and Urban Healthcare Utilization Disparity 

 The healthcare utilization rates for the fall patient group and non-fall patient group are 90.7% 

and 83.4%, respectively. As demonstrated by the Rural-Urban Continuum Code variables, patients 

living in metropolitan areas with a population of 1 million or more are 1.33 times more likely to 

receive healthcare services compared to patients who do not live in the Milwaukee metropolitan 

area. This observation underscores the utilization disparity between rural and urban areas in 

Southeast Wisconsin. 

These disparities in healthcare utilization between rural and urban populations can be 

attributed to several factors, including reduced availability of healthcare facilities, fewer 

specialized healthcare providers, and limited transportation options in rural areas. Additionally, 

rural populations often face socioeconomic challenges that further exacerbate these disparities, 

such as lower income levels, higher rates of uninsured individuals, and reduced access to education. 

To address these rural and urban healthcare utilization disparities, targeted interventions 

and policy changes are needed. Expanding the availability of healthcare services in rural areas by 

establishing satellite clinics, incentivizing healthcare providers to work in underserved 

communities, and utilizing telehealth services can help improve access to care for rural residents. 

Furthermore, implementing educational initiatives and community-based programs to raise 

awareness about fall prevention and management among rural populations can contribute to better 

health outcomes for elderly patients at risk of falls. 

3.3.5 Racial Disparity  

Compared with other racial minorities, patients who are white or Caucasian have a 1.35-

times higher likelihood of receiving healthcare services. This disparity can be attributed to various 

factors, including differences in socioeconomic status. 
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Socioeconomic factors, such as income, education, and employment opportunities, often 

play a significant role in determining an individual's access to healthcare services. In many cases, 

racial minorities face unique challenges that may limit their access to care, such as language 

barriers, cultural differences, and experiences of discrimination or bias within the healthcare 

system. Furthermore, racial minorities are more likely to be uninsured or underinsured, which can 

pose additional barriers to accessing healthcare services. 

In addition to socioeconomic factors, residential segregation and geographic disparities 

may also contribute to racial disparities in healthcare utilization. Racial minorities are often more 

likely to live in areas with limited access to healthcare facilities or in communities with fewer 

resources dedicated to healthcare services. This can result in decreased availability and quality of 

care for these populations. 

To address and reduce racial disparities in healthcare utilization, targeted interventions and 

policy changes are necessary. Strategies to consider include increasing cultural competency 

training for healthcare providers, implementing language assistance programs, and promoting 

healthcare policies that address the unique needs of diverse populations. Additionally, investing in 

community-based initiatives and outreach programs can help raise awareness about health issues 

and encourage preventive care among racial minority populations. 

3.3.6 The Quantitative Effects of Socioeconomic Variables on Utilization Rate  

This study hypothesized that economic conditions play a critical role in accessing and 

utilizing healthcare services. Due to privacy concerns, this study was unable to directly use patient 

income data. Instead, it conducted a regression analysis on each zip code tabulation area and found 

that healthcare utilization was positively correlated with socioeconomic factors such as median 

household income, college education, and private insurance rates. Since these factors are highly 
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correlated with patient income, it can be reasonably inferred that economic conditions play an 

essential role in the healthcare system. For example, a college education is a predictor of higher 

income and a better understanding of routine care, leading to more frequent hospital visits. 

In multiple regression analysis, this study quantified the effect of socioeconomic variables 

on healthcare utilization. For instance, a 1% increase in college education was associated with a 

0.017% increase in falls care utilization, and a 1% increase in private insurance rate corresponded 

to a 0.113% increase in falls care utilization (Table 4). It is essential to note that different cities 

have varying socioeconomic conditions and healthcare services, so identical interpretations cannot 

apply to all areas. However, this methodology can be replicated in other cities or states to assess 

the relationships between healthcare service utilization and socioeconomic variables, as well as 

the social determinants of health. 

Although this study could not identify the underlying driving factors, the analysis 

demonstrated how socioeconomic factors are associated with healthcare adoption and inequalities, 

which are closely related to social determinant factors. Such analysis can help assess the social 

determinants of health for a patient cohort in a specific area, providing insights into how social 

and economic factors can affect healthcare visits. This analysis suggests that economic factors 

have a significant impact on access to healthcare services and the use of fall care, underscoring the 

importance of promoting policies that ensure more equitable care for all patients, regardless of 

their social standing. 

Furthermore, it is crucial to consider that the study's findings can provide a basis for 

designing targeted interventions and policies. By understanding the relationship between 

socioeconomic variables and healthcare utilization, healthcare providers and policymakers can 

develop programs that address the specific needs of communities with lower socioeconomic status. 
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Such interventions may include increased investment in healthcare infrastructure in underserved 

areas, financial support for low-income patients to access healthcare services, and community-

based health education and outreach initiatives. 

3.4 Limitations of the Study 

There were several potential limitations to this study that should be considered. Firstly, as 

with many social determinant studies, individual patient income information was not collected, 

and the median income in each ZIP code was used as a proxy for patient income, which could 

introduce potential bias. Secondly, the patient cohort in this study represented a regional hospital 

system in Milwaukee, which has one of the highest racial segregation scores in the US [162]. 

Therefore, the patient characteristics may not be generalizable to other healthcare systems and 

areas. Thirdly, this study only focused on a few key social determinant factors, and there are other 

potential factors, such as environmental and cultural factors, that could be considered in future 

studies. The goal of this study was to identify potential gaps in the adoption of telemedicine and 

facilitate future research in this area. Fourthly, the pandemic may have had a wide range of effects 

on different types of health services, and this study only measured telemedicine adoption. Other 

health services such as cancer treatment, chronic condition management, laboratory services, and 

pharmacy services were not included in this study, which could potentially distort results. Finally, 

this study did not include clinical conditions or issues, suggesting that older patients may have 

used more healthcare services simply because they had a higher level of illness and required 

additional services. Future studies must investigate how to analyze and integrate cultural-based 

variables to achieve equal access to healthcare services from a variety of perspectives. 
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3.5 Future Work 

Future work could be focused on the investigation of the healthcare disparity in other areas 

of the United States. A multi-center study of the disparity could ensure the study is generalizable 

and becomes a systematic methodology to discover health disparity issues. Additionally, 

interventions aimed at reducing healthcare disparities in fall utilization should be explored, such 

as targeted education and outreach to underserved communities, improved access to preventative 

services, and cultural competency training for healthcare providers. By addressing the root causes 

of healthcare disparities in fall utilization, we can work towards creating a more equitable 

healthcare system that ensures all individuals receive the care they need to maintain their health 

and wellbeing. 

It is essential to note that different cities have varying socioeconomic conditions and 

healthcare services, so identical interpretations cannot apply to all areas. However, this 

methodology can be replicated in other cities or states to assess the relationships between 

healthcare service utilization and socioeconomic variables, as well as the social determinants of 

health. 

Additionally, future research should explore the potential effects of other socioeconomic 

factors not included in this study, such as employment status, family structure, and neighborhood 

characteristics. These factors may also contribute to disparities in healthcare access and utilization. 

Longitudinal studies could be conducted to examine the causal relationships between these factors 

and healthcare utilization over time. 
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3.6 Conclusions 

The study conducted a cohort study on 495,041 senior adults from a single tertiary care 

center in Milwaukee to determine the association between lower socioeconomic status and 

healthcare utilization for general healthcare and fall-based care. The results showed that healthcare 

services did not reach all patients equally, especially those with lower socioeconomic status. Many 

previous studies have shown that individuals with lower socioeconomic status and uninsured 

individuals are less likely to utilize healthcare services. Additionally, the geographical distribution 

of healthcare utilization has also been studied in previous research, with many studies showing 

that access to healthcare services is often unevenly distributed. The study emphasized the issue of 

social and economic disparities among patients in the Southeastern Wisconsin area and provided 

quantitative results to measure the effect of social gaps on the utilization of healthcare services. 

The study also showed that patients from socially marginalized groups face underutilization of 

healthcare services, and the healthcare utilization gap is significantly associated with many 

socioeconomic determinant factors. Gender differences and insurance disparities were also 

observed. The study suggests that additional studies are warranted to reveal the gender difference 

in clinical factors that drive falls, and public insurance can be an important risk factor for falls. 

Patients who live in the Northeast and are close to the care center have a higher overall utilization 

rate of healthcare services than those who live farther away. 
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4. Study Two: Interpretable Machine Learning Text Classification for Clinical Computed 

Tomography Reports – A Case Study of Temporal Bone Fracture 

Abstract: 

Machine learning has demonstrated remarkable success in numerous applications, including the 

classification of patients' diagnostic outcomes based on free-text clinical notes. However, the 

complexity of machine learning models often makes it challenging to interpret the mechanisms 

behind their classification results. In the second study, we investigated interpretable 

representations of text-based machine learning classification models, focusing on temporal bone 

fractures in computed tomography (CT) text reports. In this study, we created machine learning 

models to classify temporal bone fractures based on 164 temporal bone CT text reports. We 

adopted four well-known algorithms: XGBoost, Support Vector Machine, Logistic Regression, 

and Random Forest. 

To interpret the models, we used two major methodologies: 

(1) Word Frequency Score (WFS): We calculated the average word frequency score for keywords, 

which represents the frequency gap between positive and negative classified cases. This helps learn 

the differences in keyword usage between fracture and non-fracture cases. 

(2) Local Interpretable Model-Agnostic Explanations (LIME): We used LIME to show the word-

level contribution to bone fracture classification. LIME helps in visualizing the contribution of 

specific keywords to the classification results. 

In the temporal bone fracture classification, the random forest model achieved an average F1-score 

of 0.93, indicating high classification performance. The WFS analysis revealed a difference in 

keyword usage between fracture and non-fracture cases, providing insights into the critical terms 

that distinguish the two categories. Additionally, LIME visualizations showed the keywords' 
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contributions to the classification results, making it easier for physicians to understand the machine 

learning predictions. The evaluation showed the highest interpreting accuracy of 0.97, which 

signifies a high level of transparency in the classification process. 

The interpretable text explainer developed in this study can improve physicians' understanding of 

machine learning predictions and increase their trust in computerized models. By providing simple 

visualizations, our model can support more transparent computerized decision-making in clinical 

settings. 

Future research can extend this work by investigating other interpretable methods and applying 

them to different clinical text datasets, improving the generalizability of our findings. Furthermore, 

studies can focus on integrating interpretable text classifiers into real-world clinical workflows, 

allowing physicians to make better-informed decisions based on the insights provided by machine 

learning models. Ultimately, this can lead to improved patient care and a more efficient use of 

healthcare resources. 

 

  



 

 65 

4.1 Methodology 

The second study used machine learning models to classify fractures based on text reports and two 

methodologies for interpretation, resulting in high interpretation accuracy. We also used an 

interpretable machine learning framework to visualize the importance of word factors in the final 

classification result. This study can help physicians use technology to make more informed 

decisions as well as increase trust in computerized models. Fig. 5 is a graphical abstract of this 

study. We first start by collecting data, followed by word frequency analysis, a text classification 

model, and using a text explainer to interpret the word-level factors in the classification result. 

We collected a set of 164 clinical temporal bone CT reports from the Clinical Research Data 

Warehouse of the Clinical and Translational Science Institute of Southeastern Wisconsin. We first 

created a vector representation of CT reports [37] and built text classification models. A follow-

up classification performance was evaluated. To explain the machine learning model, we provided 

two types of model interpretation. The first type is text feature analysis, which generates feature 

importance scores as well as word frequency scores; the second type is a text explainer using LIME 

[38], which provides a variety of interpretations of the classification results. 

