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ABSTRACT

THE VANISHING DISCOUNT METHOD

FOR STOCHASTIC CONTROL:

A LINEAR PROGRAMMING APPROACH

by

Brian J. Hospital

The University of Wisconsin-Milwaukee, 2023
Under the Supervision of Professor Richard H. Stockbridge

Under consideration are convergence results between optimality criteria for two infinite-

horizon stochastic control problems: the long-term average problem and the α-discounted

problem, where α ∈ (0, 1] is a given discount rate. The objects under control are those

stochastic processes that arise as (relaxed) solutions to a controlled martingale problem; and

such controlled processes, subject to a given budget constraint, comprise the feasible sets for

the two stochastic control problems.

In this dissertation, we define and characterize the expected occupation measures asso-

ciated with each of these stochastic control problems, and then reformulate each problem

as an equivalent linear program over a space of such measures. We then establish suffi-

cient conditions under which the long-term average linear program can be “asymptotically

approximated” by the α-parameterized family of (suitably normalized) α-discounted lin-

ear programs as α ↓ 0. This approach is what can be referred to as the vanishing discount

method. To state these conditions precisely, our analysis turns to set-valued mappings called

correspondences. In particular, once we establish the appropriate framework, we see that

our main results can be stated in a manner similar to that of Berge’s Theorem.
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INTRODUCTION

I.1 Motivation and Overview

The objective of this dissertation is to analyze the structural relationship between two

infinite-horizon stochastic control problems: the long-term average problem and the α-

discounted problem, where α ∈ (0, 1] represents a given discount rate (or discount factor).

Solutions to these problems are obtained by identifying optimal control policies that min-

imize, respectively, a long-term average expected cost and an α-discounted expected cost.

We further augment the canonical formulation of these control problems by considering an

additional budget constraint (or resource constraint). Note that one can equivalently seek

to maximize a long-term average (or α-discounted) expected reward in an equivalent man-

ner; our use of the minimization framework throughout this dissertation can be considered

essentially arbitrary.

The long-term average expected cost can, informally, be defined as a limit of finite-horizon

average expected costs as time extends to the infinite horizon. For a given time t > 0, the

corresponding finite-horizon average expected cost is simply the expected cumulative cost

the controller has obtained (under the adoption of some policy) up until time t divided by

t (and, hence, this is more precisely described as a cost rate that we wish to minimize).

By then passing to a limit (or, if necessary, a limit superior) as t → ∞, we arrive at the

long-term average expected cost.

The α-discounted expected cost is perhaps best understood in economic terms—that is, as

the present (discounted) value of the total costs accumulated by the controller over all time.

Note that the role of the discount rate α > 0 is integral since, otherwise, unbounded total

costs would be realized under too large a class of (potentially suboptimal) policies; moreover,

in many practical settings (e.g., financial applications), a discount rate is a realistic means of

accounting for inflationary effects and devaluation. For example, a controller’s accumulation
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of wealth over time is a natural interpretation of the “rewards” accrued by the process

in the maximization formulation of this scheme. Furthermore, under this interpretation,

the inclusion of a budget/resource constraint carries a degree practical significance; e.g., a

firm may wish to find production levels of a commodity that result in the largest profit

without exceeding the supply of that commodity. However, this approach is not without its

limitations. Indeed, applications have been identified in which such discounting results in

suboptimal policies because of myopia. For example, the optimal solution to the discounted

problem in certain harvesting applications can result in premature extinction of a species,

as demonstrated in, e.g., Alvarez and Shepp (1998) and Song et al. (2011).

As we wish to analyze and compare the structure of these two problems, the question as

to when (or if) they, in fact, yield the same optimal values (or optimal policies) naturally

arises. The relationship between the optimal values is well known and is a consequence of the

so-called Abelian theorems in which the optimal value of the long-term average problem is

obtained as the limit of the (suitably normalized) α-discounted optimal values as α ↓ 0; and

similar results regarding the optimal (and feasible) policies of the problems can be established

under additional conditions, which we discuss in detail below. These facts comprise what can

be referred to as the vanishing discount method. This approach has been extensively studied

and documented since the initial developments of Markov decision processes in the middle

of the twentieth century; see, for example, Taylor (1965) and Veinott (1966). In essence, this

approach allows for the optimal values for one problem to be approximated by the optimal

values for the other (in, say, instances where one problem is more tractable than the other).

A rigorous analysis of this method will be among the primary concerns of this dissertation.

While the vanishing discount method provides a way of relating certain structural proper-

ties of the long-term average problem and the α-discounted problem (including their optimal-

ity criteria), in practice, at least one of these problems must, naturally, be solved. Perhaps

the most well-developed and popular ways of doing so has been via dynamic programming

techniques. In particular, under suitable conditions, the optimal value of the long-term aver-
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age problem can be realized as a solution to the Hamilton-Jacobi-Bellman (HJB) equation,

as detailed in Fleming and Rishel (1975), and more recently in Pham (2009). As a second-

order elliptic partial differential equation, the Hamilton-Jacobi-Bellman equation can often

be quite difficult to solve explicitly—often admitting only viscosity solutions rather than

classical solutions; see Kawaguchi and Morimoto (2007). An alternative approach involves

expressing solutions to each of the problems in terms of so-called expected occupation mea-

sures and then reformulating the stochastic problems as equivalent linear programs over

(possibly infinite-dimensional) spaces of these measures. This approach has its history in

the early development of decision processes as presented in, e.g., Manne (1960); but the more

recent developments described in Kurtz and Stockbridge (1998) will serve as the basis for our

approach to solving the stochastic control problems considered throughout this dissertation.

In order to characterize the appropriate expected occupation measures—and, hence, con-

struct the desired linear programs—we first identify those controlled processes that arise as

(relaxed) solutions to a controlled martingale problem. For this analysis, we introduce the

generator L of a controlled process, a linear operator on a space of functions that charac-

terizes the dynamics of a stochastic process through its instantaneous transitional behavior.

The use of this operator will both allow for more efficient exposition and for the contribution

of the techniques of operator theory to our analysis. In particular, we will see that each

collection of expected occupation measures can be fully characterized as those measures that

satisfy a particular adjoint equation for the operator L.

By formulating the long-term average and α-discounted problems in terms of their re-

spective linear programs, our task is then to use these linear programs to determine exactly

what conditions must be imposed on our model in order for the vanishing discount method

to be applicable. Since each α ∈ (0, 1] corresponds to an α-discounted linear program, appli-

cation of the vanishing discount method in this context involves analysis of the asymptotic

behavior of an α-parameterized family of linear programs as α ↓ 0. To obtain the desired

convergence, however, we will see that one must first normalize each α-discounted expected
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occupation measure by its associated discount rate α to then obtain an α-normalized (dis-

counted) expected occupation measure. Consequently, much of our analysis will focus on the

(α-parameterized) family of α-normalized linear programs as α ↓ 0. To be precise, it will

be necessary for us to identify the appropriate feasible set (a set of α-normalized expected

occupation measures), the set of optimal solutions (a subset of the feasible set), and the

optimal value for each α-normalized linear program. We then seek to establish conditions

under which each of these objects “converges” to, respectively, the feasible set, the set of

optimal solutions, and the optimal value for the long-term average linear program.

Since we will need to examine the asymptotic behavior of families of sets (i.e., the feasible

sets and the sets of optimal solutions for the α-normalized linear programs), we will require

a suitable notion of convergence that agrees with the mechanics of the vanishing discount

method. One such notion of convergence can be expressed in terms of continuity of set-valued

functions called correspondences, the theory of which is extensively detailed in Aliprantis and

Border (2006). Indeed: By defining a correspondence on the interval [0, 1] that maps each

α ∈ (0, 1] to the associated set of optimal solutions for the α-normalized linear program,

and maps α = 0 to the set of optimal solutions for the long-term average linear program,

verifying that the vanishing discount method can be applied then becomes a matter of

verifying that this correspondence is continuous at the point α = 0. Here, we note that

a correspondence is said to be continuous at a point (in a topological space) if it is both

lower hemicontinuous and upper hemicontinuous at that point. As this is a matter that is

of great importance to our results, we have devoted a section of this dissertation to discuss

the concept of hemicontinuity in detail.

The application of correspondences to our problem not only provides us with a convenient

language and an elegant framework with which to carry out our analysis, it also allows

us to exploit a number of powerful results associated with the theory of correspondences.

In particular, we will see that Berge’s Theorem serves as a rather useful model in this

setting. Among its conclusions is, for example, the statement that the “value function”
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(which assigns, to each α ∈ [0, 1], the optimal value for the corresponding linear program)

is continuous. As the vanishing discount method relies upon stability of the optimal values

as the discount rate α “vanishes,” the objective of establishing conditions that ensure this

value function is continuous at α = 0 will naturally play a significant role in our analysis.

After establishing the main theoretical results of this dissertation, we present a number

of examples intended to demonstrate both the utility of the vanishing discount method and

the subtleties with which one must contend before applying it. Among our examples is an il-

luminating “geometric” example appearing in Hernández-Lerma and Prieto-Rumeau (2010)

that we have recast using our linear programming framework, and then expanded upon to

emphasize some of the nuances of our results. In fact, this paper and its accompanying

example served as one of the primary inspirations for the research conducted for this dis-

sertation, as it is one of the few to consider the vanishing discount method for constrained

processes. We then turn our attention to a more classical problem from control theory in

which one considers a controlled diffusion process. For this example, we analyze solutions

to a typical stochastic differential equation (SDE), characterize the solutions to the SDE in

terms of the appropriate generator, and then identify the corresponding long-term average

and α-normalized linear programs. In each example presented, we analyze the hypotheses

and conclusions of our main results to demonstrate how they may perhaps be applied in

practice.

The template used to produce this manuscript was modified from Vieten (2018) and, accord-

ingly, we use virtually the same numbering scheme for definitions, equations, lemmas, propo-

sitions, theorems, corollaries, remarks, and examples. As such, we will simply reference—

essentially verbatim, with only minor syntactical and stylistic changes—the following de-

scription of this scheme found in that document: We use a continuous numbering scheme for

equations, lemmas, propositions, theorems, corollaries, remarks and examples in the follow-

ing. These objects will be referenced by a roman numeral indicating the chapter, followed

by an arabic number indicating the section and a second arabic number representing the
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consecutive number of the object in that section, separated by a period, respectively. To

give an example, “(III.2.1)” is the first object, an equation, appearing in the second section

of Chapter III. The next object in this section is a definition—and is therefore referenced by

“Definition III.2.2.” However, for the sake of readability, the roman numerals are omitted

when the object lies in the same chapter in which it is referenced. So, the aforementioned

“Definition III.2.2” will appear as “Definition 2.2” in Chapter III, and as “Definition III.2.2”

in any other chapter.

The Appendix is handled much like a “Chapter,” however the number that usually in-

dicates a particular section is instead a capital letter. For example, “Lemma B.7” refers to

the seventh object, a lemma, appearing in section B of the Appendix. Note that, since this

manner of enumeration is unique to the Appendix, there is no need to prepend each object

with the corresponding “Chapter” number when objects in the Appendix are referenced in

the main body of the document.

Lemmas, propositions, theorems, and corollaries are presented in italicized text, whereas

remarks and examples are not. Definitions are not italicized, except for the term being

defined. Consequently, we use the symbol � to terminate remarks, examples, and definitions

to make it apparent where the main body of text is meant to be resumed. In a similar

manner, we use the usual symbol 2 to indicate the end of a proof.

I.2 Dynamics of the Controlled Process

To describe the control models of interest, we consider a linear operator L : D(L)→ R(L),

called a generator, and those pairs (X,Λ) = {(Xt,Λt) : t ∈ R+} such that the process

M := {Mt : t ∈ R+} defined by

Mt := f(Xt)− f(X0)−
∫ t

0

∫
G

Lf(Xs, u) Λs(du) ds (2.1)
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is a martingale for every f ∈ D(L). In (2.1), the process X = {Xt : t ∈ R+} is an E-valued

state process and Λ = {Λt : t ∈ R} is a P(G)-valued control policy (or, simply, control),

where P(S) denotes the set of Borel probability measures on the measurable space S. Both

E and G are assumed to be locally compact, complete, separable, metric spaces (noting that,

as a consequence, E × G is a locally compact, complete, separable, metric space). Being

locally compact, we let E∆ := E ∪ {∆} denote the one-point compactification of E, where

we assume that ∆ /∈ E.

To characterize the domain D(L) of the operator L, we let C(S) denote the set of

continuous real-valued functions on the set S, and let Ĉ(S) denote the set of f ∈ C(S) that

vanish at infinity. The set D(L) is taken to be a subset of Ĉ(E) for which the following

conditions are satisfied:

(D1) D(L) is dense in Ĉ(E).

(D2) Luf := Lf(·, u) ∈ Ĉ(E) for each f ∈ D(L) and each u ∈ G.

(D3) lim sup
x→∆

(sup{|Lf(x, u)| : u ∈ K}) = 0 for each f ∈ D(L) and each compact K ⊂ G.

(D4) Luf satisfies the positive maximum principle for each u ∈ G; i.e.,

Luf(x0) ≤ 0 whenever sup{f(x) : x ∈ E} = f(x0) ≥ 0.

(D5) D(L) is an algebra.

(D6) There exists a ψ ∈ C(E × G) with ψ ≥ 1 such that, for each f ∈ D(L), there is a

constant af ∈ R+ satisfying

|Lf(x, u)| ≤ afψ(x, u), ∀(x, u) ∈ E ×G.

In accordance with the conditions imposed on D(L), we can view the range R(L) as a subset

of C(E×G). As discussed in Kurtz and Stockbridge (1998), the above conditions guarantee
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the existence (at least in E∆) of relaxed solutions to the controlled martingale problem for

L. Such solutions are precisely those processes (X,Λ) satisfying (2.1) above, the description

of which we formalize by means of the following definition.

Definition 2.2. We say that an E ×P(G)-valued process (X,Λ) = {(Xt,Λt) : t ∈ R+} is a

relaxed solution to the controlled martingale problem for L if the following hold.

(M1) There exists a filtration {Ft} := {Ft : t ∈ R+} such that (X,Λ) is {Ft}-progressive.

(M2) For each f ∈ D(L), the process M in (2.1) is an {Ft}-martingale.

The notation M := M (L) will be used to refer to the set of such solutions. �

Remark 2.3. Recall that a process (X,Λ) is {Ft}-progressive (or progressively measurable

with respect to {Ft}) if, for each t ∈ R+ and each Γ ∈ B(E × P(G)), the set

{(s, ω) ∈ [0, t]× Ω : (Xs(ω),Λs(ω)) ∈ Γ}

belongs to the σ-algebra B([0, t]) × Ft. It is clear that an {Ft}-progressive process is also

{Ft}-adapted (i.e., “progressive” is a strictly stronger property than “adapted”). Moreover,

as shown in Chung and Doob (1965) or Meyer (1966), every {Ft}-adapted process has a {Ft}-

progressive modification; and, as shown in Karatzas and Shreve (1991), every {Ft}-adapted

process with càdlàg paths is {Ft}-progressive. Our requirement that each (X,Λ) ∈ M

be {Ft}-progressive (rather than simply {Ft}-adapted) is included in order to guarantee

that, for each {Ft}-stopping time τ , the corresponding stopped process (X,Λ)τ defined by

(Xt,Λt)
τ := (Xt∧τ ,Λt∧τ ) is {Ft}-measurable, as shown in Ethier and Kurtz (1986). �

Now, for each (X,Λ) ∈ M , we furthermore wish to consider only those controls that are

“available” when the state process X occupies a particular state (i.e., for each s ∈ R+, we

wish to consider only those controls that have a positive probability of being chosen when

Xs = x). We can formalize this notion in the following manner.
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Let U be a closed subset of E ×G and, for each x ∈ E, define the set G(x) by

G(x) := {u ∈ G : (x, u) ∈ U}.

We then say that the control Λ is admissible if

∫ t

0

∫
G

IU(Xs, u) Λs(du) ds = t, ∀t ∈ R+,

where IS denotes the indicator function of the set S. In essence, this admissibility condition

ensures that, for each s ∈ R+, the support of the measure Λs ∈ P(G) is a subset of G(x)

when Xs = x. Hence, for virtually all intents and purposes, the relation

G =
⋃
x∈E

G(x)

may be considered a suitable characterization of the control space G. However, for clarity of

exposition, we will usually use E ×G and U interchangeably throughout this dissertation.

I.3 Optimality Criteria

The main purpose of this dissertation is to analyze the structural relationship between the

long-term average stochastic problem and, for each α ∈ (0, 1], the α-discounted stochastic

problem. To describe each of these control problems, we begin with a given constrained

control model {E×G,L, c, c1}. In this model, E×G and L are as above; and c, c1 ∈M(E×G)

are, respectively, a given cost rate function and a given budget rate function, where M(S)

denotes the set of B(S)-measurable real-valued functions on the set S. Note that, under this

formulation, an unconstrained control model can be denoted by {E ×G,L, c}.

Let us now briefly recall the following fairly standard definitions, the first of which comes

(with some augmentation) from Section 2.10 in Aliprantis and Border (2006).
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Definition 3.1. Let f : S → [−∞,+∞] be a function on a topological space S.

• f is lower semicontinuous if, for each λ ∈ R, the set {a ∈ S : f(a) ≤ λ} is closed (or,

equivalently, the set {a ∈ S : f(a) > λ} is open). We can also say that f is lower

semicontinuous at a0 ∈ S if and only if

f(a0) ≤ lim inf
a→a0

f(a).

• upper semicontinuous if, for each λ ∈ R, the set {a ∈ S : f(a) ≥ λ} is closed (or,

equivalently, the set {a ∈ S : f(a) < λ} is open). We can also say that f is upper

semicontinuous at a0 ∈ S if and only if

lim sup
a→a0

f(a) ≤ f(a0).

Note that such a function f is continuous if and only if it is both lower semicontinuous and

upper semicontinuous. �

The next definition comes from Ricceri (2016).

Definition 3.2. A function f : S → R on a topological space S is inf-compact if, for each

λ ∈ R, the set {a ∈ S : f(a) ≤ λ} is compact. Observe that an inf-compact function on a

Hausdorff space (such as E ×G) is necessarily lower semicontinuous. �

We then assume that the functions c and c1 satisfy the following conditions.

(C1) c and c1 are bounded below; i.e., there exist constants κ, κ1 ∈ R+ such that

−κ < c(x, u) and −κ1 < c1(x, u), ∀(x, u) ∈ E ×G.

(C2) c and c1 are inf-compact (and, hence, lower semicontinuous).

(C3) At least one of the following hold:
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• There exist constants a, b ∈ R+ and β ∈ (0, 1) such that

ψ(x, u) ≤ acβ(x, u) + b, ∀(x, u) ∈ E ×G.

• There exist constants a1, b1 ∈ R+ and β1 ∈ (0, 1) such that

ψ(x, u) ≤ a1c
β1
1 (x, u) + b1, ∀(x, u) ∈ E ×G.

Note that ψ is the same function introduced in condition (D6) above.

To be precise, we interpret the function cβ (and, mutatis mutandis, cβ11 ) as follows:

cβ(x, u) :=

 −|c(x, u)|β, if c(x, u) < 0;

(c(x, u))β, if c(x, u) ≥ 0.

Remark 3.3. Recall that we will define each optimization problem as a minimization prob-

lem. However, our model can be easily modified to accommodate maximization problems

by replacing the cost rate function c with, say, a reward rate function r that is required to

satisfy appropriately modified versions of the conditions (C1)-(C3) above (e.g., r is upper

semicontinuous, r is bounded above, etc.). Of course, in this case, one can simply opt to

convert such a maximization problem into a minimization problem by instead considering

the function −r. �

When given such a constrained control model, we are then primarily interested in two

(infinite-horizon) optimality criteria: the (minimum) long-term average expected cost and,

given α > 0, the (minimum) α-discounted expected cost. We define the former criterion as

the optimal (i.e., minimum) value of the long-term average stochastic problem, and the latter

criterion as the optimal (i.e., minimum) value of the α-discounted stochastic problem. We

now describe each of these problems in detail.
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I.3.1 The Long-Term Average Stochastic Problem

Let {E × G,L, c, c1, θ} be a constrained control model as described above, where the addi-

tional element θ ∈ R is a given constraint constant. For the long-term average stochastic

problem, our objective is then to minimize the long-term average expected cost

J(X,Λ) := lim sup
t→∞

1

t
E
[∫ t

0

∫
G

c(Xt, u) Λs(du) ds

]

over all (X,Λ) ∈M satisfying the budget constraint

Q1(X,Λ) := lim sup
t→∞

1

t
E
[∫ t

0

∫
G

c1(Xt, u) Λs(du) ds

]
≤ θ.

