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ABSTRACT 

 

NOVEL NON-INVASIVE DETECTION OF THIN FILM BIOFILM  

AND CLASSIFICATION OF DEPOSITS USING MACHINE LEARNING 

 

by 

 

Sachin Davis 

 

The University of Wisconsin-Milwaukee, 2023 

Under the Supervision of Professor Marcia R. Silva 

 

 Clean, safe, readily available water is vital for public health, irrespective of whether it is 

used for drinking, domestic use, food production, or recreational purposes. Globally, around two 

billion people use feces-contaminated water sources, which poses a high risk to the safety of 

drinking water due to the high probability of water contamination. Microbial-influenced 

corrosion is a significant problem in several industries, including but not limited to wastewater 

treatment, drinking water distribution systems, food industries, power plants, paper industries, 

and chemical manufacturing facilities. The presence of microorganisms causes around 70% of 

the corrosion in gas transmission pipelines, and corrosion accounts for the loss of around 4% of 

the gross national product. The United States is estimated to spend around $300 billion yearly on 

corrosion costs. A significant amount of time is spent finding and fixing the problem with a 

major overhaul or part replacement, saving about 30% of overhead costs. Due to its attachment, 

sanitization and cleaning methods are ineffective against biofilm in its mature stage. Overall, 

there is a need for a rapid assessment of pipes or other structures to assist in biofilm monitoring 

and cleaning procedures. 

 The study presents and examines a fresh approach that combines non-invasive and non-

destructive methods for detecting deposits in near real-time. The detection is accomplished by 

measuring changes in voltage and time-of-flight of ultrasound sensors and using a random forest 
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machine learning (ML) algorithm to categorize the deposits into four types: no deposit, biofilm 

deposit, scaling deposit, and corrosion deposit. This work builds a strong foundation for future 

novel research for the detection of biofilm using evanescent waves or multiple internal 

reflections [1]. Additionally, the technique is cost-effective, portable, and requires minimal 

power. Although random forest learning has been utilized for various classification problems, 

this study presents a novel application of the ML technique to classify deposits based on voltage 

and time of flight measurements.  Unlike conventional methods like microscopic methods, 

combining the sensor arrangement with ML techniques allows users to make informed decisions 

on cleaning strategies, preventing massive biofilm buildup or other deposits in a closed wall 

piping system.  
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Chapter 1 

Introduction 

 

1.1 Project Objectives 

 This research aims to develop a non-invasive and non-destructive technique to detect thin 

biofilm in real-time and to classify the type of deposit inside the piping system using the random 

forest machine learning (ML) algorithm. In the early stage of this research, several experiments 

were conducted with early research aimed at conducting proof-of-concept studies to determine the 

effectiveness of ultrasound sensors in detecting biofilm presence inside test chambers constructed 

from different materials mimicking a real-world piping system. The current research stage aims to 

test the effectiveness of ultrasound sensors in pipe loop setups at the UWM Water Technology 

Accelerator Laboratory at the Global Water Center and the Howard Ave Water Treatment Plant. 

A ground truth experiment was also conducted to train and test the dataset using a ML technique. 

The ML model was used to help classify the type of deposit – no deposit, biofilm deposit, or 

corrosion deposit in a plastic container mimicking a household water distribution system. The 

current research work also aims to build a strong foundation for a future novel research, which 

makes use of evanescent waves or multiple internal reflections for non-invasive detection of 

biofilm [1]. The future research stage involves the development of a portable, low-cost standalone 

device that can indicate the presence of any deposits in a closed-wall piping system. 
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1.2 Background 

 Clean, safe, and readily available water is vital for public health, irrespective of whether it 

is used for drinking, domestic use, food production, or recreational purposes. Globally, at least two 

billion people use feces-contaminated water sources, which poses a high risk to the safety of 

drinking water since it increases the probability of microbial contamination. It is believed that 

billions of people live in water-stressed countries, which will exacerbate based on population or 

climate change [2]. Historically, diseases that spread through water, such as cholera and typhoid 

fever, were highly concerning. However, the discovery of drinking water treatment plants and 

separating wastewater discharge has helped mitigate these concerns. These modern concepts have 

mostly eradicated the presence of S. typhi, V. cholerae O1, and Shigella spp and are rarely found 

in water distribution systems. However, pathogens such as Escherichia coli (E. coli), Legionella 

spp., Aeromonas spp., Mycobacterium spp., and Pseudomonas aeruginosa can grow in water 

distribution systems. The emergence of these pathogens has been directly linked to a change in 

water usage habits – the increased use of heated drinking water and the advent of warm water 

reservoirs, which provides an ideal habitat for biofilm growth [3]. Different microbes can survive 

in distribution systems, with some capable of growing and producing biofilms. The organisms that 

cause diseases in healthy individuals are classified as primary pathogens, while those that facilitate 

infections in individuals with existing health conditions are classified as opportunistic pathogens 

[4]. Both primary and opportunistic waterborne pathogens have transmission routes other than 

water and are agents of foodborne outbreaks [5]. Table 1 shows a list of bacterial pathogens known 

to cause waterborne diseases and, in addition, have the potential to attach to long-term or short-

term biofilms. A long-term example is Heliobacter pylori, which survived at least 192 hours on 

stainless steel coupons used to monitor biofilm build-up [6]. Two non-pathogenic E. coli injected 



3 
 

into a pilot distribution system with a biofilm (20 °C) grew slightly in the biofilm before eventually 

dying out [7]. It was also reported in an article by Swerdlow that an E. coli outbreak persisted for 

weeks after the contaminated water meters and main breaks were replaced or repaired. Although 

biofilm presence was not indicated, biofilms will probably prolong some microbes' survival [8].  

Table 1: Bacterial pathogens that are the known causes of waterborne diseases. D.O. represents U.S. disease 

outbreaks, and CCL represents EPA's Contaminant Candidate List [8]. 

 

Organism Major Disease Primary Source DO CCL 

Salmonella typhi Typhoid fever Human feces Y  

Salmonella paratyphi Paratyphoid fever Human feces Y  

Salmonella typhimurium Gastroenteritis Human/animal feces Y  

Other Salmonella sp. Gastroenteritis Human/animal feces Y  

Shigella Bacillary dysentery Human feces Y  

Vibrio cholerae Cholera 

Human feces, 

coastal 

Y  

E. coli Gastroenteritis Human feces Y  

Yerisinia enterocolitica Gastroenteritis Human/animal feces Y  

Campylobacter jejuni Gastroenteritis Human/animal feces Y  

Legionella pneumophila 

Legionnaires disease, 

Pontiac fever 

Warm water Y  

Helicobacter pylori Peptic ulcers Saliva, Human feces  Y 

 

 Table 2 shows the various routes of pathogen entry into distribution systems by the 

potential health consequences, considering the severity of the disease, probability of waterborne 
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disease outbreak, volume contaminated, and frequency of intrusion, recently ranked by an expert 

panel [9]. 

Table 2: Routes of pathogen entry into distribution systems [9]. 

Risk 

Level 

Pathway 

High Treatment breakthrough, intrusion, cross-connections, main repair/break. 

Medium Uncovered water storage facilities. 

Low 

The central installation covered water storage facilities and purposeful 

contamination. 

 

 Microbial-influenced corrosion (MIC) is another significant problem in several industries, 

including but not limited to wastewater treatment, drinking water distribution systems, food 

industries, power plants, paper industries, chemical manufacturing facilities, offshore pipelines, 

and membrane application facilities. A study conducted by the National Bureau of Standards in 

1968 found that light affected the current required to protect iron or steel against microorganisms. 

It was observed that the corrosion rate in the dark was much lower than the rate in indirect sunlight 

and required less current for specimen protection [10]. The corrosion is caused due to the removal 

of hydrogen from metal surfaces, which then combines with electrons reducing sulfate, forming 

hydrogen sulfide, commonly called the cathodic depolarization process. The presence of anaerobic 

sulfate-reducing bacteria in iron and steel is the most common cause of corrosion. Electron 

acceptance at cathodic sites due to metal dissolution from anodic sites is a classic example of an 

electrochemical corrosion reaction. The chemical reactions therein result in end-product removal, 

accelerating corrosion [11]. Microorganisms cause around 70% of the corrosion in gas 

transmission pipelines, and corrosion accounts for the loss of around 4% of the gross national 
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product (GNP) [12]. The United States is estimated to spend around $300 billion yearly on 

corrosion costs. A significant amount of time is spent finding and fixing the problem with a major 

overhaul or part replacement, saving about 30% of overhead costs [13]. 

 The microorganisms associated with corrosion can be divided into three groups – algae, 

fungi, and bacteria. It was found that the fungus Cladosporium resinae caused corrosion in 

subsonic aircraft fuel tanks, which in turn caused wing perforation and loss of fuel [14]. In addition, 

it was also found that reclaimed water promoted corrosion in comparison to sterile water. Settled 

bacteria, extra-cellular polymeric saccharides (EPS), and corrosion in biofilm heavily influenced 

the corrosion process. Biofilm-influenced corrosion is an ever-present problem, especially in cast 

iron pipes used in reclaimed water distribution systems [15]. It is estimated that microorganisms 

were the root cause of about 40% of damages in sewer networks in a study by Kaempfer and 

Berndt in 1999. Approximately $100 billion was used for the repair and upkeep of private and 

public sewage systems in Germany, which were around 70 years old. [16]. Several other factors 

can cause corrosion – galvanic corrosion, pitting, and hydrogen grooving are other forms of 

corrosion.  

 Galvanic corrosion occurs when a metal is exposed to an electrolyte with different 

concentrations or when different metals in a common electrolyte are in contact with each other 

either physically or electrically. The more noble metal corrodes at a slower rate, while the active 

metal corrodes at an accelerated rate. This type of corrosion is a common problem in the marine 

industry or pipe structures in contact with saline water. Some factors that affect galvanic corrosion 

are temperature, humidity, and salinity [17]. 

 Pitting is the most common and damaging form of corrosion in passivated alloys [18]. 

Pitting corrosion occurs due to either low oxygen or high species concentrations. In the worst case, 
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tiny local fluctuations will degrade the film at critical points while the most surface remains 

protected. The corrosion at these localized points is amplified and causes corrosion pits. This area 

becomes anodic, while the remaining metal becomes cathodic, resulting in a localized galvanic 

reaction. In extreme cases, the long and narrow corrosion pits can cause stress concentration that 

may cause small holes or cause tough alloys to shatter. 

 Hydrogen grooving is a type of corrosion observed in the chemical industry and is 

commonly caused due to the interaction of a pipe surface with corrosive agents, corroded pipe 

constituents, or hydrogen gas bubbles. When a steel pipe comes into contact with sulfuric acid, the 

iron in the steel reacts with the acid to form a passivation coating of iron sulfate and hydrogen gas. 

While the iron sulfate coating protects the steel from further corrosion, hydrogen bubbles will 

remove this coating, and the traveling bubble exposes more steel to the acid, causing a vicious 

cycle [18]. 

 Biofilms are also a significant threat in the food industry, significantly affecting the quality 

and safety of dairy products. Several perishables (e.g., cheese and butter) and semi-perishable (e.g., 

casein and milk powder) foods are manufactured in the dairy industry. The dairy industry adheres 

to strict microbiological guidelines to maintain the products' stability, flavor, and functionality. 

The source of contamination can occur at any stage of dairy processing. Below are some of the 

familiar sources of contamination and some of the possible reasons [19].   

• Milking – contamination could occur due to bacteria on the udder or biofilm in the 

machines used for milking. 

• Transportation and Storage – contamination is possible due to bacteria in transfer lines, 

storage vessels, or improper refrigeration techniques. 
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• Processing – contamination is possible due to improper pasteurization or improper 

manufacturing techniques.  

 Although there is limited data on food poisoning, it is believed that bacteria, fungi, viruses, 

animals, plants, and chemicals are the major contributing factors to food-induced illnesses, not 

including allergies. Table 3 shows the food-induced illness data in the USA. It can be observed 

that Salmonella non-typhi, Campylobacter spp., and Staphylococcus aureus are the most common 

causes of food poisoning in the United States. These strains of bacteria recorded the highest 

number of cases and deaths in a study by Snyder in 1995 [20]. Overall, there is a need to provide 

manufacturers with a rapid assessment of their plants to assist in monitoring the effectiveness of 

cleaning procedures. The techniques for detecting biofilms involve detecting bacterial molecules, 

proteins, or polysaccharides on surfaces or in water flushed through the pipes [21].  

Table 3: Data showing food-induced illness in the USA due to bacteria [20]. 

Cause Cases Deaths 

Bacteria 

Staphylococcus aureus 8,900,000 7,120 

Streptococcus (Group A) 5,000,000 175 

Salmonella non-typhi 3,000,000 2,000 

Campylobacter spp. 2,100,000 2,100 

Clostridium perfringens 650,000 6-7 

Shigella spp. 300,000 600 

Escherichia coli 200,000 400 

Vibrio (non-cholera) 30,000 300-900 

Listeria monocytogenes 25,000 1000 
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 Biofilm formation is a phenomenon that occurs in artificial and natural environments. 

Figure 1.1 shows the attachment of Staphylococcus aureus biofilm on an indwelling catheter, 

proving that bacterial adhesion can occur inside the human body if proper precautions are not 

taken. The microorganisms' physiological status and surface material type also contribute to 

bacterial adhesion. If the surface is rough, the colonized areas are protected from the effects of 

shear stress, turbulent flow, and biocide activity. The EPS strengthens the bacterial adhesion and 

captures other bacterial species forming a second layer. The strength of the bacterial adhesion is 

increased a hundred-fold against biocide treatment due to this new layer. Besides the resistance to 

biocides, the new EPS layer also increases heat treatment resistance [22].  

 

Figure 1.1: Staphylococcus aureus biofilm on an indwelling catheter [23], Public Domain Image.  

 
 Bacterial attachment is a severe problem in many industries. Within the biofilm are 

continuous growth, multiplication of bacteria, and active release of bacterial cells into the 

environment, leading to subsequent product contamination. Once the biofilm is established, 
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sanitization and cleaning become extremely difficult. Sanitizers and detergents cannot penetrate 

the EPS matrix to destroy bacterial cells. Prevention is the best method to eliminate biofilm build-

up [24]. However, prevention is not always feasible, as the type of biofilm to cause a build-up is 

difficult to predict. Early detection of biofilm is the best way to ensure proper sanitization and 

cleaning since detergents and sanitizers are effective at an early stage of biofilm maturation. The 

gold standard for detecting biofilm is the Tissue Culture Plate (TCP) method, which Christensen 

et al. first introduced in 1985 [25]. All the other invasive and non-invasive methods used to detect 

biofilm are described below. 

 

1) Tissue Culture Plate (TCP) method 

Britannica describes tissue culture as transferring animal or plant tissue fragments (a single 

cell, a population of cells, or a whole or part of an organ) to an artificial environment where 

they survive and function [26]. The TCP method involves screening isolates for their ability 

to form biofilm. Isolates from agar plates are inoculated in respective media for 18 hours 

at 37 °C and diluted 1/100 with fresh medium. Figure 1.2 shows a cultured animal cell 

growing in a growth medium. The optical density (O.D.), considered an index of biofilm-

forming capacity and adhesion of bacteria to surfaces of stained adherent bacteria, is 

analyzed using a micro-Enzyme-Linked Immunosorbent Assay (ELISA) auto reader (Bio-

Rad, model 680) at a wavelength of 570 nm. The O.D. value is directly proportional to the 

strength of bacterial adherence and the capacity of cells to form biofilm. A higher O.D. 

value means the isolate can form biofilms and adhere solidly to surfaces [27].  
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Figure 1.2: Adherend Chinese hamster ovary cells in a cell culture flask observed under the microscope [28], Public 

Domain Image.  

 
2) Tube method (T.M.) 