 

 

Fig. 5. Overview of our study. we first used CT text reports to construct a text-based classification model.  
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4.1.1 Data Source 

The data source for this study was obtained through a request submitted to the Froedtert 

Health System i2b2 cohort query tool. The i2b2 tool aids in integrating genomic and clinical data 

from healthcare institutions and is maintained by the Clinical Research Data Warehouse (CRDW) 

of the Clinical & Translational Science Institute (CTSI) of Southeastern Wisconsin [39]. To define 

a manageable patient cohort for the text analysis, specific diagnosis codes were chosen. These 

codes helped to identify patients most likely to have a temporal bone fracture confirmed by a 

radiologist, thus being considered "clinically abnormal." 

Upon submitting the query, an identified accession list of CT exams was generated for the 

study team. The team then collaborated with the business analyst of biomedical informatics to 

request a custom extraction of the imaging narratives and impressions from the data warehouse. 

These narratives and impressions were subsequently de-identified for integration with the text 

analysis of the study. 

The query was further refined to include only adults aged 60–65, yielding a final normal 

cohort of 119 patients and a temporal bone fracture cohort of 45 patients. Each patient's narrative 

was included in only one clinical text, resulting in a total of 164 documents for the study. All 

documents have been submitted to the supplemental files of this study. Table 5 shows an example 

of the medical text sample used in the analysis: 

Table 6. A Sample Computed Tomography Document Evaluation 

Document #1:  

1. Old comminuted fracture of the right middle cranial fossa with multiple bullet fragments 

lodged within it as described above. There is disruption/disolution of the right ossicular chain 

but the inner ear structures are intact. 
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2. Adjacent residual right mastoid air cells are chronically opacified. 

Examination reviewed by Dr. [NAME] and reported findings confirmed by Dr. [NAME]. 

Clinical Indication: Post traumatic right otalgia. 

Techniques: 0.625 mm thick contiguous axial scans of temporal bones were acquired. 

Coronal reformats were generated and reviewed. 

Comparison: None. 

Findings: Again, visualized are severely comminuted old fractures of the right middle cranial 

fossa with multiple bullet fragments within the bones of the right skull base the right middle 

ear cavity and right anterior mastoid air cells. The roof of the right middle year cavity is 

dehiscent and there are dislocations/resorptions of components of the right ossicular chain. 

Only the body of the right incus is well visualized. 

Multiple bullet fragments are lodged within the clivus sphenoid bone prevertebral soft tissues 

and in the infratemporal fossa. The residual mastoid air cells are opacified. 

The left mastoid air cells appear well-aerated. The left middle ear cavity and ossicular chain 

are preserved. The left mastoid air cells appear unremarkable. Bilateral inner ear structures 

appear normal in morphology and density. Internal auditory canals appear symmetrical and 

normal in size bilaterally. Vestibular aqueducts are not dilated. 

This example illustrates the type of clinical narratives and impressions used in the study, which 

the machine learning models were trained on to classify patients' diagnostic outcomes. 

4.1.2 Text Pre-Processing 

Text pre-processing is an essential part of natural language processing,  a field of artificial 

intelligence (AI) that focuses on the interaction between computers and humans through natural 

language. The primary goal of NLP is to enable computers to understand, interpret, and generate 
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human language in a way that is both meaningful and useful. Text pre-processing is an essential 

step in NLP, as it helps clean and structure raw text data, making it suitable for analysis and model 

training. In this study, we performed several text pre-processing steps on the clinical reports to 

ensure the text data was ready for further analysis. The pre-processing included five steps: 

(1) Removing non-word elements: All non-word elements, such as numbers, punctuation, 

and special characters, were removed from the clinical reports. This was achieved using regular 

expressions. (2): Converting text to lowercase: All words in the clinical reports were converted to 

lowercase letters to maintain consistency and reduce redundancy in the dataset. (3): Removing 

stop words: Stop words, which are common words that do not carry significant meaning, were 

removed using the Natural Language Toolkit (NLTK) stop-word list. (4): Lemmatizing words: 

word lemmatization was performed to reduce words to their base or dictionary form, removing 

noun declination and verb conjugations. (5): Correcting spelling and acronyms: Any incorrect 

spellings and acronyms were corrected to ensure an accurate representation of the text data. (5) 

The detailed pre-processing workflow can be found in the supplemental code book, which is 

available online at https://doi.org/10.1016/j.cmpbup.2023.100104. 

4.1.3 Text Feature Analysis – Word Frequency Score 

To gain a deeper understanding of the word distribution between positive (fracture) and 

negative (non-fracture) reports, we computed the average Word Frequency Score (WFS) for each 

keyword. WFS is a metric that represents the normalized frequency of a word in a set of documents, 

which is calculated by dividing the total number of times a word appears in the reports by the total 

number of reports. 

 

 



 

 69 

To compute the WFS, we first separated the keywords into two groups: those that appeared 

in positive (fracture) reports and those that appeared in negative (non-fracture) reports. For each 

group, we calculated the WFS for each keyword by taking the sum of the keyword frequencies in 

the group and dividing it by the number of reports in that group. 

Next, we compared the WFS values of the keywords in the positive and negative groups to 

identify the words with the most significant frequency differences between the two groups. This 

analysis provided insights into the distinctive language patterns and terms used in the clinical 

reports for fracture and non-fracture cases, which could help inform the development of more 

accurate and interpretable machine learning models for classifying temporal bone fractures based 

on CT text reports. 

By analyzing the WFS and identifying the keywords with the most substantial frequency 

differences between positive and negative sets, we gained a better understanding of the linguistic 

features that distinguish fracture and non-fracture cases. This information can be valuable for 

guiding the development of more effective and interpretable machine learning models as well as 

assisting physicians in recognizing the critical language cues associated with different diagnostic 

outcomes. 

4.1.4 Machine Learning Model Development 

To convert text reports into matrix formats suitable for machine learning models, we 

employed two popular text representation techniques: the bag-of-words (BOW) model and term 

frequency-inverse document frequency (TF-IDF) [37, 40]. Both BOW and TF-IDF methods 

convert each document into a fixed-length vector, enabling machine learning models to process 

the text in a vectorized form. In this representation, each unique word is considered a feature, so 

they can be recognized as an appropriate set in machine learning models for training. 
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Word2vec is another widely used technique for learning word associations in large text 

corpora. However, we believe that BOW and TF-IDF are better suited for text classification tasks 

in our study. The bag-of-words model helps determine a document's topic based on the types of 

words it contains, while the TF-IDF metric measures word relevance in the context of the entire 

corpus. As fracture descriptions tend to be distinct, TF-IDF can capture this characteristic: certain 

words frequently appear in fracture reports but rarely in non-fracture reports. In contrast, 

Word2vec is more suitable for discovering sub-topics or capturing semantic similarities between 

words, which is not the primary focus of our study. Based on these considerations, we concluded 

that the BOW and TF-IDF models are the most appropriate methods for the analysis. 

After representing the text data using BOW and TF-IDF techniques, we trained various 

machine learning algorithms, such as XGBoost, Support Vector Machine, Logistic Regression, 

and Random Forest, to classify temporal bone fractures based on the CT text reports. By comparing 

the performance of these algorithms, we aimed to identify the most suitable and accurate model 

for fracture classification while also ensuring that the chosen model is interpretable and reliable 

for use in clinical settings. 

4.1.5 Interpretation of Machine Learning Models: LIME 

LIME, or Local Interpretable Model-Agnostic Explanations, is a technique developed to 

provide insights into the predictions made by complex machine learning models. It does so by 

generating simple, interpretable, and local explanations for individual predictions, allowing users 

to understand and trust the decisions made by the model. 

In the context of classifying temporal bone fractures using CT reports, LIME is employed 

to identify and highlight the keywords in the text that contribute the most to the model's prediction. 

The method works by first training a machine learning classifier to distinguish between bone 
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fracture (positive) and non-bone fracture (negative) cases based on the distribution of words in 

clinical texts. Then, LIME generates explanations by creating a simpler, interpretable white-box 

model that approximates the original black-box model locally around the specific prediction. 

To evaluate the accuracy of LIME's explanations, two metrics are utilized: accuracy score 

and Kullback-Leibler (KL) divergence. The accuracy score measures the similarity between the 

generated sample and the original documents, with a higher score indicating a better match. The 

KL divergence quantifies the difference between the interpretable white-box model and the 

original black-box model in terms of their classification results. A lower KL divergence score 

signifies that the two models are more closely aligned, with a score of zero indicating a perfect 

match. 

By using LIME, practitioners can gain a better understanding of the factors driving the 

predictions made by machine learning models for temporal bone fracture classification, ultimately 

increasing trust in and transparency of these models in clinical settings. 

4.2 Results 

4.2.1 Word Frequency Score and Clinical Text Summary 

We began by summarizing the clinical documents. Among the 164 selected text documents, 

45 were diagnosed with a bone fracture, and 119 were diagnosed without a fracture. Notably, the 

positive CT reports had an average length of 299.8 words (standard deviation [SD] = 124.3), which 

was significantly shorter than normal CT reports (average = 480.6, SD = 235.9). 

In normal reports, the top five most common words were 'normal' (total frequency = 487), 

'right' (393), 'canal' (356), 'CT' (347), and 'left' (334). In contrast, the top five most common words 

in fracture reports were 'left' (432), 'fracture' (394), 'right' (381), 'bone' (337), and 'temporal' (312). 
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Figure 6 illustrates the word lists that exhibit the largest word frequency score gaps 

between the two categories, highlighting the words favored in normal reports and those favored in 

fracture reports. This analysis helps identify the specific language patterns and terms that are most 

associated with each category, thereby shedding light on the features that the machine learning 

models might be leveraging to make accurate predictions. 

 

Fig. 6. Comparison of gaps between fracture and non-fracture reports. The red bar stands for the frequency of fracture reports, and 

the blue bar stands for non-fracture reports. The left-side chart shows the top ten words that appear more often in fracture sets, 

whereas the right-side chart shows the top ten words that appear more often in non-fracture sets. 

4.2.2 Classification Models’ Parameters and Performances 

Figure 7 illustrates the relationship between classification model performance and the 

number of keywords used in the models. Each sub-figure employs either the random forest, SVM, 

or logistic regression algorithms. Figure 7 demonstrates a positive correlation between the number 

of keywords and classification performance. 
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As the number of keywords increases in the Random Forest model, precision and accuracy 

remain high, but recall begins to decline. In contrast, the SVM and logistic regression models do 

not exhibit a decreasing trend. Taking into account the relationship between the number of selected 

keywords and performance, we ultimately incorporated 500 keywords into the feature set. 

Appendix G presents a table of the exact machine learning performance metrics for the 

different models. These results provide insight into the strengths and weaknesses of each approach, 

allowing for a more nuanced understanding of how the chosen features impact the classification's 

performance.  

 
 
Fig. 7. relationships between classification model’s performance, number of selected features, and evaluation performances for 

random forest, support vector machine, and logistic regression model. 

4.2.3 Feature Importance 

In the context of text classification, feature importance refers to a score that represents the 

significance of each feature, such as words or phrases, in the classification model. A higher score 

indicates that the specific feature has a greater impact on the model's ability to predict a specific 

variable, such as whether a patient has a bone fracture or not. 
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Understanding feature importance is crucial in text classification, as it helps identify the 

most relevant words or phrases that contribute to the model's decision-making process. This 

information can be invaluable for refining models, identifying potential biases, and providing 

insights into the underlying patterns present in the data. 