Thus, the minimum long-term average expected cost is given by

J∗ := inf{J(X,Λ) ∈ R : (X,Λ) ∈M , Q1(X,Λ) ≤ θ}.

Remark 3.4. In principle, the constraint constant θ can of course be considered as a vector

θ = (θ1, θ2, . . . , θn) ∈ Rn,

where n given budget rate functions c1, c2, . . . , cn are required to satisfy Qi(X,Λ) ≤ θi for

each i = 1, 2, . . . , n. As this is a trivial generalization that adds little more than notational

complications, we treat only the n = 1 case. �

For this problem, we will assume that there exists at least one (X,Λ) ∈ M satisfying

J(X,Λ) < +∞ and Q1(X,Λ) ≤ θ. Indeed, this assumption is justified, since otherwise the

problem itself is not well-posed.

12



I.3.2 The α-Discounted Stochastic Problem

Given a discount rate α ∈ (0, 1], let {E × G,L, c, c1, θα, ν0} be a constrained control model

as described above, where the additional elements θα ∈ R and ν0 ∈ P(G) are, respectively, a

constraint constant (that may depend on α) and an initial distribution on the state space E.

The objective of the α-discounted stochastic problem is then to minimize the α-discounted

expected cost

Jα(X,Λ; ν0) := Eν0
[∫ ∞

0

e−αt
∫
G

c(Xt, u) Λt(du) dt

]
over all (X,Λ) ∈M with X0 ∼ ν0, subject to the budget constraint

Qα
1 (X,Λ; ν0) := Eν0

[∫ ∞
0

e−αt
∫
G

c1(Xt, u) Λt(du) dt

]
≤ θα.

Note in the above that Eν0 [·] := E[·|X0 ∼ ν0].

Remark 3.5. It may perhaps be undesirable to consider the constraint constant θα to be

given in the model {E ×G,L, c, c1, θα, ν0} since one of our primary goals will be to “asymp-

totically approximate” the long-term average stochastic problem with the (α-indexed) family

of α-discounted stochastic problems; and so, we would prefer the liberty to choose a suit-

able family {θα : α ∈ (0, 1]} of associated constraint constants to accomplish this goal. In

particular, we will see that such a family {θα : α ∈ (0, 1]} will be required to satisfy the

condition

lim
α↓0

αθα = θ (T1)

in order to apply the vanishing discount method. �

The minimum total α-discounted expected cost (i.e., optimum value) for this problem is then

given by

J∗α := J∗α(ν0) := inf{Jα(X,Λ; ν0) : (X,Λ) ∈M , Qα
1 (X,Λ; ν0) ≤ θα}.
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Note that this problem does, on its own, depend on the choice of an initial distribution ν0

for the process X, but we will see that this dependence “vanishes” in the limit as α ↓ 0.

As with the long-term average stochastic problem, we assume that there exists at least one

(X,Λ) ∈M with Jα(X,Λ; ν0) < +∞ and Qα
1 (X,Λ; ν0) ≤ θα.

Remark 3.6. Our choice of parameter space for the discount rates is not per se limited to

the half-open interval (0, 1]. Indeed, it would make no difference were we to choose (0, 1)

or (0, 2], or in fact any interval of the form (0, λ) or (0, λ], for λ ∈ (0,+∞). However, our

analysis only concerns itself with values of α near 0; so our choice of (0, 1] is simply a matter

of convenience. �

It is primarily for historical and contextual reasons that we discuss the α-discounted stochas-

tic problem in this dissertation, as this is a problem of considerable interest in its own right.

Notice, however, that there is a disparity in mass that the long-term average stochastic prob-

lem and the α-discounted stochastic problem assign to “time” in the infinite horizon; i.e., the

former assigns unit mass to time in this sense, whereas the latter assigns a mass of α−1. Con-

sequently, when analyzing the linear programs with an application of the vanishing discount

method in mind, we will instead consider the asymptotic behavior of the (α-parameterized)

family of α-normalized (discounted) linear programs as α ↓ 0. The details of this approach

will be made precise below.

14



LINEAR PROGRAMMING

FORMULATIONS

In this chapter, our objective is to express the long-term average and α-discounted stochastic

problems introduced above as linear programs over (infinite-dimensional) spaces of so-called

occupation measures. As such, we first define the occupation measures corresponding to each

stochastic problem, and then we derive adjoint equations (in terms of the generator L) that

fully characterize these collections of measures. These adjoint equations will then provide

the conditions the occupations measures must satisfy in order to be considered feasible (and,

hence, optimal) for their respective linear programs. We will then be well-positioned to

formulate the desired linear programs, and furthermore show that these linear programs are,

in fact, equivalent to their associated stochastic programs.

II.1 Occupation Measures

II.1.1 The Long-Term Average Expected Occupation Measure

Before stating our definition of a long-term average expected occupation measure, we must

first define a related measure: a finite-horizon average expected occupation measure. Note

that B(S) denotes the Borel σ-algebra on the set S, and recall that P(S) denotes the set of

probability measures on the measurable space (S,B(S)).

Definition 1.1. Given a process (X,Λ) ∈ M and a time t > 0, we define the associated

finite-horizon average expected occupation measure ρt ∈ P(E ×G) by

ρt(Γ) :=
1

t
E
[∫ t

0

∫
G

IΓ(Xs, u) Λs(du) ds

]
, ∀Γ ∈ B(E ×G).
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Note that it will often prove useful to express the above as

ρt(Γ) =

∫
E×G

IΓ(x, u) ρt(dx, du) =
1

t
E
[∫ t

0

∫
G

IΓ(Xs, u) Λs(du) ds

]
.

�

Our definition of a long-term average expected occupation measure further relies upon the

notion of weak convergence of measures, which merits some discussion. In much of what

follows, we take as our source Bogachev (2007), though the definition of weak convergence

that appears there is considerably more general than is necessary for the scope of this dis-

sertation. In particular, the investigative reader will notice that much of Bogachev (2007)

concerns itself with the distinction between the Baire σ-algebra and the Borel σ-algebra

on a given topological space (the latter of which being our primary σ-algebra of interest).

Fortunately, however, in a perfectly normal space (e.g., any metric space) such as E × G,

these two σ-algebras happen to coincide.

Note in the following thatM(S) denotes the set of positive (i.e., nonnegative) finite measures

on the measurable space (S,B(S)), and C̄(S) denotes the set of bounded, continuous, real-

valued functions on S.

Definition 1.2. A sequence {µn : n ∈ N} ⊂ M(E × G) is said to be weakly convergent to

a measure µ ∈M(E ×G) if

∫
E×G

ξ(x, u)µ(dx, du) = lim
n→∞

∫
E×G

ξ(x, u)µn(dx, du), ∀ξ ∈ C̄(E ×G).

We use the notation µn ⇒ µ to denote such convergence. If we wish to specify the index

over which the limit is taken, we will write µn ⇒n µ. �

It is typical in the literature to consider only weak convergence of probability measures, as

in our following definition of long-term average expected occupation measures.
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Definition 1.3. If {ρt : t > 0} ⊂ P(E × G) is a family of finite-horizon average expected

occupation measures, then ρ ∈ P(E × G) is called a long-term average expected occupation

measure if ρtn ⇒ ρ for some subsequence {ρtn : n ∈ N} of {ρt : t > 0} with tn → ∞ as

n→∞. In other words, the measure ρ is a limit point of the set {ρt : t > 0} in the topology

of weak convergence. �

We now wish to establish a suitable characterization of the collection of long-term average

expected occupation measures for the control models we are considering. To do so, we first

show that any long-term average expected occupation measure ρ necessarily annihilates the

function Lf for each f ∈ D(L). Having shown this, we will then see that, for any ρ satisfying

this condition, there exists a stationary (X,Λ) ∈ M that has ρ as its one-dimensional

distribution (and, hence, its weak limit). We will make this statement more precise later

on; but, for now, let us consider the following proposition in which we characterize the

collection of long-term average expected occupation measures as those probability measures

that satisfy the aforementioned annihilation condition.

Proposition 1.4. Suppose that {E×G,L, c, c1, θ} is a constrained control model in which L

satisfies (D1)-(D6), and c and ψ satisfy conditions (C1)-(C3). If (X,Λ) ∈M with J(X,Λ) <

+∞, then there exists a long-term average expected occupation measure ρ associated with

(X,Λ) satisfying ∫
E×G

Lf(x, u) ρ(dx, du) = 0, ∀f ∈ D(L). (MA1)

Moreover, if ρ is any long-term average expected occupation measure, then it necessarily

satisfies (MA1).

We must temporarily delay our proof of the above proposition with a further digression into

a number of important definitions and results.

Definition 1.5. A sequence {µn : n ∈ N} ⊂ M(E × G) of measures is called tight if, for

each ε > 0, there is a compact subset Kε of E × G such that, for every n ∈ N, we have

µn(Kc
ε ) < ε. �
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Definition 1.6. A sequence {µn : n ∈ N} ⊂ P(E × G) of probability measures is called

relatively compact if every subsequence {µnk
: k ∈ N} of {µn : n ∈ N} contains a further

subsequence {µnk(i)
: i ∈ N} such that µk(i) ⇒i µ for some µ ∈ P(E ×G). �

The main result relating tightness and relative compactness is Prohorov’s Theorem. For our

purposes, the following theorem (which one may recognize as a special case of Theorem 8.6.2

in Bogachev (2007)) is what we will often refer to as “Prohorov’s Theorem.”

Theorem 1.7. For a sequence {µn : n ∈ N} ⊂ M(E × G), the following conditions are

equivalent:

(a) {µn : n ∈ N} contains a weakly convergent subsequence.

(b) {µn : n ∈ N} is tight and {µn(E ×G) : n ∈ N} ⊂ R+ is bounded.

Remark 1.8. Here we note that sequences inM(E×G) satisfying condition (a) in the above

theorem will be referred to as “relatively compact,” even though this terminology usually

only applies to sequences of probability measures throughout the literature. Also, when a

sequence satisfies condition (a), we will often take the “weakly convergent subsequence” to

just be the sequence itself if it makes no meaningful difference in our argument. �

For completeness, we also include the analogous statements for probability measures below.

The following two results can be found in Section 5 of Billingsley (1999).

Theorem 1.9. If the sequence {µn : n ∈ N} ⊂ P(E × G) is tight, then it is relatively

compact.

Corollary 1.10. If the sequence {µn : n ∈ N} ⊂ P(E ×G) is tight, and if each subsequence

that converges weakly at all in fact converges to a measure µ ∈ P(E × G), then the entire

sequence must converge weakly to µ.

One final definition (and an accompanying example) will then provide us with the necessary

machinery to tackle the proof of Proposition 1.4.
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Definition 1.11. A set of functions M ⊂ C̄(E × G) is called separating if whenever

µ, ν ∈ P(E ×G) and

∫
E×G

ξ(x, u)µ(dx, du) =

∫
E×G

ξ(x, u) ν(dx, du), ∀ξ ∈M,

we have µ = ν. �

Example 1.12. Cc(E ×G), the space of functions ξ ∈ C̄(E ×G) with compact support, is

separating. �

The interested reader is directed to Section 4 of Chapter 3 in Ethier and Kurtz (1986) for a

proof of the preceding fact. Now, as promised, we proceed with the proof of Proposition 1.4.

Proof of Proposition 1.4. Let (X,Λ) ∈M with J(X,Λ) = m < +∞; i.e.,

m := lim sup
t→∞

1

t
E
[∫ t

0

∫
G

c(Xs, u) Λs(du) ds

]
< +∞.

Let {tn : n ∈ N} ⊂ [1,∞) be a sequence of times with tn →∞ as n→∞ and

∣∣∣∣ 1

tn
E
[∫ tn

0

∫
G

c(Xs, u) Λs(du) ds

]
−m

∣∣∣∣ ≤ 1

n
, ∀n ∈ N.

Then define the sequence {ρtn : n ∈ N} ⊂ P(E × G) of finite-horizon average expected

occupation measures by

ρtn(Γ) :=
1

tn
E
[∫ tn

0

∫
G

IΓ(Xs, u) Λs(du) ds

]
, ∀Γ ∈ B(E ×G).

We wish to show that the sequence {ρtn : n ∈ N} is tight (and, hence, relatively compact).

To this end, let ε ∈ (0, 1) be given and let M := M(m, ε, κ) > 0 be chosen so that M >

(1 +m+ κ)/ε, recalling that −κ is a lower bound on c. Then define the sets

H := {(x, u) ∈ E ×G : −κ ≤ c(x, u) < 0}, HM := {(x, u) ∈ E ×G : 0 ≤ c(x, u) ≤M},
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and KM := {(x, u) ∈ E ×G : c(x, u) ≤M},

noting that KM = H ∪HM and that KM is compact since c is assumed to be inf-compact.

The sets H,HM and Kc
M evidently form a partition of E ×G; so we have, for each n ∈ N,

Mρtn(Kc
M) ≤

∫
Kc

M

c(x, u) ρtn(dx, du)

≤
∫
Kc

M

c(x, u) ρtn(dx, du) +

∫
H

(c(x, u) + κ) ρtn(dx, du) +

∫
HM

c(x, u) ρtn(dx, du)

≤
∫
E×G

c(x, u) ρtn(dx, du) + κ

≤ 1 +m+ κ,

which implies that

ρtn(Kc
M) ≤ 1 +m+ κ

M
< ε.

Since KM is compact and ρtn(Kc
M) < ε for each n ∈ N, it follows that {ρtn : n ∈ N} is,

indeed, tight (and, hence, relatively compact). Thus, there is a ρ ∈ P(E × G) such that

ρtn ⇒ ρ (see Remark 1.8). Now, let f ∈ D(L) be arbitrary. Since (X,Λ) ∈ M it then

follows that

1

tn
E[f(Xtn)− f(X0)] =

1

tn
E
[∫ tn

0

∫
G

Lf(Xs, u) Λs(du) ds

]
=

∫
E×G

Lf(x, u) ρtn(dx, du);

and since D(L) ⊂ Ĉ(E) ⊂ C̄(E), we have

lim
n→∞

1

tn
E[f(Xtn)− f(X0)] = 0.

However, we have only Lf ∈ C(E ×G), so it is not immediately apparent that

lim
n→∞

∫
E×G

Lf(x, u) ρtn(dx, du) =

∫
E×G

Lf(x, u) ρ(dx, du).
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So, recalling condition (D6), define the sequence {ζn : n ∈ N} ⊂ M(E ×G) by

ζn(Γ) :=

∫
Γ

ψ(x, u) ρtn(dx, du), ∀Γ ∈ B(E ×G),

observing that ψ can then be viewed as the Radon-Nikodym derivative ψ = dζn/dρtn , for

each n ∈ N. We claim that the sequence {ζn(E ×G) : n ∈ N} ⊂ R+ is bounded.

To show this, we begin by partitioning E ×G into the sets

F1 := {(x, u) ∈ E ×G : −κ ≤ c(x, u) < −1}, F2 := {(x, u) ∈ E ×G : −1 ≤ c(x, u) < 1},

and F3 := {(x, u) ∈ E ×G : c(x, u) ≥ 1}.

We then see that cβ(x, u) < −1 < 0 ≤ c(x, u) + κ for each (x, u) ∈ F1, cβ(x, u) ≤ c(x, u) + 1

for each (x, u) ∈ F2, and cβ(x, u) ≤ c(x, u) for each (x, u) ∈ F3. Thus, for each n ∈ N, we

have

ζn(E ×G) =

∫
E×G

ψ(x, u) ρtn(dx, du)

≤
∫
E×G

(
acβ(x, u) + b

)
ρtn(dx, du)

=

∫
F1

acβ(x, u) ρtn(dx, du) +

∫
F2

acβ(x, u) ρtn(dx, du)

+

∫
F3

acβ(x, u) ρtn(dx, du) + b

≤
∫
F1

a(c(x, u) + κ) ρtn(dx, du) +

∫
F2

a(c(x, u) + 1) ρtn(dx, du)

+

∫
F3

ac(x, u) ρtn(dx, du) + b

= a

∫
E×G

c(x, u) ρtn(dx, du) + aκρtn(F1) + aρtn(F2) + b

≤ a(m+ (1/n)) + aκ+ a+ b

≤ a(m+ κ+ 2) + b < +∞.
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Hence, the sequence {ζn(E × G) : n ∈ N} is bounded. We now claim that the sequence

{ζn : n ∈ N} is tight. The rescaling

ζ ′n :=
ζn

a(m+ κ+ 2) + b
, ∀n ∈ N,

then defines a sequence {ζ ′n : n ∈ N} of subprobability measures; and so, as in the argument

above, we again have

Mζ ′n(Kc
M) ≤

∫
Kc

M

c(x, u) ζ ′n(dx, du)

≤
∫
E×G

c(x, u) ζ ′n(dx, du) + κ

≤
∫
E×G

c(x, u) ρtn(dx, du) + κ

≤ 1 +m+ κ,

which implies that

ζn(Kc
M)

a(m+ κ+ 2) + b
= ζ ′n(Kc

M) ≤ 1 +m+ κ

M
< ε.

Since a(m+ κ+ 2) + b is independent of ε, it follows that the sequence {ζn : n ∈ N} is tight.

So, having shown that {ζn(E × G) : n ∈ N} is bounded and {ζn : n ∈ N} is tight, we may

conclude that {ζn : n ∈ N} is relatively compact. Again, this yields a measure ζ ∈M(E×G)

satisfying ζn ⇒ ζ. Moreover, by normalizing ζ and each ζn via the measures ζ̂ := ζ/ζ(E×G)

and ζ̂n := ζn/ζn(E × G), we have ζ̂ ∈ P(E × G) and {ζ̂n : n ∈ N} ⊂ P(E × G). To then

show that ζ̂n ⇒ ζ̂, we need only to verify that ζn(E × G) → ζ(E × G) as n → ∞. This,

however, is an immediate consequence of ζn ⇒ ζ and integration of the constant function

1 ∈ C̄(E ×G); i.e.,

lim
n→∞

ζn(E ×G) = lim
n→∞

∫
E×G

1 dζn =

∫
E×G

1 dζ = ζ(E ×G).
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We now wish to verify that

ζ(Γ) =

∫
Γ

ψ(x, u) ρ(dx, du), ∀Γ ∈ B(E ×G).

So, let ξ ∈ Cc(E ×G) be arbitrary. Then ψξ ∈ Cc(E ×G), as well. Thus,

∫
E×G

ξ(x, u) ζ̂(dx, du) = lim
n→∞

∫
E×G

ξ(x, u) ζ̂n(dx, du)

= lim
n→∞

1

ζn(E ×G)

∫
E×G

ξ(x, u) ζn(dx, du)

= lim
n→∞

1

ζn(E ×G)

∫
E×G

(ψξ)(x, u) ρn(dx, du)

=
1

ζ(E ×G)

∫
E×G

(ψξ)(x, u) ρ(dx, du).

If we now define the measure

ρ̂(Γ) :=
1

ζ(E ×G)

∫
Γ

ψ(x, u) ρ(dx, du), ∀Γ ∈ B(E ×G),

then we see that

∫
E×G

ξ(x, u) ρ̂(dx, du) =
1

ζ(E ×G)

∫
E×G

(ψξ)(x, u) ρ(dx, du) =

∫
E×G

ξ(x, u) ζ̂(dx, du).

Thus, since ξ ∈ Cc(E × G) is arbitrary and Cc(E × G) is separating, it follows that ζ̂ = ρ̂;

and so,

ζ(Γ) = ζ̂(Γ)ζ(E ×G) = ρ̂(Γ)ζ(E ×G) =

∫
Γ

ψ(x, u) ρ(dx, du), ∀Γ ∈ B(E ×G),

as desired. So, having established that

ζ(Γ) =

∫
Γ

ψ(x, u) ρ(dx, du), ∀Γ ∈ B(E ×G),

23



we may now view ψ as the Radon-Nikodym derivative ψ = dζ/dρ. Then, since |L/ψ| ≤ af

by condition (D6), we have

0 = lim
n→∞

∫
E×G

Lf(x, u) ρtn(dx, du)

= lim
n→∞

∫
E×G

(Lf(x, u)/ψ(x, u)) ζn(dx, du)

=

∫
E×G

(Lf(x, u)/ψ(x, u)) ζ(dx, du) =

∫
E×G

Lf(x, u) ρ(dx, du),

which establishes condition (MA1) and, hence, proves the proposition.