The Tube method, described by Christensen et al. [29], is a qualitative assessment 

technique of biofilm formation. Tubes are incubated for 24 hours at 37 °C after inoculating 

with a loopful of microorganisms from overnight culture plates, washed with phosphate 

buffer saline, dried, and stained with crystal violet. After removing the excess stain, the 

tubes are washed with deionized water and dried in an inverted position to observe biofilm 

formation. A visible film on the walls or the bottom of the tube indicates the presence of 

biofilm, and the amount of biofilm formation is scored as 3 - strong, 2 - moderate, 1 - weak, 

and 0 - no biofilm formation [27]. 
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3) Congo red Agar method (CRA) 

Freeman et al. [30] described the CRA method as an alternative for screening biofilm 

formation by Staphylococcus isolates requiring specially prepared brain heart infusion 

broth supplemented with 5% sucrose and Congo red. Congo red is prepared separately and 

added to the agar plates, then inoculated and incubated aerobically for 24-48 hours at 37 

°C. Dry crystalline black colonies indicate a positive result for biofilm-forming capacity, 

while dark-centered pink colonies indicate weak biofilm-forming capacity [27]. 

 

4) DAPI method 

The DAPI method was first formulated by Porter and Feig in 1980 and used a particular 

DNA stain - 4'6-diamidino-2-phenylidole (DAPI) to detect a nucleic acid. The DAPI 

produces a bright blue, fluorescent glow in direct proportion to the cellular content when 

excited by light at a wavelength of 365 nm. An example of the blue glow can be seen in 

Figure 1.3, where specific nuclei of endothelial cells were stained with DAPI. Any material 

other than the DNA molecules appears pale yellow when stained with DAPI. DAPI-stained 

cells become visible more than the limit of light microscopy resolution. The staining time 

required for DAPI is relatively short and can be stored for up to 24 weeks at 4 °C as it does 

not fade as commonly as other fluorochrome dyes [31]. 
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Figure 1.3: Endothelial cells as observed under the microscope. The nuclei stained with DAPI are blue [32], Public 

Domain Image.  

 

5) Standardized Single-Disc Method 

Wilkins et al. developed a single-disc diffusion technique combined with the incorporation 

of inoculum in the pour method to determine the susceptibility of anaerobic bacteria. The 

authors presented a modified method of the standard Bauer-Kirby procedure [33] 

commonly used for aerobic pathogens. This method aims to develop a standardized 

technique for susceptibility testing of anaerobic bacteria. An 18 – 24-hour bacteria culture 

is added to a cooled Brain Heart Infusion Supplemented (BHI-S) agar medium and 

solidified at room temperature. The plates are then placed into an anaerobic jar after placing 

antibiotic discs. The jars are placed in the incubator and left undisturbed at 37 °C for 18 – 

24 hours. Zones are observed against a bright black background using a high-intensity 

lamp, and the zone diameters are measured using a ruler. An area of inhibition is seen 
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outside the hazy light growth in an inner area of the antibiotic disc for some strains, and 

the outer zone of inhibition is measured. The diameter of the area with inhibited growth 

demonstrates the antibiotic's effect and the resistance of bacteria to antibiotics [34]. Figure 

1.4 shows the growth of bacteria isolated from a shark in the presence of an antibiotic disc. 

 

Figure 1.4: Standard Kirby – Bauer testing. White antibiotic discs are placed on agar plates of bacteria. Poor 

bacterial growth zones indicate antibiotic susceptibility [35], Public Domain Image.  

 
6) Fluorescence "In Situ" Hybridization (FISH) 

Biomedical researchers P. R. Langer-Safer, M. Levine, and D. C. Ward developed 

fluorescence in situ hybridization (FISH) in 1982 as a molecular cytogenic technique using 

fluorescent probes binding specific parts of nucleic acid sequences with a high degree of 

complementarity. This technique can detect the presence or absence of specific DNA 

sequences on chromosomes [36]. The technique can also be used for pathogen 
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identification in medical microbiology. FISH allows identifying a wide range of pathogens, 

and the diagnosis time is shorter than many biochemical differentiation techniques. This 

technique is most commonly used when there is a need for immediate identification, 

especially identification of blood cultures. FISH can be considered an easy and economical 

technique for rapid preliminary diagnosis. Figure 1.5 shows a simple schematic of the FISH 

technique, which binds chromosomes or their portions with fluorescent molecules and is 

helpful for the identification of chromosomal abnormalities and gene mapping. Comparing 

two biological species to identify evolutionary relationships using FISH is possible. FISH 

is widely used to identify microorganisms, including biofilm and complex multi-species 

bacterial organizations. A single DNA probe can be used to visualize the distribution of 

specific species within the biofilm. Preparing multiple probes for two species allows the 

visualization of multiple species in the biofilm and the determination of the architecture of 

the biofilm [37].  
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Figure 1.5: A simple schematic of the fluorescence in situ hybridization (FISH) technique [38], Public Domain 

Image,  

 

7) Surface-enhanced Raman scattering (SERS) 

Surface-enhanced Raman scattering (SERS) imaging is a technique for the chemical 

characterization of biological systems and has high sensitivity, can be applied in aqueous 

environments, and yields informative spectra. Silver or gold nanoparticles are used for the 

in situ SERS analysis. Silver colloids were used in the SERS imaging technique developed 

by Ivleva et al. in 2010. These colloids were prepared at room temperature by reducing 

silver nitrate with hydroxylamine hydrochloride at alkaline pH and can be stored in a dark 

and cool (4 °C) place for up to three weeks. Figure 1.6 shows a simple schematic for the 

SERS technique, where the analyte is mixed with gold or silver nanoparticles, a laser is 

reflected on the microscope slide with specific wavelengths, and the resultant SERS signals 
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are analyzed to determine the characteristics of the biofilm. The Renishaw 2000 Raman 

microscope with a He-Ne laser and a wavelength of 633 nm was used in the analysis. 

Compared to confocal laser scanning microscopy, Raman microscopy does not require 

staining, provides chemical information about complex biofilm matrixes, and is a non-

destructive technique for biofilm analysis [39]. 

 

Figure 1.6: An example schematic of the Surface-enhanced Raman scattering technique [40], Public Domain Image.  

 
8) Hyperspectral Microscope Imaging (HMI) 

The spatial and spectral information provided by the Hyperspectral microscope imaging 

(HMI) method is a solid optical detection technique for foodborne pathogens. Figure 1.7 

shows a sample hyperspectral data of the Earth captured by the National Aeronautics and 

Space Administration (NASA). The gold standard for detecting foodborne pathogens is the 

conventional microbiological method for cell counting. However, this method requires 

extensive labor and a long time, from days to weeks. Compared to this method, the HMI is 

very sensitive and is a rapid pathogen detection method. The HMI method proposed by 

Park et al. in the SPIE Defense conference involved using a Nikon upright microscope with 

an acousto-optic tunable filter (AOTF), high-performance cooled Electron multiplying 
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CCD, 16-bit camera, and dark-field illumination lighting sources. The AOTF-based 

hyperspectral microscope imaging method can be used to characterize the spectral 

properties of Salmonella enteritidis and E. coli. Since no standard protocol exists for 

hyperspectral microscopy, numerous combinations of imaging (reflectance and 

transmittance) and illumination (brightfield, darkfield, phase contrast, and 

autofluorescence) are required to reduce data variation from the imaging method. 

Additionally, multiple image acquisitions at varied wavelengths must be utilized to reduce 

random noise [41]. 

 

Figure 1.7: A graphic representation of hyperspectral data [42], Public Domain Image.  
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Table 4: Advantages and limitations of microscopic and spectrometric methods for detecting biofilm or corrosion 

deposits [43]. 

Techniques Advantages Limitations 

Confocal laser 

microscopy (CLM) 

• In situ analysis of biofilm 

structure. 

• Visualization of corrosion 

formation. 

• Staining methods of bacteria may 

alter growth conditions. 

• Limitations of focal length on the 

volume of media measured. 

Fourier transform 

infrared spectrometry 

(FTIR) 

• In situ analysis of biofilm 

composition. 

• The presence of water absorbs 

infrared light. 

• It is unable to distinguish dead cells 

and living cells. 

X-ray photoelectron 

spectroscopy (XPS) 

• Analysis of changes in 

chemical states of 

surfaces. 

• It does not require a 

considerable amount of 

products. 

• The lack of water or dehydration 

changes the chemical states of the 

products. 

• The chemical states determined by 

XPS require confirmation by a 

secondary technique. 

Auger electron 

spectroscopy (AES) 

• Analyze smaller areas in 

comparison with XPS. 

• The high energy density of electrons 

can cause more radiation damage than 

XPS. 

Extended X-ray 

absorption fine 

structure (EXAFS) 

• It provides information 

about the molecular 

structure of biofilms.  

• X-ray energy might be too high for in 

situ monitoring. 



19 
 

Atomic force 

microscopy (AFM) 

• Visualization of the 

topography of biofilm 

and corroded samples. 

• It does not provide compositional 

information. 

Scanning electron 

microscopy (SEM) 

and energy dispersive 

X-ray (EDX) 

• Straight-forward 

technique. 

• Failure analysis of 

corroded materials. 

• It requires an abundant amount of 

corrosion. 

• Samples need cleaning or conductive 

coating. 

Electrochemical 

impedance 

spectroscopy (EIS) 

• It can detect pitting 

initiation. 

• The presence of biofilm can 

complicate and convolute the 

measurement. 

Quartz crystal 

microbalance 

• It indicates corrosion 

formation by detecting 

weight changes. 

• The presence of biofilm can 

overshadow the dissolution of a metal 

film. 

 

 Table 4 represents the advantages and limitations of microscopic and spectrometric 

methods for detecting biofilm or corrosion. While some methods described in the table are used 

for detecting both corrosion and biofilm, some methods are used exclusively in detecting either 

biofilm or corrosion. Water testing is the most effective and straightforward method for detecting 

hard water scaling. Water testing usually involves a kit with water test strips and a color chart 

corresponding to the water's hardness measured in grains per gallon, milligrams per liter, or parts 

per million. A high grains per gallon value indicates that the water is tough, with a high 

concentration of calcium and magnesium indicating a solid presence of hard water scaling [44].  
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Figure 1.8: Ultrasonic detection technique illustrated by a single ultrasound sensor and a solid surface with an internal 

crack and an oscilloscope screen portraying signals showing information about the approximate position and size of 

the defect [45]. 

 

 The most modern method for non-invasive biofilm or corrosion detection is ultrasound 

sensors. Lazzaro Spallanzani proved that bats could navigate accurately in the dark through echo 

reflection from high-frequency inaudible sounds early in 1793. Richardson invented the echo 

locator in 1912 based on the idea of ultrasound used for navigation and detection of objects in the 

water. The beginning of Sonar and ultrasound for medical imaging is traced back to the sinking of 

the Titanic. Within a month of the Titanic tragedy, British scientist L.F Richardson (1913) filed 

patents to detect icebergs using ultrasound. French scientists Chilowski and Langevin started 

developing a device to detect submarines using Ultrasound during World War 1 [46]. Ultrasound 

techniques have been used to detect cracks in solid surfaces for several years. An ultrasound sensor 

is placed on one side of the solid surface, ultrasound signals are passed through the surface, and 

the reflected signals are recorded with the help of an oscilloscope. When there is no crack or defect 

inside the solid surface, the wave reflects the sensor after a delay. The presence of a crack or a 
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defect will cause a second wave detected at an earlier interval with a smaller amplitude before the 

echo of the ultrasound waves, as seen in Figure 1.8 [47]. Since rail inspections were initially 

performed, ultrasound sensors have been used to detect internal defects on railway tracks. Visual 

inspections were found to be ineffective as they are unable to detect internal defects due to their 

simple nature. Ultrasound techniques have since been used to detect internal defects with approval 

from the National Transportation Safety Board [48]. A typical UT inspection system consists of 

several functional units, such as the pulser/receiver, transducer, and display devices. A 

pulser/receiver is an electronic device that can produce high-voltage electrical pulses. The 

transducer generates high-frequency acoustic waves, which propagates through materials and part 

of the waves is reflected due to flaws in the material. The reflected wave is transformed into an 

electrical signal, and is displayed on a screen, as shown in Figure 1.8. The reflected signal strength 

is displayed versus the time from signal generation to when an echo was received, and the signal 

can sometimes be used to gain information about the features of a defect [49]. Ultrasound has been 

widely used in industrial applications to detect structural defects and provide biomedical imaging 

of cells, tissues, and organs. Ultrasound is now a valuable and flexible modality in medical imaging 

and often provides an additional or unique characterization of tissues. An ultrasound transducer 

sends an ultrasound pulse into tissue and receives echoes back. The echoes contain spatial and 

contrast information. The concept is analogous to sonar used in marine applications, but the 

technique in medical ultrasound is more sophisticated, gathering enough data to form a rapidly 

moving two-dimensional grayscale image. Some characteristics of returning echoes from tissue 

can be selected to provide additional information beyond a grayscale image. Doppler ultrasound, 

for instance, can detect a frequency shift in echoes and determine whether the tissue is moving 

toward or away from the transducer. This technique is invaluable for evaluating some structures, 
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such as blood vessels or the heart (echocardiography) [50]. A. Aubry et al. developed an 

experimental setup that uses an array of sources/receivers placed before the medium. The impulse 

responses between every couple of transducers were measured and formed into a matrix. Single-

scattering contributions exhibit a deterministic coherence along the antidiagonals of the array 

response matrix, whatever the distribution of inhomogeneities. This property is taken advantage 

of to discriminate single from multiple-scattered waves. Experimental results were observed with 

ultrasonic waves in the MHz range on a synthetic sample (agar-gelatin gel) and breast tissues. The 

authors found that the multiple scattering contributions are negligible in the breast, around 4.3 

MHz [51]. The attenuation of sound waves and the dispersion of waves in cancellous bones in 

humans were studied with the help of ultrasound. The experiments were performed with a bone 

model miming phantom and human cancellous bones. The experiment focused on analyzing the 

physical mechanisms of ultrasonic wave propagation in a cancellous bone that governs phase 

velocity and attenuation coefficient as a function of frequency and porosity [52]. The properties of 

a liquid, such as viscosity and absorption, are significant for acoustic investigations because these 

factors affect the proper choice of the measuring method and temperature−pressure conditions. 

Ionic liquids (ILs) are generally much more viscous than conventional molecular organic liquids, 

i.e., the viscosity values of most ILs at room temperatures are two to three orders of magnitude 

larger than almost all molecular organic liquids. The propagation terms in most ILs are rather like 

those in highly associated viscous polyhydroxy liquids compared to those in low-viscous 

conventional molecular organic liquids [53]. The basic principle behind an ultrasound sensor is 

the piezoelectric effect which converts one form of energy into another, especially mechanical 

energy, into electrical energy and vice-versa. The Curie brothers first discovered this effect in 

1880. Piezoelectric is derived from the Greek word 'piezo,' which means pressure. An electric 
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charge can be applied to piezoelectric crystals creating deformations in the crystal and converting 

the electric signal into a pressure signal. This effect is commonly seen in piezoelectric speakers. 

Any mechanical deformations in the crystal can contribute to an electric charge. This effect is 

commonly seen in microphones [54]. Piezoelectric sensors are susceptible, and the piezoelectric 

effect is used in many applications involving generating and detecting sounds like sonar, 

microphones, and electronic frequency generation. The piezoelectric effect of change in polarity 

during the compression and stretching of the plates is observed in Figure 1.9.  

Some of the most common applications of piezoelectric transducers are as follows [55]: 

• Diagnostics and ultrasonic imaging in the field of medicine and infertility treatments. 

• Electric lighters – the sudden electric signal, due to the pressure applied to the piezoelectric 

sensor, causes the fire. 

• Seatbelt lock in response to rapid deceleration. 

• Automatic door opening systems. 

• Microphones and speakers. 

The advantages of piezoelectric transducers are as follows: 

• No external force is needed for the operation. 

• Compact, portable, and reasonably easy to use. 

• Parameters change rapidly due to the sensitive nature of the piezoelectric sensor. 

The limitations of piezoelectric transducers are as follows: 

• Measured parameter values can vary with temperature changes. 

• Due to the low voltage, external circuitry may be necessary depending on the application. 

• Under static conditions, measurements may not be suitable. 

• Desired shape and strength cannot be defined for the ultrasound material. 