To assess feature importance in our study, we used the mean decrease in impurity (Gini) 

importance score, which is a widely used measurement for tree-based models. The mean decrease 

in impurity is calculated as the probability of mislabeling an element, assuming that the element 

is randomly labeled according to the distribution of all classes in the set. For regression tasks, the 

analogous metric to the Gini index would be the residual sum of squares. 

Figure 8 presents the top 20 most important words that contribute to the classification 

results, based on the mean decrease in impurity (Gini) importance score and the random forest 

algorithm. By identifying these key words, we can gain a better understanding of the features that 

the model relies on to make accurate predictions and improve the model's overall performance.  

 

 
 
Fig. 8. The top 20 most important words that contribute to the classification results, based on the mean decrease in impurity (gini) 

importance score and random forest algorithm. 
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4.2.4 Interpretation of Machine Learning Models 

Fig. 9 demonstrates a LIME Text Explainer visualization for a bone clinical text case, 

which highlights text features that positively or negatively influence the classification. In this 

example, the Random Forest algorithm was employed to generate explainable results. The 

visualization emphasizes the essential keywords that contribute to the final classification outcome. 

It is worth noting that a similar visualization was created using support vector machine algorithms, 

which yielded a slightly different set of keywords in the keyword feature sets. 

The Random Forest classifier predicts a fracture result with 99.5% certainty and a z-score 

of 5.179. Words displayed in green are considered to have contributed to the model's positive 

classification result. In this instance, the words 'comminuted,' 'fracture,' 'lodged,' 'fossa,' 

'disruption,' 'ossicular,' and 'temporal' were ranked as the most predictive words for the positive 

classification outcome. 

 
Fig. 9. How LIME evaluates the importance of each word features and use the weight of features to visualize the word-level 

contribution for each document to calculate classification results based on the random forest model. 
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We provided a visualization of the text explainer, where each word is assigned a 

contribution score indicating its impact on the positive or negative classification. The evaluation 

of the text explainer is done at the individual text level. The feature list highlights the most crucial 

words according to the random forest model, which is aggregated from multiple decision trees. 

The inclusion of each word in the list is based on its role as a deciding factor within a decision tree. 

Words with higher weight are frequently used as key factors in classification results. Both the 

feature list and the text explainer's assessment indicate that LIME is effective in identifying 

keywords for classification. 

The LIME interpretation framework's reliability was evaluated using the accuracy score 

and the Kullback-Leibler divergence score, comparing it to the machine learning model. The 

accuracy score between our Random Forest model and the explainable model was found to be 

0.867, meaning that 86.7% of the reports will generate the same prediction result between the two 

classifiers. This demonstrates a strong alignment between the two models in terms of their 

predictions. 

The Kullback-Leibler divergence score measures how well the probabilities are 

approximated between the two models for all target classes. For the SVM model, the Kullback-

Leibler divergence value is 0.985, indicating that there is a 98.5% probability that both models 

will classify the same report into the same categories. These evaluations suggest that the Text 

Explainer model is highly reliable and can accurately predict the behavior of support vector 

machine models in CT classification tasks. Similarly, other algorithms also exhibit high reliability 

scores for model interpretation, further validating the trustworthiness of the LIME framework in 

this context. 
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4.2.5 A Comparison with a Simple Rule-Based Model 

Fig. 6 suggests that the high precision probably comes from the fact that fracture reports typically 

contain words like 'fracture' or 'temporal.' Also, words like 'lung' or 'calcification' imply a non-

fracture case because the CT images are of the lungs or the heart. It shows a sign that perhaps a 

simple rule-based model for these specific words may suffice for the classification task. Therefore, 

we included a simple rule-based model to compare with the existing models. 

We use the word "fracture" to build a simple one-rule classifier. We wanted to keep the rule simple 

because it is common to conduct keyword searches and quickly determine the classifications. This 

would be a good baseline to reflect the actual scenarios for bone fracture classification. 

In this case, the rule-based classifier would classify documents with "fracture" as positive and 

documents without "fracture" as negative. This would serve as a baseline model. In supplemental 

files, we included the rule-based classifier and used the "if" condition to construct the classifier on 

our documents. We then count the true positive, false positive, true negative, and false negative 

cases. We measure F1, precision, and recall in Fig. 10: 

 

Fig. 10. classification and performances of a rule-based model on 164 clinical reports 
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Also, we provided a supplemental file named "rule-based classifier" that provided case-by-case 

prediction results and rule-based model details. 

From the rule-based model’s result, the F1-score is 0.761, which is significantly lower than our 

machine learning-based classifier. In TP, FP, FN, and TN cases, we see more false positive cases 

than false negative cases. This indicates even a simple rule-based classifier will not be likely to 

miss a fracture diagnosis. The precision is a bit lower than our machine learning model. To increase 

precision, therefore, it makes sense to build more complicated rules or to adopt the most frequent 

words as machine learning features. 

As we investigated in related work, the development of rule-based classifiers occurred mostly in 

the 1990s. It must be admitted that a simple rule-based classifier cannot handle complex clinical 

text classification tasks. If we apply multiple rules, the performance may improve, but 

interpretation becomes a problem again. The rule-based classifier may not adapt to the ever-

changing word usage in medical documents. Machine learning models, however, can overcome 

this problem. Therefore, building more complicated rules is no longer the focus of our study. We 

may not use a 20-year-old rule-based classifier as a baseline. Instead, starting with the machine 

learning model would be a better choice. Based on the rule-based classifier’s performance, the ML 

model’s development convenience, and comparisons, we decided not to include the rule-based 

classifier as a baseline model. 
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4.3 Discussion 

4.3.1 Study Significance 

The significance of this study lies in the effective utilization of clinical text reports, which 

are often an underexplored resource in electronic health records.  By developing an interpretable 

model, medical practitioners can make more informed decisions and have increased trust in the 

model's predictions. This trust can help speed up the adoption of computer-based diagnoses in 

clinical practice. 

In this study, we successfully trained machine learning classifiers to identify bone fracture 

cases using untemplated CT narratives from electronic health records, achieving better accuracy 

than similar studies that relied on crowdsourcing methods [80]. Additionally, we presented word-

level contributions to the predictions using the LIME framework, which can help clinicians 

validate the model's validity and aid in their decision-making process. 

By leveraging the LIME-based model to explain word-level contributions in clinical text, 

physicians can better understand how specific words, such as "fragment" and "hemorrhage," 

contribute to bone fracture predictions. This understanding aligns with physicians' domain 

knowledge, enabling them to accept the model's predictions more readily when they can see how 

the algorithm interprets documents and makes predictions. Providing such interpretations can 

increase clinical acceptance of automated systems. 

Ultimately, the interpretation of a model that represents the algorithm helps foster 

transparency and trust among physicians. This transparency is crucial for facilitating the transition 

from manual to automated processes in clinical settings, ultimately improving diagnostic 

efficiency and patient care. 
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4.3.2 Summary of Text Feature Analysis 

We discovered that text features contribute to the prediction of results. The word usage 

demonstrates a significant difference between positive and negative reports. For example, the 

word ’fracture’ was identified as the most important feature in our evaluation; it appears frequently 

in the positive set (frequency = 394) but infrequently in the negative data set (55). "Head" 

(frequency = 116 in the positive set, 57 in the negative set), "temporal" (312 in the positive set, 

173 in the negative set), and "hemorrhage" are other examples (87 in the positive set, 17 in the 

negative set). All these words demonstrate the frequency difference between positive and negative 

sets. We conclude that the WFS gap between fracture and non-fracture reports can measure how 

the words are used differently. 

In Fig. 2, the WFS result indicates that "fracture," "left," "bone," "temporal," and "right" 

are the top five words that appear more frequently in positive sets than in negative sets. The top 

five words that appear more frequently in negative sets than in positive sets are "calcification," 

"none," "mild," "lung," and "lesion." The difference in WFS between fracture and non-fracture 

reports is a predictor of classification. Physicians often draft reports with highly specialized 

medical terms. These medical terms often serve as reliable predictors. According to our results, 

we suggest investigating if non-experts can easily interpret the medical terms. 

In other related studies, similar clinical text features were also examined. The goal is to 

investigate radiologists’ preferences for specific words in clinical documents. A previous study (, 

for example, used naive Bayes-based predictive machine learning models. Language patterns in 

clinical documents are typically consistent across specialties. The study discovered that 

otolaryngologists use distinct language patterns in vestibular notes that are highly conserved. 
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These patterns are highly predictive of specific vestibular diagnoses. Using a medically specialized 

corpus makes it easy for doctors to understand how language patterns work. 

We believe that similar language patterns exist in other medical departments. According to 

the WFS gaps in Fig. 2, we classified words as fracture-favored or non-fracture-favored. The 

classification yields two distinct word lists. Documents with a bone fracture prefer one list of words, 

while documents without a fracture prefer the other. As a result, our WFS analysis identified text 

patterns associated with classification results. Incorporating electronic health records into 

decision-making models has been used to treat a variety of diagnoses and conditions, including 

heart failure symptoms [163], vestibular diagnoses [164], and gastrointestinal diagnoses [165]. 

The LIME results indicate that specialized medical words significantly contribute to the 

classification process. Consequently, interpretable AI has the potential to assist in explaining more 

complex diagnostic conditions. The pipeline developed in this study can also be used to interpret 

other clinical texts, classify diagnoses, and provide explanations that are easy to understand. By 

leveraging such interpretable AI models, medical professionals can make more informed decisions 

and ultimately improve patient care. 

4.3.3 Summary of Classification Performances 

In this study, it has been shown that a model utilizing 500 major topic words and stratified 

10-fold cross-validation can achieve an average accuracy of 0.95 on Random Forest classifiers. 

This performance is competitive compared to other human-labeled studies, such as the 

crowdsourcing method that achieved 0.799 accuracy [80]. Although the model exhibits high 

precision, its recall is lower, indicating a tendency to predict more positive outcomes than negative 

ones. Consequently, the model may help reduce false-negative cases, potentially avoiding serious 

errors in clinical practice. 
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A positive correlation was observed between the number of keywords used in the feature 

set and model performance across all four algorithms. Increasing the number of features can 

improve prediction performance, particularly when the number of keywords is below ten. However, 

performance plateaus once the number of keywords surpasses two hundred. This plateau is likely 

due to the limited impact of less-important keywords with lower WFS, which minimally contribute 

to classification. 

In summary, all four algorithms—random forest, support vector machine, logistic 

regression, and XGBoost—can perform classifications with high accuracy. The performance can 

be enhanced by increasing the number of features in the model, although the impact diminishes 

beyond a certain point. By utilizing these algorithms and adjusting the number of features, machine 

learning models effectively classify clinical texts and improve decision-making in medical practice. 

4.3.4 Summary of Interpretation Methods 

LIME has indeed been widely used in various research studies, as it provides a visualized 

and easily interpretable explanation for predictions made by machine learning models. This has 

made it a popular choice for interpreting clinical decision models across a range of medical 

conditions and diagnostics. Liyan and Mao et al. [78] used LIME to investigate the level of 

contribution of features in new instances for predicting central precocious puberty in girls. 

Ghafouri-Fard et al. [166] used the same approach for diagnosing autism spectrum disorder. 