To simplify notation moving forward, we introduce the bilinear mapping 〈·, ·〉 : M(E×G)×

Ms(E ×G)→ [−∞,∞] defined by

〈ξ, µ〉 :=

∫
E×G

ξ(x, u)µ(dx, du),

whereMs(E×G) denotes the set of finite signed measures on E×G (the choice of which is

simply to ensure that the domain of 〈·, ·〉 is a product of vector spaces—and hence 〈·, ·〉 is,

in fact, “bilinear”). Thus, condition (MA1) can be written more compactly as

〈Lf, ρ〉 = 0, ∀f ∈ D(L). (MA1)

Note that those probability measures on E × G that satisfy (MA1) will, on occasion, be

referred to as stationary. In order to be more precise about this, we need the following

definition.

Definition 1.13. Let µ ∈ M(E × G), and let µE denote the state marginal measure of µ.

Then a mapping η : E×B(G)→ [0, 1] is called the regular conditional probability distribution

on G, given x ∈ E, relative to µE (or, more succinctly, the regular conditional distribution

of µ) if it satisfies the following:

(a) For each x ∈ E, the mapping η(x, ·) : B(G)→ [0, 1] belongs to P(G).
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(b) For each Γ2 ∈ B(G), the mapping η(·,Γ2) : E → [0, 1] belongs to M(E).

(c) For each Γ1 × Γ2 ∈ B(E ×G), the mapping η satisfies

µ(Γ1 × Γ2) =

∫
Γ1

η(x,Γ2)µE(dx).

�

Now, suppose ρ ∈ P(E × G) satisfies (MA1), and let η be the regular conditional distri-

bution of ρ. If X is a stationary process with X0 ∼ ρE, then the process (X, η(X, ·)) :=

{(Xt, η(Xt, ·)) : t ∈ R+} is stationary and its one-dimensional distributions satisfy

E[IΓ1(Xt)η(Xt,Γ2)] = ρ(Γ1 × Γ2), ∀t ∈ R+.

Note that we will have further occasion to consider relaxed controls of the form Λ = η(X, ·) :=

{η(Xt, ·) : t ∈ R+}, where Λt(·) = η(Xt, ·) for each t ∈ R+. In this case, we say that such

controls are given in feedback form.

The following result is a consequence of Theorem 2.2 in Kurtz and Stockbridge (1998), and

its statement completes our characterization of the collection of long-term average expected

occupation measures for our model.

Theorem 1.14. Suppose that {E ×G,L, c, c1, θ} is a constrained control model in which L

satisfies (D1)-(D6) and c and ψ satisfy (C1)-(C3). If ρ ∈ P(E ×G) satisfies (MA1) and η

is the regular conditional distribution of ρ given x ∈ E, then there exists a stationary process

X such that (X, η(X, ·)) is a stationary relaxed solution of the controlled martingale problem

for L.
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II.1.2 The α-Discounted Expected Occupation Measure

Given (X,Λ) ∈ M and a discount rate α ∈ (0, 1], we define the associated α-discounted

expected occupation measure µα ∈M(E ×G) by

µα(Γ) := E
[∫ ∞

0

∫
G

e−αtIΓ(Xt, u) Λt(du) dt

]
, ∀Γ ∈ B(E ×G),

where it will often prove convenient to express µα(Γ) in the form

µα(Γ) =

∫
E×G

IΓ(x, u)µα(dx, du).

We now wish to establish an analogous condition to (MA1) in order to characterize, for a

fixed α ∈ (0, 1], the collection of α-discounted expected occupation measures. To this end,

we first define the operator Lα : D(L)→ R(L) as follows: For each f ∈ D(L),

Lαf(x, u) := Lf(x, u)− αf(x), ∀(x, u) ∈ E ×G.

Now, a lemma:

Lemma 1.15. Suppose that {E ×G,L, c, c1, θα, ν0} is a constrained control model in which

L satisfies conditions (D1)-(D6) and c1 and ψ satisfy conditions (C1)-(C3). If (X,Λ) ∈M

with X0 ∼ ν0, and µα is the α-discounted expected occupation measure associated with (X,Λ),

then

∫
E×G

Lαf(x, u)µα(dx, du) = Eν0
[∫ ∞

0

e−αt
(∫

G

Lαf(Xt, u) Λt(du)

)
dt

]
, ∀f ∈ D(L).

Proof. Here, we avail ourselves of the so-called “Standard Machine,” as described in Williams

(1991). We begin by assuming that ξ = IΓ for some Γ ∈ B(E ×G). By the definition of µα,
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we have ∫
E×G

ξ(x, u)µα(dx, du) = Eν0
[∫ ∞

0

e−αt
(∫

G

ξ(Xt, u) Λt(du)

)
dt

]
. (1.16)

Now, suppose that ξ is a nonnegative simple function on E ×G; i.e.,

ξ =
n∑
k=1

ykIΓk
,

for some n ∈ N, {y1, y2, . . . , yn} ⊂ [0,∞], and {Γ1,Γ2, . . . ,Γn} ⊂ B(E × G). Then, via the

linearity of integration, we have

∫
E×G

ξ(x, u)µα(dx, du) =

∫
E×G

∑
k=1

ykIΓk
(x, u)µα(dx, du)

=
n∑
k=1

yk

∫
E×G

IΓk
(x, u)µα(dx, du)

=
n∑
k=1

ykE
[∫ ∞

0

e−αt
(∫

G

IΓk
(Xt, u) Λt(du)

)
dt

]

= Eν0

[∫ ∞
0

e−αt

(∫
G

n∑
k=1

ykIΓk
(Xt, u) Λt(du)

)
dt

]

= Eν0
[∫ ∞

0

e−αt
(∫

G

ξ(Xt, u) Λt(du)

)
dt

]
.

Next, we take ξ to be a nonnegative B(E ×G)-measurable function on E ×G and, for each

r ∈ N, we define the rth “staircase function” g(r) : [0,∞]→ [0,∞] by

g(r)(y) :=


0, if y = 0;

(i− 1)2−r, if (i− 1)2−r < y ≤ i2−r ≤ r, i ∈ N;

r, if y > r.

Then ξ(r) := g(r) ◦ ξ defines a sequence {ξ(r) : r ∈ N} of nondecreasing nonnegative simple

functions on E × G that converges pointwise to ξ; and so, by the Monotone Convergence

Theorem and the previous steps, we see that (1.12) holds in this case, as well.
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Finally, suppose only that ξ is µα-integrable. Then, by simply writing ξ = ξ+ − ξ−, we see

that ξ is a (finite) linear combination of nonnegative B(E × G)-measurable functions, each

of which is µα-integrable. It therefore follows that (1.12) holds when ξ is only known to be

µα-integrable.

Now, we observe that ψ ∈ C(E×G) and ψ ≥ 1, so ψ is a nonnegative B(E×G)-measurable

function. Thus, (1.12) holds when ξ = ψ; i.e.,

∫
E×G

ψ(x, u)µα(dx, du) = Eν0
[∫ ∞

0

e−αt
(∫

G

ψ(Xt, u) Λt(du)

)
dt

]
.

Moreover, since 〈c1, µα〉 ≤ θα for some θα ∈ R, condition (C3) further ensures that ψ is, in

fact, µα-integrable. Now, let f ∈ D(L) and let ‖f‖∞ denote the supremum norm of f . By

condition (D6), we then have

|Lαf(x, u)| = |Lf(x, u)− αf(x)| ≤ |Lf(x, u)|+ α|f(x)| ≤ afψ(x, u) + α‖f‖∞,

for every (x, u) ∈ E × G, where ‖f‖∞ < +∞ since D(L) ⊂ Ĉ(E). So, the µα-integrability

of ψ ensures that Lαf is also µα-integrable for each f ∈ D(L). Hence,

∫
E×G

Lαf(x, u)µα(dx, du) = Eν0
[∫ ∞

0

e−αt
(∫

G

Lαf(Xt, u) Λt(du)

)
dt

]
, ∀f ∈ D(L),

as desired.

We are now in a position to state the adjoint condition that will both characterize the

collection of α-discounted expected occupation measures and serve as the defining constraint

of the forthcoming α-discounted linear program.

Proposition 1.17. Suppose that {E × G,L, c, c1, θα, ν0} is a constrained control model

in which L satisfies conditions (D1)-(D6) and c1 and ψ satisfy conditions (C1)-(C3). If

(X,Λ) ∈ M with X0 ∼ ν0, and µα is the α-discounted expected occupation measure associ-
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ated with (X,Λ), then

〈Lαf, µα〉 = −
∫
E

f dν0, ∀f ∈ D(L). (MD1)

Proof. Let f ∈ D(L) be given. Then a slight modification of Lemma 3.2 in Chapter 4 of

Ethier and Kurtz (1986) shows that the process Ψ := {Ψt : t ∈ R+} defined by

Ψt := e−αtf(Xt)− f(X0)−
∫ t

0

e−αs
(∫

G

Lαf(Xs, u) Λs(du)

)
ds

is a mean-zero martingale. So, since f ∈ D(L) ⊂ Ĉ(E), it follows that

0 = e−αtEν0 [f(Xt)]− Eν0 [f(X0)]− Eν0
[∫ t

0

e−αs
(∫

G

Lαf(Xs, u) Λs(du)

)
ds

]
, ∀t ∈ R+.

Since |Lαf | is dominated by afψ+α‖f‖∞ and ψ is µα-integrable (as in the proof of Lemma

1.11), it follows that

lim
t→∞

Eν0
[∫ t

0

e−αs
(∫

G

Lαf(Xs, u) Λs(du)

)
ds

]
= Eν0

[∫ ∞
0

e−αs
(∫

G

Lαf(Xs, u) Λs(du)

)
ds

]
;

and so,

−Eν0 [f(X0)] = Eν0
[∫ ∞

0

e−αs
(∫

G

Lαf(Xs, u) Λs(du)

)
ds

]
.

Finally, noting that Eν0 [f(X0)] =
∫
E
f dν0, we may conclude from Lemma 1.11 that

〈Lαf, µα〉 = −
∫
E

f dν0, ∀f ∈ D(L),

which completes the proof.

In analogy with our characterization of long-term average expected occupation measures, we

have a similar result stating that each α-discounted expected occupation measure that sat-
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isfies (MD1) is the associated α-discounted expected occupation measure for some (X,Λ) ∈

M . This result is a consequence of Corollary 5.3 in Kurtz and Stockbridge (1998).

Theorem 1.18. Suppose that {E×G,L, c, c1, θα, ν0} is a constrained control model in which

L satisfies conditions (D1)-(D6) and c1 and ψ satisfy conditions (C1)-(C3). If (X,Λ) ∈M

with X0 ∼ ν0, µα is the α-discounted expected occupation measure associated with (X,Λ),

and ηα is the regular conditional distribution of µα, then there exists a process X such that

(X, ηα(X, ·)) ∈M .

II.2 Equivalent Linear Programming Formulations

In the previous section, we defined and characterized the collection of long-term average

expected occupation measures and, for each fixed α ∈ (0, 1], the collection of α-discounted

expected occupation measures. We showed that each long-term average expected occupation

measure ρ is characterized by the adjoint equation

〈Lf, ρ〉 = 0, ∀f ∈ D(L); (MA1)

and that, for a fixed α ∈ (0, 1], each α-discounted expected occupation measure µα is char-

acterized by

〈Lαf, µα〉 = −α
∫
E

f dν0, ∀f ∈ D(L). (MD1)

We now wish to use these characterizations to express the long-term average stochastic

problem and the α-discounted stochastic problem as (potentially infinite-dimensional) linear

programs over spaces of their associated occupation measures. To do so, we first define each

linear program, and then show that solving each linear program is, in fact, equivalent to

solving the corresponding stochastic problem.
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II.2.1 The Long-Term Average Linear Program

Given a constrained control model {E × G,L, c, c1, θ} in which L satisfies (D1)-(D6) and c

and c1 satisfy (C1)-(C3), we define the long-term average linear program to be as follows:

Minimize 〈c, ρ〉 subject to



〈Lf, ρ〉 = 0, ∀f ∈ D(L); (MA1)

〈1, ρ〉 = 1; (MA2)

ρ ∈ P(E ×G); (MA3)

〈c1, ρ〉 ≤ θ. (CA1)

For this linear program, let M denote the set of feasible long-term average expected occupa-

tion measures and let M∗ denote the set of optimal long-term average expected occupations

measures.

Remark 2.1. Here we acknowledge that (MA2) is technically redundant since any ρ that

satisfies (MA3) necessarily satisfies (MA2); but the inclusion of (MA2) simply allows for a

more consistent appearance among the linear programs under consideration. �

Our task now is to show that the minimum cost (i.e., optimum value) for this linear program

is equal to that of the long-term average stochastic problem. That is,

J∗ = inf{〈c, ρ〉 : ρ ∈M} = 〈c, ρ∗〉, (2.2)

where ρ∗ denotes an element of M∗. Indeed, we say that the long-term average linear program

and the long-term average stochastic problem are equivalent if:

(a) (2.2) holds; and

(b) ρ∗ ∈M∗ if and only if the stationary process (X∗,Λ∗) ∈M associated with ρ∗ satisfies

J(X∗,Λ∗) = J∗.

Note that, if there exists ρ∗ ∈ M∗, then Theorem 1.14 guarantees the existence of a

(X,Λ∗) = (X, η∗(X, ·)) ∈ M , where η∗ is the regular conditional distribution of ρ∗; but
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it then remains to show that J(X, η∗(X, ·)) = J∗. Similarly, if there exists a (X∗,Λ∗) ∈M

with J(X∗,Λ∗) = J∗, then there is a ρ ∈ P(E × G) associated with (X∗,Λ∗) that satisfies

the adjoint condition (MA1); but, in this case, it then remains to show that ρ ∈M∗. Hence,

it would be desirable to show that there necessarily exists such an optimal solution to either

the long-term average stochastic problem or the long-term average linear program. Fortu-

nately, under the conditions we have imposed on our model—in particular, that there is at

least one (X,Λ) ∈M with J(X,Λ) < +∞ and Q1(X,Λ) ≤ θ—this happens to be the case,

as we will show shortly.

To verify this equivalence between the long-term average linear program and the long-

term average stochastic problem, we rely extensively upon Theorem 6.1 in Kurtz and Stock-

bridge (1998), which provides such an equivalence when the budget constraint (CA1) is

excluded. We state this (appropriately modified) result as the following lemma.

Lemma 2.3. Suppose {E × G,L, c} is a control model in which L satisfies (D1)-(D6) and

c satisfies (C1)-(C3). Then the stochastic problem of minimizing

J(X,Λ) = lim sup
t→∞

1

t
E
[∫ t

0

∫
G

c(Xt, u) Λs(du) ds

]

over all (X,Λ) ∈M is equivalent to the linear program of minimizing

〈c, ρ〉 =

∫
E×G

c(x, u) ρ(dx, du)

over all ρ ∈ P(E ×G) satisfying

〈Lf, ρ〉 = 0, ∀f ∈ D(L). (MA1)

Moreover, there exists a ρ∗ ∈ P(E ×G) satisfying (MA1) and

〈c, ρ∗〉 ≤ 〈c, ρ〉 < +∞
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for every ρ ∈ P(E ×G) satisfying (MA1).

We can now compare the above lemma with our desired equivalence theorem below in which

the budget constraint (CA1) is included. Also note this theorem shows that the long-term

average linear program, in fact, has an optimal solution.

Theorem 2.4. Suppose {E×G,L, c, c1, θ} is a constrained control model in which L satisfies

(D1)-(D6) and c and c1 satisfy (C1)-(C3). Then the long-term average stochastic problem

of minimizing

J(X,Λ) = lim sup
t→∞

1

t
E
[∫ t

0

∫
G

c(Xt, u) Λs(du) ds

]
over all (X,Λ) ∈M with Q1(X,Λ) ≤ θ is equivalent to the long-term average linear program;

i.e.,

J∗ = inf{〈c, ρ〉 : ρ ∈M}.

Moreover, there exists an optimal ρ∗ ∈ M∗ satisfying 〈c, ρ∗〉 = J∗, and a corresponding

stationary (X∗,Λ∗) = (X∗, η∗(X∗, ·)) ∈ M satisfying J(X∗,Λ∗) = J∗ and Q1(X∗,Λ∗) ≤ θ,

where η∗ is the regular conditional distribution of ρ∗.

Proof. Let (X,Λ) ∈M and, for each t ∈ R+, define the probability measure

ρt(Γ) =
1

t
E
[∫ t

0

∫
G

IΓ(Xs, u) Λs(du) ds

]
, ∀Γ ∈ B(E ×G).

If J(X,Λ) < +∞ and Q1(X,Λ) ≤ θ, then—as in the proof of Proposition 1.4—the conditions

on c ensure that the collection {ρt : t ∈ R+} is relatively compact. Hence, if ρ is any limit

point of {ρt : t ∈ R+}, the lower semicontinuity of c and c1 (along with Fatou’s Lemma)

ensure that

∫
E×G

c(x, u) ρ(dx, du) ≤ J(X,Λ) and

∫
E×G

c1(x, u) ρ(dx, du) ≤ θ.
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Since the proof of Proposition 1.4 also shows that ρ satisfies (MA1), it then follows that

inf{〈c, ρ〉 : ρ ∈M} ≤ inf{J(X,Λ) : (X,Λ) ∈M , Q1(X,Λ) ≤ θ} = J∗.

Now, let ρ ∈ M. If 〈c, ρ〉 < +∞, then the conditions on c and c1 ensure that there exists

an optimal ρ∗ ∈ M∗; and, by Theorem 1.14, there exists a stationary (X∗,Λ∗) ∈ M with

marginals given by ρ∗. The conditions on c1 further ensure that Q1(X∗,Λ∗) ≤ θ; and so,

J∗ = J(X∗,Λ∗) ≤ 〈c, ρ∗〉 = inf{〈c, ρ〉 : ρ ∈M},

which completes the proof.

II.2.2 The α-Discounted Linear Program

Given a discount rate α ∈ (0, 1] and a constrained control model {E × G,L, c, c1, θα, ν0}

in which L satisfies (D1)-(D6) and c1 and c1 satisfy (C1)-(C3), we define the α-discounted

linear program to be as follows:

Minimize 〈c, µα〉 subject to



〈Lαf, µα〉 = −
∫
E
f dν0, ∀f ∈ D(L); (MD1)

〈1, µα〉 = α−1; (MD2)

µα ∈M(E ×G); (MD3)

〈c1, µα〉 ≤ θα. (CD1)

For this linear program, let Mα denote the set of feasible α-discounted expected occupation

measures and let M∗
α denote the set of optimal α-discounted occupation measures.

As with the long-term average linear program, we wish to show that the minimum cost

for this linear program is equal to the minimum cost for the α-discounted stochastic problem;

i.e.,

J∗α := inf{〈c, µα〉 : µα ∈M∗
α} = 〈c, µ∗α〉,
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where µ∗α denotes an element of M∗
α. We proceed in much the same manner by first presenting

a slightly modified version of Theorem 6.3 in Kurtz and Stockbridge (1998) as the following

lemma. Note that the aforementioned modification is our use of unnormalized measures, as

opposed to probability measures.

Lemma 2.5. Let α ∈ (0, 1] be given, and suppose {E×G,L, c, ν0} is a control model in which

L satisfies (D1)-(D6) and c satisfies (C1)-(C3). Then the stochastic problem of minimizing

Jα(X,Λ; ν0) := Eν0
[∫ ∞

0

e−αt
∫
G

c(Xt, u) Λt(du) dt

]

over all (X,Λ) ∈M with X0 ∼ ν0 is equivalent to the linear program of minimizing

〈c, µα〉 =

∫
E×G

c(x, u)µα(dx, du)

over all µα ∈M(E ×G) with 〈1, µα〉 = α−1 satisfying 〈c, µα〉 < +∞ and

〈Lαf, µα〉 = −
∫
E

f dν0, ∀f ∈ D(L). (MD1)

What we then seek to verify is the following theorem for our constrained control model.

Theorem 2.6. Let α ∈ (0, 1] be given, and suppose {E ×G,L, c, c1, θα, ν0} is a constrained

control model in which L satisfies (D1)-(D6) and c and c1 satisfy (C1)-(C3). Then the

α-discounted stochastic problem of minimizing

Jα(X,Λ; ν0) := Eν0
[∫ ∞

0

e−αt
∫
G

c(Xt, u) Λt(du) dt

]

over all (X,Λ) ∈M with Qα
1 (X,Λ; ν0) ≤ θα is equivalent to the α-discounted linear program;

i.e.,

J∗α = inf{〈c, µα〉 : µα ∈Mα}.
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Moreover, there exists an optimal µ∗α ∈M∗
α satisfying 〈c, µ∗α〉 = J∗α < +∞, and a correspond-

ing (X∗,Λ∗) = (X∗, η∗α(X∗, ·)) ∈ M satisfying Jα(X∗,Λ∗; ν0) = J∗α, Qα
1 (X∗,Λ∗; ν0) ≤ θα,

and X∗0 ∼ ν0, where η∗α is the regular conditional distribution of µ∗α.