24 
 

 

 

Figure 1.9: A graphic representation of the piezoelectric effect occurring during the compression and stretching of a 

piezoelectric plate. (a) The effect is observed when the plate is stretched and compressed along the X-axis. (b) The 

effect is observed when the plate is stretched and compressed along the Y-axis [56], Public Domain Image.  

  

 This research aims to use a non-invasive and non-destructive method to detect biofilm with 

the help of commercially available 1 MHz ultrasound sensors. In the early stage of the research, it 

was found that ultrasound sensors can detect various daily-use objects like plastic bags, print-

quality paper, and household aluminum foils. The sensors were also tested on agar coating to 

identify the range of measurements for the research. It was found that voltage and time of flight 

measurements from the ultrasonic sensor arrangement can detect materials with thicknesses more 

significant than 40 µm. It was also observed that the technique could detect internal deposits in 

different materials like Polyvinyl Chloride (PVC), Copper and Galvanized Iron [47]. The biofilm 

detection method involves using two commercially available 1 MHz sensors attached on the same 

side of a testing chamber or piping utilizing multiple internal reflections of acoustic waves. In the 

early stage of this research, we explored using the sensor arrangement in detecting everyday 
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materials, PolyHEMA, and E. coli. It was observed that this sensor arrangement would require 

high-power equipment to observe and analyze data. However, an alternative sensor arrangement 

with a transmitter on one side and a receiver on the opposite side could be used to detect the 

presence of deposits. Some everyday materials used were A4-sized paper, household aluminum 

foil, and Ziploc bags. As the thickness of the test object increased, the voltage measurement 

observed on the oscilloscope decreased.  It was concluded that the sensor arrangement could detect 

biofilm of thickness greater than or equal to 40 µm in a closed-loop piping system [57]. The 

sensitivity of the sensors to changes in environmental parameters such as temperature, liquid 

concentration, turbidity, and conductivity in the piping system was tested to understand the 

effectiveness of the sensor arrangement. In addition, the response of the sensors to various 

frequencies was also tested to understand the best operating frequency of the ultrasound sensor for 

biofilm detection. The experiment concluded that the sensors are sensitive to the change in 

turbidity and conductivity of liquids in the piping system, which allows the sensors to detect non-

attaching foreign deposits in the liquid flow within the piping system. Compared to the other 

sensors tested, 1 MHz ultrasound sensors provided more voltage range for data analysis, making 

them a good candidate for biofilm detection [58]. Using two ultrasound sensors allows the signals 

to attenuate less than the single-sensor arrangement because the signals travel half the distance 

[47]. In addition, using ML with a non-invasive, non-destructive biofilm detection technique is a 

newer area that has not been explored much but has great potential. Table 5 illustrates some of the 

existing non-invasive biofilm detection techniques and their limitations compared to the dual 

sensor arrangement in this research and our previous research. 
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Table 5: Strengths and limitations of existing non-invasive techniques for detecting biofilm. 

Technology Strengths Limitations 

Ultrasonic monitoring 

of early-stage biofilm 

on polymeric surfaces 

[59] 

• Fast Results. 

• Single sensor using reflection method. 

• They have a limited detection range. 

• High frequency can destroy biofilm 

allowing it to disperse into the liquid. 

High-frequency 

ultrasound imaging of 

single-species biofilm 

[60] 

• Fast Results. 

• Single sensor using reflection method. 

• They have a limited detection range. 

• High frequency can destroy biofilm 

allowing it to disperse into the liquid. 

Novel acoustic sensor 

for early detection of 

biofouling [61] 

• Fast Results. 

• Non-

destructive 

technique. 

• Single sensor using reflection method. 

• Signals undergo higher attenuation due to 

the use of single sensors. 

Device and method for 

detecting deposits [62] 

• Fast Results. 

• Non-

destructive 

technique. 

• Single sensor using reflection method. 

• A secondary device (Light Addressable 

Potentiometric Sensor) is required to 

confirm biofilm presence. 

• Expensive equipment is needed. 

Device and method for 

detecting and analyzing 

deposits [63] 

• Fast Results. 

• Non-

destructive 

technique. 

• Single sensor using reflection method. 

• A secondary device (Temperature Sensor) is 

required to confirm biofilm presence. 

• Expensive equipment is needed. 
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  In addition to detecting biofilm, characterization and classification of the deposit helps the 

user make crucial decisions on the corrective strategy. ML techniques would be the best method 

for classifying and characterizing foreign deposits. ML focuses on improving the performance of 

computers in the execution of different tasks by leveraging the data. The applications of ML range 

from data mining programs used to detect fraudulent credit card transactions to information 

filtering to understand users’ reading behavior and autonomous vehicles. An ML algorithm’s 

formation depends on its ability to answer the following questions [64]. 

• Which algorithm would have the best performance in solving the problem? 

• What is the amount of training data required? 

• What is the benefit of prior knowledge in the selection of ML algorithms? 

• What is the amount of tasks the algorithm needs to learn? 

• What specific functions of each task should the ML algorithm learn? 

• Can the process be automated? 

• Can the learner improve the ability to represent and learn the target function? 

 ML is often seen as a broad subfield of artificial intelligence. Arthur Samuel, a pioneer in 

artificial intelligence and computer gaming and an employee of IBM, coined ‘machine learning’ 

in 1959 [65]. The ML approach can be classified into three broad categories depending on the 

signal or feedback available to the learning system [66]. 

• Supervised learning: This method aims to map the inputs to the outputs. An example of 

this method is a teacher presenting data with example inputs and their desired outputs to 

the computer. 
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• Unsupervised learning: This method aims to discover the hidden patterns in data or be used 

to approach the end of the learning process. In this method, the algorithm does not require 

any labels and should be capable of finding structure in the input provided. 

• Reinforcement learning: This method aims to navigate the problem space by constant 

feedback analogous to its rewards which the algorithm tries to maximize. In this method, 

the algorithm interacts with a dynamic environment to meet a specific goal. An example 

of this method is the autonomous driving vehicle or an autonomous opponent in games. 

 Detecting biofilms and classifying foreign deposits uses a supervised learning approach 

where data sets containing inputs and the desired outputs are required. This data is known as 

training data [67]. The training data is often represented as a matrix, and an array of vectors 

represents each training example, called a feature vector. Supervised learning algorithms can 

predict new inputs’ outputs with iterative objective function optimization [68]. A learned algorithm 

improves the accuracy of its predictions over time. The optimal algorithm will be able to detect 

the outputs for in’uts that were not included in the training data [69]. The most predictive approach 

used in data mining, statistics, and ML is a decision tree that can visualize the decision-making 

and decisions. The target variables use a discrete set of values called classification trees in which 

leaves represent class labels and branches represent the features that lead to the class labels [70]. 

Figure 1.10 shows an example of the decision tree indicating the survival probability of passengers 

on the Titanic.  
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Figure 1.10: A decision tree showing the probability of survival and the percentage of observations of passengers on 

the Titanic. Sibsp represents the number of siblings or spouses aboard [71], Public Domain Image.  

 
The advantages of the decision tree analysis are as follows [72]: 

• Easy to interpret and understand. 

• Can handle numerical and categorical data. 

• Easy and quick data preparation. 

• It can be compared to human decision-making closely. 

• Robust against co-linearity. 

• It can handle large datasets. 

• Built-in feature selection. 

 The most significant limitation of the decision tree model is the overfitting problem which 

may fail to fit additional data or predict future observations [73]. Poor generalization of samples 

and overfitting of the training data is the risk of large trees. A small change in the training data 

significantly changes the tree and the final predictions. A small tree, on the other hand, does not 

capture structural information about the sample space. The problem of overfitting can be 

eliminated using the pruning method (data compression technique used in search algorithms and 
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ML), which reduces the size of decision trees by removing redundant and non-critical tree sections. 

Pruning is most effective when the tree nodes contain fewer instances, and removing some nodes 

does not interfere with the model’s accuracy [74]. Tin Kam Ho proposed the general method of 

random decision forests in 1995. In this method, the splitting with hyperplanes can allow the 

forests of trees to grow without suffering from overtraining, as the model is sensitive to selected 

feature dimensions [75]. Leo Breiman properly introduced a method of building a forest of 

uncorrelated trees using a decision tree method combined with random node optimization and 

bagging. The method uses the out-of-bag error to estimate the generalization error and measure 

variable importance through permutation [76]. Decision trees are prone to problems like bias and 

overfitting, but together, multiple decision trees can predict accurate results when individual trees 

are not correlated. A simple schematic of the random forest method is shown in Figure 1.11. 

random forest algorithms utilize three primary hyperparameters – node size, number of trees, and 

number of features sampled. This algorithm is a collection of decision trees, where each tree 

consists of data samples drawn from a training set with replacement, called the bootstrap sample. 

One-third of the training sample is set aside as the test data, also known as an out-of-bag sample. 

An additional random instance is injected through feature bagging, reducing the 30orrelateon 

among Trees and adding diversity to the dataset. The final prediction is made after averaging the 

individual trees for a regression task or a majority vote for a classification task and cross-validation 

of the out-of-bag sample [77]. 

The key benefits of the random forest method are as follows: 

• Reduced risk of overfitting. 

• Flexibility. 

• Easy determination of feature importance. 
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The critical challenges of the random forest method are as follows: 

• Time-consuming process. 

• Resource-consuming process. 

• Complex to interpret predictions. 

 

Figure 1.11: A schematic of the Random Forest decision tree [78], Public Domain Image.  

 
 Andrade et al. introduced a technique that automatically detects biofilm in tooth surfaces. 

This technique involves image analysis of intra-oral photographs and uses a neural network 

algorithm to detect dental biofilm to improve oral hygiene [79]. In similar research by Dimauro et 

al., biofilm samples were prepared into microscopic slides, images were captured using an optical 

microscope and analyzed using a convolutional neural network algorithm, producing an accuracy 

of about 99% [80]. However, both these methods involve the preparation of biofilm strains. Table 

6 illustrates additional ML techniques used to classify biofilm using image analysis and biofilm 

strain preparation. Compared to existing ML techniques, the algorithm described in this research 

uses data from a non-invasive, non-destructive technique and can classify between scaling, 

corrosion, and biofilm deposits with a higher accuracy of about 99.8%. The method discussed in 
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this research allows plant managers or operation engineers to make rapid decisions on effective 

cleaning strategies, which is critical to several industries. 

Table 6: Contributions and accuracy of the machine learning model in classifying or identifying biofilm or 

corrosion. 

 

Main Contributions Target process Model organism 

Accuracy 

Score 

Identify chemical components 

responsible for bacterial biofilm 

using binary classification [81] 

Essential oil 

chemical 

components 

Pseudomonas aeruginosa 69 – 98% 

Identify chemical components 

that modulate biofilm production 

using binary classification [82] 

Essential oil 

chemical 

components 

Staphylococcus aureus 

and Staphylococcus 

epidermis 

68.7 – 

90.6% 

Use of lanthanide nanoparticles 

to detect pathogenic biofilms 

using random forest [83] 

Biofilm 

infection 

Staphylococcus aureus, 

Pseudomonas aeruginosa, 

Acinetobacter baumannii, 

E. coli, and 

Stenotrophomonas 

maltophilia,  

95 – 

100% 

Semantic segmentation of 

corrosion using a Fully-

Convolutional Network (FCN) 

[84] 

Corrosion 

detection 

Corrosion 55% 

Finding local minima using the 

Ensemble method [85] 

Corrosion 

detection 

Corrosion 86 – 93% 
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1.3 Significance and Novelty 

 In many industries, it is crucial to obtain rapid results to take corrective actions promptly, 

especially in the food industry. The study presents and examines a fresh approach that combines 

non-invasive and non-destructive methods for detecting deposits in near real-time. This is 

accomplished by measuring changes in voltage and time-of-flight of ultrasound sensors and using 

a random forest ML algorithm to categorize the deposits into four types: no deposit, biofilm 

deposit, scaling deposit, and corrosion deposit. This work builds a strong foundation for future 

research, which makes use of evanescent waves or multiple internal reflections for the non-

invasive detection of biofilm, is part of an invention disclosure filed in June 2023 [1]. The sensors 

utilized in this study are priced at $2 each, and the overall expense of all equipment employed in 

this investigation falls below $500. The total power needed for all the equipment is below 10 W, 

resulting in low energy expenses. All the equipment employed in this research can be incorporated 

into a portable tablet-like interface for gathering data. Consequently, the approach is cost-effective, 

portable, and demands minimal power. Although random forest learning has been utilized for 

various classification problems, this study presents a novel application of the ML technique to 

classify deposits based on voltage and time of flight measurements. The biofilm deposit in this 

research is defined as increased bacterial activity in the pipe loop or plastic container, scaling is 

defined as the mineral build-up in the pipe loop or container due to hard water, and corrosion is 

defined as the presence of metal deposits in the pipe loop or container.  
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Chapter 2 

Materials 

2.1 Sensors and Electronic Boards 

2.1.1 Sensors 

 The sensors used in this research include multiple ultrasound sensors of varied frequencies. 

The details of the sensors are as follows: 

(a) 1 MHz Ultrasound sensor (1ME21TR-1, Osenon Technology) 

The 1ME21TR-1 is a dual-use ultrasound sensor that can be used for multiple 

applications, including but not limited to flow calculation, detection of objects, and 

measuring distance in liquids [86], which can be used as either an ultrasound transmitter 

or receiver. The primary characteristics of this sensor are described in Table 1 below.  

Table 7: Characteristics of the 1 MHz (1ME21TR-1) ultrasound sensor. 

Nominal Frequency  1.0 MHz ± 5%  

Bandwidth  200.0 kHz  

Max. Input Voltage  300 Vpp 

Directivity and Sensitivity  8° ± 2° (-6dB), -35dB (min.)  

Protection Level and Material  IP65, Plastic  

Maximum Pressure  1.6 MPa  

Operating Temperature  -20 °C ~ +80 °C  

Distance of Detection  0.1 ~ 5 m (reflection in liquid)  
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Figure 2.1 depicts the 1 MHz ultrasound sensor manufactured and sold by Osenon 

Technology. These sensors can be activated with the help of a 3-volt eight-burst sinusoidal 

signal. The sensors are  

• Compact and portable, 

• High sensitivity and can withstand high sound pressure, 

• Low power consumption, and 

• High reliability. 

 

Figure 2.1: An image of the 1 MHz ultrasound sensor [86]. 

 

(b) 400 kHz Ultrasound sensor (400E10TR-1, Osenon Technology) 

The 400E10TR-1, like the 1ME21TR-1, is a dual-use ultrasound sensor that can be 

used as an ultrasound transmitter or receiver. It is generally used for ultrasonic distance 

measurement, liquid level detection, land leveling, thickness gauging, path edge detection, 

and other similar applications [87]. The primary characteristics of the sensors are described 

in Table 2 below.  
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Table 8: Characteristics of the 400 kHz (400E10TR-1) ultrasound sensor. 

 

Nominal Frequency  400 kHz ± 16 Hz  

Bandwidth  30.0 kHz  

Max. Input Voltage  300 Vpp 

Directivity and Sensitivity  7° ± 2° (-6dB), -75dB 

(min.)  

Protection Level and Material  IP65, Aluminium Alloy  

Operating Temperature  -40 °C ~ +80 °C  

Distance of Detection  0.05 ~ 0.3 m   

 

Figure 2.2 depicts the 400 kHz ultrasound sensor manufactured and sold by Osenon 

Technology. These sensors can be activated with the help of a 20-volt fifty-burst sinusoidal 

signal. The sensors are  

• Compact and portable, 

• High sensitivity and can withstand high sound pressure, 

• Low power consumption, and 

• High reliability. 
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Figure 2.2: An image of the 400 kHz ultrasound sensor [87]. 

 

(c) 2.5 MHz Ultrasound sensor (2ME20TR-1, Osenon Technology) 

The 2ME20TR-1, like the 1ME21TR-1, is a dual-use ultrasound sensor that can be 

used as an ultrasound transmitter or receiver. It is mainly used for ultrasonic bubble sensors 

in an infusion pump [88]. The primary characteristics of the sensors are described in Table 

3 below.  