Palatnik de Sousa et al. used LIME to classify the metastases of lymph nodes [167]. Other 

interpretations of target conditions using LIME include acute kidney injury [137], chest injury 

[168], electrocardiogram-aided cardiovascular diseases [149], radiology reports [116], [122], and 

so on. Overall, LIME can provide visualized results for various diagnoses to help clinicians 
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evaluate the reliability of clinical decision models. There are two main approaches for 

implementing classification model interpretation: 

Intrinsic transparency: This approach uses inherently interpretable models, such as 

decision trees, which are easy to understand and explain by design. The benefit of intrinsically 

transparent models is that they provide an immediate understanding of the decision-making 

process. We list pros and cons for each approach. For intrinsic transparency, it allows a direct 

understanding of the decision-making process and does not need additional explanation methods; 

for cons, intrinsic transparency may have lower performance compared to more complex models 

and possess limited flexibility in modeling complex relationships. 

A post-hoc interpretation, which includes methods like LIME, provides explanations for 

predictions made by more complex models, such as deep learning or ensemble methods. These 

methods are applied after the model has been trained and used for prediction, hence the term "post-

hoc." The pros include their applicability to various complex models, even those that are not 

intrinsically transparent. They not only provide detailed insights into the features that contribute 

to predictions but also enable the use of high-performing models while still providing 

interpretability. However, the cons include the fact that post-hoc interpretations may not always 

be perfect or completely accurate. They require additional computation and implementation efforts. 

Besides, while they are much easier to understand than the algorithms of machine learning models, 

they may still be challenging for non-experts to understand in some cases. 

When choosing ML-based explanation methods for future applications, it is essential to 

weigh the pros and cons of each implementation approach. Ultimately, the choice will depend on 

the specific use case, the desired level of interpretability, and the trade-offs between model 

performance and interpretability. 
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4.3.5 Interpretability of Machine Learning Models 

The interpretability of machine learning models plays a crucial role in their adoption in real-world 

applications, especially in the medical domain. Some machine models are inherently transparent 

and interpretable due to their simple mechanisms, which makes their output directly interpretable. 

For instance, linear regression and logistic regression are more transparent by nature, and clinicians 

have extensive experience interpreting their coefficients, effect sizes, and p-values. Our previous 

studies explored the social determinants of tertiary rhinology care utilization using linear 

regression techniques, demonstrating that no AI-based knowledge is necessary for understanding 

such models. 

 

In contrast, decision trees are slightly more complex but still transparent models [125]. In machine 

learning, decision trees are used to define a preferred sequence of attributes for investigation, 

which narrows down to a specific outcome or state. This process, known as decision tree learning, 

relies on selecting attributes with high mutual information. A higher information gain is applied to 

the split for each node, and as we mentioned earlier, we can calculate the information gain for 

specific words. Decision trees used for text classification consist of internal tree nodes labeled by 

terms, branches departing from them labeled by tests on the weight, and leaf nodes representing 

corresponding class labels. Decision trees classify documents based on predetermined rules by 

traversing the query structure from root to leaf, which is the ultimate goal of classification. 

Fig. 10 presents a simplified decision tree illustrating the process of making a diagnosis based on 

the frequency of specific words in CT reports. This decision tree is generated from an example 

document, with each square indicating a criterion when a document is used as input. The number 

in each square represents the frequency of words occurring in the document, and each conditional 
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criterion is followed by a percentage number indicating the proportion of documents that satisfy 

that condition. Ultimately, each document is classified into one of the categories, resulting in a 

"positive" or "negative" outcome. Decision rules are learned using machine learning techniques 

and information gain, which requires some statistical knowledge to build the decision tree. 

Fortunately, decision rules and sequences are directly interpretable by clinicians, especially if the 

tree is small. 

A significant difference exists between decision tree and LIME methods in terms of interpretation 

complexity. While decision trees require clinicians to analyze the reasonableness of an entire tree's 

sequence, LIME methods only necessitate determining if featured words are associated with target 

outcomes. However, decision trees can become too large and unwieldy to interpret, or they may 

not generate a meaningful representation. Consequently, LIME methods offer a significantly easier 

approach to interpreting models, enabling greater adoption and understanding of machine learning 

models in clinical practice. 

 

 
 
Fig. 11. A visualization of how a transparent decision tree model determines the classification results from a sample CT text report. 

The percentage number shows the proportion of reports falling into each category. The frequency of a specific word determines 

the model’s classification result. 
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4.4 Limitations and Future Work 

We acknowledge some limitations. The first limitation is the limited variety and quantity 

of temporal bone CT reports, with only 164 documents available. All reports were limited to a 

single health care system in Wisconsin, which may introduce potential bias. A larger set of clinical 

reports may also lead to unbiased model construction and more accurate classification performance. 

The age range was limited to 60–65 years old, which may affect the generalizability of the 

conclusion. Our future work will include two aspects: First, we used labeled data in this 

preliminary study. While unlabeled data cannot be used for classification, it has the potential for 

unsupervised learning. We believe that by building an appropriate unsupervised model, it is 

possible to cluster CT reports into two categories based on text reports. Second, building a 

medically specialized text interpreter would highlight only medical words and achieve a more 

transparent interpretation. For example, by adopting the SNOMED-CT standard [169], we can 

create a medical text interpreter. By using only medical terms, the model could narrow down the 

choices of words. The word-level optimization may achieve more accurate prediction and 

interpretation. 

4.5 Conclusion 

Machine learning has shown significant success in classifying patients' diagnostic 

outcomes using free-text clinical notes. However, a major challenge to adopting these models in 

clinical practice is the interpretation of their algorithms. This study aimed to address this challenge 

by presenting four classifiers for the classification of fracture cases from untemplated temporal 

bone CT reports. 
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The study's main contributions are threefold: (1) A text analysis revealed significant 

differences in word usage between fracture and non-fracture report sets, highlighting the 

importance of understanding the language patterns in clinical documents; (2) Random Forest-

based classification achieved the highest accuracy among the four algorithms used, demonstrating 

the potential of machine learning in the medical field; (3) A LIME-based approach provided 

interpretable explanations by visualizing the contribution of words in bone fracture classification, 

enhancing trust and transparency in computerized models. 

Understanding the decision-making mechanisms behind these models is crucial for 

promoting their use in clinical contexts. The proposed approach can support clinical decision-

making by providing simple visualizations to physicians, helping them validate the model's 

validity and reliability. This increased trust in computerized models can facilitate the adoption of 

these tools in daily practice, serving as a complementary aid for CT report classification and 

assisting clinicians in making more informed decisions. 

Overall, this study laid the groundwork for the development and validation of reliable 

explanations in machine learning-based clinical models. By undertaking further research in 

realistic scenarios and real-world settings, the model has the potential to be integrated into 

contemporary medical decision-making environments for clinical practitioners. Future work will 

focus on leveraging unsupervised learning to cluster CT reports, building medically specialized 

text interpreters using standardized medical terms, and addressing the limitations identified in the 

study, such as the limited quantity and variety of CT reports. These advancements will contribute 

to more accurate predictions and interpretations, further bridging the gap between machine 

learning models and their application in clinical practice.  
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5. Conclusion 
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5.1 Summary of Two Studies 

Falls among older adults have emerged as a significant public health concern in the United 

States, with one in four older adults reporting a fall each year. The consequences of falls can be 

severe, leading to approximately 36 million falls and over 32,000 deaths annually. As the U.S. 

population continues to age, the risk of falls and associated problems is likely to increase. Our 

research efforts aimed to address this issue from two distinct healthcare perspectives: developing 

new AI-based prediction algorithms to enhance the quality of care and examining health equity 

problems in an economically diverse society to ensure high-quality care for patients at risk of falls. 

In the first study, we investigated disparities in fall patients' access to healthcare services. 

We discovered that unequal access to care may disproportionately affect certain patient subsets, 

particularly those with lower socioeconomic status. This highlights the need for further 

investigation to identify the underlying causes of such disparities and develop targeted 

interventions. We posit that effective preventive strategies will require collaboration among 

medical facilities, governments, and local clinical service providers to improve older adults' access 

to quality care, thereby mitigating the risks and consequences of falls. 

In the second study, we explored the interpretability of machine learning models in the 

context of medical documents, recognizing that such models are often opaque and challenging for 

clinical providers to understand. Addressing the need for more accessible interpretations of clinical 

texts, we employed two key methodologies in this study: (1) calculating average word frequency 

scores for essential keywords and (2) utilizing Local Interpretable Model-agnostic Explanations 

(LIME) to visualize the contribution weight of keywords to bone fracture diagnoses. Our findings 

suggest that interpretable text explainers can enhance physicians' comprehension of machine 

learning predictions, fostering greater trust in computerized models and facilitating their use in 
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clinical decision-making processes. Understanding the decision-making system’s mechanism is 

critical for promoting its use in clinical settings. By providing physicians with simple 

visualizations, our model can help them make decisions. This interpretation increases confidence 

in computerized models. Our proposed method could be used as a computer-assisted tool in CT 

report classification. It could be used as an adjunct tool to assist clinicians in making decisions in 

their daily practice. Overall, this study laid the groundwork for the development and validation of 

credible explanations. Our model has the potential to be integrated into contemporary clinical 

decision-making environments for clinical practitioners. 

In summary, our research contributes to a broader understanding of fall risks among older 

adults by highlighting healthcare disparities and offering actionable insights for improving access 

to care. Furthermore, we demonstrate the potential of interpretable machine learning models to 

support clinical decision-making, emphasizing the need for clear, comprehensible, and trustworthy 

AI-based tools in medical settings. By integrating these findings, we hope to create a foundation 

for future research and interventions aimed at reducing the incidence and impact of falls in the 

aging population, ultimately leading to better health outcomes and improved quality of life. 
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Appendix A. List of 126 Zip Codes and Utilization Rates For Fall And Non-Fall Cohorts 