Proof. Let (X,Λ) ∈M with X0 ∼ ν0, J(X,Λ; ν0) < +∞, and Qα
1 (X,Λ; ν0) ≤ θα, and define

the measure µ̂α ∈ P(E ×G) by

∫
E×G

IΓ(x, u) µ̂α(dx, du) = αEν0
[∫ ∞

0

e−αt
∫
G

IΓ(Xt, u) Λt(du) dt

]
, ∀Γ ∈ B(E ×G).

Then by condition (C3) and the proof of Lemma 1.15, we have

∫ ∞
0

e−αt E
[∫

G

ψ(Xt, u) Λt(du)

]
dt < +∞;

and, by the argument given in the proof of Proposition 1.17, we have

〈Lαf, µ̂α〉 = −α
∫
E

f dν0, ∀f ∈ D(L).

The definition of µ̂α then implies that

Jα(X,Λ; ν0) =
1

α

∫
E×G

c(x, u) µ̂α(dx, du).

Thus, the rescaled measure µα ∈ M(E × G) defined by µα := α−1µ̂α is an α-discounted

expected occupation measure that satisfies 〈1, µα〉 = α−1 and

Jα(X,Λ; ν0) =

∫
E×G

c(x, u)µα(dx, du) = 〈c, µα〉.

Moreover, since Qα
1 (X,Λ; ν0) ≤ θ, the lower semicontinuity of c1 ensures that 〈c1, µα〉 ≤ θ,

as well. Therefore µα ∈Mα.
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Conversely, if µα satisfies

〈Lαf, µα〉 = −
∫
E

f dν0, ∀f ∈ D(L),

〈c, µα〉 < +∞, and 〈c1, µα〉 ≤ θ, then condition (C3) ensures that the hypotheses of Corollary

5.3 in Kurtz and Stockbridge (1998) (or Theorem 1.18 above) are satisfied; and, hence, there

exists a (X,Λ) = (X, ηα(X, ·)) ∈M with

Jα(X,Λ; ν0) =

∫
E×G

c(x, u)µα(dx, du) = 〈c, µα〉,

where ηα is the regular conditional distribution of µα. Moreover, the lower semicontinuity of

c1 ensures that Qα
1 (X,Λ; ν0) ≤ θ.

We again remark that each α-discounted expected occupation measure µα is a member of

M(E × G), but µα is not necessarily a probability measure (unless, of course, α = 1).

Thus, to each µα ∈ Mα we must associate an α-normalized expected occupation measure

µ̂α := αµα ∈ P(E ×G) when our objective is to apply the vanishing discount method. This

will be the subject of our next chapter.
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THE VANISHING DISCOUNT

METHOD

In this chapter, we wish to formalize our statement of the vanishing discount method. With

this desire in mind, we begin by introducing the α-normalized linear program. This linear

program will essentially “replace” the α-discounted linear program in what remains of this

discussion. Even though it is only a simple “rescaling” of the α-discounted linear program,

the α-normalized linear program nevertheless represents—to the best of our knowledge—an

entirely novel contribution to the literature.

Having introduced the α-normalized linear program, we then present both a heuristic

and a formal statement of the vanishing discount method using the linear programming

framework we developed in the previous chapter.

III.1 The α-Normalized Linear Program

Given a discount rate α ∈ (0, 1] and a constrained control model {E × G,L, c, c1, θα, ν0} in

which L satisfies (D1)-(D6) and c and c1 satisfy (C1)-(C3), we define the α-normalized linear

program as follows:

Minimize 〈c, µ̂α〉 subject to



〈Lαf, µ̂α〉 = −α
∫
E
f dν0, ∀f ∈ D(L); (MN1)

〈1, µ̂α〉 = 1; (MN2)

µ̂α ∈ P(E ×G); (MN3)

〈c1, µ̂α〉 ≤ αθα. (CN1)

For this linear program, let M̂α denote the set of feasible α-normalized expected occupation

measures and let M̂∗
α denote the set of optimal α-normalized expected occupation measures.
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Again we note that µ̂α is an α-normalized expected occupation measure if and only if µ̂α =

αµα for some α-discounted expected occupation measure µα. However, for sake of consistency

and completeness, we include the following equivalence theorem for the α-normalized linear

program, as well.

Theorem 1.1. Let α ∈ (0, 1] be given, and suppose {E ×G,L, c, c1, θα, ν0} is a constrained

control model in which L satisfies (D1)-(D6) and c and c1 satisfy (C1)-(C3). Then the α-

discounted linear program is equivalent to the α-normalized linear program in the sense that

the optimal value of the α-normalized linear program is given by

Ĵ∗α := αJ∗α = inf{〈c, µ̂α〉 : µ̂α ∈ M̂α} = inf{〈c, αµα〉 : µα ∈Mα} = 〈c, µ̂∗α〉 = 〈c, αµ∗α〉,

and that µ̂∗α ∈ M̂∗
α if and only if µ∗α ∈ M∗

α, where µ̂∗α = αµ∗α. Moreover, there exists

an optimal µ̂∗α ∈ M̂∗
α satisfying 〈c, µ̂∗α〉 = Ĵ∗α < +∞, and a corresponding (X∗,Λ∗) =

(X∗, η̂∗α(X∗, ·)) ∈ M satisfying Jα(X∗,Λ∗; ν0) = J∗α, Qα
1 (X∗,Λ∗; ν0) ≤ θα, and X∗0 ∼ ν0,

where η̂∗α is the regular conditional distribution of µ̂∗α.

Proof. Let µ∗α ∈ M∗
α (the existence of which is guaranteed by Theorem II.2.6) and let

µ̂∗α := αµ∗α. Since µ∗α satisfies (MD1)-(MD3) and (CD1), a simple rescaling by the factor α

makes it is clear that µ̂∗α satisfies (MN1)-(MN3) and (CN1). By the very same argument, it

is also clear that µ̂∗α ∈ M̂∗
α and

Ĵ∗α := αJ∗α = α inf{〈c, µα〉 : µα ∈Mα} = inf{〈c, αµα〉 : µα ∈Mα} = inf{〈c, µ̂α〉 : µ̂α ∈ M̂α};

and so

Ĵ∗α = 〈c, µ̂∗α〉 =

∫
E×G

c(x, u) µ̂∗α(dx, du) = α

∫
E×G

c(x, u)µ∗α(dx, du) = 〈c, αµ∗α〉,

as desired.
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III.2 Heuristic View

We can begin our discussion by analyzing the asymptotic behavior of the (α-parameterized)

family of α-normalized linear programs as α ↓ 0. In other words, we will examine the

asymptotic behavior of each of the constraints in the α-normalized linear program as α ↓

0 and compare these results to the constraints of the long-term average linear program.

Roughly speaking, we seek to verify that weak limits (as α ↓ 0) of α-normalized occupation

measures are feasible for the long-term average linear program.

It will therefore be useful to let

{E ×G,L, c, c1, θ, {θα}}

denote a constrained control model for the vanishing discount method (or, more succinctly, a

vanishing discount model), recalling that θ is a constraint constant for the long-term average

linear program and {θα} := {θα : α ∈ (0, 1]} is a collection of constraint constants for the

family of α-discounted linear programs (or, equivalently, {αθα : α ∈ (0, 1]} is a collection

of constraint constants for the family of α-normalized linear programs). As a means of

simplifying exposition, whenever we refer to the model {E × G,L, c, c1, θ, {θα}}, it will be

assumed that it satisfies the conditions we have specified up until this point. That is: E and

G (and, hence, E × G) are locally compact, complete, separable, metric spaces; L satisfies

conditions (D1)-(D6); c and c1 satisfy (C1)-(C3); and θ and {θα} satisfy condition (T1). Note

that we have intentionally omitted the initial distribution ν0 from this model to emphasize

that any dependence on this parameter, in fact, “vanishes” as α ↓ 0.

III.2.1 Feasibility of Weak Limits

Let {αn : n ∈ N} be a sequence in (0, 1] with αn → 0 as n → ∞, and let {µ̂αn : n ∈ N} be

a sequence of αn-normalized occupation measures with µ̂αn ∈ M̂αn for every n ∈ N. Recall
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that, by definition,

〈Lαnf, µ̂αn〉 =

∫
E×G

Lαnf(x, u) µ̂αn(dx, du)

=

∫
E×G

Lf(x, u) µ̂αn(dx, du)− αn
∫
E

f(x) µ̂Eαn
(dx),

where µ̂Eαn
denotes the state marginal measure of µ̂αn . Thus, if (X,Λ) ∈ M with X0 ∼ ν0

and µ̂α is the α-normalized occupation measure associated with (X,Λ), then the adjoint

condition (MN1) can be written

∫
E×G

Lf(x, u) µ̂αn(dx, du)− αn
∫
E

f(x) µ̂Eαn
(dx) = −αn

∫
E

f(x) ν0(dx), ∀f ∈ D(L).

So, since D(L) ⊂ Ĉ(E), µ̂Eαn
∈ P(E), and αn → 0, it is clear that

lim
n→∞

∣∣∣∣αn ∫
E

f(x) µ̂Eαn
(dx)

∣∣∣∣ ≤ lim
n→∞

αn‖f‖∞ = 0, ∀f ∈ D(L).

Similarly, since ν0 ∈ P(E), we also see that

lim
n→∞

αn

∫
E

f(x) ν0(dx) = 0, ∀f ∈ D(L).

Thus, we have

lim
n→∞
〈Lαnf, µ̂αn〉 = lim

n→∞
〈Lf, µ̂αn〉 = 0, ∀f ∈ D(L).

Now, suppose that µ0 ∈ P(E ×G) with µ̂α ⇒ µ0. Intuition then suggests that

lim
n→∞
〈Lαnf, µ̂αn〉 = 〈Lf, µ0〉, ∀f ∈ D(L); (2.1)

i.e., µ0 satisfies the adjoint condition (MA1) of the long-term average linear program. Fur-

thermore, as µ0 is a weak limit of probability measures, it trivially satisfies the mass con-

ditions (MA2) and (MA3) of the long-term average linear program. As for the budget
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constraint (CA1) of the long-term average linear program, we have the following proposi-

tion.

Proposition 2.2. Let {E × G,L, c, c1, θ, {θα}} be a constrained control model for the van-

ishing discount method, and let {µ̂αn : n ∈ N} be a sequence of αn-normalized occupation

measures with µ̂αn ∈ M̂αn for every n ∈ N. If µ0 ∈ P(E ×G) with µ̂αn ⇒ µ0, then

〈c1, µ0〉 ≤ θ;

i.e., µ0 satisfies the budget constraint (CA1) of the long-term average linear program.

Proof. Since c1 is lower semicontinuous and bounded below, Corollary A.5 tells us that

〈c1, µ0〉 =

∫
E×G

c1(x, u)µ0(dx, du) ≤ lim inf
n→∞

∫
E×G

c1(x, u) µ̂αn(dx, du) = lim inf
n→∞

〈c1, µ̂αn〉.

So, since 〈c1, µ̂αn〉 ≤ αnθαn for every n ∈ N, condition (T1) then tells us

〈c1, µ0〉 ≤ lim inf
n→∞

〈c1, µ̂αn〉 ≤ lim
n→∞

αnθn = θ.

Hence, µ0 satisfies (CA1).

So, in order for µ0 to be feasible for the long-term average linear program (i.e., µ0 ∈ M),

we need only to verify that it satisfies the adjoint condition (MA1). In due time, we will see

that this is, in fact, true; but we delay the formal statement and proof of this fact in order to

discuss the stability of optimal solutions (and optimal values) for the family of α-normalized

linear programs under passage to a limit as α ↓ 0.
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III.2.2 Optimality

As with our discussion of weak limits of feasible α-normalized occupation measures, our hope

is that

lim
α↓0
〈Lαf, µ̂∗α〉 = 〈Lf, µ∗0〉 = 0, ∀f ∈ D(L), (2.3)

for any µ∗0 that is obtained as a weak limit of a sequence {µ̂∗α : α ∈ (0, 1]} of optimal

α-normalized occupation measures as α ↓ 0. Furthermore, we wish that 〈c, µ∗0〉 ≤ θ and

lim
α↓0
〈c, µ̂∗α〉 = lim

n→∞
Ĵ∗α = 〈c, µ∗0〉 = J∗, (2.4)

as this would imply that the optimal value of the long-term average linear program can be

obtained by taking such a limit. Indeed, satisfaction of the conditions (2.3) and (2.4) is

what one may describe as the primary objective of the vanishing discount method since,

practically speaking, one is often only interested in “solving” a control problem. However,

by further analyzing the behavior of the feasible measures for these linear programs, one

obtains a deeper insight into the theoretical structures of these problems and how they are

related.

Of course, the validity of statements (2.1), (2.3), and (2.4) remains to be verified since, for

instance, the function Lf is not necessarily bounded. Furthermore, we would like to be

able to verify if such weak limits µ0 and µ∗0 necessarily exist. Hence, the task before is to

rigorously analyze these statements and, when necessary, establish further conditions under

which each of these statements is guaranteed to hold.

III.3 Formal Statement

To now formalize the heuristic presentation above, we define the following “limiting” objects.

Let M0 be the set of µ0 ∈ P(E × G) for which there exists a sequence {µ̂αn : n ∈ N} of

feasible αn-normalized expected occupation measures such that αn → 0 and µ̂αn ⇒ µ0, and
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let M∗
0 be the set of µ∗0 ∈ M0 for which there exists a sequence {µ̂∗αn

: n ∈ N} of optimal

αn-normalized expected occupation measures such that αn → 0 and µ̂∗αn
⇒ µ∗0. Finally,

define

J∗0 := lim
α↓0

Ĵ∗α

when this limit exists.

Our goal is then to identify sufficient conditions under which the following “VDM Relations”

hold for the vanishing discount model {E ×G,L, c, c1, θ, {θα}}:

(V1) ∅ 6= M0 ⊂M.

(V2) ∅ 6= M∗
0 ⊂M∗.

(V3) J∗0 = J∗.

We can describe these relations in words as follows:

(V1) There exists at least one weak limit µ0 of some sequence {µ̂αn : n ∈ N} of feasible

αn-normalized occupation measures (where αn → 0). Moreover, any such weak limit

of any such sequence is feasible for the long-term average linear program.

(V2) There exists a weak limit µ∗0 of some sequence {µ̂∗αn
: n ∈ N} of optimal αn-normalized

occupation measures (where αn → 0). Moreover, any such weak limit of any such

sequence is optimal for the long-term average linear program.

(V3) The limit (as α ↓ 0) of the optimal values of the (α-indexed) family of α-normalized

linear programs is equal to the optimal value of the long-term average linear program.

Of course, any control model satisfying relations (V1)-(V3) is tautologically one for which

the vanishing discount method is applicable. What we must now set out to establish is

verifiable hypotheses for our vanishing discount model whose satisfaction will ensure that

(V1)-(V3) will hold. The theory of correspondences will provide us with a practical (and

elegant) way of presenting and analyzing these hypotheses; and, hence, this theory—and its
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application to our formulation of the vanishing discount method—will be the subject of the

next chapter.
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CORRESPONDENCES AND

VANISHING DISCOUNT

In this chapter, our focus will be the theory of correspondences and its role in our formu-

lation of the vanishing discount method. In particular, we will see that the conditions we

desire can be stated in a manner similar to that of Berge’s Theorem (see Section B of this

document’s Appendix for a statement of this result), though with slightly weaker hypotheses

and conclusions. Indeed, this theorem will play a crucial role in establishing the appropriate

sufficient conditions for the model {E×G,L, c, c1, θ, {θα}} to ensure that the VDM Relations

(V1)-(V3) hold.

Integral to this discussion will be the notion of hemicontinuity, the analysis of which

begins this chapter. Intuitively speaking, a correspondence ϕ is upper hemicontinuous at

a point α0 in its domain if ϕ(α) does not “explode” as α moves away from α0, though it

may “implode;” and ϕ is lower hemicontinuous at α0 if ϕ(α) does not implode as α moves

away from α0, but it may explode. Some useful illustrations of these phenomena can be

found in Section 14.1 of Sydsaeter et al. (2005). The unfamiliar reader is again directed to

Section B of this document’s Appendix for many of the basic definitions and results regarding

correspondences, hemicontinuity, and Berge’s Theorem. Virtually all of these facts come from

Chapter 17 in Aliprantis and Border (2006), if a much more detailed and general overview

is desired. The properties of correspondences that we present in this chapter will simply

be those facts that are most relevant to the framework we have hitherto developed in this

dissertation.
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IV.1 Hemicontinuity

For our purposes, we need only consider correspondences whose domain and codomain are,

respectively, the sets [0, 1] ⊂ R and P(E ×G), rather than general topological spaces. The

interval [0, 1] is, of course, a metric space under the standard Euclidean metric it inherits as

a subspace of R; and since E × G is a complete, separable, metric space, it is well known

that P(E×G) is also a complete, separable, metric space under the Prohorov metric, which

we now define for reference purposes.

Definition 1.1. Let C be the collection of closed subsets of E × G, and let d be a metric

on E ×G. Then the Prohorov metric π on P(E ×G) is defined by

π(µ, ν) := inf {ε > 0 : µ(Φ) ≤ ν(Φε) + ε, ∀Φ ∈ C } ,

where

Φε := {a ∈ E ×G : inf{d(a, b) < ε : b ∈ Φ}} .

�

A detailed proof that π, in fact, defines a metric on P(E × G) may be found in Section 1

of Chapter 3 in Ethier and Kurtz (1986). The Portmanteau Theorem (i.e., Theorem A.4)

furthermore shows that weak convergence in P(E × G) is equivalent to convergence in the

Prohorov metric.

Now, since both [0, 1] and P(E×G) are metric spaces, we may avail ourselves of the following

sequential characterization of upper hemicontinuity (the likes of which, in fact, requires only

that the domain and codomain of ϕ be first countable and metrizable, respectively). The

next two lemmas appear in Section 17.3 of Aliprantis and Border (2006), but their proofs

are left “as exercises” to the reader; and so, for sake of completeness, we include the required

proofs here. Note, however, that these proofs are essentially modifications of proofs for
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the more general results involving nets found in the same section. Again, the metric space

structure of both [0, 1] and P(E × G) allows us to work specifically with sequences instead

of nets.

Recall that α ∈ [0, 1] is a limit point of the sequence {αn : n ∈ N} ⊂ [0, 1] if, for each

ε > 0 and each n ∈ N, there exists some integer nk ≥ n such that αnk
∈ (α − ε, α + ε).

Further recall that α is a limit point of {αn : n ∈ N} if and only if α is the limit of some

subsequence {αnk
: k ∈ N} of {αn : n ∈ N}. The unconvinced reader is directed to Theorem

2.16 in Aliprantis and Border (2006) for a proof of the preceding statement.

Lemma 1.2. If ϕ : [0, 1] � P(E ×G) is a correspondence and α ∈ [0, 1], then the following

statements are equivalent.

(a) ϕ is upper hemicontinuous at α and ϕ(α) is compact.

(b) If a sequence {(αn, µn) : n ∈ N} in Gr(ϕ) satisfies αn → α, then the sequence

{µn : n ∈ N} has a limit point µ in ϕ(α); i.e., there exists a subsequence {(αnk
, µnk

) :

k ∈ N} of {(αn, µn) : n ∈ N} and a µ ∈ ϕ(α) such that µnk
⇒k µ.

Proof. (a) =⇒ (b): Assume that ϕ is upper hemicontinuous at α ∈ [0, 1] with ϕ(α) compact,

and let {(αn, µn) : n ∈ N} be a sequence in Gr(ϕ) that satisfies αn → α. Note that the

upper hemicontinuity of ϕ at α guarantees that ϕ(α) 6= ∅. Now, in pursuit of a contradiction,

suppose that {µn : n ∈ N} has no limit point in ϕ(α). This implies that, for every µ ∈ ϕ(α),

there is an open neighborhood Vµ of µ and an integer Nµ such that, for all n ≥ Nµ, we have

µn /∈ Vµ. Since ϕ(α) is compact, it lies in some finite union V := Vµ1 ∪ · · · ∪ Vµk . So choose

an N0 ∈ N such that N0 ≥ Nµi for each i = 1, . . . , k. Then, for all n ≥ N0, we must have

µn /∈ V . However, since ϕ is upper hemicontinuous at α, for large enough n we must have

µn ∈ ϕ(αn) ⊂ V . This is a contradiction.