Table 9: Characteristics of the 2.5 MHz (2ME20TR-1) ultrasound sensor. 

Nominal Frequency  2.5 MHz ± 5%  

Bandwidth  10% 

Max. Input Voltage  < 20 V 

Sensitivity and Material -30 dB (min.), Plastic 

Operating Temperature  -20 °C ~ +70 °C  

Distance of Detection  0.02 ~ 2.6 m   
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Figure 2.3 depicts the 2.5 MHz ultrasound sensor manufactured and sold by Osenon 

Technology. These sensors can be activated with the help of a 3-volt continuous sinusoidal 

signal. The sensors are  

• Compact and portable, 

• High sensitivity and can withstand high sound pressure, 

• Low power consumption, and 

• High reliability. 

 

Figure 2.3: An image of the 2.5 MHz ultrasound sensor [88]. 

 

2.1.2 Electronic boards 

 The various electronic boards used in the research are described in detail below. 

(a) Raspberry Pi 4 Model B (8 GB RAM) 

The Raspberry Pi used in this research was purchased from CanaKit. The Raspberry 

Pi 4 is a tiny computer about the size of a credit card that provides desktop performance 

comparable to entry-level x86 computers. The product's key features include a high-

performance 64-bit quad-core processor, dual-display output via two micro-HDMI ports 

providing upto 4K resolution, dual-band 2.4/5 GHz wireless LAN, Bluetooth 5.0, Gigabit 
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Ethernet, USB 3.0, and Power over Ethernet (PoE) capability. Figure 2.4 shows the top 

view of the Raspberry Pi 4 Model B [89].  

 

Figure 2.4: Top view of the Raspberry Pi 4 Model B, 8 GB RAM variant [89]. 

 

The Raspberry Pi 4 Starter kit comes with the following modules: 

• Raspberry Pi 4 

• CanaKit USB-C Power Supply 

• Set of 3 Aluminium Heat Sinks 

• CanaKit Quick-Start Guide 

• SanDisk 32 G.B. MicroSD with NOOBS (New Out of Box Software) 

• Premium Black Case 

• CanaKit Low Noise Fan 

• USB Card Reader 

• Micro HDMI Cable 
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The advantages of the Raspberry Pi 4 in comparison with other models are as 

follows [90]: 

• The fanless, energy-efficient Pi runs silently and uses less power, 

• It consists of two USB 3.0 ports in addition to two USB 2.0 ports, and 

• It enables fast networking with onboard wireless networking and Bluetooth. 

 

(b) Raspberry Pi 10.1-inch Touchscreen Display with a rear housing 

The 10.1-inch touchscreen monitor by EVICIV has a built-in cooling fan to 

guarantee heat dissipation. It is enclosed in a durable, hard-wearing case to improve its 

appearance and protect the board. The display consists of capacitive touch technology 

allowing users to swipe, scroll, select, zoom in, zoom out, and move the cursor. Figure 2.5 

shows the Raspberry Pi 10.1-inch touchscreen [91]. 

 

Figure 2.5: EVICIV 10.1-inch Touchscreen Display for Raspberry Pi [91]. 
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The distinctive features of the 10.1-inch touchscreen display for the Raspberry Pi 4 

Model B are as follows: 

• 10.1-inch large screen, 

• IPS Panel with 178° ultra-wide view angle, 

• 1280 x 800 HD resolution with 60Hz refresh rate,  

• 10-fingers touch response display, 

• Dual integrated speakers, and 

• Blue light filter and glare reduction feature to improve viewing comfort. 

 

(c) Digilent Electronics Explorer board 

 

       Figure 2.6: Top view of the Digilent Electronic Explorer board [92]. 
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The Electronics Explorer is an all-in-one package for designing and testing analog and 

digital circuits. It is built around a large, solderless breadboard for quick, straightforward 

prototyping. The board can be managed and operated using Digilent's WaveForms 

software. In short, it is an all-in-one USB Oscilloscope, Multimeter, and Workstation [92]. 

The board comes with the following items: 

• USB A to micro–B Cable, 

• 12 V external power supply, 

• U.S. and E.U. plug adapters, and  

• Starter parts kit, including wires, LEDs, resistors, and capacitors. 

The Oscilloscope section of the Electronics Explorer consists of 4 channels with a 

sample rate of 40 MS/s with a bandwidth of 100 MHz and an input voltage range of -20 V 

to +20 V. 

The Arbitrary Waveform generator section of the Electronics Explorer consists of 2 

channels with a sample rate of 40 MS/s with a bandwidth of 20 MHz. 

The Fixed Power supply section of the Electronics Explorer is a single channel supply 

with an output voltage of 3.3 V or 5 V and an output current of 2 A. 

The Variable Power supply section of the Electronics Explorer consists of a dual 

channel supply with a positive output voltage between 0 V to 9 V, a negative output voltage 

between 0 V to -9 V, and an output current of 1.5 A. 
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2.2 Software 

 The various software used in this research is described in detail below: 

(a) Digilent WaveForms 

WaveForms makes acquiring, visualizing, storing, analyzing, producing, and reusing 

analog and digital signals easy. The software and hardware bring a robust suite of instruments 

to enable analog and digital on any personal computer. WaveForms application connects to the 

Electronics Explorer board using the USB interface with full Windows, MacOS, and Linux 

support (on almost all devices) [93]. The application has two user-controlled power supplies, 

which vary in capability between devices. Figure 2.7 shows an image containing an example 

of an electronics explorer board connected to a personal computer using a USB interface. 

 

Figure 2.7: An example of an Electronics Explorer board connected to a personal computer using a USB Interface 

[92]. 
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The oscilloscope offers all functionalities in a benchtop scope, including data 

acquisition, triggering, and viewing. It provides real-time math channels, X.Y. plots, FFTs, 

and advanced features. Depending on the device, using the oscilloscope in the application 

allows mixed signal oscilloscope functionality by adding digital channels and differential or 

single-ended measurements. Figure 2.8 shows an example of the oscilloscope window in the 

WaveForms application. 

The waveform generator produces sinusoidal, sawtooth, triangular, or user-defined 

(arbitrary) waveforms. Generating advanced signals like sweeps between user-defined 

frequency limits and AM or FM-modulated outputs is also possible. Figure 2.9 shows an 

example of the waveform generator window in the WaveForms application. 

 

Figure 2.8: An example of the Oscilloscope window in the WaveForms application [93]. 
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Figure 2.9: An example of the Waveform Generator window in the WaveForms application [93]. 

 

The script editor functionality helps automate the functionality of the available 

instruments using JavaScript. Figure 2.10 shows an example of the script editor window in the 

WaveForms application. 
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Figure 2.10: An example of the Script editor window in the WaveForms application [93]. 

 

(b) Mathworks MATLAB 

MATLAB analyzes data, develops algorithms, and creates models combining a tuned 

desktop environment for iterative analysis and design processes with a programming language 

expressing matrix and array mathematics [94]. The capabilities of MATLAB include 

• Data Analysis: Explore, model, and analyze data. 

• Graphics: Visualize and explore data. 

• Programming: Create scripts, functions, and classes. 

• App Building: Create desktop and web apps. 

• Hardware: Connect MATLAB to hardware. 

• Parallel Computing: Perform large-scale computations and parallelize 

simulations. 
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• External Language Interfaces: Use MATLAB with Python, C/C++, Java, and 

other languages. 

• MATLAB Cloud and Desktop Deployment. 

 

Some of the applications that MATLAB is used for are Control Systems, ML, Signal 

Processing, Deep Learning, Predictive Maintenance, Test and Measurement, Imagine 

Processing and Computer Vision, Robotics, Wireless Communications, and other similar 

applications. 

 

(c) JupyterLab 

JupyterLab (jupyter.org) is a flexible web-based interactive development interface for 

notebooks, code, and data. It enables users to work flexibly, integrated, and extensible with 

Jupyter notebooks, text editors, terminals, and custom components [95]. It utilizes the same 

server and document format as the classic Jupyter Notebook. It also offers a model for handling 

different data formats, understands various file formats, and displays rich kernel output in these 

formats. The application window can be rearranged so multiple documents and activities are 

open in the work area using tabs and splitters. It also offers customizable keyboard shortcuts 

to ease user interface navigation [96]. 
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2.3 Biological and Chemical Materials 

2.3.1 Chemical Materials 

 The chemical materials used in the research are as follows: 

• Difco™ Modified mTEC Agar/ m-TEC Agar (Powder) 

• Phenol Red (Solution) 

• Urea (Powder) 

• Tryptone, microbiologically tested (Powder) 

• Yeast Extract (Powder) 

• Sodium Chloride, Molecular Biology Reagent Grade (Powder) 

• Calcium Chloride (Powder) 

• Sodium Bicarbonate (Powder) 

• 70% Ethanol (Solution), diluted from 100% Ethanol 

 

2.3.2 Biological Materials 

 The only biological material used in this research is a Primary Raw Sludge generated 

during the removal of grit, grease, scum, or other insoluble matter from wastewater during 

treatment. This sludge was collected biweekly or on demand from Jones Island Water Reclamation 

Facility, jointly operated by Milwaukee Metropolitan Sewerage District (MMSD) and Veolia 

Water Milwaukee, LLC (MMSD's contracted operator).  
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2.4 Miscellaneous Materials 

 The miscellaneous materials used in this research are: 

• 15 and 50-mL sterile centrifuge tubes, 

• 90 x 15 mm sterile petri dish, 

• 1 L conical glass flask, 

• 500 mL and 1 L round media storage bottle with screw caps, 

• Sterile inoculating loops, 

• Electronic Pipette/ Single Channel Pipette, 

• Sterile 1000µL Pipette tips, 

• 10 mL serological sterile glass pipet, 

• 0.45 µm membrane filter discs, 

• Thermo Scientific™ Nalgene™ Reusable Filter units, 

• Vacuum pump, 

• pH, Free and Total Chlorine Photometer, 

• Free and Total Chlorine Reagent (Powder), 

• 3” x 1/2” x 1/16” Copper coupons, 

• Benchtop Conductivity Meter, 

• Portable Turbidity Meter, 

• Portable Soldering Station with parts, 

• Thermo Scientific™ Heratherm Mechanical Convection Oven, 

• Class II Biosafety Cabinet, and 

• Autoclave 
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Chapter 3 

Experimental Methods 

3.1 Standard Operating Procedures 

3.1.1 Procedure for Difco™ modified membrane-Thermotolerant Escherichia coli (mTEC) 

Agar Agar plate preparation 

• Measure 45.3g of the modified mTEC Agar or the m-TEC Agar and suspend it in 

1 L of deionized (DI) water. 

• Stir the mixture frequently until the contents are dissolved. 

• The solution was subjected to autoclaving at 121 °C for 15 – 20 minutes to ensure 

the mixture was dissolved entirely and sterilized. 

• Pour the final solution into desired Petri dishes and allow the medium to solidify. 

• Use Petri dishes or store them in a 4 °C refrigeration unit after properly labeling 

them. These plates are usually used within three months from the date they were 

made or until they have not been contaminated during a visual inspection. 

 

3.1.2 Procedure for preparation of Lysogeny broth (L.B.) media 

 The formula for the preparation of Lysogeny broth was first published in 1951 by Bertani 

about lysogeny [97]. The American Society for Microbiology later published the standard recipe 

for one liter of L.B. media, adapted from the articles published by Sambrook and Russel, 2001 

[98] and Gerhardt et al. 1994 [99]. The standard recipe is as follows: 

• Measure 10 g of Tryptone, 5 g of Yeast extract, and 10 g of Sodium chloride (NaCl) 

and suspend it in 1 L of distilled or deionized water. 
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• Stir the mixture frequently until most of the contents are dissolved. 

• The solution was subjected to autoclaving at 121 °C for 15 – 20 minutes to ensure 

the mixture was dissolved entirely and sterilized. 

• Stir the final solution to ensure proper dissolving and transfer the media into a 

storage bottle. 

• After the solution has been cooled down, store the bottle in a four-degree Celsius 

refrigeration unit after proper labeling. 

 

3.1.3 Procedure for the Culture of E. coli 

• Streak, modified mTEC or mTEC plates, as shown in Figure 3.1. A new inoculation 

loop is used for each streak. The inoculation loop is dipped inside the primary raw 

sludge from Jones Island Water Reclamation Facility at the start of the first streak. 

 

Figure 3.1: An example of how the plates should be streaked. 
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• After steaking, set the Convection oven (incubator) to 44.5 °C. 

• Leave the plates, upside down, inside the incubator for 24 ± 2 hours.  

• After 24 hours, transfer 5 mL of L.B. media into three or four 15 mL centrifuge 

tubes using an electronic pipette fitted with a serological sterile glass pipet.  

• Take the plates from the incubator and use an inoculating loop to pick an isolated 

E. coli colony from the streaked plate. The colonies will appear red or magenta on 

modified mTEC agar plates or yellow-brown/yellow-green on mTEC agar plates.  

• Place the colony in the centrifuge tube by turning the loop continuously. 

• Set the shaker to 100 rpm for 18 hours and place the shaker inside the incubator 

with the temperature set to 35 °C. 

• Label the centrifuge tubes with the E. coli colony, affix them to the shaker plate, 

and leave them undisturbed for 18 hours.  

 

3.1.4 Preparation of Urea 

• Mix 2 g of urea, 0.01 g of phenol red, and 100 mL of deionized water. 

• Measure pH and adjust to a pH of 5 ± 0.3 if necessary. 

• The solution can either be used immediately or can be stored for later. 

• After proper labeling, the prepared solution is stored in a 4 °C refrigerator and 

should be used within a week. 
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3.1.5 Estimating the number of E. coli colonies 

 The following method was adapted from the standard method 1603: Escherichia coli (E. 

coli) in water by membrane filtration using modified membrane-thermotolerant Escherichia coli 

agar (modified mTEC) published by the United States Environmental Protection Agency [100]. 

1. Take eight empty centrifuge tubes and pipette 9 mL of deionized water in each 

using an electronic pipette attached to a serological sterile glass pipet. 

2. Take the inoculated samples from the incubator and transfer 1 mL from this media 

into the first centrifuge tube.  

3. Shake the centrifuge tube using a centrifuge machine.  

4. Repeat step 2 to distribute 1 mL from the first centrifuge tube to the second tube 

and repeat until the last tube has 10 mL in it while all the other seven tubes have 9 

mL of mixed dilutions. 

5. Rinse the filter units, place a 0.45 µm membrane filter disc on the filter base, grid 

side up, and attach the funnel. Wet the filter using deionized water and let the water 

sit there. 

6. Transfer 1 mL of the diluted sample from the last tube or using a pipette and 

uniformly distribute it to the membrane filter. It is recommended that at least three 

dilutions should be analyzed for a countable plate. This method can also analyze 

sample volumes of 1 – 100 mL.  

7. Rinse the sides of the funnel using deionized water while filtering the samples. 

Remove the funnel from the filter base after turning the vacuum off. 
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8. Remove the membrane filter from the base using sterile forceps and carefully place 

it onto the agar plates to avoid bubble formation. Reseat the membrane filter if 

bubbles are formed. 

9. Store the petri dish, inverted, inside the incubator with the temperature set to 35 °C 

for around two hours. 

10. After two hours of incubation, adjust the incubator's temperature to 44.5 °C and 

store the petri dish in the incubator for 22 ± 2 hours. 

11. Remove the plates from the water bath after the stipulated time and follow one of 

the two methods below.  

1) If the plate was made using the modified mTEC agar, count and record 

the number of red or magenta colonies.  

2) If the plate was made using the mTEC agar, place an absorbent pad on 

a petri dish and saturate it with 2 mL of urea solution. Transfer the filter 

from the agar plate onto the saturated absorbent pad and wait 15 – 20 

minutes. Count and record the number of yellow, yellow-brown, or 

yellow-green colonies.  