zip 

fall 

UR Non-fall UR zip 

fall 

UR Non-fall UR zip 

fall 

UR Non-fall UR 

53002 3.8% 26.8% 53119 0.9% 12.6% 53192 4.0% 46.0% 

53004 0.5% 9.6% 53120 1.2% 14.6% 53195 0.0% 9.3% 

53005 5.8% 37.6% 53121 0.4% 8.0% 53202 2.5% 18.8% 

53007 8.3% 44.6% 53122 11.0% 48.6% 53203 2.3% 21.3% 

53012 1.5% 18.7% 53125 1.1% 13.8% 53204 1.1% 10.1% 

53017 4.7% 36.7% 53126 1.1% 14.8% 53205 3.4% 21.9% 

53018 1.2% 20.5% 53128 0.2% 3.8% 53206 3.1% 23.7% 

53021 1.6% 14.1% 53129 3.9% 25.9% 53207 1.2% 12.7% 

53022 6.5% 36.5% 53130 4.4% 26.6% 53208 3.3% 20.8% 

53024 1.1% 16.1% 53132 2.1% 18.2% 53209 3.3% 22.8% 

53027 3.5% 25.2% 53137 0.4% 8.0% 53210 2.8% 18.0% 

53029 1.6% 19.5% 53139 1.2% 15.0% 53211 1.8% 15.2% 

53033 5.6% 41.3% 53140 0.9% 12.3% 53212 1.8% 15.2% 

53036 0.6% 9.8% 53142 0.7% 11.6% 53213 8.6% 30.3% 

53037 6.0% 31.5% 53143 0.7% 10.5% 53214 4.8% 23.7% 

53038 0.2% 4.4% 53144 0.7% 9.8% 53215 1.0% 9.1% 

53040 6.4% 35.3% 53146 2.9% 22.8% 53216 3.0% 20.3% 

53045 5.3% 36.0% 53147 0.5% 9.6% 53217 2.4% 24.6% 

53046 7.1% 42.8% 53149 1.0% 14.0% 53218 2.9% 18.1% 

53051 8.7% 45.2% 53150 2.7% 20.5% 53219 2.9% 18.7% 

53058 1.5% 19.9% 53151 4.5% 29.6% 53220 2.8% 20.0% 

53066 1.3% 17.0% 53153 0.7% 17.3% 53221 1.9% 15.3% 

53069 2.5% 26.8% 53154 1.4% 13.0% 53222 6.1% 26.2% 

53072 2.5% 25.9% 53156 0.6% 9.8% 53223 4.6% 26.9% 

53074 0.9% 12.9% 53158 0.7% 10.8% 53224 4.4% 23.4% 

53076 5.0% 35.0% 53167 0.8% 8.8% 53225 6.3% 26.7% 

53080 1.1% 13.8% 53168 0.6% 9.6% 53226 13.3% 45.1% 

53086 4.5% 28.8% 53170 0.5% 8.9% 53227 4.5% 24.8% 

53089 4.1% 29.8% 53172 1.3% 13.0% 53228 5.1% 29.2% 

53090 5.5% 28.5% 53177 0.8% 11.2% 53233 1.4% 9.4% 

53092 2.5% 29.7% 53178 0.6% 12.2% 53235 1.8% 15.6% 

53094 0.4% 6.0% 53179 0.4% 5.5% 53295 3.6% 35.1% 

53095 9.7% 44.4% 53181 0.6% 7.7% 53402 1.1% 15.4% 

53097 1.6% 19.9% 53182 1.4% 15.0% 53403 0.7% 12.1% 

53103 1.5% 18.6% 53183 1.5% 19.3% 53404 0.6% 9.4% 

53104 0.8% 11.7% 53184 0.3% 4.8% 53405 0.8% 13.4% 

53105 0.8% 11.6% 53185 1.4% 15.0% 53406 1.2% 17.3% 

53108 1.3% 18.2% 53186 1.6% 20.1% 53538 0.1% 1.8% 

53110 1.4% 13.9% 53188 1.3% 17.4% 53549 0.3% 3.0% 

53114 0.1% 3.6% 53189 1.3% 15.1% 53551 0.1% 2.6% 

53115 0.3% 6.1% 53190 0.1% 2.0% 53585 0.3% 2.8% 

53118 1.3% 19.3% 53191 0.5% 10.5% 53594 0.1% 1.1% 

UR = Utilization rate.  
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Appendix B. Socioeconomic Variables for the 126 Zip Codes 

Zip MHI CER white PIR zip MHI CER white PIR Zip MHI CER white PIR 

53002 85478 25% 98% 60% 53119 87553 29% 96% 21% 53192 63293 0% 100% 74% 

53004 77989 31% 94% 19% 53120 66815 30% 95% 19% 53195 52125 13% 78% 6% 

53005 97202 57% 90% 54% 53121 65065 30% 95% 10% 53202 52441 69% 83% 34% 

53007 41925 25% 91% 47% 53122 113750 71% 95% 62% 53203 66161 63% 81% 57% 

53012 88844 52% 95% 29% 53125 78971 58% 97% 10% 53204 28218 8% 37% 10% 

53017 106577 40% 96% 65% 53126 77393 30% 96% 22% 53205 23125 10% 5% 13% 

53018 97482 53% 94% 27% 53128 56057 19% 95% 6% 53206 22877 7% 2% 11% 

53021 82750 19% 94% 26% 53129 64622 40% 89% 32% 53207 58646 37% 87% 23% 

53022 79230 39% 91% 67% 53130 71393 42% 94% 41% 53208 31592 26% 35% 26% 

53024 75592 45% 94% 23% 53132 76548 39% 84% 28% 53209 33395 21% 24% 20% 

53027 68701 26% 96% 48% 53137 75893 24% 98% 11% 53210 34516 20% 21% 23% 

53029 91435 47% 96% 37% 53139 78831 30% 96% 19% 53211 60195 70% 85% 25% 

53033 92620 35% 98% 67% 53140 38486 18% 81% 8% 53212 33597 31% 41% 16% 

53036 75179 31% 96% 17% 53142 66607 34% 85% 12% 53213 73308 60% 87% 68% 

53037 74327 30% 98% 69% 53143 45286 19% 78% 8% 53214 44343 23% 82% 34% 

53038 75000 30% 96% 8% 53144 55414 25% 81% 10% 53215 35803 10% 65% 11% 

53040 70938 21% 96% 66% 53146 83586 33% 96% 41% 53216 34977 18% 11% 21% 

53045 100438 63% 86% 52% 53147 60943 35% 94% 8% 53217 100262 71% 87% 38% 

53046 56771 19% 98% 70% 53149 86899 34% 95% 23% 53218 37692 13% 13% 20% 

53051 76944 42% 89% 67% 53150 85744 36% 97% 40% 53219 52468 22% 85% 27% 

53058 92792 51% 96% 27% 53151 76772 43% 92% 49% 53220 48523 24% 85% 27% 

53066 86343 44% 96% 22% 53153 90250 33% 96% 25% 53221 50645 22% 81% 18% 

53069 115568 54% 94% 30% 53154 70530 33% 86% 27% 53222 52811 39% 64% 46% 

53072 82032 49% 94% 39% 53156 57989 20% 94% 12% 53223 45973 28% 36% 28% 

53074 64446 32% 97% 17% 53158 76851 35% 90% 13% 53224 46766 25% 32% 35% 

53076 103000 36% 98% 73% 53167 51579 19% 100% 9% 53225 42665 19% 34% 34% 

53080 59545 23% 95% 19% 53168 74088 24% 96% 12% 53226 71121 57% 87% 69% 

53086 78796 33% 98% 64% 53170 61228 25% 96% 10% 53227 48613 26% 86% 34% 

53089 87106 38% 95% 61% 53172 51484 21% 91% 19% 53228 61839 33% 88% 40% 

53090 66385 23% 96% 58% 53177 64920 17% 83% 12% 53233 14920 23% 55% 11% 

53092 96627 64% 94% 37% 53178 60298 19% 97% 12% 53235 41719 32% 89% 20% 

53094 49514 21% 95% 7% 53179 68199 22% 97% 7% 53295 63293 10% 72% 8% 

53095 63157 30% 95% 63% 53181 65168 21% 98% 9% 53402 58134 28% 83% 17% 

53097 107667 62% 89% 39% 53182 66572 19% 93% 16% 53403 43411 21% 62% 10% 

53103 86809 26% 97% 29% 53183 99095 49% 96% 28% 53404 35013 13% 50% 8% 

53104 71462 23% 97% 13% 53184 51377 27% 93% 5% 53405 52978 20% 74% 13% 

53105 66699 25% 96% 14% 53185 86729 31% 96% 25% 53406 64478 31% 82% 15% 

53108 68673 17% 95% 23% 53186 57423 36% 88% 28% 53538 55340 22% 93% 2% 

53110 49882 21% 91% 18% 53188 66359 36% 90% 26% 53549 54603 18% 95% 4% 

53114 63190 17% 96% 4% 53189 87062 40% 92% 28% 53551 69227 36% 93% 4% 

53115 53868 19% 92% 5% 53190 43339 34% 90% 2% 53585 50365 12% 90% 3% 

53118 79577 34% 96% 21% 53191 63190 41% 95% 8% 53594 75306 22% 94% 1% 

 
MHI = Median Household Income; CER = College educated Rate; PIR = Privately insured Rate. 

Data source is from U.S. Census Bureau Releases of the 2014-2018 American Community Survey (ACS) 5-year 

estimates of the social, housing and demographic information. 
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Appendix C. Summary of Rural-Urban Continuum Codes and Cohort Groups 

Metropolitan Counties* Patient with Fall history Patient with Fall history 

 Number of patients  66357 428684 

Metropolitan Counties     

Code Description     

1 1m population or more 45483 94.7% 264089 92.0% 

2 250k to 1m population 2321 4.8% 21061 7.3% 

3 fewer than 250k population 210 0.4% 1905 0.7% 

      

Nonmetropolitan Counties     

Code Description     

4 20k or more, adjacent to a metro area 878 52.9% 12356 51.4% 

5 20k or more, not adjacent to a metro area 144 8.7% 2914 12.1% 

6 2.5k to 20k, adjacent to a metro area 59 3.6% 1086 4.5% 

7 2.5k to 20k, not adjacent to a metro area 474 28.6% 6231 25.9% 

8 Less than 2.5k, adjacent to a metro area 76 4.6% 1010 4.2% 

9 Less than 2.5k, not adjacent to a metro area 28 1.7% 423 1.8% 
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Appendix D. Quartile Categorization of Area Deprivation Index  

Area Deprivation Index Patient with Fall history (%)   Patient without Fall history (%) 

 (Most Affluent) 0 - 25 4487 9.5% 31705 10.6% 

 25 - 50 18256 38.6% 110056 36.6% 

 50 - 75 14340 30.3% 95220 31.7% 

 (Most Deprived) 75 - 100 10215 21.6% 63511 21.1% 
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Appendix E: Top 40 Word Frequency Gaps in Positive And Negative Word Counts 

 

Word 

frequency 

in positive 
reports 

frequency 

in negative 
reports 

weighted  

difference 
word 

frequency  

in positive 
reports 

frequency  
in 

negative 

reports 

weighted  

difference 

1 fracture 8.8 0.5 8.28 calcification 0.1 0.8 -0.70 

2 left 9.6 2.8 6.79 none 0.5 1.1 -0.63 

3 bone 7.5 2.0 5.49 mild 0.3 0.9 -0.61 

4 temporal 6.9 1.5 5.48 lung 0.1 0.7 -0.60 

5 right 8.5 3.3 5.16 lesion 0.1 0.6 -0.53 

6 canal 6.6 3.0 3.56 loss 0.0 0.6 -0.53 

7 mastoid 3.6 1.4 2.27 thickening 0.2 0.7 -0.50 

8 head 2.6 0.5 2.10 normal 3.6 4.1 -0.49 

9 ear 3.8 1.7 2.07 hearing 0.1 0.5 -0.48 

10 air 3.2 1.2 2.05 cm 0.1 0.4 -0.28 

11 ct 4.9 2.9 1.95 chronic 0.1 0.4 -0.27 

12 within 2.8 0.8 1.93 disc 0.1 0.3 -0.27 

13 facial 2.1 0.2 1.90 dose 0.4 0.7 -0.27 

14 hemorrhage 1.9 0.1 1.79 clinical 0.8 1.0 -0.26 

15 middle 3.0 1.4 1.65 narrowing 0.0 0.3 -0.26 

16 auditory 3.2 1.6 1.65 disease 0.2 0.4 -0.26 

17 fossa 2.1 0.6 1.54 change 0.6 0.9 -0.25 

18 anterior 1.6 0.2 1.38 dehiscence 0.1 0.4 -0.24 

19 sinus 2.4 1.0 1.37 unremarkable 1.3 1.5 -0.24 

20 sphenoid 1.5 0.1 1.36 mucosal 0.2 0.4 -0.24 

21 external 2.2 0.8 1.35 contrast 1.2 1.4 -0.23 

22 carotid 2.4 1.0 1.33 well 0.9 1.1 -0.21 

23 cell 2.4 1.1 1.30 focal 0.1 0.3 -0.21 

24 cavity 1.8 0.5 1.29 effusion 0.2 0.4 -0.19 

25 posterior 1.7 0.4 1.27 parenchyma 0.0 0.2 -0.18 

26 nondisplaced 1.2 0.0 1.22 history 0.3 0.5 -0.18 

27 seen 1.8 0.7 1.14 atherosclerotic 0.1 0.3 -0.18 

28 capsule 1.2 0.1 1.10 technique 1.9 2.1 -0.18 

29 otic 1.2 0.1 1.09 reduction 0.4 0.6 -0.18 

30 nerve 1.3 0.2 1.07 high 0.1 0.2 -0.18 

31 extends 1.1 0.1 1.06 patient 0.9 1.0 -0.18 

32 extending 1.1 0.1 1.03 reconstruction 0.4 0.6 -0.17 

33 noted 2.1 1.1 1.03 bilaterally 0.2 0.4 -0.17 

34 involving 1.2 0.2 1.01 artifact 0.1 0.3 -0.16 

35 line 1.1 0.1 0.99 window 0.2 0.3 -0.16 

36 tegmen 1.0 0.0 0.95 dilatation 0.0 0.2 -0.15 

37 hematoma 1.0 0.1 0.92 neural 0.0 0.2 -0.15 

38 portion 1.0 0.1 0.92 otosclerosis 0.1 0.2 -0.14 

39 fragment 0.9 0.0 0.89 without 1.7 1.8 -0.14 

40 frontal 1.0 0.1 0.85 imaged 0.1 0.3 -0.14 
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Appendix F: Evaluation of the Number Of Keywords and Performances on Five Different 