(b) =⇒ (a): By way of contraposition, suppose that ϕ is not upper hemicontinuous at

α. Then there exists an open neighborhood U of ϕ(α) such that, for large enough n ∈ N,

each open neighborhood Vn := (α−n−1, α+n−1)∩ [0, 1] of α contains an αn for which there
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exists a µn ∈ ϕ(αn) with µn /∈ U . Clearly, the sequence {µn : n ∈ N} does not have a limit

point in ϕ(α). This shows that ϕ must be upper hemicontinuous at α.

To show that ϕ(α) is compact, suppose that (b) holds and let {µn : n ∈ N} be a sequence

in ϕ(α). By choosing αn = α for each n ∈ N, the sequence {αn : n ∈ N} trivially satisfies

αn → α; and by (b), the sequence {µn : n ∈ N} has a limit point in ϕ(α). Since the sequence

{µn : n ∈ N} is arbitrary, ϕ(α) is sequentially compact; and since ϕ(α) is a subset of the

metric space P(E ×G), it follows that ϕ(α) is compact.

As with upper hemicontinuity, we have the following sequential characterization of lower

hemicontinuity. Observe that, unlike the conclusion of Lemma 1.2, no additional structure

is obtained on the set ϕ(α) when ϕ is lower hemicontinuous at α.

Lemma 1.3. If ϕ : [0, 1] � P(E ×G) is a correspondence and α ∈ [0, 1], then the following

statements are equivalent.

(a) ϕ is lower hemicontinuous at α.

(b) If αn → α then, for each µ ∈ ϕ(α), there exists a subsequence {αnk
: k ∈ N} of the

sequence {αn : n ∈ N} and a sequence {µk : k ∈ N} ⊂ P(E ×G) with µk ∈ ϕ(αnk
) for

each k ∈ N such that µk ⇒ µ.

Proof. (a) =⇒ (b): Assume that ϕ is lower hemicontinuous at α0. Let {αn : n ∈ N} be

a sequence that satisfies αn → α0 and fix µ0 ∈ ϕ(α0). Now, fix k ∈ N and define the open

neighborhood

Uk := {µ ∈ P(E ×G) : π(µ, µ0) < k−1}

of ν0. Then µ0 ∈ ϕ(α0) ∩ Uk and, since ϕ is lower hemicontinuous at α0, the set

ϕ`(Uk) = {α ∈ [0, 1] : ϕ(α) ∩ Uk 6= ∅}

is an open neighborhood of α0. So, define the set Vk := (α0−k−1, α0+k−1)∩[0, 1]. Then there

is a nk ∈ N such that αn ∈ Vk ∩ ϕ`(Uk) for every n ≥ nk; in particular, αnk
∈ Vk ∩ ϕ`(Uk).
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We may therefore form a subsequence {αnk
: k ∈ N} of {αn : n ∈ N} by choosing such an

αnk
for each k ∈ N. Moreover, the set ϕ(αnk

) ∩ Uk is nonempty for each k ∈ N; and so,

we may select a µk ∈ ϕ(αnk
) ∩ Uk to form the sequence {µk : k ∈ N} ⊂ P(E × G) which

evidently satisfies µk ⇒ µ0.

(b) =⇒ (a): Assume that (b) holds and, in pursuit of a contradiction, assume that

ϕ is not lower hemicontinuous at α. Then there exists an open set U ⊂ P(E × G) with

ϕ(α) ∩ U 6= ∅ such that, for any n ∈ N, there is some αn ∈ (α − n−1, α + n−1) with

ϕ(αn) ∩ U = ∅. It is clear that the sequence {αn : n ∈ N} satisfies αn → α. So, let

µ ∈ ϕ(α) ∩ U . Then, by (b), we can assume (by passing to a subsequence if necessary),

that there is a sequence {µn : n ∈ N} with µn ⇒ µ and µn ∈ ϕ(αn) for each n. Since

ϕ(αn) ∩ U = ∅ for each n, it follows that µn ∈ U c for each n. However, U c is a closed set;

and so, we must have µ ∈ U c. This, of course, contradicts the fact that µ ∈ U .

In what follows, we will take the above characterizations of upper and lower hemicontinuity

to serve more-or-less as definitions of these properties in the sequel. Also, before continuing

with the next section, the reader is reminded that a correspondence is said to be continuous

at α if it is both upper hemicontinuous and lower hemicontinuous at α; and a correspondence

is continuous if it is continuous at each α in its domain. Be aware that, in particular, one

should not refer to a correspondence as “hemicontinuous.”

IV.2 Vanishing Discount Results

This section contains the main result of this dissertation, the aim of which is to provide the

weakest possible (sufficient) conditions under which the vanishing discount applies for the

model {E × G,L, c, c1, θ, {θα}}. As stated above, this result will be presented in a manner

similar to that of Berge’s Theorem; and, hence, the hypotheses of our result will be stated

in terms of the following objects.
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Define the “feasibility correspondence” ϕ : [0, 1] � P(E ×G) by

ϕ(α) :=

 M if α = 0,

M̂α if α ∈ (0, 1];
(2.1)

and define the “objective function” F : Gr(ϕ)→ (−∞,+∞] by

F (α, µα) :=

 〈c, ρ〉 if α = 0,

〈c, µ̂α〉 if α ∈ (0, 1],
(2.2)

recalling that ρ denotes an element of M and µ̂α denotes an element of M̂α. Note that we

necessarily have F (α, µα) > −∞ for every (α, µα) ∈ Gr(ϕ) because c is bounded below.

Now define the “argmin correspondence” ϕ∗ : [0, 1]→ P(E ×G) by

ϕ∗(α) :=

 M∗ if α = 0,

M̂∗
α if α ∈ (0, 1];

(2.3)

noting that ϕ∗ is a subcorrespondence of ϕ (i.e., ϕ∗(α) ⊂ ϕ(α) for each α ∈ [0, 1]); and define

the “value function” F ∗ : [0, 1]→ (−∞,+∞] by

F ∗(α) := inf{F (α, µα) : µα ∈ ϕ(α)}, (2.4)

noting that inf(∅) = +∞.

We now wish to establish conditions on the feasibility correspondence ϕ in (2.1) and the

objective function F in (2.2) that will guarantee satisfaction of the VDM Relations

(V1) ∅ 6= M0 ⊂M,

(V2) ∅ 6= M∗
0 ⊂M∗, and

(V3) J∗0 = J∗,
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introduced in the previous chapter. Our main results accomplish just that, and we state

them as the next two theorems. The first theorem provides a more general result, whereas

the second theorem is specific to our vanishing discount model {E×G,L, c, c1, θ, {θα}}. We

omit proofs of these theorems for the moment.

Theorem 2.5. Let the feasibility correspondence ϕ and the objective function F be as in

(2.1) and (2.2), respectively. If ϕ is a continuous at α = 0, ϕ has nonempty compact values,

and F is continuous, then (V1)-(V3) hold.

Theorem 2.6. Let the feasibility correspondence ϕ and the objective function F be as in (2.1)

and (2.2), respectively, and suppose that {E × G,L, c, c1, θ, {θα}} is a constrained control

model for the vanishing discount method. If ϕ is lower hemicontinuous at α = 0 and F is

upper semicontinuous on {0} × ϕ(0), then (V1)-(V3) hold.

Thus, when considering any constrained control model satisfying the conditions we have

assumed in this manuscript, one can obtain the same conclusions of Theorem 2.5, but with

weaker hypotheses.

We dedicate the next three subsections to a detailed analysis of each of the hypotheses

(and conclusions) of Theorem 2.5 and Theorem 2.6 to see precisely how we have arrived at

these statements. In particular, we will see how certain properties possessed by the argmin

correspondence ϕ∗ in (2.3) and value function F ∗ in (2.4) directly affect the optimality

relations (V2) and (V3). Each of these subsections also contains an analysis of the role our

model assumptions play in weakening the hypotheses of our main results.

Remark 2.7. As a preliminary observation, recall our assumption that there is at least one

(X,Λ) ∈ M with J(X,Λ) < +∞ and Q1(X,Λ) ≤ θ; and so, by the equivalence theorems

presented in Chapter II, we are guaranteed at least one ρ ∈M with 〈c, ρ〉 < +∞. Similarly,

our assumption that, for each α > 0 there is at least one (X,Λ) ∈M with Jα(X,Λ; ν) < +∞

and Qα
1 (X,Λ; ν0) ≤ θα guarantees that, for each α ∈ (0, 1], there is at least one µ̂α ∈ M̂α
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with 〈c, µ̂α〉 < +∞. In other words, we may assume that the feasibility correspondence ϕ has

nonempty values. �

IV.2.1 Analysis of Conditions for (V1)

Our first observation in this analysis is that (V1) is satisfied if (and only if) the feasibility

correspondence ϕ is upper hemicontinuous at α = 0 and ϕ(0) is compact. We separate this

claim into its necessary and sufficient conditions, and show that this property is obtained

“for free” by the conditions we have imposed on our vanishing discount model.

Lemma 2.8. If the feasibility correspondence ϕ in (2.1) is upper hemicontinuous at α = 0

and ϕ(0) is compact, then ∅ 6= M0 ⊂M.

Proof. To first show that M0 6= ∅, let {(αn, µ̂αn) : n ∈ N} be a sequence in Gr(ϕ) where

αn = n−1 for each n ∈ N. Then αn → 0; and so, by Lemma 1.2, the sequence {µ̂αn : n ∈ N}

has a weak limit ρ ∈ ϕ(0). It then follows (from the definition of M0) that ρ ∈ M0. Thus

M0 6= ∅.

Now we show that M0 ⊂M. Let µ0 ∈M0. There is then a sequence {µ̂αn : n ∈ N} with

µ̂αn ∈ M̂αn = ϕ(αn) for each n ∈ N, satisfying αn → 0 and µ̂αn ⇒ µ0 (where we may assume

without loss of generality that αn > 0 for each n ∈ N). Since ϕ is upper hemicontinuous at

α = 0 and ϕ(0) is compact, Lemma 1.2 yields a ρ ∈ ϕ(0) = M satisfying µ̂αn ⇒ ρ. Since

µ̂αn ⇒ µ0 and µ̂αn ⇒ ρ, we must therefore have µ0 = ρ (recalling that P(E ×G) is a metric

space). Hence, M0 ⊂M, as desired.

We now observe that the conditions we have imposed on our vanishing discount model

{E × G,L, c, c1, θ, {θα}}, in fact, guarantee that ϕ is upper hemicontinuous and ϕ(0) is

compact. Thus, the hypotheses of Lemma 2.8 are “automatically” satisfied. We formalize

this claim by way of the following proposition.

53



Proposition 2.9. Suppose {E × G,L, c, c1, θ, {θα}} is a constrained control model for the

vanishing discount method. Then the feasibility correspondence ϕ in (2.1) is upper hemicon-

tinuous at α = 0 and ϕ(0) is compact.

Proof. Let {(αn, µ̂αn) : n ∈ N} be a sequence in Gr(ϕ) where {αn : n ∈ N} ⊂ (0, 1] and

αn → 0, and define

Θ := sup{αnθαn : n ∈ N}.

We then have −∞ < −κ1 < 〈c1, µ̂αn〉 ≤ Θ, for each n ∈ N. So, given M > 0, define the set

KM := {(x, u) ∈ E ×G : c1(x, u) ≤M},

noting that KM is compact since c1 is inf-compact. Now,

Mµ̂αn(Kc
M) ≤

∫
Kc

M

c1(x, u) µ̂αn(dx, du) ≤ Θ, ∀n ∈ N.

Given ε > 0, we can then choose M sufficiently large so that M > Θ/ε; hence,

µ̂αn(Kc
M) ≤ Θ

M
< ε, ∀n ∈ N.

The sequence {µ̂αn : n ∈ N} is therefore tight (and, hence, relatively compact). Thus, there

is a µ0 ∈ P(E×G) satisfying µ̂nk
⇒ µ0 for some subsequence {µ̂nk

: k ∈ N} of {µ̂αn : n ∈ N};

i.e., µ0 ∈M0 6= ∅.

We now wish to show that µ0 ∈ ϕ(0). In Section 2 of Chapter III we established that

µ0 trivially satisfies (MA2) and (MA3); and Proposition III.2.2 shows that µ0 satisfies the

budget constraint (CA1). To show that µ0 satisfies the adjoint condition

〈Lf, µ0〉 = 0, ∀f ∈ D(L), (MA1)
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we employ an argument similar to the one that appears in the proof of Proposition II.1.4.

That is, we define the sequence {ζk : k ∈ N} ⊂ M(E ×G) by

ζk(Γ) =

∫
Γ

ψ(x, u) µ̂nk
(dx, du), ∀Γ ∈ B(E ×G).

Then, given ε ∈ (0, 1), we use condition (C3) and a suitably large choice of R > 0 to show

that

ζk(K
c
R) ≤

∫
Kc

R

a1c1(x, u) µ̂nk
(dx, du) + b1µ̂nk

(Kc
R) < ε, ∀k ∈ N,

and, hence, conclude that {ζk : k ∈ N} is tight. By then appropriately partitioning E × G,

it can be shown that

ζk(E ×G) ≤ a1(Θ + κ1 + 1) + b1 < +∞, ∀k ∈ N;

and, hence, {ζk(E ×G) : k ∈ N} is bounded. The relative compactness of {ζk : k ∈ N} then

yields a ζ ∈M(E×G) satisfying ζki ⇒ ζ for some subsequence {ζki : i ∈ N} of {ζk : k ∈ N}

and

ζ(Γ) =

∫
Γ

ψ(x, u)µ0(dx, du), ∀Γ ∈ B(E ×G).

We have shown (again, in Section 2 of Chapter III) that

lim
n→∞
〈Lf, µ̂αn〉 = 0, ∀f ∈ D(L).

So, we then use condition (D6) to conclude that

0 = lim
n→∞
〈Lf, µ̂αn〉 = 〈Lf, µ0〉, ∀f ∈ D(L),

which shows that µ0 satisfies constraint (MA1) for the long-term average linear program.

Thus, µ0 ∈M = ϕ(0); and so, ϕ is upper hemicontinuous at α = 0 and ϕ(0) is compact by

Lemma 1.2.
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Though it is not imperative to our main results, we nevertheless make the observation that

the converse of Lemma 2.8 holds for our model, as well. Note that Proposition 2.9 shows

that ∅ 6= M0 when its hypotheses are satisfied, so we omit this condition from the hypothesis

in the corollary below.

Corollary 2.10. Suppose {E × G,L, c, c1, θ, {θα}} is a constrained control model for the

vanishing discount method. Then the feasibility correspondence ϕ in (2.1) is upper hemicon-

tinuous at α = 0 and ϕ(0) is compact if M0 ⊂M.

Proof. Let {(αn, µ̂αn) : n ∈ N} be a sequence in Gr(ϕ) with αn → 0 (and assume that αn > 0

for each n ∈ N). Proposition 2.9 then guarantees the existence of a µ0 ∈M0 with µ̂αn ⇒ µ0.

Since M0 ⊂ M, it follows that µ0 ∈ M; and so, by Lemma 1.2, ϕ is upper hemicontinuous

at α = 0 and ϕ(0) is compact.

IV.2.2 Analysis of Conditions for (V2)

Now, in consideration of the relation (V2), we have a result that is an analog of Lemma 2.8,

but with the sets of optimizers. This result indicates that any weak limit µ∗0 of a family of

optimal α-normalized occupation measures, as α ↓ 0, is also an optimizer (i.e., minimizer)

for the long-term average linear program. As the proof is nearly identical to that of Lemma

2.8, we state this result as a corollary.

Corollary 2.11. If the argmin correspondence ϕ∗ in (2.3) is upper hemicontinuous at α = 0

and ϕ∗(0) is compact, then ∅ 6= M∗
0 ⊂M∗.

Remark 2.12. As with Lemma 2.8, the converse of Corollary 2.11 is easily seen to hold for

our vanishing discount model. �

Since Corollary 2.11 is a statement about the argmin correspondence ϕ∗, our next objective

is then to establish conditions for the feasibility correspondence ϕ and the objective function

F under which the hypotheses of this corollary will hold. To this end, we first observe that
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these hypotheses will be satisfied if ϕ and F satisfy the hypotheses of Berge’s Theorem.

That is, if ϕ is continuous (i.e., upper hemicontinuous and lower hemicontinuous) on the

entire interval [0, 1], ϕ has nonempty compact values, and the objective function F is real-

valued and continuous (i.e., upper semicontinuous and lower semicontinuous) on Gr(ϕ), then

Berge’s Theorem ensures that ϕ∗ will be upper hemicontinuous on [0, 1] (and, hence, ϕ∗ will

be upper hemicontinuous at α = 0) and ϕ∗ will have compact values (and, hence, ϕ∗(0)

will be compact). However, we would naturally prefer to have weaker requirements for ϕ

and F than those stipulated in Berge’s Theorem; and, indeed, we should expect that these

conditions can be weakened since the conclusions of Berge’s Theorem are more powerful than

is necessary for our purposes. What is somewhat surprising is that these hypotheses cannot

be weakened as much as one might expect, as the following result demonstrates.

Lemma 2.13. Let the feasibility correspondence ϕ be as in (2.1), and let the objective func-

tion F be as in (2.2). If ϕ is continuous at α = 0, ϕ has nonempty compact values, and F is

continuous, then ϕ∗ is upper hemicontinuous at α = 0 and ϕ∗ has nonempty compact values

(and, hence, ϕ∗(0) is compact).

Proof. Since ϕ has compact values and F is lower semicontinuous, Theorem B.13 tells

us that, for each α ∈ [0, 1], there exists a minimizer in the compact set ϕ∗(α). So, let

{(αn, µ̂∗αn
) : n ∈ N} be a sequence in Gr(ϕ∗) with αn → 0 (and, as usual, assume that

αn > 0, for each n ∈ N). Since ϕ is upper hemicontinuous at α = 0, there is a ρ ∈ ϕ(0)

with µ̂∗αn
⇒ ρ. To then show that ρ is a minimizer (i.e., ρ ∈ ϕ∗(0)), we need to show

that F (0, ρ) ≤ F ∗(0) (since the inequality F ∗(0) ≤ F (0, ρ) is immediate). Since F is lower

semicontinuous, we have

F (0, ρ) ≤ lim inf
n→∞

F (αn, µ̂
∗
αn

) = lim inf
n→∞

F ∗(αn).
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Then, since ϕ is lower hemicontinuous at α = 0 and F is upper semicontinuous (on {0} ×

ϕ(0)), Corollary B.15 tells us that F ∗ is upper semicontinuous at α = 0; i.e.,

lim inf
n→∞

F ∗(αn) ≤ lim sup
n→∞

F ∗(αn) ≤ F ∗(0),

from which the desired result follows.

Let us now discuss in detail each of the hypotheses in the lemma above.

We have shown that the conditions on the vanishing discount model {E×G,L, c, c1, θ, {θα}}

ensure that the feasibility correspondence ϕ is upper hemicontinuous at α = 0 and that

ϕ(0) is compact; and, as per Remark 2.7, we know that ϕ has nonempty values. What then

remains to be discussed (as pertains to ϕ) is the lower hemicontinuity of this correspondence

at α = 0 and the compactness of ϕ(α) for each α ∈ (0, 1].

As the proof of Lemma 2.13 demonstrates, the lower hemicontinuity of ϕ (at α = 0) is

only required here to obtain the upper semicontinuity of the value function F ∗ at α = 0.

Nevertheless, we will see that this lower hemicontinuity condition plays an indispensable role

in our desired results; and moreover, unlike upper hemicontinuity, this is not a property that

ϕ automatically obtains from the conditions on our vanishing discount model.

As for the compactness of ϕ(α) for each α ∈ (0, 1]: Here, it will be sufficient to show (by

Prohorov’s Theorem) that, given a fixed α ∈ (0, 1], the collection ϕ(α) = M̂α of probability

measures is tight. Fortunately, this is the case. Indeed, since each µ̂α ∈ M̂α necessarily

satisfies

−∞ < −κ1 ≤ 〈c1, µ̂α〉 ≤ αθα < +∞,

and since c1 is inf-compact, an argument similar enough to the one given in the proof of

Proposition 2.9 then shows that ϕ(α) = M̂α is, indeed, compact. We summarize this fact as

the following proposition.
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Proposition 2.14. Suppose {E ×G,L, c, c1, θ, {θα}} is a constrained control model for the

vanishing discount method. Then, for each fixed α ∈ (0, 1], the collection M̂α is a compact

subset of P(E × G); i.e., ϕ(α) is compact for each α ∈ (0, 1], where ϕ is the feasibility

correspondence in (2.1).