12. Calculate the E. coli count in Colony Forming Units (CFU) per 100 mL of the 

sample using the general formula: 

𝐸.  𝑐𝑜𝑙𝑖 CFU per 100 mL =  
The number of 𝐸.  𝑐𝑜𝑙𝑖 colonies

The volume of sample filtered (mL)
  ×  100  

13. It is ideal to select a membrane filter with 20 – 80 colonies for optimal results. 

14. Record results as E. coli CFU per 100 mL of sample. 
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3.2 Laboratory experiment to evaluate best ultrasound frequency and 

waveform 

 The ultrasound sensors used in this experiment are manufactured and sold by Osenon 

technologies with operating frequencies of 400 kHz, 1 MHz, and 2.5 MHz. Since all the sensors 

can act as transmitters or receivers, one is placed on one side of the plastic chamber, as seen in 

Figure 3.2, filled with deionized water. This sensor acts as the transmitter. Another sensor 

(receiver) is placed on the other side of the plastic chamber.  

 

Figure 3.2: Plastic chamber setup for the experiment to test some aspects of the ultrasound sensor 

  

 The transmitter sensors are activated for the 400 kHz ultrasound sensor by providing a 

fifty-burst input sinusoidal signal with a peak-to-peak voltage of 20 Vpp. The test circuit provided 

by Osenon Technologies is slightly modified to include two sensors, one as the transmitter and the 

other as the receiver. 
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Figure 3.3: Test circuit design for actuating the 400E10TR-1 ultrasound sensor [87]. 

 

 The transmitter sensors are activated for the 1 MHz ultrasound sensor by providing an 

eight-burst input sinusoidal signal with a peak-to-peak voltage of at least 3 Vpp. The test circuit 

provided by Osenon Technologies is slightly modified to include two sensors, one as the 

transmitter and the other as the receiver. 

 

Figure 3.4: Test circuit design for actuating the 1ME21TR-1 ultrasound sensor [86]. 
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 The transmitter sensors are activated for the 2.5 MHz ultrasound sensor by providing a 

continuous input sinusoidal signal with a peak-to-peak voltage of at least 3 Vpp. The test circuit 

provided by Osenon Technologies is slightly modified to include two sensors, one as the 

transmitter and the other as the receiver. 

 

Figure 3.5: Test circuit design for actuating the 2ME20TR-1 ultrasound sensor [87]. 

 

 The transmitter was connected to a benchtop Function generator with a 10 V output and an 

eight-burst sinusoidal output waveform. Both the transmitter and the receiver were connected to a 

benchtop oscilloscope. The two parameters measured in the experiment were time of flight and 

voltage ratio. The time of flight was measured by calculating the inverse of the distance between 

the input (transmitted) signal and the output (receiver) signal. The voltage ratio is calculated as the 

ratio of the output (receiver) voltage to the input (transmitter) voltage. The output waveforms were 

recorded and analyzed to determine the best ultrasound sensors for the research. In addition, 

several waveforms  - sinusoidal, square, and ramp- were used to excite the 1 MHz ultrasound 

sensor. The results were recorded to verify whether the ultrasound sensors are most efficient when 
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using sinusoidal waveforms. Finally, the number of bursts on the wave was varied on the Function 

generator to verify whether the sensors are most efficient when using eight-burst waveforms.  

 

3.3 Experiment to evaluate the sensor performance in a laboratory-designed 

pipe loop. 

 Figure 3.6 shows the schematic of the pipe loop designed at the Global Water Center 

laboratory. It consists of three piping materials – Copper, Polyvinyl Chloride (PVC), and Cross-

linked Polyethylene (PEX). Ultrasound transmitter and receiver were attached to each pipe in the 

loop using an epoxy. The ultrasound sensors used in this experiment are manufactured and sold by 

Osenon Technologies with an operating frequency of 1 MHz. 

 

Figure 3.6: Schematic for the pipe loop designed at the laboratory. 
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 The transmitter was connected to the function generator section and the power supply of 

the Electronics explorer board, while the receiver was connected to the oscilloscope section. Three 

reservoirs are created using large boxes. Six liters of deionized water were mixed with 5 mL of 

L.B. media – E. coli solution at the final step of the E. coli culture and added into the first reservoir. 

The second reservoir mixed 150 g of NaCl powder with six liters of deionized water. In the final 

reservoir, 90 g of magnesium sulfate, calcium chloride, and sodium bicarbonate were mixed with 

six liters of deionized water. Each reservoir was labeled appropriately to distinguish them during 

the experiment. Based on the experiment, the reservoirs were interchangeably connected to a 

Dyson pump. The valves of the respective pipes were only opened during the respective 

experiments. 

 The Copper pipe was used for studying sensor data during the event of corrosion, and the 

reservoir labeled "Saline water" was used for experiments in this section of the loop since less than 

3% saline water is the most effective for inducing corrosion. The PVC pipe was used for studying 

sensor data during the event of biofilm deposit, and the reservoir labeled "Biofilm" was used for 

experiments in this section of the loop since the presence of E. coli in water is the most effective 

for inducing biofilm. The PEX pipe was used for studying sensor data during the event of scaling 

deposit, and the reservoir labeled "Hard water" was used for experiments in this section of the loop 

since hard water is the most effective in inducing scaling. The PEX pipe, while resistant to 

corrosion and mineral build-up, can still have mineral build-up inside the pipe due to the fittings' 

build-up. In addition, PEX water lines are also susceptible to bacteria based on the liquid used in 

the system [94]. Figure 3.7 shows the actual pipe loop experiment setup in the laboratory.  

 The Dyson pump is connected to an ABB variable frequency drive (VFD) to control the 

flow speed through the pipes. The 90° turn valves for the pipe used for the experiment were turned 
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to the ON position when in progress, the pump was turned on, and the flow rate was set to 3.5 

GPM, the standard flow rate in most commercial and industrial piping systems. The sensor data is 

collected using the explorer board, processed, and analyzed using MATLAB.  

 

Figure 3.7: (a) Pipe loop set up at the laboratory. From top to bottom, the pipes used are Copper, PVC, and PEX, 

respectively. (b) Pump and reservoir sections of the pipe loop. 
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 The samples collected from the experiment via the sampling port were subjected to 

turbidity, conductivity, free chlorine, and total chlorine assessments. In addition to these 

assessments,  

• The samples from the Copper pipe were subjected to a corrosion coupon test where 

a coupon made of copper is submerged in the sample for 90 days. The coupon's 

weight after submersion was subtracted from the coupon's weight before 

submersion and was used to estimate the pipe's corrosion level. 

• The samples from the PVC pipe were subjected to a biofilm total plate count test 

using filter membranes. The sample volumes used for this test are 100 mL, 10 mL, 

and 1 mL. 

• The samples from the PEX pipe were subjected to an orthophosphate test using the 

Soluble Reactive Phosphorus (SRP) analysis. 

 The readings or measurements from the experiment were stored in an Excel document and 

combined with the sensor data. The final Excel document with all the datasets was then analyzed 

using MATLAB, and graphs were plotted for easier data readability.  

  

3.4 Experiment to evaluate the sensor performance in a pipe loop at the 

Howard plant. 

 Figure 3.8 shows the pipe loop experiment associated with Jacobs Engineering at the 

Howard Avenue Water Treatment Facility in Milwaukee, WI. Ultrasound transmitters and 

receivers were attached to each pipe in the loop using epoxy and tape to ensure the sensors stayed 

attached. The ultrasound sensors used in this experiment were manufactured and sold by Osenon 

Technologies with an operating frequency of 1 MHz. The control pipe with 1.9 mg/L phosphate 
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was the control used in water distribution systems in Milwaukee to limit corrosion in the piping 

systems. A second pipe with 0 mg/L phosphate was selected as the next candidate for the 

ultrasound sensors as it has the highest possibility of corrosion formation. Finally, the pipe with 

3.0 mg/L phosphate was selected as the final candidate for ultrasound sensors as it has the highest 

probability of scaling and biofilm compared to other pipes. 

 

Figure 3.8: (a) Pipe with 0 mg/L phosphate and 3.0 mg/L phosphate. (b) Control pipe with 1.9 mg/L phosphate. (c) 

An example of how the sensors were attached to the pipe loops at the Howard plant. 
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 Epoxy and tape were used to attach the ultrasound transmitters and receivers to the three 

pipes. The transmitters were connected to the electronic explorer board's power supply and 

function generator section. The receivers were connected to the electronic explorer board's 

oscilloscope section. The data from the sensors were recorded in an Excel document with the 

WaveForms application installed on the Raspberry Pi. The pipes were subjected to the following 

tests routinely – pH, temperature (°C), dissolved Oxygen levels (mg/L), total chlorine (mg/L), 

monochloramine (mg/L), free ammonia (mg/L), nominal turbidity units (NTU), orthophosphate 

(mg/L PO4), and nitrite (mg/L). Some of these parameters, including but not limited to dissolved 

oxygen levels, total chlorine, turbidity, and orthophosphate, were used to estimate the presence of 

biofilm in the pipes during the analysis. These data were combined with the sensor data in a new 

Excel document and were analyzed using MATLAB, and graphs were plotted for easier data 

readability.   

 

3.5 Ground truth experiment to classify various deposits using a Machine 

Learning algorithm. 

 Figure 3.9 shows the schematic of the ground truth experiment setup. Ultrasound 

transmitters and receivers were connected to three plastic containers using super glue to minimize 

the sensor's air contact between the environment and the container. E. coli culture solution was 

added to the first container, a copper coupon was added to the second container, and a mixture of 

magnesium sulfate, calcium chloride, and sodium bicarbonate was added to the third container in 

the second iteration of the ground truth experiment. All three containers were filled with 400 mL 

of deionized water. 
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Figure 3.9: Schematic for the ground truth experiment to test a machine learning algorithm. 

 

 The containers were placed inside the incubator at 37.5 °C to accelerate bacterial growth. 

The first container was used to simulate the presence of biofilm, the second container was used to 

simulate the effect of corrosion in pipes, and the final container was first used to simulate a pipe 

with no defect. Later in the experiment, a mixture of magnesium sulfate, calcium chloride, and 

sodium bicarbonate was added to the final container to simulate the effect of scaling in pipes. The 

transmitters were connected to the electronic explorer board's function generator and power supply 

section, and the receivers were connected to the electronic explorer board's oscilloscope section. 

The actual ground truth experiment setup can be seen in Figure 3.10. 
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Figure 3.10: (a) Ground truth experiment setup inside the incubator to test machine learning algorithm. (b) 

Touchscreen display of the WaveForms application in Raspberry Pi. 

 

 Figure 3.11 shows oscilloscope readings of the ground truth experiment to test a machine-

learning algorithm. The yellow oscilloscope trace indicates the voltage produced by the ultrasound 

transmitter, and the blue oscilloscope trace indicates the voltage observed on the ultrasound 

receiver. However, these data had to be treated before extracting the maximum voltage and time 

of flight values. The first section of the receiver voltage included a noise signal which limits the 
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effectiveness of using the ultrasound sensor to detect biofilm. When the maximum voltage of the 

signal received by the sensor is greater than the noise signal, the data is not erroneous. However, 

if the noise signal is greater than the actual signal, then the maximum voltage and time of flight 

values reflect the noise signal and not the actual signal, which makes the data erroneous. 

 

Figure 3.11: The oscilloscope reading from a test experiment to understand the effect of an ultrasound sensor in a 

test scenario. 

 

 Figure 3.12 shows the detailed schematic of the ground truth experiment setup. A 

waveform generator creates electrical voltage signals in the form of sinusoidal signals, which 

activates the ultrasound transmitter attached to one side of the pipe surface. The signals absorbed 

by the ultrasonic receiver are observed using the oscilloscope. The electromagnetic crosstalk 

causes the noise signal due to the proximity of the wires connected to the waveform generator and 

oscilloscope. The sensor data was recorded in an Excel document, and the data were processed 

using MATLAB to select the maximum voltage and time of flight value after rejecting the noise 

due to crosstalk. The processed data was then rearranged with class labels to test the random forest 
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ML algorithm. The dataset was separated into a training dataset and a testing dataset. The training 

dataset was used to train the random forest algorithm, while the testing dataset was used to verify 

the accuracy of the ML algorithm. Parameters like accuracy, features importance chart, and 

confusion matrix were used to determine the effectiveness of the random forest algorithm in 

identifying the type of deposit – No deposit, scaling deposit, biofilm deposit, or corrosion deposit. 

The accuracy of the ML model is the percentage of correct classifications that it achieves. The 

feature importance graph refers to a tool that assigns a score to input features based on how useful 

they are at predicting a target variable. A confusion matrix is a table used to visualize and 

summarize the performance of a classification algorithm. The model's accuracy was calculated by 

utilizing testing data that was distinct from the training data and was not observed by the ML 

model. If the accuracy was less than 95%, the model was re-tuned to make the ML algorithm more 

effective in classifying the deposits. The ML algorithm was developed and tuned using JupyterLab, 

a Python-based machine-learning platform. 

 

Figure 3.12: Detailed schematic for the ground truth experiment to test a machine learning algorithm. 
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The hyperparameters used to tune the random forest algorithm are as follows [101]:  

• Maximum features (max_features): This parameter is used to randomly select the number 

of features at each node of the random forest. In this research, the max_features = 1, 

• Maximum depth (max_depth): This parameter is used as a stopping criterion to restrict the 

depth to which a tree can grow. In this research, max_depth= none, 

• Minimum samples split (min_samples_split): This parameter indicates the number of data 

points placed in a node before the node is split. In this research, min_samples_split = 7, 

• Minimum samples leaf (min_samples_leaf): This parameter indicates the minimum data 

points allowed in a leaf node. In this research, min_samples_leaf = 1, 

• Number of trees (n_estimators): This parameter indicates the number of trees required in 

the model. In this research, n_estimators = 200, 

• Bootstrap: This parameter indicates the sample number of data points. In this research, 

bootstrap = true, so the whole data is used for every decision tree, 

• Criterion: This parameter measures the quality of splits in a decision tree. In this research, 

the default gini impurity criterion is used. 

 

3.6 Customer Discovery Process 

 A business model was tested with the National Science Foundation (NSF) Innovation 

Corps (I-Corps™) Site of Southeastern Wisconsin, a local chapter of the NSF program, designed 

to facilitate an invention's transformation into a commercial product through an entrepreneurial 

training program. The I-Corps training program is widely recognized in the U.S. and 

internationally and addresses three needs [102]. 
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• Train an entrepreneurial workforce. 

• Enable positive economic impact by bringing cutting-edge technologies to market. 

• Nurture an innovation ecosystem. 

 The I-Corps program prepares scientists and engineers to increase research projects' 

economic and societal impact by extending their focus beyond the laboratory. The I-Corps 

program was launched in 2011 and believes in experimental learning using the customer discovery 

process [103]. The program provides access to a mentor network and funding to support a team in 

the discovery process. The first step in the market survey or customer discovery process was 

identifying the key partners, value proposition, target customers, and channels. The next step is 

interviewing industry representatives or potential customers to test the business model or 

hypothesis. The final process is analyzing the model and making adjustments that help in customer 

acquisition in the long run. 
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Chapter 4 

Results and Discussion 

4.1 Laboratory experiment to evaluate best ultrasound frequency and 

waveform 

 Table 10 shows the time of flight and voltage ratio readings obtained from the experiment. 

The time of flight was observed to be the highest at the ultrasound sensor frequency of 2 MHz and 

the lowest at the ultrasound sensor frequency of 400 kHz. Considering the time of flight alone, the 

sensor with an operating frequency of 400 kHz would be ideal. However, the voltage ratio was for 

the ultrasound sensor with an operating frequency of 1 MHz, and the 400 kHz sensor recorded the 

lowest voltage reading. From the results of this experiment, the 1 MHz sensor was selected as the 

best candidate for the research. A low-frequency sensor is less focused and has a greater 

penetration depth [104]. Due to the less focused low-frequency sensor, the peak voltage measured 

at the sensor side for the 400 kHz sensor is comparatively low to the 1 MHz sensor. Compared to 

the 2 MHz sensor, the 1 MHz sensor will have a higher penetration depth indicating a higher 

voltage ratio. 

Table 10: Time of flight and voltage changes of ultrasound sensors of different frequencies. 