Models 

Random Forest       Logistic Regression     

features 

# 
Accuracy F1 Precision Recall features # Accuracy F1 Precision Recall 

2 0.793 0.618 0.687 0.625 2 0.775 0.495 0.675 0.4 

3 0.951 0.913 0.93 0.91 3 0.915 0.821 0.92 0.78 

4 0.946 0.899 0.93 0.89 4 0.91 0.82 0.92 0.76 

5 0.94 0.881 0.93 0.87 5 0.909 0.807 0.927 0.755 

10 0.964 0.926 0.983 0.89 10 0.915 0.814 0.95 0.75 

20 0.976 0.95 1 0.915 20 0.922 0.843 0.913 0.81 

30 0.97 0.935 1 0.89 30 0.921 0.841 0.907 0.805 

50 0.969 0.93 1 0.885 50 0.915 0.815 0.94 0.755 

100 0.97 0.935 1 0.89 100 0.933 0.844 0.98 0.77 

200 0.964 0.921 1 0.865 200 0.939 0.855 1 0.77 

300 0.964 0.916 1 0.865 300 0.945 0.874 1 0.795 

500 0.964 0.916 1 0.865 500 0.945 0.874 1 0.795 

SVM         Xgboost       

features 

# 
Accuracy F1 Precision Recall Word 

features # 
Accuracy F1 Precision Recall 

2 0.769 0.474 0.658 0.375 2 0.793 0.618 0.687 0.625 

3 0.94 0.904 0.906 0.915 3 0.94 0.902 0.913 0.91 

4 0.946 0.901 0.923 0.895 4 0.94 0.902 0.913 0.91 

5 0.94 0.886 0.923 0.87 5 0.928 0.87 0.913 0.87 

10 0.946 0.9 0.942 0.87 10 0.928 0.879 0.897 0.89 

20 0.946 0.904 0.93 0.895 20 0.964 0.937 0.947 0.94 

30 0.952 0.916 0.937 0.915 30 0.958 0.924 0.94 0.92 

50 0.951 0.909 0.93 0.915 50 0.958 0.924 0.94 0.92 

100 0.976 0.95 0.98 0.935 100 0.964 0.924 0.89 0.89 

200 0.975 0.949 0.98 0.93 200 0.964 0.937 0.947 0.94 

300 0.975 0.949 0.98 0.93 300 0.958 0.922 0.947 0.915 

500 0.975 0.949 0.98 0.93 500 0.958 0.922 0.947 0.915 

Decision Tree             

features 

# 
Accuracy F1 Precision Recall       

2 0.817 0.621 0.751 0.575       

3 0.952 0.922 0.93 0.91       

4 0.922 0.857 0.872 0.87       

5 0.904 0.848 0.89 0.85       

10 0.916 0.87 0.826 0.87       

20 0.928 0.869 0.903 0.89       

30 0.928 0.866 0.86 0.85       

50 0.922 0.888 0.861 0.89       

100 0.945 0.907 0.918 0.885       

200 0.933 0.897 0.947 0.915       

300 0.952 0.916 0.927 0.94       

500 0.921 0.866 0.867 0.82           



 

 123 

Appendix G: Correspondence with Peer Reviewers for Study 2, Interpretable Machine 

Learning Text Classification for Clinical Computed Tomography Reports – A Case Study 

of Temporal Bone Fracture, in Computer Methods and Programs in Biomedicine Update: 

We thank the reviewers for their careful reading of the manuscript and their constructive comments. 

We carefully considered all the comments and made significant revisions to improve and clarify 

the manuscript. Because we extensively revised the manuscript, we summarized the major changes 

in "Major changes of the revised manuscript" for your convenience of reading. 

Reviewer 1: I had the pleasure to review the manuscript "Interpretable Machine Learning Text 

Classification for Computed Tomography reports - A Case Study of Temporal Bone Fracture." In 

this investigation, the authors demonstrated the application of Random Forest (RF), SVM, and 

decision trees classifier combined with commonly used NLP methods (BOW, TF-IDF) in 

classifying fracture cases from non-fracture cases. Word Frequency Score (WFS) and LIME were 

used for interpretability. A limitation of this paper, as previous reviewers have noted, is that the 

sample size was only 164 reports, which hinders the experimental conclusions. In addition, these 

164 reports came from a single center with patients in a very small age range (60-65), which 

severely limits the clinical value of the proposed models. Despite its limitations, I think this 

manuscript is still a solid paper that illustrates a use case for how tools in explainable AI could be 

used to improve the transparency of ML models made for clinical purposes. The authors have 

revised and answered previous reviewers' comments appropriately. My main feedback includes 

the need for a baseline model, try boosting algorithms, and more explanation of the top predictors 

as well as rephrase some sentences in the discussion and conclusions. 



 

 124 

Response: Thank you for your kind comment. We believe our revised manuscript has improved 

descriptions of the baseline model, boosting algorithms, and more explanation of predictors. We 

also make our best effort to rephrase some language parts.  

Major Comments 

1. In the 'Development of ML models' section, please explain why you set the minimum frequency 

limit threshold to 4 and the maximum frequency to 70%. Shouldn't these parameters be optimized 

via a parameter search? 

Response: These parameters could have been optimized via a parameter search. However, we use 

these numbers based on our observation of word frequency analysis and a full list of top frequency 

words. Please check the list in the supplemental files. From the list of words and the list of 

frequencies, we find that a minimum frequency of five and a maximum frequency of 70% is a 

threshold to produce a reliable performance. Searching for the best optimum parameter is possible, 

but the optimized parameters are not likely to change the interpretation results. Because our study 

focused more on interpreting results, we relied on reasonably good parameters to create a dataset. 

Also, please see the pieces of code and explanations from the Jupyter Notebook. The notebook is 

available in the supplemental files. 

Converting Text to numbers 

Machines, unlike humans, cannot understand the raw text in this format. Machines can only see 
numbers. Particularly, statistical techniques such as machine learning can only deal with numbers. 
Therefore, we need to convert our text into numbers. 

Different approaches exist to convert text into the corresponding numerical form. The Bag of 

Words Model and the Word Embedding Model are two of the most commonly used 

approaches. In this article, we will use the bag of words model to convert our text to numbers. 

Bag of Words 
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The following script uses the bag of words model to convert text documents into corresponding 
numerical features: 

 
The script above uses CountVectorizer class from 

the sklearn.feature_extraction.text library.  There are some important parameters that 

are required to be passed to the constructor of the class. The first parameter is 
the max_features parameter, which is set to 1500. This is because when you convert words 

to numbers using the bag of words approach, all the unique words in all the documents are 
converted into features. All the documents can contain tens of thousands of unique words. But the 
words that have a very low frequency of occurrence are unusually not a good parameter for 
classifying documents. Therefore, we set the max_features parameter to 1500, which means 

that we want to use 500 most occurring words as features for training our classifier. 

The next parameter is min_df and it has been set to 5. This corresponds to the minimum number 

of documents that should contain this feature. So we only include those words that occur in at 
least 5 documents. Similarly, for the max_df, feature the value is set to 0.7; in which the fraction 

corresponds to a percentage. Here 0.7 means that we should include only those words that occur 
in a maximum of 70% of all the documents. Words that occur in almost every document are 
usually not suitable for classification because they do not provide any unique information about 
the document. 

Finally, we remove the stop words from our text since, in the case of this analysis, stop words 

may not contain any useful information. To remove the stop words we pass the stopwords object 

from the nltk.corpus library to the stop_words parameter. 

The fit_transform function of the CountVectorizer class converts text documents into 

corresponding numeric features. 
 

2. For the parameter search of the number of features, where did the feature ranking (from top 

most feature to the bottom feature) come from? 

Response: The feature ranking comes from the frequency of the words that occurred in our entire 

clinical document set. In other words, we used the 500 most frequently occurring words as a feature 

to train the classifier. The most occurring words, of course, exclude any stop words listed in the 
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natural language toolkit (NLTK), so these top words show semantics for positive and negative 

documents. 

3. The explanation of LIME in the 'Interpretation of ML models' sounds vague. Please explain how 

the local model was constructed. 

Response: We used the LIME package and included the text explainer. Our pipeline completely 

follows the pipeline on the documentation example. Please check the documentation for Text 

Explainer. 

https://eli5.readthedocs.io/en/latest/tutorials/black-box-text-classifiers.html#textexplainer 

To answer the question of how the local model was constructed, Text Explainer generated texts 

similar to the document (by removing and sampling words in the document), and then trained a 

white-box classifier which predicts the output of the black-box classifier. The explanation we saw 

is for this white-box classifier. 

This approach follows the LIME algorithm; for text data, the algorithm is pretty straightforward: 

1. generate slightly modified versions of the text. 

2. predict probabilities for these modified texts using the black box classifier; 

3. train another classifier (one of those eli5 supports) which tries to predict output of a black-

box classifier on these texts. 

The algorithm works because even though it could be hard or impossible to approximate a black-

box classifier globally (for every possible text), approximating it in a small neighborhood near a 

given text often works well, even with simple white-box classifiers. 

Because the local model is always an approximation of a black-box model, we included the 

mean_KL_divergence and accuracy score in the white-box classifier. It usually assigns the same 

https://eli5.readthedocs.io/en/latest/tutorials/black-box-text-classifiers.html#textexplainer
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labels as the black-box classifier on the dataset we generated, and its predicted probabilities are 

close to those predicted by our machine learning pipeline.  The most valuable thing is that the local 

model could provide weights and word-level visualizations for the contribution of fracture 

classification.  

As for the problem of 'Interpretation of ML models' sounds vague, we described the concept in a 

clearer way in the manuscript:  LIME provides the word-level evaluation on how each word 

contributes to the classification results.  

4. Regarding Fig 3: what is the significant of 'left', 'right', and 'canal' in terms of interpretability? 

An explanation for why these words is important and meaningful to a physician would be 

beneficial. 

Response: Please see an example of documents, which shows the words "left", "right," "fracture," 

"canal". 

Document #1:  

1. Old comminuted fracture of the right middle cranial fossa with multiple bullet fragments lodged within it as 

described above. There is disruption/disolution of the right ossicular chain but the inner ear structures are intact. 