Lastly, we discuss the continuity of the objective function F . By the manner in which we

have defined ϕ in (2.1) and F in (2.2), we see that there are, in a sense, two cases to consider:

(a) F is continuous at each (0, ρ) ∈ {0} × ϕ(0); and

(b) F is continuous at each (α, µ̂α) /∈ {0} × ϕ(0).

In order to discuss the continuity of such a function, it will be useful for us to specify precisely

what notion of convergence we have in mind for sequences in Gr(ϕ) ⊂ [0, 1] × P(E × G).

For this purpose, choosing the so-called taxicab metric will be sufficient for our needs. That

is, we write (αn, µαn)→ (α, µα) if and only if, given ε > 0, there is an N ∈ N such that

|αn − α|+ π(µαn , µα) < ε, ∀n ≥ N,

where | · | denotes the usual Euclidean metric on [0, 1] ⊂ R and π denotes the Prohorov

metric on P(E ×G). Thus, under the taxicab metric, it is clear that (αn, µαn)→ (α, µα) if

and only if αn → α and µαn ⇒ µα (again recalling part (b) of the Portmanteau Theorem).

We then see that F is continuous at (α, µα) if, for each sequence {(αn, µαn) : n ∈ N} ⊂ Gr(ϕ)

with (αn, µαn)→ (α, µα), we have

F (α, µα) = 〈c, µα〉 = lim
n→∞
〈c, µαn〉 = lim

n→∞
F (αn, µαn).

Now, since c is lower semicontinuous and bounded below, the weak convergence µαn ⇒ µ

only guarantees that

〈c, ρ〉 ≤ lim inf
n→∞

〈c, µ̂αn〉.
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In other words, the conditions on our model are sufficient to ensure that F is only lower

semicontinuous on Gr(ϕ). Nevertheless, this observation is important enough to state as a

proposition.

Proposition 2.15. Suppose {E ×G,L, c, c1, θ, {θα}} is a constrained control model for the

vanishing discount method. If ϕ and F are as in (2.1) and (2.2), then F is lower semicon-

tinuous.

Now, a careful reading of the proof of Lemma 2.13 illustrates that the hypotheses of this

lemma could, in fact, be weakened to require only that F be upper semicontinuous on

{0}×ϕ(0) and lower semicontinuous everywhere else on Gr(ϕ). Such a modification, however,

is unlikely to yield any sort of practical utility. In any case, as with the lower hemicontinuity

of the feasibility correspondence ϕ at α = 0, the upper semicontinuity of the objective

function F on {0}×ϕ(0) will have to be verified on an ad hoc basis when application of the

vanishing discount method is desired.

IV.2.3 Analysis of Conditions for (V3)

We now turn our attention to the last, and perhaps most important, of the VDM Relations.

Recall that

J∗0 := lim
α↓0

Ĵ∗α := lim
α↓0

(
inf{〈c, µ̂α〉 : µ̂α ∈ M̂α}

)
and J∗ = inf{〈c, ρ〉 : ρ ∈M};

and, hence, the relation J∗0 = J∗ is a statement about the optimal (i.e., minimal) values of

the linear programs in our construction.

It should be apparent from our definitions that the relation J∗0 = J∗ will hold if and only

if the value function F ∗ in (2.4) is continuous (and finite) at α = 0. However, it will prove

useful to be perhaps a bit more explicit about this statement, as in the next two lemmas.
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Lemma 2.16. If the value function F ∗ in (2.4) is upper semicontinuous at α = 0, then

J∗0 ≤ J∗.

Proof. Let {αn : n ∈ N} be a sequence in (0, 1] with αn → 0. If F ∗ is upper semicontinuous

at α = 0, then

J∗0 ≤ lim sup
n→∞

Ĵ∗αn
= lim sup

n→∞
F ∗(αn) ≤ F ∗(0) = J∗,

as desired.

For the next lemma, we simplify things a bit by adding the assumption that F ∗(0) < +∞.

This is justified, however, since the conditions on our model (see Remark 2.7) guarantee that

there is at least one ρ ∈ ϕ(0) with F (0, ρ) < +∞.

Lemma 2.17. If the value function F ∗ in (2.4) is lower semicontinuous at α = 0 and

F ∗(0) < +∞, then J∗0 ≥ J∗.

Proof. Let {αn : n ∈ N} be a sequence in (0, 1] with αn → 0. If F ∗ is lower semicontinuous

at α = 0 and F ∗(0) < +∞, then

J∗0 ≥ lim inf
n→∞

Ĵ∗αn
= lim inf

n→∞
F ∗(αn) ≥ F ∗(0) = J∗,

as desired.

Remark 2.18. If, for example, one is only interested in obtaining a lower bound on the

minimum value of the long-term average linear program via the vanishing discount method,

Lemma 2.16 says that only upper semicontinuity of F ∗ at α = 0 is required. On the other

hand, if an upper bound is desired, one can look to Lemma 2.17. �

As in the previous analyses, we now wish to identify sufficient conditions for the feasibility

correspondence ϕ and the objective function F that will allow for the hypotheses of Lemma

2.16 and Lemma 2.17 to be fulfilled. Again, we remark that the continuity of F ∗ on the entire

interval [0, 1] is among the conclusions of Berge’s Theorem; but, as above, we should not
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require the full strength Berge’s Theorem and, hence, we should not require the full strength

of its hypotheses. Accordingly, the following two lemmas, in analogy with the preceding two

lemmas, state sufficient conditions for the value function F ∗ to be upper semicontinuous at

α = 0 and lower semicontinuous at α = 0, respectively.

Lemma 2.19. If the feasibility correspondence ϕ is lower hemicontinuous at α = 0, ϕ(0)

is compact, and the objective function F is continuous, then the value function F ∗ is upper

semicontinuous at α = 0.

Proof. Since F is lower semicontinuous, it attains its minimum on the compact set {0}×ϕ(0);

i.e., there is a minimizer ρ∗ ∈ ϕ∗(0) ⊂ ϕ(0). So, let {αn : n ∈ N} be a sequence in (0, 1]

with αn → 0. Since ϕ is lower hemicontinuous at α = 0, there is some subsequence of

{αn : n ∈ N} (which, for notational reasons, we will take to be the sequence itself) and a

sequence {µ̂αn : n ∈ N} with µ̂αn ∈ ϕ(αn) for each n ∈ N and µ̂αn ⇒ ρ∗. By minimality, we

must have F ∗(αn) ≤ F (αn, µ̂αn) for every n ∈ N; and since F is upper semicontinuous, we

have

lim sup
n→∞

F ∗(αn) ≤ lim sup
n→∞

F (µ̂αn , αn) ≤ F (0, ρ∗) = F ∗(0),

which shows that F ∗ is upper semicontinuous at α = 0.

Lemma 2.20. If the feasibility correspondence ϕ is upper hemicontinuous at α = 0, ϕ has

nonempty compact values, and the objective function F is lower semicontinuous, then F ∗ is

lower semicontinuous at α = 0.

Proof. Let {αn : n ∈ N} be a sequence in (0, 1] satisfying αn → 0. Since ϕ(αn) is compact for

each n ∈ N, and F is lower semicontinuous, F attains a minimum on each compact section

{αn} × ϕ(αn). We can therefore construct a sequence {(αn, µ̂∗αn
) : n ∈ N} in Gr(ϕ) where

µ̂∗αn
∈ M̂∗

αn
for each n ∈ N; and since ϕ is upper hemicontinuous at α = 0, there is a ρ ∈ ϕ(0)

with µ̂∗αn
⇒ ρ. We then have F (αn, µ̂

∗
αn

) = F ∗(αn) for each n, and F ∗(0) ≤ F (0, ρ). So, by
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the lower semicontinuity of F , we obtain

F ∗(0) ≤ F (0, ρ) ≤ lim inf
n→∞

F (αn, µ̂
∗
αn

) = lim inf
n→∞

F ∗(αn),

which shows that F ∗ is lower semicontinuous at α = 0.

Remark 2.21. Observe that all of the hypotheses of Lemma 2.20 are conditions that are

automatically satisfied by our model. �

We can now state, as a consequence of the preceding two lemmas, sufficient conditions for

(V3) to hold:

Theorem 2.22. If the feasibility correspondence ϕ is continuous at α = 0, ϕ has nonempty

compact values, and F is continuous, then F ∗ is continuous at α = 0. Hence, J∗0 = J∗.

Remark 2.23. Notice that the hypotheses of this theorem are exactly the same as those in

Lemma 2.13. Again, we can weaken these hypotheses slightly by only requiring that F be

lower semicontinuous on Gr(ϕ) and upper semicontinuous on {0} × ϕ(0). �

IV.2.4 Verification of Main Results

We are now able to present the proofs of Theorem 2.5 and Theorem 2.6 as immediate

consequences of the analyses conducted in the preceding subsections.

Proof of Theorem 2.5. Since ϕ is continuous at α = 0 and ϕ has nonempty compact values,

ϕ is upper hemicontinuous at α = 0 and ϕ(0) is compact; and so, (V1) holds by Lemma

2.8. Since ϕ is continuous at α = 0, ϕ has nonempty compact values, and F is continuous,

the argmin correspondence ϕ∗ is upper hemicontinuous at α = 0 and ϕ∗(0) is compact (by

Lemma 2.13); and so, (V2) holds by Corollary 2.11. Since ϕ is continuous at α = 0, ϕ has

nonempty compact values, and F is continuous, the value function F ∗ is continuous at α = 0

(by Theorem 2.22); and so, (V3) holds by Theorem 2.22.
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To then prove Theorem 2.6, we need only appeal to the above proof and the additional

results that pertain specifically to our vanishing discount model.

Proof of Theorem 2.6. Let {E × G,L, c, c1, θ, {θα}} be a constrained control model for the

vanishing discount method, and recall the following facts established above:

• Remark 2.7 showed that ϕ has nonempty values.

• Proposition 2.9 showed that ϕ is upper hemicontinuous at α = 0 and ϕ(0) is compact.

• Proposition 2.14 showed that ϕ(α) is compact for each α ∈ (0, 1].

• Proposition 2.15 showed that F is lower semicontinuous.

Thus, these facts together with the argument given in the proof of Theorem 2.5 yield the

desired results.

The next chapter explores a number of examples that provide insight into not only when

this formulation of the vanishing discount method may be applied, but also how this method

works.
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EXAMPLES

In this chapter, we present examples that illustrate the results discussed in this dissertation.

We first consider an adaptation of an example appearing in Hernández-Lerma and Prieto-

Rumeau (2010) in which our constrained control model is equipped with a very basic discrete

state and control spaces. The rudimentary structure of this model allows us to express

the feasible sets for our linear programs as subsets of the unit simplex in R2. We use

this geometric illustration to visualize how the feasible sets (and sets of optimizers) for the

α-normalized linear programs behave as α ↓ 0. Using this basic model, we present two

examples. The first example serves as a useful demonstration of our results, for we are able

to verify directly that the hypotheses and the conclusions of Theorem IV.2.5 are satisfied.

For the second example, we show that, by simply changing the constraint constants slightly,

the hypotheses of Theorem IV.2.5 may fail to hold. In particular, we will see that the lower

hemicontinuity of the feasibility correspondence ϕ may fail to be lower hemicontinuous at

α = 0 if the constraint constant is not appropriately chosen.

We then conclude with an application of our results to a controlled diffusion problem.

Here, in the spirit of Chapter 11 in Øksendal (2003), we consider an Itô process in which the

control is given in the form of the drift coefficient. As a means of comparison, we omit the

budget constraint to show that our results may remain applicable in the “unconstrained”

setting, as well. In this particular example, we are able to characterize the densities of the

feasible measures for the long-term average and α-normalized linear programs in terms of

the respective feedback control functions. We find that each α-normalized problem proves

rather difficult to solve explicitly, so we further our analysis by solving the long-term average

problem using dynamic programming methods and applying the vanishing discount method

to obtain approximate solutions to the α-normalized (and, hence, α-discounted) problems.
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V.1 Example: A Discrete State Space

Let X := {Xt : t ∈ R+} be a controlled continuous-time Markov chain with state space

E = {0, 1} and control space G = {0, 1, 2, 3}, where G(0) = {0} and G(1) = {1, 2, 3}. The

instantaneous transition rates for X are given by

q00(0) = −1, q11(1) = −2, and q11(2) = q11(3) = −4,

where qij(u) denotes the transition rate from state i to state j under control u. For this

example, we consider both the cost rate function c with values

c(0, 0) = −1 and c(1, 1) = c(1, 2) = c(1, 3) = 0;

and the budget rate function c1 with the values

c1(0, 0) = 0, c1(1, 1) = 3, c1(1, 2) = 5, and c1(1, 3) = 10.

Note that c and c1 trivially satisfy conditions (C1)-(C3) since each has finite range and the

product space E × G is finite (and hence we can simply equip E × G with the discrete

topology). Now, for such a controlled process X, we assume that the controls are chosen

according to a family of policies that we identify with the unit simplex Z ⊂ R2. That is,

Z := {z = (z1, z2) ∈ R2 : z1 ≥ 0, z2 ≥ 0, z1 + z2 ≤ 1},

where

η(1, {1}) = z1, η(1, {2}) = z2, and η(1, {3}) = z3 := 1− z1 − z2,
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noting that η(0, {0}) = 1 since G(0) = {0}. Recall that η(Xt, ·) = Λt(·), t ∈ R+, represents

a control given in feedback form.

To analyze the dynamics of each feasible (X,Λ) = (X, η(X, ·)) ∈ M , we use the given

transition rates qij(u) to evaluate Lf(i, u) for each (i, u) ∈ U . A routine computation yields

the following: For each f ∈ D(L),

Lf(0, 0) = q01(0)f(1) + q00(0)f(0) = f(1)− f(0),

Lf(1, 1) = q10(1)f(0) + q11(1)f(1) = 2[f(0)− f(1)],

Lf(1, 2) = q10(2)f(0) + q11(2)f(1) = 4[f(0)− f(1)], and

Lf(1, 3) = q10(3)f(0) + q11(3)f(1) = 4[f(0)− f(1)].

Note that L trivially satisfies conditions (D1)-(D6). Indeed, since E and G are finite (and,

hence, compact) sets, conditions (D1)-(D5) are trivially satisfied; and since Lf is bounded for

every f ∈ D(L), condition (D6) is trivially satisfied (e.g., ψ can be chosen to be a constant

function).

V.1.1 Example 1A: The Long-Term Average Linear Program

The long-term average linear program in this setting is as follows:

Minimize 〈c, ρ〉 subject to



〈Lf, ρ〉 = 0, ∀f ∈ D(L); (MA1)

〈1, ρ〉 = 1; (MA2)

ρ ∈ P(E ×G); (MA3)

〈c1, ρ〉 ≤ θ. (CA1)

The objective function is then given by

〈c, ρ〉 =
∑

(i,u)∈U

c(i, u) ρ(i, u) = −ρ(0, 0),
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and the budget constraint (CA1) is

〈c1, ρ〉 =
∑

(i,u)∈U

c1(i, u) ρ(i, u) = 3ρ(1, 1) + 5ρ(1, 2) + 10ρ(1, 3) ≤ θ,

noting the abuse of notation ρ(i, u) = ρ({(i, u)}).

For this example, we will consider the constraint constant θ =
5

4
.

It can be shown that each ρ ∈ M can be expressed in terms of a z = (z1, z2) ∈ Z via the

parameterization

ρ(i, u) =
4− 2z1

5− 2z1

I{(0,0)}(i, u) +
3∑

u=1

zu
5− 2z1

I{(1,u)}(i, u), ∀(i, u) ∈ U ,

recalling that z3 := 1− z1 − z3. The budget constraint (CA1) then implies that the feasible

set M for this linear program can be viewed as the feasible region

{
z ∈ Z :

10− 7z1 − 5z2

5− 2z1

≤ 5

4

}
= {z ∈ Z : 18z1 + 20z2 ≥ 15} ,

which is the quadrilateral region in Z with vertices

(0, 3/4), (0, 1), (1, 0), (5/6, 0),

as depicted below:
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Figure V.1: Feasible Region for the Long-Term Average LP
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V.1.2 Example 1A: The α-Normalized Linear Program

Note that, for purposes of illustration, we will take the parameter space for our discount rate

to be (0, 2] rather than (0, 1]. So, let α ∈ (0, 2] be given and assume that X0 = 0. Recall

that the α-normalized linear program in this setting is as follows:

Minimize 〈c, µ̂α〉 subject to



〈Lαf, µ̂α〉 = −αf(0), ∀f ∈ D(L); (MN1)

〈1, µ̂α〉 = 1; (MN2)

µ̂α ∈ P(E ×G); (MN3)

〈c1, µ̂α〉 ≤ αθα. (CN1)

As above, the objective function is given by

〈c, µ̂α〉 =
∑

(i,u)∈U

c(i, u) µ̂α(i, u) = −µ̂α(0, 0)
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and the budget constraint (CA1) is

〈c1, µ̂α〉 =
∑

(i,u)∈U

c1(i, u) µ̂α(i, u) = 3µ̂α(1, 1) + 5µ̂α(1, 2) + 10µ̂α(1, 3) ≤ αθα.

For this example, we will consider the constraint constant θα =
5

α(α + 4)
, noting that

lim
α↓0

αθα = lim
α↓0

5

α(α + 4)
=

5

4
= θ.

Hence, {θα : α ∈ (0, 2]} satisfies condition (T1). An appropriate parameterization of each

µ̂α ∈ M̂α in terms of a z ∈ Z then shows that the feasible set M̂α can be viewed as the

feasible region

{
z ∈ Z :

10− 7z1 − 5z2

5 + α− 2z1

≤ 5

α + 4

}
= {z ∈ Z : (18 + 7α)z1 + (20 + 5α)z2 ≥ 15 + 5α} ,

which is the quadrilateral region in Z with vertices

(
0,
α + 3

α + 4

)
, (0, 1), (1, 0),

(
5α + 15

7α + 18
, 0

)

as depicted in the plot below with α = 1.8.
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Figure V.2: Feasible Region for the α-Normalized LP (α = 1.8)
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V.1.3 Example 1A: Correspondences and Optimality

The feasibility correspondence ϕ : [0, 2] � Z for this example is

ϕ(α) =

 {z ∈ Z : 18z1 + 20z2 ≥ 15} if α = 0,

{z ∈ Z : (18 + 7α)z1 + (20 + 5α)z2 ≥ 15 + 5α} if α ∈ (0, 2];

and the objective function F : Gr(ϕ)→ R is

F (α, z) =

 −(4− z1)/(5− z1) if α = 0,

−(4 + α− 2z1)/(5 + α− 2z1) if α ∈ (0, 2];

Now, the parameterization of each measure of interest in terms of a point (z1, z2) ∈ Z ⊂ R2

provides us with a convenient “visual” way of verifying that

(H1) ϕ is continuous at α = 0,

(H2) ϕ has nonempty compact values, and
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(H3) F is continuous.

Remark 1.1. It can be shown that the parameterization ρ 7→ z defines an isometry between

the feasible set M and its corresponding feasible region; and that, for each α ∈ (0, 1], the

parameterization µ̂α 7→ z defines an isometry between M̂α and its corresponding feasible

region. Thus, weak convergence of measures is equivalent to convergence of points (under

the usual Euclidean metric) in Z. �

Indeed: Let {(αn, zn) : n ∈ N} be an arbitrary sequence in Gr(ϕ) ⊂ [0, 2]× Z with αn → 0.

Then each (αn, zn) =
(
αn, (z

(n)
1 , z

(n)
2 )
)

in this sequence satisfies

(18 + 7αn)z
(n)
1 + (20 + 5αn)z

(n)
2 ≥ 15 + 5αn.

So, we observe that

18z
(0)
1 + 20z

(0)
2 = lim

n→∞

(
(18 + 7αn)z

(n)
1 + (20 + 5αn)z

(n)
2

)
≥ lim

n→∞
(15 + 5αn) = 15,

for some z0 = (z
(0)
1 , z

(0)
2 ) ∈ Z, noting that Z is a compact subset of R2. Clearly, we have

z0 ∈ ϕ(0); and so, ϕ is upper hemicontinuous at α = 0. Now, let {αn : n ∈ N} be a sequence

in [0, 2] with αn → 0, and let z0 = (z
(0)
1 , z

(0)
2 ) ∈ ϕ(0). Since αn → 0, we can choose a

decreasing subsequence {αnk
: k ∈ N} of {αn : n ∈ N} with αnk

→ 0. We now need to find

a sequence {zk : k ∈ N} with zk ∈ ϕ(αnk
) for every k ∈ N and zk → z0. So, observe that, if

z
(0)
1 ≥ 0.5, we can choose the constant sequence zk = z0 since z0 ∈ ϕ(αnk

) for every k ∈ N;

and if z
(0)
1 < 0.5, then we can define our sequence by

zk =

(
z

(0)
1 ,

15 + 5αnk
− (18 + 7αnk

)z
(0)
1

20 + 5αnk

)
, ∀k ∈ N.