 

Frequency 

(MHz) 

Time of flight 

(µs) 

Voltage Ratio, 
𝐕𝐨𝐮𝐭

𝐕𝐢𝐧
 

(V) 

0.4 -0.028 0.18 

1.0 -0.074 0.55 

2.0 0.176 0.16 
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 Table 11 shows the experiment's results where different waveforms were applied to the 1 

MHz ultrasound sensor, and the resultant waveform was observed using the oscilloscope. A 

general rule of thumb is that sinusoidal signals should be used to drive an ultrasound sensor 

compared to a square wave since the square wave vibrates at the fundamental frequency and at all 

harmonics, which can result in erroneous data. When a sinusoidal signal drives an ultrasound 

sensor, it only vibrates at the specified frequency, thus creating a pure excitation [105]. The table 

below shows that the sinusoidal signal is the best excitation source for the Osenon ultrasound 

sensors. When the sensors used in this research were excited using a square wave, a waveform was 

visible, but it could not observe a specific pattern from which data could be analyzed. No waveform 

was observed on the oscilloscope for a ramp or triangular waveform used as the excitation source. 

The sinusoidal waveforms exhibited the best behavior of the ultrasound sensors, and the 

waveforms at the receiver ultrasound sensor were repeated exactly but with voltage attenuation. 

Table 11: Experiment with different waveforms applied to the 1 MHz ultrasound sensor. 

 

Waveform 

Type 

Result 

Sinusoidal 

The sinusoidal waveforms were repeated exactly 

with signal attenuations. 

Square 

A waveform is visible on the oscilloscope but is not 

repeated exactly, and patterns cannot be identified.  

Ramp/Triangular No waveform was visible on the oscilloscope. 
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4.2 Experiment to evaluate the sensor performance in a laboratory-designed 

pipe loop. 

 The parameters measured or recorded in this experiment were copper loop voltage, plastic 

loop voltage, PEX loop voltage, turbidity, conductivity, plate count, total chlorine, and free 

chlorine. The presence of biofilm is defined by the change in the heterotrophic plate count over 

time and turbidity and conductivity levels observed in the pipe loop. The increased turbidity in the 

culture indicates bacterial growth and biomass, as there is a direct relationship between turbidity 

and the number of cells [106]. High turbidity levels can also promote the likelihood of corrosion 

[107]. Although separate pipe loops were used to detect the presence of three different parameters, 

the pipe loop setup did have a single pump source connected to all three reservoirs, which increased 

the chances of cross-contamination in the pipes. Figure 4.1 shows the results of the pipe loop 

experiment at the laboratory. The sample number on the X- axis refers to the different samples 

obtained over several days of the experiment and are not equally spaced. 
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Figure 4.1: Pipe loop experiment designed at the laboratory. (a) Graph showing the loop voltages, turbidity, 

conductivity, and plate count parameters. (b) Graph showing the loop voltages, total chlorine, free chlorine, and 

plate count parameters. 

 

 It can be seen that with a rise in the turbidity and conductivity, there was a drop in the PEX 

loop voltage. This trend indicates a ”disturbance” on the inner walls of the pipes. The disturbance 

detected by the sensors can be caused by biofilm, corrosion, or scaling. The total chlorine and free 

chlorine measurements were comparatively higher during this interval which strongly suggests the 

detachment of scaling, biofilm, or a combined deposit. In the PVC pipeline, the heterotrophic plate 

count (HPC), along with the turbidity and conductivity measurements, indicated a high value 
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which indicates a high probability of bacterial presence in the water flowing through the pipe. 

Since the HPC count observed in the samples is high, bacterial cells in the liquid indicate a high 

possibility of biofilm formation in the pipe loop. Figure 4.2 shows the graphs representing the 

correlation between the bacterial plate count with the turbidity and conductivity measurements 

from the samples obtained from the pipe loop. The scatter plot shows an R-squared value of 0.42 

for the correlation between turbidity and plate count and 0.69 for the correlation between 

conductivity and plate count. The scatter plot shows that there is an exponential relation for the 

laboratory pipe loop experiment between the plate count measurements and the turbidity and 

conductivity of the samples from the pipe loop.  

 

Figure 4.2: Graph showing the change in turbidity and conductivity levels with changes in the bacterial plate count. 

 

 Overall, the results suggest that sensor attachment can detect “disturbances” – due to 

corrosion, scaling, or biofilm. A ground truth experiment was set up to study the sensor 

attachment's capability to detect and classify deposits – biofilm, corrosion, or scaling.  
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4.3 Experiment to evaluate the sensor performance in a pipe loop at the 

Howard plant. 

 The parameters measured and recorded in this experiment were voltage changes in the pipe 

with 1.9 mg/L, 3.0 mg/L, or 0 mg/L phosphate-dosed water, turbidity, total chlorine, dissolved 

oxygen, pH, dissolved oxygen, monochloramine, free ammonia, nitrite, and orthophosphate. It was 

found from a study of the relationship between dissolved oxygen and biofilm that there is a direct 

correlation between the two [108]. The rate of biofilm increased with the increase in dissolved 

oxygen levels. The study also shows that the dissolved oxygen levels limit the presence of 

ammonia-oxidizing bacteria on the surface of the biofilm, but bacteria still exist at the deeper layer 

where oxygen is depleted [108]. In a study conducted by Lee et al., it was found that 

monochloramine, compared with free chlorine, is the most effective in penetrating biofilm or 

reducing its persistence. However, free chlorine was more effective at deactivating 

microorganisms near the biofilm source [109]. Figure 4.3 shows the graph with the data captured 

from the ultrasound sensors and measurements of other parameters correlated in time in the control 

pipe with a 1.9 mg/L phosphate level. The sample number on the X- axis refers to the different 

samples obtained over several days of the experiment and are not equally spaced. It can be seen 

from the zoomed-in version of the graph (Figure 4.3, b) that with a rise in dissolved oxygen, and 

pH, there is a sharp decrease in the sensor voltage that indicates that the sensor arrangement can 

be used in detecting “disturbances” in the inner walls of the pipes. The “disturbances” can be due 

to biofilm, corrosion, or scaling. The presence of monochloramine and free chlorine, even though 

in smaller quantities, explains the fluctuations in the voltage readings from the ultrasound sensor 

since they play a role in inactivating or penetrating biofilm, thus causing it to disperse into the 

liquid rather than attach to the pipe wall. A similar voltage trend can be seen in Figure 4.4, which 
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records the data from the pipe with a 3.0 mg/L phosphate level, and Figure 4.5, which records the 

data from the pipe with a 0 mg/L phosphate level. A ground truth experiment was setup to properly 

understand the ability of the sensor attachment to detect and classify deposits – biofilm, corrosion, 

or scaling. 

 

Figure 4.3: Pipe loop experiment setup at the Howard wastewater treatment plant. Parameters were recorded on the 

pipe with the 1.9 mg/L phosphate level. (a) Graph showing the data of around 2600 sampling points from the 
experiment. (b) Zoomed-in graph showing a subset of the data for easier readability. 
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Figure 4.4: Pipe loop experiment setup at the Howard wastewater treatment plant. Parameters were recorded on the 

pipe with the 3.0 mg/L phosphate level. (a) Graph showing the data of around 2600 sampling points from the 

experiment. (b) Zoomed-in graph showing a subset of the data for easier readability. 
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Figure 4.5: Pipe loop experiment setup at the Howard wastewater treatment plant. Parameters were recorded on the 

pipe with the 0 mg/L phosphate level. (a) Graph showing the data of around 2600 sampling points from the 

experiment. (b) Zoomed-in graph showing a subset of the data for easier readability. 
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4.4 Ground truth experiment to classify various deposits using a Machine 

Learning algorithm. 

 In this study, the term "biofilm presence" refers to elevated bacterial activity within the 

plastic container. "Scaling" is defined as the accumulation of minerals caused by hard water, while 

"corrosion" refers to the presence of metal deposits within the container. To prevent cross-

contamination, various containers were employed in the ground truth experiment. Additionally, 

voltage and time of flight readings from the sensor were obtained prior to adding E. coli, corrosion 

coupon, and hard water to each of the four containers filled with 400 mL of tap water, to better 

understand the baseline measurements of the test setups before using the data in the ML model. 

Table 12: Method for compensation of peak voltage measured across test setups. 

 

Test 

Setup 

Stimuli 

Mean peak 

voltage for 

tap water 

(V) 

Compensation 

factor (V) 

Mean peak 

voltage observed 

with Stimuli 

(V) 

Compensated 

peak voltage 

(V) 

1 Tap water 3.2798 0.0000 3.2798 3.2798 

2  E. coli 3.2498 0.0300 3.2265 3.2565 

3 

Corrosion 

Coupon 

3.4073 -0.1275 2.3261 2.1986 

4 

Hard 

Water 

3.2898 -0.0100 3.4078 3.3978 
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To compensate for the differences from the test setups, a compensation factor for the 

voltage and time of flight measurements as observed in table 12 and 13 were added to the voltage 

and time of flight dataset recorded after the addition of various stimuli and the compensated dataset 

was used to ensure that the ML model was able to identify the effects of the stimuli. Table 12 

describes the method for compensation of peak voltages measured across the test setups and table 

13 describes the method for compensation of time of flight measured across the test setups. The 

measurement precision of the peak voltage observations was 0.0025 V. 

A. The mean peak voltage recorded on the container where tap water was used as stimuli (test 

setup 1) was treated as the baseline measurement since no other impurities were added to 

this test setup, and the setup was left undisturbed. The mean peak voltage recorded was 

3.2798 V and the mean time of flight recorded was 84.98 µs.  

B. For the test setup 2, where E. coli was later added as impurity, the mean peak voltage 

measured before the addition of stimuli and containing tap water was 3.2498 V and the 

mean time of flight measured was 85.88 µs. The compensation factor was calculated by 

substracting the mean value measured on test setup 2 from the mean value measured on 

test setup 1. The compensation factor was then added to the entire biofilm dataset to 

compensate for the variation in the initial value. The voltage compensation factor and time 

of flight compensation factors were calculated as follows: 

 Voltage compensation factor = 3.2798 V – 3.2498 V = 0.0300 V 

 Time of flight compensation factor = 84.98 µs – 85.88 µs = -0.90 µs 
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C. For the test setup 3, where corrosion coupon (or copper) was later added as impurity, the 

mean peak voltage measured before the addition of stimuli and containing tap water was 

3.4073 V and the mean time of flight measured was 77.58 µs. The compensation factor 

was calculated by substracting the mean value measured on test setup 3 from the mean 

value measured on test setup 1. The compensation factor was then added to the entire 

corrosion or copper dataset to compensate for the variation in the initial value. The voltage 

compensation factor and time of flight compensation factors were calculated as follows: 

Voltage compensation factor = 3.2798 V - 3.4073 V = -0.1275 V 

Time of flight compensation factor = 84.98 µs – 77.58 µs = 7.40 µs 

D. For the test setup 4, where hard water was later added as impurity, the mean peak voltage 

measured before the addition of stimuli and containing tap water was 3.2898 V and the 

mean time of flight measured was 86.18 µs. The compensation factor was calculated by 

substracting the mean value measured on test setup 4 from the mean value measured on 

test setup 1. The compensation factor was then added to the entire scaling dataset to 

compensate for the variation in the initial value. The voltage compensation factor and time 

of flight compensation factors were calculated as follows: 

Voltage compensation factor = 3.2798 V – 3.2898 V = -0.0100 V 

Time of flight compensation factor = 84.98 µs – 86.18 µs = -1.20 µs 
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Table 13: Method for compensation of time of flight measured across test setups. 

 

Test 

Setup 

Stimuli 

Mean time 

of flight for 

tap water 

(µs) 

Compensation 

factor (µs) 

Mean time of 

flight observed 

with Stimuli 

(µs) 

Compensated 

time of flight 

(µs) 

1 Tap water 84.98 0.00 84.98 84.98 

2  E. coli 85.88 -0.90 66.40 65.50 

3 

Corrosion 

Coupon 

77.58 7.40 66.41 73.81 

4 

Hard 

Water 

86.18 -1.20 64.48 63.28 

 

Figure 4.6 shows a confusion matrix, a performance measurement for ML classification, 

and a comparison matrix that plots the actual and predicted labels. The confusion matrix indicates 

that the ML model is able to distinguish biofilm and copper or copper and tapwater with an 

accuracy score of 100% using a single feature - peak voltage measured. 
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Figure 4.6: The confusion matrix of the machine learning algorithm to classify two types of deposits using peak 

voltage feature. 

  

 Figure 4.7 shows the confusion matrix that indicates the ability of ML model to classify 

copper and tapwater or biofilm and tapwater with an accuracy score of 100% using a single feature 

- time of flight measurements. 

 

Figure 4.7: The confusion matrix of the machine learning algorithm to classify two types of deposits using peak 

voltage feature. 
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 The ML algorithm classifies the presence of deposits with the help of changes in voltage 

and time of flight measurements from the testing data acquired from the sensors. The three classes 

used in the experiment are biofilm, corrosion, and tap water. Each class has three different features 

– peak voltage measured, time of flight, and peak voltage ratio. Figure 4.8 shows the confusion 

matrix for a ML model that classifies the three classes using three features. It can be seen that the 

algorithm was able to classify the presence of biofilm, corrosion or tapwater correctly except for 

five tap water samples which the algorithm misclassified as biofilm since the voltage levels were 

close to each other. The tuned random forest model produced an accuracy of 99.99% for the 

experiment classifying three different deposits using three features. The model also produced an 

F1-score of 1.0 indicating a 100% accuracy in class-wise performance.   

 

Figure 4.8: The confusion matrix of the machine learning algorithm to classify three types of deposits using three 

features. 
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 Figure 4.9 indicates the feature importance graph, which ranks the features' importance in 

classifying three deposits – biofilm, corrosion, and tap water. It can be seen that the peak voltage 

ratio, which is the ratio of the peak voltage measured on the receiver sensors to the peak voltage 

measured on the transmitter sensors, is ranked the highest with a feature importance score of 

around 0.23 followed by the time of flight  with a score of around 0.17 and peak voltage measured 

with a score of around 0.01, indicating that  the peak voltage ratio feature was the most used feature 

by the model in the classification of the three deposits – biofilm, corrosion, and tap water. 

 

Figure 4.9: Graph showing the feature importance of the machine learning algorithm to classify three types of 

deposits using three features. 

 

 Figure 4.10 shows the confusion matrix for the experiment classifying four deposits using 

three features. It can be seen that the algorithm was able to classify deposits correctly except for 

scaling samples which the algorithm misclassified as biofilm since the voltage levels were close 

to each other. The four classes used in the experiment are biofilm, corrosion, scaling, and tap water. 
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Each class has three different features – peak voltage measured, time of flight, and peak voltage 

ratio. The tuned random forest model produced an accuracy of 99.95% for the experiment 

classifying four different deposits using three features. The model also produced an F1-score of 

1.0 indicating a 100% accuracy in class-wise performance.   

 

Figure 4.10: The confusion matrix of the machine learning algorithm to classify four types of deposits using three 

features. 

 

 Figure 4.11 indicates the feature importance graph, which ranks the features on their 

importance in classifying four deposits – biofilm, corrosion, scaling, and tap water. It can be seen 

that the peak voltage ratio, which is the ratio of the peak voltage measured on the receiver sensors 

to the peak voltage measured on the transmitter sensors, is ranked the highest with a feature 

importance score of around 0.44 followed by the time of flight with a score of around 0.01 and 

peak voltage measured with a score of around 0.01, indicating that  the peak voltage ratio feature 
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was the most used feature by the model in the classification of the three deposits – biofilm, 

corrosion, and tap water. 

 

Figure 4.11: Graph showing the feature importance of the machine learning algorithm to classify four types of deposits 

using three features. 

 

 Figure 4.12 shows the confusion matrix for the experiment classifying four deposits using 

three features. It can be seen that the algorithm was able to classify deposits correctly except for 

scaling samples which the algorithm misclassified as biofilm since the voltage levels were close 

to each other. The four classes used in the experiment are biofilm, corrosion, scaling, and tap water. 