2. Adjacent residual right mastoid air cells are chronically opacified. 

Examination reviewed by Dr. [NAME] and reported findings confirmed by Dr. [NAME]. 

Clinical Indication: Post traumatic right otalgia. 

Techniques: 0.625 mm thick contiguous axial scans of temporal bones were acquired. Coronal reformats were 

generated and reviewed. 

Comparison: None. 

Findings: Again visualized are severely comminuted old fractures of the right middle cranial fossa with multiple 

bullet fragments within the bones of the right skull base the right middle ear cavity and right anterior mastoid air 

cells. The roof of the right middle year cavity is dehiscent and there are dislocations/resorptions of components 

of the right ossicular chain. Only the body of the right incus is well visualized. 
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Multiple bullet fragments are lodged within the clivus sphenoid bone prevertebral soft tissues and in the 

infratemporal fossa. The residual mastoid air cells are opacified. 

The left mastoid air cells appear well-aerated. The left middle ear cavity and ossicular chain are preserved. The 

left mastoid air cells appear unremarkable. 

Bilateral inner ear structures appear normal in morphology and density. Internal auditory canals appear 

symmetrical and normal in size bilaterally. Vestibular aqueducts are not dilated. 

 

The terms "left" and "right" "canal" appear frequently in this document as the condition of parts 

of anatomical words. These anatomical concepts are often a major part of descriptions in temporal 

CT clinical documents. A hypothesis is that once a fracture is discovered, physicians tend to 

provide more detailed descriptions of the anatomical parts and tissues. In clinical settings, fracture 

diagnosis only consists of a small percentage of documents. Physicians may take more time on 

abnormal CT images, and draft more detailed documents, thoroughly describing all parts of the 

body system. This makes the "right" and "left" "canal" show up more often in fracture texts. For 

non-fracture documents, we hypothesize that physicians tend to use more summarized words, such 

as "All [parts] appear intact, in normal morphology and density." This description is more likely 

to be non-fracture documents, will be shorter, and will use fewer anatomical terms.  

5. Regarding Fig 3: This figure suggests that the high precision probably comes from the fact that 

fracture reports typically contain words like 'fracture' or 'temporal.' Also, words like 'lung' or 

'calcification' imply a non-fracture case because the CT images are of the lungs or the heart. This 

made me think perhaps a simple rule-based model for these specific words may suffice the 

classification task. Would be nice to include a model as such to compare with the existing models. 

Thank you very much for your suggestion. We use the word "fracture" to build a simple one-rule 

classifier. We wanted to keep the rule simple, because it is common to conduct keyword searches 
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and quickly determine the classifications. This would be a good baseline to reflect the actual 

scenarios for bone fracture classification. 

In this case, the rule-based classifier would classify documents with "fracture" as positive and 

documents without "fracture" as negative. This would serve as a baseline model. In supplemental 

files, we included the rule-based classifier and used the "if" condition to construct the classifier on 

our documents. We then count the true positive, false positive, true negative, and false negative 

cases. We measure F1, precision, and recall. Please see the following figure: 

 

Also, we provided a supplemental file named "rule-based classifier" that provided case-by-case 

prediction results and rule-based model details. 

From the rule-based model’s result, the F1-score is 0.761, which is significantly lower than our 

machine learning-based classifier. TP, FP, FN, and TN cases, we see more false positive cases 

than false negative cases. This indicates even a simple rule-based classifier will not be likely to 

miss a fracture diagnosis. The precision is a bit lower than our machine learning model. To increase 
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the precision, therefore, it makes sense to build more complicated rules or to adopt the most 

frequent words as machine learning features. 

As we investigated in related work, the development of rule-based classifiers was mostly in the 

1990s. It must be admitted that a simple rule-based classifier cannot handle complex clinical text 

classification tasks. If we apply multiple rules, the performance may improve, but interpretation 

becomes a problem again. The rule-based classifier may not adapt to the ever-changing word usage 

in medical documents. The machine learning models, however, can overcome this problem. 

Therefore, building more complicated rules is no longer a focus of our study. We may not use a 

20-year-old rule-based classifier as a baseline. Instead, starting from the machine learning model 

would be a better choice. Based on the rule-based classifier’s performance, the ML model’s 

development convenience, and comparisons, we decided to not include the rule-based classifier as 

a baseline model. 

6. Regarding Fig 4: The comparison between RF, SVM, Decision Tree, and Logistic Regression 

provides little values. Have you tried boosting methods (XGBoost, LightGBM, CatBoost)? You 

could make the text sizes in the axes and legends bigger. 

Thank you for the suggestion! We included an extra XGBoost model and provided performance 

values in two figures. Generally speaking, the XGBoost model shows comparable performance to 

the Random Forest model. The precision, recall, and F1 values are similar. The XGBoost model's 

performance has been added to the revised figures. 

7. In addition, you mentioned that from these results that you chose 500 as the number of topics, 

but the RF plot suggests that 20 is the best number. 
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Response: Thank you for pointing out this issue. Please see the graph below to see the 

relationship between the machine learning model, the number of features in the dataset, and the 

Evaluation Performances. This figure is a simplified visualization of previous figures. The 

performance metrics did not change. 

 

Figure 4: Relationships between classification model’s performance, number of selected features, 

and evaluation performances for Random Forest, XGboost, Support Vector Machine, and 

Logistic Regression model. 

In this set of figures, we can quickly find that most performance is better as the number of selected 

words gets larger. Therefore, we keep our main models to a 500-word limit. 

8. I think either Fig 4 or Fig 5 should be in the main body, and the other one could be moved to 

the Supplement. 
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Response: We moved figure 5 into the supplemental files section. Figure 3 would show the model’s 

performance from a comprehensive perspective.  

9. Regarding Fig 6: The AUC is very high, that made me think whether the problem of classifying 

fracture/non-fracture cases is challenging enough to utilize ML. If it is a relatively simple problem, 

a simple model would suffice. This could be answered by including a simple rule-based model in 

the analysis to serve as a baseline. 

We built a rule-based classifier and reported the performance. Please refer to the response in 

comment 5. 

Here is the answer to the question of whether the problem of classifying fracture and non-fracture 

cases is challenging enough to utilize ML: Machine learning models need to be used because they 

work much better than a simple rule-based classifier.  

10. Figure 7 and 8 could be merged into one. Similarly, some figures are redundant (see below), 

and 10 total figures is a lot. Please merge some figures and/or put some in the Supplements. 

11. Fig 10 is nice. Not a new method but a nice and definitely interpretable visualization to 

summarize the logic behind a model. 

Comment 10 and 11 are both related to figures, so we combined them and responded to the 

comments together: 

After we discussed it with the coauthors, we agreed to make the following edits to the charts: 

Action Which Chart(s) 

Leave these figures on 

the main text: 

 

• Overview of our study 

• Comparison of gaps between fracture and non-fracture reports 
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• Relationships between classification model's performance, 

number of selected features, and evaluation performances  

• Merge two figures: Text Explainer's Evaluation (original 

Figure 7) and Top Features and its weight by Text explainer 

(original Figure 8) 

• A visualization of decision trees. 

Delete this chart: • Overview of Text Explainer, how text explainer explains 

clinical CT documents 

Move these to 

supplemental files: 

 

• Accuracy score and the Kullback-Leibler divergence score to 

Evaluate the reliability of LIME Interpretation 

• AUROC Figure of random forest model 

• Classification Performance for Support Vector Machine, 

Logistic Regression and Random Forest Models 

 

Please see our updated manuscript for detailed changes of the charts. 

12. I appreciate the author's answer to a reviewer's comment regarding the reason that authors 

used BOW instead of Word-2-vec. Would be nice to include it in the main text. 

Response: Thank you for the suggestion. We moved the justification of using BOW instead of 

word-2-vec into the main text.  

13. From my understanding, LIME can only explain individual reports, and not globally. Since 

LIME trains a local linear model around the individual prediction to approximate the prediction 

of the 'black box' model. Thus, I am confused as whether the model could get an aggregated 

explanation? 

Here is the original figure 7 and figure 8: 
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Figure 7: Text Explainer's Evaluation on word's Contribution using Random Forest Algorithm 

 

Figure 8: Top Features and its weight by Text explainer using Random Forest Algorithm 

First, we would like to clarify that figures 7 and 8 are not relevant. We use the word "contribution" 

in figure 7, and "weight" in figure 8. We recognize that putting Figure 7 and Figure 8 together may 

cause confusion very easily. Here are explanations for figures 7 and 8: 

Figure 7 is a visualization of a text explainer. The text explainer’s only job is to evaluate each 

word’s contribution to each document. The text explainer’s evaluation is based on an approximated 

white-box model, as we mentioned. In the explainer, each word’s contribution could be positive 

(shown in green) or negative (shown in red). The red word means a contribution to negative 

classifications. The green word means a contribution to positive classification. For example, in 

Figure 7 text example, we can say the words "comminuted" and "fracture" contribute to a positive 

result. "Unremarkable" contributes to negative results. In other words, in the text explainer, the 
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word has two directions. Therefore, figure 7’s contribution is only related to each document. Figure 

7’s word-level contributions are not aggregated evaluations. 

In Figure 8, LIME evaluated the weight of the completed model based on a global view. The 

weight is based on the entire document set and does not relate to any form of classification results. 

We can say that "weight" is an alternative expression of "feature importance". Of course, they are 

based on different algorithms, but both key concepts are to evaluate which feature serves as a 

deciding factor in classification. 

The "fracture" has a weight of 0.0817. In Figure 8, the information only shows "fracture" is often 

used as the primary deciding factor in decision trees from the random forest. "Fracture" serves as 

a key deciding criteria in many decision trees. Therefore, the weight is calculated based on the 

completed machine learning model, which is trained based on the entire training set. Therefore, 

the figure 8 weight list is based on aggregated evaluations. 

 

We thank you for your comments. With your comment, we find that our paragraph may cause 

confusion in the discussion section "Interpretation of Machine Learning Models." To avoid 

confusion, we provide the following additional clarification in the main text: 

Figure 7 shows a visualization of a text explainer. In this text explainer, each word has been 

assigned a contribution score, showing the words lead to positive or negative classification. The 

text explainer’s evaluation is based on the individual text level. 

The feature list in Fig. 8 displays the random forest model's most important word list. The word 

list is aggregated from multiple decision trees. The selection of each word is calculated by whether 

the word serves as a deciding factor in a decision tree. Higher weight words are often used as a 
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key factor in the classification results. The feature list corresponds to the text explainer's 

assessment of figure 7.  

14. Regarding the second paragraph of the 'Summary of Text feature analysis' in the Discussion 

comment: I don't quite agree with the remark on using highly specialized language patterns are 

highly conserved. Sometimes it is the case that clinical texts are unavoidably full of domain-

specific keywords, and use of a specialized corpus instead of a general one could achieve higher 

performance. 

Response: We agree with your argument. Sometimes, clinical texts are unavoidably full of domain-

specific keywords. 

Use of a specialized corpus instead of a general one could achieve higher performance. We 

included this direction as a part of our future work. Our work’s next step is to only visualize the 

medical specialized words in clinical documents. This can reduce the effect of other irrelevant 

words and make a more accurate prediction. 

Regarding our statements in the last paragraph of the 'Summary of Text feature analysis' in the 

Discussion, we have modified the texts, and added the following statements: 

Physicians often draft reports with highly specialized medical terms. These medical terms often 

serve as reliable predictors. According to our results, we suggest investigating if non-experts can 

easily interpret the medical terms. 