Thus, ϕ is lower semicontinuous at α = 0.
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Since, for each α ∈ [0, 2], the set ϕ(α) is easily seen to be a nonempty, closed, and

bounded subset of R2 (in fact, a closed polygon), it is clear that ϕ has nonempty compact

values.

Finally, the continuity of F is also clear since F is a rational function (of only the two

real variables α and z1) whose denominator is nonzero for every (α, z) ∈ Gr(ϕ).

Thus, having satisfied hypotheses (H1)-(H3), we should obtain the desired conclusions

(V1) ∅ 6= M0 ⊂M,

(V2) ∅ 6= M∗
0 ⊂M∗, and

(V3) J∗0 = J∗.

Indeed, since

18z1 + 20z2 = lim
α↓0

((18 + 7α)z1 + (20 + 5α)z2) ≥ lim
α↓0

(15 + 5α) = 15,

it follows that ∅ 6= M0 = M.

Now, when α = 0, the objective function

F (0, z) = −4− z1

5− z1

obtains it minimum at any z = (z1, z2) ∈ ϕ(0) with z1 = 0. So,

M∗ = ϕ∗(0) = {z ∈ Z : z1 = 0, z2 ≥ 0.75}

and

J∗ = F ∗(0) = −4− 0

5− 0
= −4

5
.
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On the other hand, when α ∈ (0, 2], we have

F (α, z) = −4 + α− z1

5 + α− z1

,

which obtains it minimum at any z = (z1, z2) ∈ ϕ(α) with z1 = 0. So,

M̂∗
α = ϕ∗(α) =

{
z ∈ Z : z1 = 0, z2 ≥

3 + α

4 + α

}

and

Ĵ∗α = F ∗(α) = −4 + α− 0

5 + α− 0
= −4 + α

5 + α
.

It is then not too difficult to see that

∅ 6= M∗
0 = M∗

and

J∗0 = lim
α↓0

Ĵ∗α = lim
α↓0

F ∗(α) = − lim
α↓0

4 + α

5 + α
= −4

5
= F ∗(0) = J∗,

as desired.

To now demonstrate the sensitivity of the hypotheses we have presented, we will consider a

similar example in which all that is changed is the constraint constants.

V.1.4 Example 1B: The Long-Term Average Linear Program

We consider the same long-term average linear program as above but with the constraint

constant θ = 1.

Recalling the parameterization obtained in the previous example, the feasible set M for this

problem can now be viewed as the region

{
z ∈ Z :

10− 7z1 − 5z2

5− 2z1

≤ 1

}
= {z ∈ Z : z1 + z2 ≥ 1}
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which is the line segment in R2 with vertices (0, 1) and (1, 0):

Figure V.3: Feasible Region for the Long-Term Average LP
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V.1.5 Example 1B: The α-Normalized Linear Program

Let α ∈ (0, 2] be given and again assume that X0 = 0.

We now take our constraint constant to be θα =
4

α(α + 4)
, observing that

lim
α↓0

αθα = lim
α↓0

4

α + 4
= 1.

Hence, the family {θα : α ∈ (0, 2]} again satisfies condition (T1). The feasible set M̂α for

this linear program can be identified with the region

{
z ∈ Z :

10− 7z1 − 5z2

5 + α− 2z1

≤ 4

α + 4

}
= {z ∈ Z : 6α + 20 ≤ (7α + 20)z1 + (5α + 20)z2} ,
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which is the triangular region in Z with the vertices

(0.5, 0.5) , (1, 0),

(
6α + 20

7α + 20
, 0

)
,

depicted as the shaded region below:

Figure V.4: Feasible Region for the α-Normalized LP (α = 1.8)
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V.1.6 Example 1B: Correspondences and Optimality

The feasibility correspondence ϕ : [0, 2] � Z for this example is

ϕ(α) =

 {z ∈ Z : z1 + z2 ≥ 1} if α = 0,

{z ∈ Z : 6α + 20 ≤ (7α + 20)z1 + (5α + 20)z2} if α ∈ (0, 2];

and the objective function F : Gr(ϕ)→ R is (as in Example 1A)

F (α, z) =

 −(4− z1)/(5− z1) if α = 0,

−(4 + α− 2z1)/(5 + α− 2z1) if α ∈ (0, 2];
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Again, we consider the following hypotheses:

(H1) ϕ is continuous at α = 0,

(H2) ϕ has nonempty compact values, and

(H3) F is continuous.

In this example, we see that

ϕ(α1) ⊃ ϕ(α2) ⊃ {z ∈ Z : z1 + z2 = 1, 0.5 ≤ z1 ≤ 1}

whenever 2 ≥ α1 ≥ α2 > 0, which confirms the upper hemicontinuity of ϕ at α = 0.

However, our illustration makes clear that ϕ is not lower hemicontinuous at α = 0. Indeed:

If we consider the point (0, 1) ∈ ϕ(0) and the set B := {z ∈ Z : |z− (0, 1)| < 0.5}, it is clear

that B ∩ ϕ(α) = ∅ for every α ∈ (0, 2]. Hence, ϕ cannot be lower hemicontinuous at α = 0.

As in the previous example, (H2) is clearly satisfied. Regarding the continuity of F :

The definition of F remains the same as in Example 1A, but its domain is quite different.

Indeed: When α = 0, the domain of F can be viewed as the diagonal line segment depicted

in Figure V.3; and, for each α ∈ (0, 2], the domain of F can be viewed as the triangular

region depicted in Figure V.4, where this region shrinks down to the diagonal line segment

with vertices (0.5, 0.5) and (1, 0) as α ↓ 0. Nevertheless, since F is a rational function with

no possibility of division by 0, it is indeed continuous on Gr(ϕ).

Let us now analyze the VDM Relations (V1)-(V3).

We first observe that M0 can be identified with the region

{z ∈ Z : z1 + z2 = 1, 0.5 ≤ z1 ≤ 1};

77



and so, ∅ 6= M0 ⊂M (recalling that the upper hemicontinuity of ϕ at α = 0 guarantees this

by Lemma IV.2.8). Now, observe that we once again have

F ∗(0) = min

{
−4− z1

5− z1

: 0 ≤ z1 ≤ 1

}
= −4− 0

5− 0
= −4

5
;

but, for each α ∈ (0, 1], we have

F ∗(α) = min

{
−4 + α− 2z1

5 + α− 2z1

: 0.5 ≤ z1 ≤ 1

}
= −4 + α− 2(0.5)

5 + α− 2(0.5)
= −3 + α

4 + α
.

Thus

M∗
0 = {(0.5, 0.5)} and M∗ = {(0, 1)};

and so, (V2) cannot hold since M∗
0 ∩M∗ = ∅. We furthermore see that

J∗0 = lim
α↓0

Ĵ∗α = lim
α↓0

F ∗(α) = − lim
α↓0

3 + α

4 + α
= −3

4
> −4

5
= F ∗(0) = J∗.

So, (V3) does not hold; but, in agreement with Lemma IV.2.17 and Lemma IV.2.20, we do

obtain the inequality J∗0 ≥ J∗.

V.2 Example: A Controlled Diffusion Problem

We consider drifted Brownian motion X = {Xt : t ∈ R+} on E = [0, 1] with reflections

at the boundary points 0 and 1; i.e., on E◦ = (0, 1), the process X satisfies the stochastic

differential equation

dXt = −ut dt+ σ dWt x0 ∈ (0, 1),

where ut ∈ G = [0, 2] and σ > 0 are, respectively, the drift and diffusion coefficients of X,

X0 = x0 is the initial state of X, and W = {Wt : t ∈ R+} is standard one-dimensional

Brownian motion. Note that S◦ denotes the interior of the set S.
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The generator L : D(L)→ R(L) is then given by

Lf(x, u) =
σ2

2
f ′′(x)− uf ′(x), ∀(x, u) ∈ E ×G,

where D(L) = {f ∈ C2(E◦)∩C(E) : ∂+f(0) = 0 = ∂−f(1)}. To be precise, each f ∈ D(L) is

right-differentiable at 0 and left-differentiable at 1. In what follows, however, we will simply

use the notation f ′(x) to denote the derivative of such an f at each x ∈ E.

Observe that E and G are both compact subsets of R, and that the product space E × G

is a compact rectangle in R2. This being the case, it poses little difficulty to verify that L

satisfies conditions (D1)-(D6).

We take

c(x, u) = x2 + 2x+ u2, ∀(x, u) ∈ E ×G,

as our cost rate function for this problem, which is easily seen to satisfy conditions (C1)-(C3).

In keeping with a more classical formulation of this problem, we omit the budget rate function

c1 in this example, and demonstrate that our results can nevertheless be easily adapted when

a budget constraint is perhaps excluded.

Let us now state the appropriate linear programs for this problem.

V.2.1 The Long-Term Average Linear Program

The long-term average linear program is now as follows:

Minimize 〈c, ρ〉 subject to


〈Lf, ρ〉 = 0, ∀f ∈ D(L); (MA1)

〈1, ρ〉 = 1; (MA2)

ρ ∈ P(E ×G). (MA3)

Since we are omitting the budget constraint for this problem, we will use M to denote the

set of feasible measures to distinguish it from our usual feasible set M.
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The objective function is given by

〈c, ρ〉 =

∫
E×G

(
x2 + 2x+ u2

)
ρ(dx, du),

and the adjoint condition (MA1) can be written

∫
E×G

[
σ2

2
f ′′(x)− uf ′(x)

]
ρ(dx, du) = 0, ∀f ∈ D(L).

It will prove useful to derive a more explicit characterization of each feasible ρ ∈M (recalling

that, by assumption, M 6= ∅). To this end, let ρ ∈M be fixed and arbitrary, and let η be the

regular conditional distribution of ρ given x ∈ E = [0, 1]. Note that, for each t ∈ R+, the

random variable Xt is Gaussian; and so, we may assume that the state marginal measure ρE

has a density function m. The computation in Section C of the Appendix then shows that

m(x) = Nū exp

{
− 2

σ2

∫ x

0

ū(z) dz

}
, ∀x ∈ [0, 1]. (2.1)

where ū is defined by

ū(x) :=

∫
G

u η(x, du), ∀x ∈ [0, 1],

and Nū is the normalizing constant

Nū :=

(∫ 1

0

exp

{
− 2

σ2

∫ y

0

ū(z) dz

}
dy

)−1

.

Remark 2.2. To place some restriction on the admissible class of controls, we will assume

that ū is a differentiable function of x. �

What (2.1) shows is that, for each ρ ∈ ϕ(0), the regular conditional distribution η of ρ

uniquely determines a density function m for ρE in terms of the control ū and the (given)

diffusion coefficient σ; and so, when selecting an optimal measure ρ ∈ ϕ(0), the optimization

will take place over different choices of the function ū : E → G.
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V.2.2 The α-Normalized Linear Program

Let α ∈ (0, 1] be given and assume that X0 = x0 ∈ (0, 1). The α-normalized linear program

for this example is then as follows:

Minimize 〈c, µ̂α〉 subject to


〈Lαf, µ̂α〉 = −αf(x0), ∀f ∈ D(L); (MN1)

〈1, µ̂α〉 = 1; (MN2)

µ̂α ∈ P(E ×G). (MN3)

As above, we let M̂α denote the feasible set for this problem to distinguish it from M̂α.

The objective function is

〈c, µ̂α〉 =

∫
E×G

(
x2 + 2x+ u2

)
µ̂α(dx, du),

and the adjoint condition (MN1) can be written

∫
E×G

[
σ2

2
f ′′(x)− uf ′(x)− αf(x)

]
µ̂α(dx, du) = −αf(x0), ∀f ∈ D(L).

As with the long-term average linear program, we seek a more explicit characterization of

each µ̂α ∈ M̂α. With this purpose in mind, we let µ̂α ∈ M̂α, let ηα denote the regular

conditional distribution for µ̂α, and let mα denote the density function for µ̂Eα . Another

computation in Section C of the Appendix then shows that mα must satisfy the second-

order homogeneous linear ordinary differential equation

m′′α(x) +
2

σ2
ūα(x)m′α(x) +

2

σ2
(ū′α(x)− α)mα(x) = 0, ∀x ∈ [0, 1], (2.3)

where, again, ūα is defined by

ūα(x) :=

∫
G

u ηα(x, du), ∀x ∈ [0, 1].
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As with the long-term average linear program, we will assume that ūα is differentiable (see

Remark 2.2). Note that, if we further assume ūα ∈ C1(E◦), then the basic theory of ordinary

differential equations guarantees that (2.3) has a solution (see, e.g., Theorem 5.1 in Chapter

1 of Coddington and Levinson (1955)); however, this differential equation cannot be solved

explicitly for the density function mα without additional structure.

V.2.3 Correspondences and Optimality of Strict Controls

For the feasibility correspondence ϕ : [0, 1] � P(E ×G) in this example, we have

ϕ(α) =

 M if α = 0,

M̂α if α ∈ (0, 1].

The objective function F : Gr(ϕ)→ R is

F (α, µα) =

 〈c, ρ〉 if α = 0,

〈c, µ̂α〉 if α ∈ (0, 1];

where we may write

〈c, ρ〉 =

∫
E×G

c(x, u) ρ(dx, du) =

∫ 1

0

(
x2 + 2x+

∫
G

u2 η(x, du)

)
m(x) dx

and

〈c, µ̂α〉 =

∫
E×G

c(x, u) µ̂α(dx, du) =

∫ 1

0

(
x2 + 2x+

∫
G

u2 ηα(x, du)

)
mα(x) dx.

Let us now make the following observation about our choice of controls. Fix an x ∈ E and

suppose that Ux ∼ η. Then

∫
G

u2 η(x, du) = E[U2
x ] = Var(Ux) + (E[Ux])

2 = Var(Ux) + ū2(x).
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So, any such “random” variable Ux satisfying Var(Ux) = 0 (i.e., a strict control) will have

corresponding cost 〈c, µα〉 less than that of any choice of Ux with Var(Ux) > 0 (i.e., a relaxed

control) and the same mean. It follows that the optimization can be taken over only strict

controls, in which case we can simply write, e.g., u(x) = ū(x) for each x ∈ E. Thus, our

costs can then be expressed as

〈c, ρ〉 =

∫ 1

0

(
x2 + 2x+ u2(x)

)
m(x) dx

and

〈c, µ̂α〉 =

∫ 1

0

(
x2 + 2x+ u2

α(x)
)
mα(x) dx.

V.2.4 Verification of Main Result

Let us now consider the following hypotheses:

(H1) ϕ is continuous at α = 0,

(H2) ϕ has nonempty compact values, and

(H3) F is continuous.

To first show that ϕ is upper hemicontinuous at α = 0, we let {(αn, µ̂αn) : n ∈ N} be a

sequence in Gr(ϕ) with αn → 0 (where we assume, as usual, that αn > 0 for each n ∈ N).

Since µ̂α ∈ ϕ(αn) for every n ∈ N, it follows that

〈Lαnf, µ̂α〉 = −αnf(x0), ∀f ∈ D(L).

Since, for every f ∈ D(L), the function Lf is a continuous function on the compact set

E ×G, we obtain (via the argument given in Section 2 of Chapter III)

〈Lf, µ0〉 = 0, ∀f ∈ D(L),
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for any µ0 satisfying µ̂αn ⇒ µ0. Hence, µ0 ∈ ϕ(0); and so, ϕ is upper hemicontinuous at

α = 0. As for the lower hemicontinuity of ϕ at α = 0, a more involved approach is required.

Let {αn : n ∈ N} ⊂ (0, 1] be a sequence satisfying αn → 0, and fix ρ0 ∈ ϕ(0) arbitrarily.

Recall that the density m0 of the state marginal ρE0 is given by

m0(x) = Nū0 exp

{
− 2

σ2

∫ x

0

ū0(z) dz

}
, ∀x ∈ [0, 1]. (2.4)

Now, let µ̂α ∈ ϕ(α) and recall that the density function mα for the state marginal measure

µ̂Eα must satisfy the differential equation (2.3); i.e.,

m′′α(x) +
2

σ2
ūα(x)m′α(x) +

2

σ2
(ū′α(x)− α)mα(x) = 0, ∀x ∈ [0, 1].

However, we observe that, by substituting m0 into the left-hand side of (2.3), we obtain

m′′0(x) +
2

σ2
ū0(x)m′0(x) +

2

σ2
(ū′0(x)− α)m0(x) = −α 2

σ2
m0(x), ∀x ∈ [0, 1].

So, when α = 0, the differential equation (2.3) has the unique solution m0. Thus, by Theorem

4.1 in Chapter 2 of Coddington and Levinson (1955) (see Section C of the Appendix), there

exists a δ > 0 such that, for any fixed α ∈ (0, 1] with α < δ, every solution mα of (2.3) exists

and, moreover, mα → m0 uniformly over [0, 1]. Hence, given a sequence {αn : n ∈ N} ⊂ (0, 1]

with αn → 0, we can construct a strictly decreasing subsequence {αnk
: k ∈ N} ⊂ (0, δ) such

that, for each k ∈ N, we can choose a measure µk ∈ P(E × G) whose regular conditional

distribution is η0 and whose state marginal µEk has density function mαn(k)
. It then follows

that µk ∈ ϕ(αnk
) for each k ∈ N and µk ⇒ ρ0. Therefore, ϕ is lower hemicontinuous at

α = 0.

Now recall that, for our constrained optimization problems, we take as one of our basic

assumptions that M 6= ∅ and M̂α 6= ∅ for each α ∈ (0, 1]. However, we can observe that

such an assumption is unnecessary for this example. Indeed: Fix a (X,Λ) ∈ M , and let
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{ρtn : n ∈ N} be a sequence of finite-horizon average occupation measures associated with

(X,Λ), as in the proof of Proposition II.1.4. The compactness of E × G then guarantees

that this sequence is tight, which yields a measure ρ ∈ M. Similarly, for a fixed α ∈ (0, 1],

the proof of Proposition II.1.17 and the compactness of E × G yield a measure µ̂α ∈ M̂α.

Hence, ϕ has nonempty values.

To show that ϕ(0) = M is compact, we need only to (once again) recognize that each

ρ ∈ ϕ(0) is a measure on the compact space E×G; and so, any sequence {ρn : n ∈ N} ⊂ ϕ(0)

necessarily has a subsequence converging (weakly) to some measure in ϕ(0). The same

argument applies to M̂α for each α ∈ (0, 1]. Hence, ϕ is compact-valued.

Finally, the continuity of F follows from the definition of weak convergence and the

compactness of E×G. Indeed: If {(αn, µαn) : n ∈ N} ⊂ Gr(ϕ) is a sequence with (αn, µαn)→

(α, µα) then we have

lim
n→∞

F (αn, µαn) = lim
n→∞

∫
[0,1]2

c(x, u)µαn(dx, du) =

∫
[0,1]2

c(x, u)µα(dx, du) = F (α, µα)

since µαn ⇒ µ and c is a continuous function on the compact set E×G (hence, c is bounded).

So, having satisfied hypotheses (H1)-(H3), we obtain the desired (appropriately modified)

conclusions

(V1) ∅ 6= M0 ⊂M,

(V2) ∅ 6= M∗0 ⊂M∗, and

(V3) J̃∗0 = J̃∗,

where

J̃∗0 = lim
α↓0

(
inf{〈c, µ̂α〉 : µ̂α ∈ M̂α}

)
and J̃∗ = inf{〈c, ρ〉 : ρ ∈M}.
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Moreover, from our deductions above, we see that the optimal value J̃∗ for the long-term

average linear program admits the more explicit and tractable form

J̃∗ = inf

{
Nu

∫ 1

0

(
x2 + 2x+ u2(x)

)
exp

{
− 2

σ2

∫ x

0

u(z) dz

}
dx : u ∈M(E)

}
.

In fact, we can say a bit a more by further analyzing the long-term average problem using

dynamic programming methods, as we now demonstrate.

V.2.5 Solution of the LTA Problem Via Dynamic Programming

We seek a function h ∈ D(L) and a constant λ ∈ R satisfying the HJB equation

inf {c(x, u) + Lh(x, u) : u ∈ G} = λ, ∀x ∈ E.

So, we guess that h is of the form

h(x) = Ax2 +Bx+ Cg(x),

for some A,B,C ∈ R, where

g(x) :=

∫ x

0

exp

{
2

σ2

∫ y

0

u(z) dz

}
dy,

and u ∈ M(E) is yet to be determined. We note that, for a fixed feedback control function

u ∈M(E), we can write

Lf(x) =
σ2

2
f ′′(x)− u(x)f ′(x), ∀(x, f) ∈ E ×D(L).