Each class has two different features – peak voltage measured and time of flight. The tuned random 

forest model produced an accuracy of 99.99% for the experiment classifying four different deposits 

using two features. The model also produced an F1-score of 1.0 indicating a 100% accuracy in 

class-wise performance.   
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Figure 4.12: The confusion matrix of the machine learning algorithm to classify four types of deposits using two 

features. 

 

 Figure 4.13 indicates the feature importance graph, which ranks the features' importance 

in classifying four deposits – biofilm, corrosion, scaling, and tap water. It can be seen that the time 

of flight was ranked the highest, indicating that this feature was the most used by the model in the 

classification of the four deposits – biofilm, corrosion, scaling, and tap water. In this model, 

excluding the additional peak voltage  ratio was beneficial, which was similar to the peak voltage 

measured since it attributed to the problem of multi-collinearity, which negatively impacted the 

classification accuracy. Removing the redundant feature showed that the model's accuracy 

increased from around 99.95% to 99.99%. The feature importance graph shows that the time of 

flight measurement was ranked highest with a score of around 0.48 followed by peak voltage 

measured with a score of around 0.41. From the proof of concept experiments performed earlier 

in the research, it was demonstrated that the voltage readings varied significantly with deposits or 
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disturbances in the test chamber. In the previous models, the biofilm deposits and corrosion 

deposits could be classified properly since the peak voltage ratio was the important feature. In the 

classification of biofilm and scaling, the time of flight measurements was recognized as the most 

important feature. However, time of flight measurements are extremely sensitive to variations and 

additional datasets are necessary to gain a comprehensive understanding of the sensor 

configuration’s efficacy when paired with ML techniques for distinguishing between scaling and 

biofilm through time of flight measurements.  

 

Figure 4.13: Graph showing the feature importance of the machine learning algorithm to classify four types of deposits 

using two features. 

 

 Figure 4.14 shows the confusion matrix for the experiment classifying three pipe structures 

at the Howard wastewater treatment plant. It can be seen that the algorithm was able to classify 

the pipe loop correctly except for the minor misclassification of two pipe structures – loop one and 

loop four. The first loop, labeled loop one, consists of 1.9 mg/L phosphate-dosed water flowing 
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inside the pipe structure. The second loop, labeled loop three, consists of 3.0 mg/L phosphate-

dosed water flowing inside the pipe structure. The third loop, labeled loop four, consists of 0 mg/L 

phosphate-dosed water flowing inside the pipe structure. Each class has two different features – 

peak voltage measured and time of flight. The tuned random forest model produced an accuracy 

of 99.68% for the experiment classifying three pipe structures with the available data. 

 

Figure 4.14: The confusion matrix of the machine learning algorithm to classify the three pipe structures at the 

Howard wastewater treatment plant. 

 

 Figure 4.15 shows the confusion matrix for classifying three pipe structures in the 

laboratory experiment. Each class has two different features – peak voltage measured  and time of 

flight. It can be seen that the algorithm was able to classify the pipe loops correctly except for the 

minor misclassification of two pipe structures – copper loop and plastic loop. It can also be noted 

that there was a considerable misclassification of the PEX pipe loop voltages since the voltage 

levels of the PEX pipe and plastic pipe were similar. However, the misclassification is small 
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considering the large sample size, and the classification accuracy of the PEX pipe samples was 

98.6%. The tuned random forest model produced an overall accuracy of 99.18% for the experiment 

classifying three pipe structures with the available data.  

 

Figure 4.15: The confusion matrix of the machine learning algorithm to classify three pipe structures in the 
laboratory experiment. 
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Chapter 5 

Customer Discovery Process  

5.1 Business Model and Hypothesis 

Business Model – A biofilm sensing device placed outside a piping system will provide near real-

time results for customers.  

Business Model Hypothesis – Detecting biofilm formation in potable water systems will enable 

maintenance and other management actions to assure public health. 

 

5.2 Customer Discovery Process 

 It was identified that the key partners of W.R. Tech, an entrepreneurial entity (for the I-

Corp program) formed by some authors of this research along with other members of the laboratory 

and aimed at the manufacturing of a novel-non invasive technique for the detection of biofilm 

inside pipes, would be the U.S. Department of Agriculture (USDA), U.S. Environmental 

Protection Agency (EPA), and the Food and Drug Administration (FDA) by enforcing laws or 

guidelines in the importance of detection and eradication of biofilm in food or water industries. 

W.R. Tech identified the following value propositions. 

• Non-invasive detection technique and does not affect the production line. 

• Lower installation costs. 

• Help eradicate the biofilm formation at an early stage. 

• Elimination of unnecessary cleaning helps reduce production or cleaning costs. 

• Improved product safety and fewer recalls due to contamination. 
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 W.R. Tech identified that it would cater to process engineers, operations or production 

managers, and process supervisors either directly or through partnerships with equipment 

manufacturers so that the equipment used in the water or food industry is equipped with biofilm 

detection techniques which would benefit the industries in the long term and improve the quality 

of water or food-related products.  

 

Figure 5.1: A pie chart showing the different industries interviewed during the I-Corps Customer discovery process 

and their percentage. 

 

 Around 44 interviews were conducted in the customer discovery process to understand 

how effective a biofilm sensor would be in the industry. These interviews were held with 

professionals or engineers serving as CEOs, R&D Directors, Techincal Directors, Principal 

Engineers, R&D Engineers, Operations managers, Water quality specialists, Physicians, Dentists, 

and Business Consultants, to name a few. From Figure 5.1, it can be seen that around 59% of the 
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interviews conducted by W.R. Tech were with professionals in the Water industry, 23% of the 

interviews were with professionals in the Medical field, 11% of the interviews were with 

professionals in the Pharmaceutical or biotech industry, and around 7% of the interviews were 

with professionals in the other fields like the food industry, schools, and energy generation and 

distribution. 

 In the water industry, most of the industry partners mentioned that biofilm formation is a 

significant problem and that an effective method for detecting biofilm helps monitor water quality 

and maintenance. Most of the interviewees in the water sector indicated that the sensor technique 

should have the capacity to be integrated with existing industry data acquisition systems like 

Supervisory Control and Data Acquisition (SCADA) or Building Automation and Control (BAC) 

networks. Almost all industries support the hypothesis that detecting water issues can help extend 

pipe structures' shelf life or longevity and avoids the problem of unwanted flushing. A few 

companies mentioned that they have preventive methods for preventing biofilm build-up. 

However, they recognize that biofilm detection can be incorporated into the next generation of 

sensing technologies. It was also mentioned that corrosion or moisture deposits are also a 

significant problem, and it would be helpful to have real-time feedback for better maintenance. 

 In the medical field, while most hospitals practice autoclaving all their instruments or tools 

for every use, biofilms are a significant problem in the indwelling venus catheter and prosthetic 

implants. In the health industry, it is crucial to identify biofilm at early stages to help decide on the 

best treatment. Moreover, biofilm sensors can be best used in plaque control on teeth. Biofilm 

detection can also be effective for animal care, ensuring that relevant research is not discarded or 

restarted.  
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 In the pharmaceutical or biotechnology field, it is essential to detect water issues, including 

biofilm formation upstream of the distribution system, to ensure water quality. Biofilm detection 

can help ensure that water delivered through the filtration system is safe for drug production. 

Detecting bacteria can also help ensure that the water chillers or heaters are not a potential source 

of contamination for patients. Most companies interviewed mentioned hiring professionals to deal 

with microbe issues since they are difficult to control and are ready to invest in biofilm detection 

technologies to provide enhanced production control. 

 In other industries, especially the food industry, the company interviewed recognized that 

they could save on manufacturing or overhead cost if biofilm can be detected since they usually 

stop their production at regular intervals for cleaning.  

 Overall, during the interviews, around 30 of the 44 interviewees mentioned a need for 

sensors to detect or predict contamination problems before they occur. Almost 40 out of 44 

companies mentioned that the sensors or the sensing technique should be affordable. Five 

companies mentioned actively investing in research and development to solve the biofilm problem 

and that biofilm sensors would have the potential to be a global technology, and mentioned that 

they would prefer self-calibrating sensors. At least 6 out of 44 companies wanted any new 

technology integrated with their current setup to make incorporating technology more 

straightforward. They also mentioned that laws play a role in the technologies companies adopt 

since the test process of new technology is expensive. One company mentioned that they had 

recently invented a biofilm detector but were actively looking for newer technology or using a 

different sensing technique for the time being. However, they did not reveal the reasons for 

switching the detection techniques due to proprietary issues. The story arc of the I-Corp program 

is seen in Figure 5.2. 
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Figure 5.2: A story arc of the critical responses during the customer discovery process. 

 
 From the I-Corp program, W.R. Tech was able to conclude that there is an immediate 

requirement for an effective technique for the detection and that the applications of the technology 

can be extended to several industries other than the water industry:  

• In the medical field, for the detection of bacterial attachment in diagnostic devices that 

cannot be cleaned easily,  

• In the food industry, where detection of bacterial presence is extremely vital to avoid 

contamination of food and prevent liabilities in the future,  

• In pharmaceutical industries, biofilm can cost millions of dollars in liabilities and recall of 

contaminated products.  
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Chapter 6 

Conclusions and Future Research 

 It was observed that the 1 MHz ultrasound sensor, in combination with an eight-burst 

sinusoidal signal, was the most effective in detecting biofilm in closed-wall piping systems. The 

sensor voltage and time of flight variations were correlated to the deposit inside the piping system. 

The presence of corrosion or metal deposit inside the piping system dramatically impacts the 

receiver voltage. Combining the non-invasive technique for detecting biofilm and classifying 

deposits – no deposit, biofilm deposit, and corrosion deposit using the random forest ML algorithm 

is an effective method. The random forest ML algorithm can classify the deposits with an overall 

accuracy of 99.99%. 

 While the research demonstrates excellent results in detecting biofilm and classifying 

between biofilm and corrosion in the ground truth experiments, large datasets are still required to 

reinforce the effectiveness of the combination of the non-invasive detection of sensors and the use 

of ML in data classification in a real-world environment, especially in the classification of biofilm 

and scaling or other similar deposits to obtain a classification model with an accuracy of 100%. 

Another limitation of the current method is that a baseline measurement for sensor data is required 

before it can be used to predict the presence of biofilm. The baseline data requirement means that 

for proper detection and classification of biofilm or other deposits, it is necessary first to calculate 

the voltage and time of flight of the piping structure since the method relies on the change in 

voltage and time of flight to predict the formation or presence of biofilm or other deposits. Another 

major limitation of the current sensor arrangement is that it can only detect the deposits in a small 

cross-section of the pipe loop. If deposits (biofilm, scaling, or corrosion) are formed at a different 

pipe cross-section, the sensors cannot correctly detect or classify the deposits.  
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 In future research, additional methods need to be explored to improve the performance of 

the detection method using ultrasound sensors. An effective strategy would be to use digitally 

encoded signals and study the changes in these signals to predict biofilm detection more accurately. 

The use of ultrasound sensors on the same side of the pipe utilizing the multiple internal reflection 

method should be explored to detect the presence of deposits in a long cross-sectional area of the 

pipe. This dissertation is a strong foundation for this future work, and is part of an invention 

disclosure filed in June 2023 [1]. Additionally, a consumer study based on cost should be 

conducted to comprehend the marketability of ultrasound techniques for sensing biofilms and the 

industry's willingness to invest in such technology. The commercial iteration of the study, which 

will be developed later, will feature a duo of ultrasound sensors fastened to pipe surface with a 

clamp and linked to a touch-enabled screen using a cable. While the ultrasound sensors would 

have to be attached permanently to the pipe surface, the handheld touch screen interface can be 

used to actuate the different sensors and analyze the various deposits. Through this handheld tablet-

like interface, the user can initiate ultrasound readings and receive instantaneous feedback 

regarding the buildup in the pipeline. Converting the code for the ML algorithm and data 

processing to enable remote monitoring or integration with the Internet of Things can be done 

effortlessly using platforms like Microsoft Azure or others with similar capabilities. 
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Appendix 

Appendix A: MATLAB code for extracting the voltage and time of flight and 

rejecting cross-talk noise 

 

tic 

clc; clear; 

file = dir('Directory\*.csv'); 

%i = 0; 

for i = 1:size(file,1) 

    %i = i+1; 

    data = xlsread(file(i).name); 

    data = data(:,:); 

    [r,c] = size(data); 

     

    [ndata,index] = max(data(:,2)); 

    voltage(i) = ndata; 

 

    % Tap Water Data 

    [ndataw,indexw] = max(data(2000:r,3)); 

    filen(i) = string(file(i).date); 

    indw(i) = indexw; 

    voltagew(i) = ndataw; 

    phasew(i) = data(indexw,1); 

 

    % Biofilm Data 

    [ndatab,indexb] = max(data(2000:r,4)); 

    indb(i) = indexb; 

    voltageb(i) = ndatab; 

    phaseb(i) = data(indexb,1); 

     

    % Metal Data 

    [ndatam,indexm] = max(data(2000:r,5)); 

    indm(i) = indexm; 

    voltagem(i) = ndatam; 

    phasem(i) = data(indexm,1); 

    %writeData = struct('f',file(i).name,'v',ndata,'p',index); 

    %t(i,:) = struct2table(writeData); 

end 

t = table(filen', voltage',voltagew',phasew',voltageb',phaseb',voltagem',phasem'); 

writetable(t,'Write_GndTruth.xlsx'); 

toc 
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Appendix B: JupyerLab Python code for Machine Learning experiment 

 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

get_ipython().run_line_magic('matplotlib', 'inline') 

 

plt.rcParams['figure.figsize'] = 10,6 

plt.rcParams['text.color'] = 'white' 

plt.rcParams['axes.labelcolor'] = 'white' 

plt.rcParams['xtick.color']= 'white' 

plt.rcParams['ytick.color']= 'white' 

plt.rcParams['axes.titlecolor'] = 'white' 

plt.rcParams['legend.facecolor'] = 'black' 

 

# # This Model predicts determining the presence of Biofilm, Copper, or Tap Water within the 

system. 

 

Mats = pd.read_excel('Write_GndTruth_Dec9a.xlsx') 

pd.set_option("display.precision", 15) 

 

#Drop Column 

Mats = Mats.dropna() 

Mats = Mats.drop('Date Time', axis = 1) 

 

#Setup TW Data 

TW = Mats.iloc[:,0:3] 

TW.columns = ['Input_Voltage','Voltage_Recieved','Phase_Shift'] 

TW['Voltage_Recieved_Ratio'] = TW['Voltage_Recieved']/TW['Input_Voltage'] 

TW['Class'] = 'Tapwater' 

Mats = Mats.drop(Mats.iloc[:,1:3],axis = 1) 

 

#Setup Biofilm Data 

Biofilm = Mats.iloc[:,0:3] 

Biofilm.columns = ['Input_Voltage','Voltage_Recieved','Phase_Shift'] 

Biofilm['Voltage_Recieved_Ratio'] = Biofilm['Voltage_Recieved']/Biofilm['Input_Voltage'] 

Biofilm['Class'] = 'Biofilm' 

Mats = Mats.drop(Mats.iloc[:,1:3],axis = 1) 

 

#Setup Copper Data 

Copper = Mats.iloc[:,0:3] 

Copper.columns = ['Input_Voltage','Voltage_Recieved','Phase_Shift'] 

Copper['Voltage_Recieved_Ratio'] = Copper['Voltage_Recieved']/Copper['Input_Voltage'] 



108 
 

Copper['Class'] = 'Copper' 

Mats = Mats.drop(Mats.iloc[:,1:3],axis = 1) 

 

# Setup Entire Dataframe with all classes 

Mats_GTruth = pd.concat([TW,Biofilm , Copper], axis = 0 , join = 'outer',ignore_index=True) 

 

#Setup TestData for model 

TestData = Mats_GTruth.drop('Input_Voltage',axis = 1) 

 

# sns.scatterplot(data = TestData, x = 'Class', y = 'Voltage_Recieved_Ratio',  

#                 hue = 'Class').set(title = 'Voltage Recieved Ratio v Class') 

 

# sns.scatterplot(data = TestData, x = 'Class', y = 'Phase_Shift',  

#                 hue = 'Class').set(title = 'Time of flight v Class') 

 

# sns.pairplot(data = TestData,hue = 'Class', height = 3) 

 

# sns.scatterplot(data= TestData,x = 'Phase_Shift',y = 'Voltage_Recieved',hue = 'Class') 

# #The data separates the two types of Tap Water. 

# # Would expect the model to perform very well based on this. 

 

# sns.boxplot(data = TestData).set(title = "BoxPlot for Features") 

 

# sns.boxplot(data = TestData, x = 'Class',y = 'Voltage_Recieved').set(title = "BoxPlot for 

Features") 

 

# sns.boxplot(data = TestData, x = 'Class',y = 'Voltage_Recieved_Ratio').set(title = "BoxPlot for 

Features") 

 

# sns.scatterplot(data = TestData, x = 'Class',y = 'Phase_Shift', hue ='Class').set(title = "BoxPlot 

for Features") 

 

# # Model 1 - Base Model - no adjustments 

 

from sklearn.metrics import confusion_matrix,accuracy_score,ConfusionMatrixDisplay 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.model_selection import train_test_split 

RandomForestClassifier 

 

X = pd.get_dummies(TestData.drop('Class',axis = 1)) 

y = TestData['Class'] 

X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=101,shuffle 

= True 

                                                    ,stratify =y) 
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# Splitting the data set into a training and a test set. The test set size is 30% of the data. 