Our LIME results show that specialized medical words contribute significantly to 

classification.  As a result, we believe that interpretable AI has the potential to help explain more 

complex diagnostic conditions. This pipeline can also be used to interpret other clinical texts, 

classify diagnoses, and give an explanation that is easy to understand. 



 

 137 

15. I don't quite agree with the claim in the Discussion that LIME is significantly easier to interpret 

than decision tree, and many would say the same. This claim is too strong in my opinion. Each has 

its own merits. Perhaps LIME could be slightly more suitable for non-numeric data.  

Response: Thank you for your suggestion. However, we believe our claim is reasonable, especially 

for text data. We did not change our claim but have modified the claim slightly. Our scope of 

discussion focused on text data. 

We believe LIME would be significantly more explainable than a decision tree. Our decision tree 

example only includes five keywords. However, a real decision tree has significantly more depth 

and more nodes. A short decision tree like this example is easy to understand, but in most clinical 

cases, the tree must be very deep to achieve satisfactory performance. The actual decision tree 

often reaches 100 or more nodes. In this case, the physician must iterate through ten levels of depth 

and choose from ten different rules. This is not practical. If a similar LIME network was 

constructed, the visualization would only show a list of weights like in figure 8. This list makes it 

easier for physicians to determine the importance of each word to the classification results. 

16. Regarding Table 1: not quite sure what it means for inherently transparent models to require 

deep AI knowledge. Please elaborate or word differently. In addition, there are several papers that 

argue otherwise (pro for fully transparent models and against post-hoc methods). This is a highly 

controversial topic that is also not quite related to the sole purpose of interpretable classification 

of fracture reports from texts. 

We agree that it is a highly controversial topic about choosing which forms of models to use. After 

carefully considering your comments, we believe deleting this part of the discussion would help 

focus on our topic of "Interpretable models on clinical document classification". As you mentioned, 

the topic of selecting which types of models is outside the scope of this study. Therefore, we 
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decided to delete that part of the discussion. The deletion allows the paper to focus on the LIME 

and the WFS analysis parts of the work. 

17. Regarding the conclusions: conclusion #2 about RF achieved the highest accuracy, in my 

opinion, is not novel nor significant. 

Response: Thank you for the comments. We deleted the RF part and focused more on the 

significance of our model’s interpretation in the conclusion.  

Minor Comments 

18. Regarding Text pre-processing: please provide in the Methods more details on which parts in 

the preprocessing step were automated and which packages were used for them. It will only take 

one or two sentences. 

Response: We added a brief description of the text processing on the section about the following 

text pre-processing steps.  

We removed all non-word elements in clinical reports, including numbers, punctuation, and special 

characters. We converted all words to lowercase letters. We perform these changes using regular 

expressions.  Then, we followed a Natural Language Toolkit stop-word list to remove stop words, 

lemmatized words, and incorrect spellings and acronyms. All words were free of noun declination 

and verb conjugations. The supplemental code book shows how we pre-process the documents.   
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We thank you very much for your thoughtful review and valuable comments. 
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Reviewer 2: The paper uses four machine learning techniques, Support Vector Machine(SVM), 

Decision Tree(DT), Logistic regression, and Random Forest, to do binary classification on a case 

study of Temporal Bone Fracture and classify 164 Electronic health reports into fracture cases 

and non-fracture cases. 

Although the dataset size seems small, I have seen great articles for different diseases, such as 

"Clinical text classification of Alzheimer's drugs' mechanism of action," that perform the same 

task on a small dataset. Having small datasets for clinical text classification is common, and the 

way that the paper uses Machine Learning techniques instead of Neural Network-based (NN) 

models or transformers makes sense to me because using NN models and fine-tuning transformers 

needs large datasets. 

However, the final goal of the paper is interpreting the models not achieving higher accuracy. So 

that is excellent work. 

Response: Thank you for your comments! We would like to discuss a few points: 

1. We analyzed word frequency and the gaps between negative and positive documents. We 

supplied the analysis in supplemental files. In the analysis, there are fewer than 1000 valid 

words as features. For this size, we think neural network-based models or transformers 

would not achieve an advantage over machine learning models. Should we include a larger 

set of clinical documents and a more complex classification task, the neural network might 

achieve a significantly better outcome. In future work, we will consider neural networks 

and transformers and apply them to a larger set of clinical documents to process complex 

classification tasks. 
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2. We did not notice the paper “Clinical text classification of Alzheimer's drugs' mechanism 

of action” in the literature review. They are very valuable work. In this revision, we added 

the relevant publication and our comments in related work section.   

Major Comments: 

1. If the paper's work is on interpretability, which I believe it is, I strongly recommend that the 

authors remove the Decision Tree (DT) from the models because, in essence, it is not a black-box 

model. It is a white box model. Moreover, One category of Stanford’s interpretability proposed 

methods is trying to draw a DT model and write an Interpretable decision set (IDS), so considering 

the DT model as a block-box model is entirely wrong. 

Response: Thank you for pointing out the issue. We have removed all content related to decision 

trees from the models and performance evaluations. However, we still like to discuss the model 

interpretability in decision trees and use decision trees as an example of a white box model. 

because we focus on the model’s interpretability. It is essential to mention that the decision tree is 

unique because it is an intrinsically interpretable machine learning model. We would like to 

compare this model with other explanation techniques, such as LIME. 

2. On the other hand, Both RF and SVM models are black box, so I believe your job on these two 

models makes sense. 

Response: Thank you for your comments. 

3. You need to talk about the dataset details. It is the only comment you have not addressed 

correctly. I know you provided the code, but I assume that the results are unreliable if the dataset 

is imbalanced in small datasets. Therefore, the interpretation is not correct. Please add a table 

and provide information about the train, test, and evaluation size. 
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Response: First, we apologize for not using the most precise words in the manuscript. The 10-fold 

cross validation should be stratified by the 10-fold cross validation. The procedure was shown in 

the Jupyter notebook. 

We acknowledge that we did not provide sufficient information on training, testing, and validation 

in the last revision. We are sorry if there is any confusion in the manuscript, but we believe our 

corrected language has reflected the actual case after revision. We added new descriptions of the 

cross validation and train/test split percentages so our study can be reproduced. For the concerns 

of imbalanced data and small data sets, we believe our experiment and manuscript provided the 

correct interpretation to the maximum extent possible. If the manuscript needs more description, 

please inform us what part of the model creation information is critical to the reader. If you have 

concerns about codes, please suggest modifications to our codes. We will perform additional 

experiments. 

In this study, we adopted stratified k-fold cross-validation to provide a reliable model performance. 

It is a technique to stratify the sampling by the class label, and this technique can tackle small and 

imbalanced datasets. 

For more details of stratified k-fold, please see the response to Comment 6. 

4. Please define the acronym for the first time the sequence is mentioned in the text and avoid 

using the whole sequence or redefining it in the rest of the text. For example, once you write 

Support Vector Machine (SVM), do not redefine the acronym again; for the rest of the article, use 

SVM. 

Response: Response: Thank you. We have corrected all acronym issues in the manuscript. We 

removed a few infrequently used acronyms. The removed words are electronic health record 
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(EHR), natural language processing (NLP), and bag of words (BOW). We revised them 

accordingly for the rest of the words.. 

 

5. In the Limitation and future work section, you divide your future work into two aspects. You say 

the first one but never clearly mention the second one. I believe the paper's English needs to be 

checked by the writing center. Some sentences are not clearly described. 

Response: We have re-stated the two aspects of our future work, as follows: 

First, we used labeled data in this preliminary study. While unlabeled data cannot be used for 

classification, it has the potential for unsupervised learning. We believe that by building an 

appropriate unsupervised model, it is possible to cluster CT reports into two categories based on 

text reports. Second, building a medically specialized text interpreter would highlight medical 

words only and achieve a clearer interpretation. For example, by adopting SNOMED-CT standards 

[52], it is possible to create a medical text interpreter. The model could limit the number of words 

to only medical terms. The word-level optimization may achieve better prediction and better 

interpretation. 

For the language issues, we have extensively looked for English editing and proofreading services, 

and we have revised the manuscript to the best of our effort. 

Minor Comments 

6. In the comments, you mentioned that the (45 patients + 119 patients) if these are the number of 

samples for fracture and non-fracture cases. Is the data imbalanced? How did you deal with this 

problem? How are you using 10-fold for a class with 45 samples? 
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Firstly, we acknowledge we did not choose the most precise words for the manuscript. The 10-

fold cross validation should be stratified 10-fold cross validation. The procedure was shown in the 

Jupyter notebook. 

The data is imbalanced. In this study, we used 164 clinical texts, with 45 positive cases and 119 

negative cases. The small data set is common for clinical reports, and other studies use similar 

small data set. The study includes the one you mentioned "Clinical text classification of 

Alzheimer's drugs' mechanism of action".   Many studies have adopted stratified k-fold to deal 

with the data imbalance problem. We used the same stratified 10-fold to avoid bias as much as 

possible. 

A stratified K-fold is a cross-validator that divides the dataset into k-folds. Stratified is to ensure 

that each fold of a dataset has the same proportion of observations with a given label. Here is a 

figure that shows how stratified k-fold works: 

 

Figure 1. An example visualization of how stratified 10-fold splits the training set and test set 

In this figure, fracture and non-fracture clinical texts are marked as yellow and blue dots, 

respectively. For easy plotting, we plotted 30 dots (20 negative, 10 positive), which is our entire 

data set.  The stratified 10-fold cross-validation method divides the training dataset into 10 folds. 

The first 9 folds are used to train a model, and the 10th fold serves as the test set. This process is 
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repeated until each fold has a chance to be used as the holdout test set. A total of 10 models are fit 

and evaluated, and the model’s performance is calculated as the mean of these runs. 

Because stratified k-fold will evenly distribute the proportions of positive and negative cases and 

maintain a stable balance between test data and training data, It is widely accepted that stratified 

k-fold ensures that the proportion of positive to negative examples found in the original 

distribution is respected in all the folds. This is the best way to show an unbiased model's 

performance under a small data set. 

As Dr Jason Brownlee writes in his article “How to Fix k-Fold Cross-Validation for Imbalanced 

Classification”:  

It is a challenging problem as both the training dataset used to fit the model and the test set used 

to evaluate it must be sufficiently large and representative of the underlying problem so that the 

resulting estimate of model performance is not too optimistic or pessimistic. 

The two most common approaches used for model evaluation are the train/test split and the k-fold 

cross-validation procedure. Both approaches can be very effective in general, although train/test 

split can result in misleading results and potentially fail when used on classification problems with 

a severe class imbalance. Instead, the techniques must be modified to stratify the sampling by the 

class label, called stratified train-test split or stratified k-fold cross-validation. 

As we rarely have enough data to get an unbiased estimate of performance using a train/test split 

evaluation of a model. Using a stratified k-fold cross validation procedure would introduce 

minimal bias under limited dataset. The procedure has been shown to give a less optimistic 

estimate of model performance on small training datasets than a single train/test split. A value of 

k=10 has been shown to be effective across a wide range of dataset sizes and model types. 

https://machinelearningmastery.com/cross-validation-for-imbalanced-classification/
https://machinelearningmastery.com/cross-validation-for-imbalanced-classification/
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Therefore, we hope our explanation and figures can address your concerns about the small and 

imbalanced dataset. In our experiment, we considered the balance and small data set and chose the 

appropriate methods to avoid potential problems. 

Again, we thank reviewers for the careful reading of the manuscript and constructive comments. 

We hope our revised paper has addressed all concerns by the reviewers in sufficient detail. 
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