X_holdout_set, X_validation, y_holdout_set, y_validation = train_test_split(X_test, y_test, 

test_size=0.5, random_state=101, 

                                                                           shuffle = True, stratify =y_test) 

 

baseRfc = RandomForestClassifier(oob_score=True,bootstrap = True) 

 

baseRfc.fit(X_train,y_train) 

 

basePreds = baseRfc.predict(X_test) 

accuracy_score(y_test,basePreds) 

 

baseRfc.oob_score_ 

 

from sklearn.metrics import 

accuracy_score,auc,roc_curve,confusion_matrix,ConfusionMatrixDisplay,classification_report,p

lot_confusion_matrix,accuracy_score 

 

from sklearn.inspection import permutation_importance 

test_results = permutation_importance( 

    baseRfc, X_holdout_set, y_holdout_set, random_state=101, n_jobs=2 

) 

train_results = permutation_importance( 

    baseRfc, X_train, y_train, random_state=101, n_jobs=2 

) 

sorted_importances_idx = train_results.importances_mean.argsort() 

train_importances = pd.DataFrame( 

    train_results.importances[sorted_importances_idx].T, 

    columns=X.columns[sorted_importances_idx], 

) 

test_importances = pd.DataFrame( 

    test_results.importances[sorted_importances_idx].T, 

    columns=X.columns[sorted_importances_idx], 

) 

 

import matplotlib.pyplot as plt 

labels = X.columns 

 

def box_plot(data, edge_color, fill_color): 

    bp = ax.boxplot(data, patch_artist=True, labels = labels) 

     

    for element in ['boxes', 'whiskers', 'fliers', 'means', 'medians', 'caps']: 

        plt.setp(bp[element], color=edge_color) 

 

    for patch in bp['boxes']: 

        patch.set(facecolor=fill_color)        
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        return bp 

 

plt.rcParams.update({'font.size': 16}) 

plt.rcParams.update({'figure.figsize': (16.0, 12.0)}) 

for name, importances in zip(["train", "test"], [train_importances, test_importances]): 

     

    features = X.columns 

    x = np.arange(len(features)) 

     

    sns.set_style('dark') 

    sns.set_style('whitegrid') 

    ax = importances.plot.box(whis=10) 

     

    ax.set_facecolor("#1CC4AF") 

     

    ax.patch.set_facecolor('palegreen') 

    ax.patch.set_alpha(0.45) 

 

     

    plt.xlabel('xlabel', fontsize=14) 

    ax.set_title(f"Permutation Importances for Biofilm,\nCorrosion, and Tap Water 

classification({name} set)",fontdict={'fontsize': 24,},color = 'black') 

    ax.set_ylabel("Feature Importance",fontdict = {'fontsize':20 }) 

    ax.set_xlabel("Feature",fontdict = {'fontsize':20 }) 

     

    bp1 = box_plot(importances, 'blue', 'cyan') 

    ax.axhline(y=0, color="b", linestyle="--") 

 

ax.figure.tight_layout() 

 

plt.rcParams.update({'figure.figsize': (14.0, 12.0)}) 

plt.rcParams.update({'font.size': 16}) 

ax.set_title(f"Permutation Importances for Biofilm, Scaling,\nCorrosion, and Tap Water({name} 

set)",fontdict={'fontsize': 20}) 

sns.set_style('dark') 

ConfusionMatrixDisplay.from_predictions(y_test,basePreds) 

print(classification_report(y_test,basePreds)) 

 

# # Model 2: 4- classes and 3 features Tuned 

 

Mats = pd.read_excel('Write_GndTruth_02_19_23.xlsx') 

pd.set_option("display.precision", 15) 

 

#Drop Column 

Mats = Mats.dropna() 

Mats = Mats.drop('Date Time', axis = 1) 
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#Setup TW Data 

TW = Mats.iloc[:,0:3] 

TW.columns = ['Input_Voltage','Voltage_Received','Phase_Shift'] 

TW['Voltage_Received_Ratio'] = TW['Voltage_Received']/TW['Input_Voltage'] 

TW['Class'] = 'Tapwater' 

Mats = Mats.drop(Mats.iloc[:,1:3],axis = 1) 

 

#Setup Biofilm Data 

Biofilm = Mats.iloc[:,0:3] 

Biofilm.columns = ['Input_Voltage','Voltage_Received','Phase_Shift'] 

Biofilm['Voltage_Received_Ratio'] = Biofilm['Voltage_Received']/Biofilm['Input_Voltage'] 

Biofilm['Class'] = 'Biofilm' 

Mats = Mats.drop(Mats.iloc[:,1:3],axis = 1) 

 

#Setup Copper Data 

Copper = Mats.iloc[:,0:3] 

Copper.columns = ['Input_Voltage','Voltage_Received','Phase_Shift'] 

Copper['Voltage_Received_Ratio'] = Copper['Voltage_Received']/Copper['Input_Voltage'] 

Copper['Class'] = 'Copper' 

Mats = Mats.drop(Mats.iloc[:,1:3],axis = 1) 

#Setup Scaling Data 

Scaling = Mats.iloc[:,0:3] 

Scaling.columns = ['Input_Voltage','Voltage_Received','Phase_Shift'] 

Scaling['Voltage_Received_Ratio'] = Scaling['Voltage_Received']/Scaling['Input_Voltage'] 

Scaling['Class'] = 'Scaling' 

Mats = Mats.drop(Mats.iloc[:,1:3],axis = 1) 

 

# Setup Entire Dataframe with all classes 

Mats_GTruth = pd.concat([TW,Biofilm , Copper, Scaling], axis = 0 , join = 

'outer',ignore_index=True) 

 

#Setup TestData for model 

TestData = Mats_GTruth.drop('Input_Voltage',axis = 1) 

 

X = pd.get_dummies(TestData.drop('Class',axis = 1)) 

y = TestData['Class'] 

X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=101,shuffle 

= True 

                                                    ,stratify =y) 

# Splitting the data set into a training and a test set. The test set size is 30% of the data. 

X_holdout_set, X_validation, y_holdout_set, y_validation = train_test_split(X_test, y_test, 

test_size=0.5, random_state=101, 

                                                                           shuffle = True, stratify =y_test 
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rfc.oob_score_ 

 

RandomForestClassifier() 

 

rfcf = RandomForestClassifier(max_features=1, 

                                 max_depth = None, 

                                 criterion = 'gini', 

                                 min_samples_split=7, 

                                 min_samples_leaf = 1, 

                                 n_estimators =200, 

                                 bootstrap = True, 

                                 oob_score=True, 

                                 random_state=101) 

rfcf.fit(X_train,y_train) 

fpreds =rfcf.predict(X_holdout_set) 

 

sns.set_style('dark') 

ConfusionMatrixDisplay.from_predictions(y_holdout_set,fpreds) 

print(classification_report(y_holdout_set,fpreds)) 

print(rfcf.oob_score_) 

 

test_results = permutation_importance( 

    rfcf, X_holdout_set, y_holdout_set, random_state=101, n_jobs=2 

) 

train_results = permutation_importance( 

    rfcf, X_train, y_train, random_state=101, n_jobs=2 

) 

sorted_importances_idx = train_results.importances_mean.argsort() 

 

train_importances = pd.DataFrame( 

    train_results.importances[sorted_importances_idx].T, 

    columns=X.columns[sorted_importances_idx], 

) 

test_importances = pd.DataFrame( 

    test_results.importances[sorted_importances_idx].T, 

    columns=X.columns[sorted_importances_idx], 

) 

 

import matplotlib.pyplot as plt 

labels = X.columns 

 

def box_plot(data, edge_color, fill_color): 

    bp = ax.boxplot(data, patch_artist=True, labels = labels) 

     

    for element in ['boxes', 'whiskers', 'fliers', 'means', 'medians', 'caps']: 

        plt.setp(bp[element], color=edge_color) 
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    for patch in bp['boxes']: 

        patch.set(facecolor=fill_color)        

         

    return bp 

 

plt.rcParams.update({'font.size': 16}) 

plt.rcParams.update({'figure.figsize': (16.0, 12.0)}) 

for name, importances in zip(["train", "test"], [train_importances, test_importances]): 

     

    features = X.columns 

    x = np.arange(len(features)) 

     

    sns.set_style('dark') 

    sns.set_style('whitegrid') 

    ax = importances.plot.box(whis=10) 

     

    ax.set_facecolor("#1CC4AF") 

     

    ax.patch.set_facecolor('palegreen') 

    ax.patch.set_alpha(0.45) 

 

    plt.xlabel('xlabel', fontsize=14) 

#     ax.set_title(f"Permutation Importances for Biofilm, Scaling,\nCorrosion, and Tap Water 

classification({name} set)",fontdict={'fontsize': 24,},color = 'black') 

    ax.set_ylabel("Feature Importance",fontdict = {'fontsize':20 }) 

    ax.set_xlabel("Feature",fontdict = {'fontsize':20 }) 

     

    bp1 = box_plot(importances, 'blue', 'cyan') 

    ax.axhline(y=0, color="b", linestyle="--") 

 

ax.figure.tight_layout() 

 

plt.barh(feature_names, rfcf.feature_importances_) 

 

from sklearn.inspection import permutation_importance 

#    import shap 

 

print(f"RF train accuracy: {rfcf.score(X_train, y_train):.3f}") 

print(f"RF test accuracy: {rfcf.score(X_test, y_test):.3f}") 

print(f"RF Holdout test accuracy: {rfcf.score(X_holdout_set, y_holdout_set):.3f}") 

print(f"RF Validation test accuracy: {rfcf.score(X_validation, y_validation):.3f}") 
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rfcf = RandomForestClassifier(max_features=1, 

                                 max_depth = None, 

                                 criterion = 'gini', 

                                 min_samples_split=7, 

                                 min_samples_leaf = 1, 

                                 n_estimators =200, 

                                 bootstrap = True, 

                                 oob_score=True, 

                                 random_state=101) 

rfcf.fit(X_train,y_train) 

train_preds =rfcf.predict(X_train) 

test_preds =rfcf.predict(X_test) 

holdout_preds = rfcf.predict(X_holdout_set) 

#  X_holdout_set, y_holdout_set 

 

plt.rcParams.update({'figure.figsize': (16.0, 12.0)}) 

plt.rcParams.update({'font.size': 16}) 

sns.set_style('dark') 

ConfusionMatrixDisplay.from_predictions(y_holdout_set,holdout_preds) 

print(classification_report(y_holdout_set,holdout_preds)) 

 

test_results = permutation_importance( 

    rfcf, X_holdout_set, y_holdout_set, random_state=101, n_jobs=2 

) 

train_results = permutation_importance( 

    rfcf, X_train, y_train, random_state=101, n_jobs=2 

) 

sorted_importances_idx = train_results.importances_mean.argsort() 

 

train_importances = pd.DataFrame( 

    train_results.importances[sorted_importances_idx].T, 

    columns=X.columns[sorted_importances_idx], 

) 

test_importances = pd.DataFrame( 

    test_results.importances[sorted_importances_idx].T, 

    columns=X.columns[sorted_importances_idx], 

) 

 

import matplotlib.pyplot as plt 

labels = X.columns 

 

def box_plot(data, edge_color, fill_color): 

    bp = ax.boxplot(data, patch_artist=True, labels = labels) 

     

    for element in ['boxes', 'whiskers', 'fliers', 'means', 'medians', 'caps']: 

        plt.setp(bp[element], color=edge_color) 
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    for patch in bp['boxes']: 

        patch.set(facecolor=fill_color)        

         

    return bp 

 

plt.rcParams.update({'font.size': 16}) 

plt.rcParams.update({'figure.figsize': (16.0, 12.0)}) 

for name, importances in zip(["train", "test"], [train_importances, test_importances]): 

     

    features = X.columns 

    x = np.arange(len(features)) 

     

    sns.set_style('dark') 

    sns.set_style('whitegrid') 

    ax = importances.plot.box(whis=10) 

     

    ax.set_facecolor("#1CC4AF") 

     

    ax.patch.set_facecolor('palegreen') 

    ax.patch.set_alpha(0.45) 

     

    plt.xlabel('xlabel', fontsize=14) 

#     ax.set_title(f"Permutation Importances for Biofilm, Scaling,\nCorrosion, and Tap Water 

classification({name} set)",fontdict={'fontsize': 24,},color = 'black') 

    ax.set_ylabel("Feature Importance",fontdict = {'fontsize':20 }) 

    ax.set_xlabel("Feature",fontdict = {'fontsize':20 }) 

     

    bp1 = box_plot(importances, 'blue', 'cyan') 

    ax.axhline(y=0, color="b", linestyle="--") 

 

ax.figure.tight_layout() 

 

final_model_3_feat_biofilm.fit(X,y) 

 

import joblib 

 

joblib.dump(final_model_3_feat_biofilm,'V2_final_model_3_feat_biofilm.pkl') 

 

list(X.columns) 

 

joblib.dump(list(X.columns),'col_names_3_feat_biofilm.pkl') 
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# # Loading the Model 

 

new_columns = joblib.load('col_names_3_feat_biofilm.pkl') 

 

new_columns 

 

loaded_model = joblib.load('V2_final_model_3_feat_biofilm.pkl') 

 

NewData = pd.read_csv('12_9_22_GTruth_Cleaned.csv') 

pd.set_option("display.precision", 15) 

NewData = NewData.drop('Unnamed: 0',axis = 1) 

NewData 

len(actual_class) 

 

NewData['Class'].value_counts() 

 

pred_cols = list(NewData.columns.values)[:-1] 

class_col = list(NewData.columns.values)[-1:] 

actual_class = NewData[class_col] 

pred = pd.Series(loaded_model.predict(NewData[pred_cols])) 

 

sns.set_style('dark') 

ConfusionMatrixDisplay.from_predictions(actual_class,pred) 

print(classification_report(actual_class,pred)) 

 

f1Score = f1_score(actual_class,pred, average = 'weighted')*100 

 

recall = recall_score(actual_class,pred, average = 'weighted')*100 

 

precision = precision_score(actual_class,pred,average ='weighted' )*100 

 

accuracy = accuracy_score(actual_class,pred)*100 

 

metrics = ({ 'accuracy': accuracy, 'f1Score': f1Score ,'precision':precision, 'recal':recall}) 

 

mets = pd.Series(metrics) 

df2 = mets.to_frame() 

df2.set_axis(['Percentage'], axis='columns', inplace=True) 

df2.index.name="NewData Set" 

df2 = df2.round({'Percentage':4}) 

dfnewdata_metrics = df2.style.format(precision = 4) 

dfnewdata_metrics 
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