Hence, we have

Lg(x) =
σ2

2
g′′(x)− u(x)g′(x) = u(x)g′(x)− u(x)g′(x) = 0, ∀x ∈ E.
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Now, to determine the coefficients A,B,C, we first consider the condition h′(0) = 0 = h′(1).

We have

0 = h′(0) = 2A(0) +B + Cg′(0) = B + Cg′(0) = B + C,

which implies that B = −C. We also have

0 = h′(1) = 2A− C + Cg′(1) = 2A+ C[g′(1)− 1],

which then implies that A = −Ck/2, where k := g′(1)− 1. So,

h(x) = −C
2
kx2 − Cx+ Cg(x).

Now, using the linearity of L, we have

Lh(x) = −C
2
kL[x2]− CL[x] + CLg(x) = −C

2
kL[x2]− CL[x],

since Lg(x) = 0. We then compute

L[x2] =
σ2

2
(2)− 2xu(x) = σ2 − 2xu(x) and L[x] =

σ2

2
(0)− u(x) = −u(x).

Now, taking u to be arbitrary, we have

Lh(x, u) = −C
2
k
(
σ2 − 2ux

)
− C(−u) = C(x+ 1)u− C

2
kσ2,

from which it follows that

c(x, u) + Lh(x, u) = x2 + 2x+ u2 + C(x+ 1)u− C

2
kσ2. (2.5)
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This expression is minimized when u = u∗(x) = −C(x + 1)/2. Substituting this back into

(2.5), our task is then to determine a λ ∈ R that satisfies

(
1− C2

4

)
x2 + 2

(
1− C2

4

)
x−

(
C2

4
+
C

2
kσ2

)
= λ, ∀x ∈ E.

This is only possible if C = ±2. The choice of C = 2 leads to a contradiction; so, by choosing

C = −2, we obtain the control function

u∗(x) = −C
2

(x+ 1) = x+ 1.

We can verify that this control function is optimal in the following manner. Since

λ ≤ c(x, u) + Lh(x, u), ∀(x, u) ∈ E ×G,

λ is a lower bound on c(x, u) + Lh(x, u); and so, λ ≤ J̃∗. We can write

−Lh(x, u) ≤ c(x, u)− λ, ∀(x, u) ∈ E ×G.

So, for any feedback control function u and resulting process (X, u(X)) ∈M , we have, for

each t > 0,

0 =
1

t
E[h(Xt)− h(X0)]− 1

t
E
[∫ t

0

Lh(Xt, u(X)) ds

]
≤ 1

t
E[h(Xt)− h(X0)] +

1

t
E
[∫ t

0

c(Xt, u(X)) ds

]
− λ.

Since h is bounded (as it is a continuous function on the compact set E), we can take t→∞

along an appropriate subsequence and obtain

λ = lim sup
t→∞

1

t
E
[∫ t

0

c(Xt, u(X)) ds

]
= J̃(X, u(X)).

88



Then, since J(X, u∗(X)) = λ, the infimum in J̃∗ is obtained by the process (X, u∗(X)) ∈M ;

and so, J̃∗ = λ = J̃(X, u∗(X)), as desired.

Now, with the choice of u = u∗, we compute

k = g′(1)− 1 = exp

{
2

σ2

∫ 1

0

(z + 1) dz

}
− 1 = exp

{
3

σ2

}
− 1,

which yields the optimal value

J̃∗ = λ = −
(
C2

4
+
C

2
kσ2

)
= −1 + kσ2 =

(
exp

{
3

σ2

}
− 1

)
σ2 − 1.

V.2.6 Analysis of Approximate Solutions Via the VDM

By then applying the vanishing discount method in this setting, one may obtain an approxi-

mate solution to the α-discounted (or α-normalized) linear program in the sense that, given

ε > 0, an αε > 0 can be found that satisfies

∣∣∣J̃∗ − αJ̃∗α∣∣∣ =

∣∣∣∣(exp

{
3

σ2

}
− 1

)
σ2 − 1− αJ̃∗α

∣∣∣∣ < ε, ∀α ∈ (0, αε),

where J̃∗α is optimal value for the α-discounted linear program. In particular, we emphasize

that, with respect to the family of α-discounted linear programs, we have

∣∣∣∣ 1α
[(

exp

{
3

σ2

}
− 1

)
σ2 − 1

]
− J̃∗α

∣∣∣∣ < ε

α
, ∀α ∈ (0, αε).

Furthermore, by considering a family {µ̂α : α ∈ (0, 1]} of feasible α-normalized expected

occupation measures for which each µ̂α has as its regular conditional distribution the measure

η∗ satisfying

u∗(x) = x+ 1 =

∫
G

u η∗(x, du), ∀x ∈ E,
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we see that

lim
α↓0
〈c, µ̂α〉 ≥ J̃∗0 = J̃∗.

Thus, if µ0 is a measure satisfying µ̂α ⇒ µ0 as α ↓ 0, then the measure α−1µ0 will be

an approximate solution to the α-discounted linear program for α small enough, and the

quantity 〈c, µ0〉 provides an upper bound on J̃∗0 . As a practical consideration, it is also worth

noting that the control u∗(x) = x+ 1 represents a relatively simple policy to implement.
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CONCLUSION

This dissertation concludes with a brief summary of the results we have presented, followed

by a description of some directions towards which future research in this areas could possibly

be conducted.

VI.1 Summary of Results

The results we have established in this dissertation are what we believe to be a novel ap-

plication of the theory of correspondences to the vanishing discount method within the

linear programming framework for stochastic optimal control as developed in Kurtz and

Stockbridge (1998). Indeed, we saw that the fundamental results regarding the equivalence

between the stochastic control problems and the linear programs herein remained valid when

an additional budget/resource constraint is included in the model. The inclusion of such a

budget constraint moreover provided us with additional structure on our feasible sets of mea-

sures that allowed for some of our desired results (e.g., Proposition IV.2.9) to be more easily

verified; and by characterizing these feasible sets in terms of a feasibility correspondence, we

were able to more elegantly state and prove our desired results. Of particular note is the role

of lower hemicontinuity (of the feasibility correspondence) and upper semicontinuity (of the

objective function) in our analysis, as these are the two conditions appearing in the hypothe-

ses of our main results, but are not automatically obtained from our model assumptions.

The examples provided in Chapter V were further evidence of a certain finicky quality these

two conditions seem to possess.

Our formulation of the vanishing discount method provides a viable alternative to, for

instance, the more typical dynamic programming approach for solving the long-term average

and α-discounted problems. Though, as we saw in Example V.2, these two approaches may

even work hand-in-hand to address more stubborn problems—or if one is simply interested
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in obtaining additional insight into the underlying structural relationship between these

optimality criteria.

VI.2 Possible Directions of Future Research

We first note that it should be possible to weaken the assumption of local compactness on

our state and control spaces, as in Kurtz and Stockbridge (2001). (Bhatt and Karandikar

(1993) and Bhatt and Borkar (1996) also consider state spaces that are only assumed to be

complete, separable, metric spaces, but the former does not include a control and the latter

assumes that the control space is compact.) Ideally, of course, this would be accomplished

without a need for imposing further—or more cumbersome—conditions on the generator L

(or any of the other components of our model).

Also dealt with in Kurtz and Stockbridge (2001) and Kurtz and Stockbridge (2017) is

the more general setting in which a singular control is included in the model. We believe

that many of our results should be amenable to models including a singular control (e.g.,

jump processes). Our choice to exclude singular controls from our analysis was motivated

primarily by a desire to keep exposition (and notation) as lean and clear as possible.

As with the development of any theory or methodology, we are also naturally interested

in identifying further practical applications of this formulation of the vanishing discount

method. In particular, given the presence of a budget constraint, this approach should be

well-suited to many concrete economic applications in which a certain entity (e.g., a firm)

wishes to minimize a cost (or maximize a profit) without consuming too much of a particular

resource. Again, we wished not to stray too far from the general scope of this dissertation,

which was intended to be primarily theoretical in nature.

We have further interest in additional applications to optimal control problems involving

stochastic differential equations. The controlled diffusion problem presented in this disser-

tation was formulated to serve simply as a clear, tractable demonstration of our results; but
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there is no reason to think these results will not be applicable in more general scenarios.

For instance, in Example V.2, we saw that many of our hypotheses were not too difficult to

verify (except, perhaps, the lower hemicontinuity of the feasibility correspondence) because

of the presence of compact state and control spaces. The situation often becomes markedly

more complicated when the state and control spaces are only locally compact (e.g., R) since,

for one, the cost rate function c is no longer bounded. This being the case, it may be argued

that a restriction to models with bounded cost rate functions is perhaps in order. This is

likely too restrictive, however, since many of the classical stochastic control problems of this

nature feature unbounded cost rate functions; e.g., the Linear-Quadratic-Gaussian control

problem and others with quadratic cost criteria. Nevertheless, we believe our basic model

formulation to be well-suited to such problems.
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Appendix

A Some Essential Results from Measure Theory

Perhaps the most important and well-known theorem from measure theory is the Monotone
Convergence Theorem, which we include here for reference. The particular statement of this
theorem that we give below comes from Section 2.4 of Cohn (2013).

Theorem A.1. (Monotone Convergence Theorem) Let (X,A , µ) be a measure space,
and let f and f1, f2, . . . be [0,+∞]-valued A -measurable functions on X. Suppose that

f1(x) ≤ f2(x) ≤ · · ·

and
f(x) = lim

n→∞
fn(x)

hold at µ-almost every x ∈ X. Then∫
X

f dµ = lim
n→∞

∫
X

fn dµ.

Another rather useful result is Fatou’s Lemma. Again, we take the following statement of
this result from Section 2.4 of Cohn (2013).

Theorem A.2. (Fatou’s Lemma) Let (X,A , µ) be a measure space, and let {fn : n ∈ N}
be a sequence of [0,+∞]-valued A -measurable functions on X. Then∫

X

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
X

fn dµ.

When our focus is probability measures, we will occasionally refer to the so-called Portman-
teau Theorem. The statement of this result found below comes from Section 3 of Chapter 3
in Ethier and Kurtz (1986). This particular statement relies upon the following definition.

Definition A.3. Let ∂Γ := Γ ∩ Γc denote the boundary of the subset Γ ⊂ E ×G, where Γ
and Γc denote the closure and complement of Γ, respectively. Then, given µ ∈ P(E × G),
we call Γ a µ-continuity set if Γ ∈ B(E ×G) and µ(∂Γ) = 0. �

Theorem A.4. (Portmanteau Theorem) Let {µn : n ∈ N} ⊂ P(X) and µ ∈ P(X), let
π denote the Prohorov metric on P(X), and suppose that X is a complete, separable, metric
space. Then the following statements are equivalent.

(a) lim
n→∞

π(µn, µ) = 0.

(b) µn ⇒ µ.

(c) lim
n→∞

∫
X

ξ dµn =

∫
X

ξ dµ for all uniformly continuous ξ ∈ C̄(X).
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(d) lim sup
n→∞

µn(Φ) ≤ µ(Φ) for all closed sets Φ ⊂ X.

(e) lim inf
n→∞

µn(Υ) ≥ µ(Υ) for all open sets Υ ⊂ X.

(f) lim
n→∞

µn(Ψ) = µ(Ψ) for all µ-continuity sets Ψ ⊂ X.

We often make use of the following corollary to Fatou’s Lemma and the Portmanteau The-
orem. Note that this corollary is sometimes referred to as “Fatou’s Lemma” itself.

Corollary A.5. Let µ ∈ P(X) and let {µn : n ∈ N} ⊂ P(X) be a sequence of probability
measures with µn ⇒ µ. If f : X → R is lower semicontinuous and bounded below then∫

X

f dµ ≤ lim inf
n→∞

∫
X

f dµn.

Proof. Since f is lower semicontinuous and bounded below (say, −∞ < −κ < f(x) for every
x ∈ X), the function x 7→ f(x) + κ is lower semicontinuous and nonnegative. Thus, for
each λ ∈ R+, the set Hλ := {x ∈ X : f(x) + κ > λ} is open; and so, by the Portmanteau
Theorem, we have

µ(Hλ) ≤ lim inf
n→∞

µn(Hλ), ∀λ ∈ R+. (A.6)

Define the function h : R+ → R+ by h(λ) = µ(Hλ), and define the sequence {hn : n ∈ N} of
functions hn : R+ → R+ by hn(λ) = µn(Hλ). Then {hn : n ∈ N} is a sequence of R+-valued
B(R+)-measurable functions (noting that each hn is nondecreasing) on R+. Integrating both
sides of (A.6) and applying Fatou’s Lemma then yields∫ ∞

0

h(λ) dλ ≤
∫ ∞

0

lim inf
n→∞

hn(λ) dλ ≤ lim inf
n→∞

∫ ∞
0

hn(λ) dλ,

which implies that ∫
X

(f(x) + κ)µ(dx) ≤ lim inf
n→∞

∫
X

(f(x) + κ)µn(dx).

The desired result then follows from the fact that µ and each µn are probability measures.

B Correspondences, Continuity, and Berge’s Theorem

As much of the material in this section is found in Aliprantis and Border (2006), we will—for
the most part—adopt the notation used therein throughout this section of the Appendix.

B.1 Basic Definitions

Definition B.1. A correspondence ϕ from a set X to a set Y is an assignment to each
x ∈ X a subset ϕ(x) of Y . We write ϕ : X � Y to distinguish a correspondence from a
function from X to Y . �
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If ϕ : X � Y is a correspondence, then we refer to X as the domain of ϕ and Y as the
codomain of ϕ. The image of a set A ⊂ X under ϕ is the set

ϕ(A) =
⋃
x∈A

ϕ(x),

and the range of ϕ is ϕ(X). The set

Gr(ϕ) := {(x, y) ∈ X × Y : y ∈ ϕ(x)}

is called the graph of ϕ.

Remark B.2. Since, for each x ∈ X, ϕ(x) is in fact a subset of Y , the careful reader
may—rightfully—think it more appropriate to view the codomain of ϕ as the power set of
Y . However, we believe this slight abuse of terminology and notation allows for clearer and
more concise exposition. �

We also include the following (well-known) definition(s) for convenience and reference. The
reader may consult Section 2.2 of Aliprantis and Border (2006) for further details.

Definition B.3. A neighborhood of a set A is any set B for which there is an open set V
satisfying A ⊂ V ⊂ B. Any open set V that satisfies A ⊂ V is called an open neighborhood
of A. A neighborhood of a point x is any set B for which there is an open set V satisfying
x ∈ V ⊂ B. The collection of all neighborhoods of a point x ∈ X, called the neighborhood
base, or neighborhood system, at x, is denoted by Nx. �

B.2 Continuity of Correspondences

A correspondence ϕ : X → Y is said to be continuous at a point x ∈ X if it is both upper
hemicontinuous at x and lower hemicontinuous at x. As with functions, we say that ϕ is
continuous if it is continuous at each point x ∈ X. We provide the definitions of upper
hemicontinuity and lower hemicontinuity below, as well as some discussion and equivalent
characterizations. For our purposes, the most useful characterizations of hemicontinuity are
the sequential ones. Accordingly, these sequential characterizations are discussed in detail
within the main body of this dissertation.

Remark B.4. Some sources use the term semicontinuity in place of hemicontinuity—
including the seminal treatment of correspondences found in Berge (1997). Indeed, there
is an obvious analog between semicontinuity of functions and hemicontinuity of correspon-
dences. However, we have chosen “hemicontinuity” in order to avoid the reader’s possible
conflation of the two concepts. �

Definition B.5. The upper inverse ϕu (or strong inverse) of a subset A of Y is the set

ϕu(A) := {x ∈ X : ϕ(x) ⊂ A}.

�
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Definition B.6. A correspondence ϕ : X → Y is upper hemicontinuous at the point x ∈ X
if, for every neighborhood U of ϕ(x), there is a neighborhood V of x such that z ∈ V implies
ϕ(z) ⊂ U . (Equivalently, the upper inverse image ϕu(U) is a neighborhood of x in X.) As
with functions, we say that ϕ is upper hemicontinuous on X (abbreviated uhc) if it is upper
hemicontinuous at every point of X. �
In practice, we seldom have need to use the above definition directly. Instead, equivalent
characterizations, such as the one below, often prove to be of greater use.

Lemma B.7. If ϕ : X � Y is a correspondence between topological spaces, then the following
statements are equivalent.

(a) ϕ is upper hemicontinuous.

(b) ϕu(V ) is open for each open subset V of Y .

(c) ϕ`(F ) is closed for each closed subset F of Y .

Proof. We first show equivalence between (a) and (b). Begin by assuming that ϕ is upper
hemicontinuous. Let V be an open subset of Y , and let x ∈ ϕu(V ). Then ϕ(x) ⊂ V , and
so V is an open neighborhood of ϕ(x). Since ϕ is upper hemicontinuous, there is an open
neighborhood W of x such that z ∈ W implies ϕ(z) ⊂ V . Hence x ∈ W ⊂ ϕu(V ), so ϕu(V )
is open. Now, assume (b) holds. Let x ∈ X and let U be an open neighborhood of ϕ(x) in
Y . Since (b) holds, ϕu(U) is an open neighborhood of x. By definition, z ∈ ϕu(U) implies
that ϕ(z) ⊂ U . Therefore ϕ is upper hemicontinuous at x; and, since x ∈ X was arbitrary,
it follows that ϕ is upper hemicontinuous. To show that (b) and (c) are equivalent, we first
assume (c) holds. Let V be an open subset of Y , and observe that ϕ`(V c) = [ϕu(V )]c. Since
(c) holds and V c is closed, it follows that ϕu(V ) is an open subset of Y . Hence (b) holds. A
similar enough argument shows that (b) implies (c).

Definition B.8. The lower inverse ϕ` (or weak inverse) of a subset A of Y is the set

ϕ`(A) := {x ∈ X : ϕ(x) ∩ A 6= ∅}.

�
Definition B.9. A correspondence ϕ : X → Y is lower hemicontinuous at the point x ∈ X
if, for every open set U that satisfies ϕ(x)∩U 6= ∅, there is a neighborhood V of x such that
z ∈ V implies ϕ(z)∩U 6= ∅. (Equivalently, the lower inverse image ϕ`(U) is a neighborhood of
x.) As above, ϕ is lower hemicontinuous on X (abbreviated lhc) if it is lower hemicontinuous
at every point of X. �
We also have the following analog of Lemma B.7 for lower hemicontinuity.

Lemma B.10. If ϕ : X � Y is a correspondence between topological spaces, then the
following statements are equivalent.

(a) ϕ is lower hemicontinuous.

(b) ϕ`(V ) is open for each open subset V of Y .

(c) ϕu(F ) is closed for each closed subset F of Y .

Proof. This proof is a trivial modification of the proof of Lemma B.7.
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B.3 Berge’s Theorem and Related Results

First note that a correspondence ϕ : X � Y is said to have nonempty values if ϕ(x) 6= ∅ for
each x ∈ X. Similarly, ϕ is said to have closed values (respectively, compact values), or be
closed-valued (respectively, compact-valued), if ϕ(x) is a closed (respectively, compact) set
for each x ∈ X. Here, it is important to recognize that, as defined in Aliprantis and Border
(2006), a closed-valued correspondence is not necessarily a closed correspondence (though
the converse of this statement is true). To be precise, the correspondence ϕ : X � Y is
said to be closed if Gr(ϕ) is a closed subset of X × Y . For example, the correspondence
ϕ : [0, 1] � [0, 1] defined by

ϕ(x) =

{
{0} if x > 0,
{1} if x = 0;

is closed-valued but not closed.

We now state the Berge Maximum Theorem as it appears in Aliprantis and Border (2006)
(with some minor changes in notation).

Theorem B.11. Let ϕ : X � Y be a continuous correspondence between topological spaces
with nonempty compact values, and suppose F : Gr(ϕ)→ R is continuous. Define the “value
function” F ∗ : X → R by

F ∗(x) := max{F (x, y) : y ∈ ϕ(x)},

and the “argmax” correspondence ϕ∗ : X � Y of maximizers by

ϕ∗(x) = {y ∈ ϕ(x) : F (x, y) = F ∗(x)}.

Then the following conditions hold:

(a) F ∗ is continuous.

(b) ϕ∗ has nonempty compact values.

(c) If either F has a continuous extension to all of X × Y or Y is Hausdorff, then ϕ∗ is
upper hemicontinuous.

Remark B.12. The Berge Maximum Theorem can be easily modified—with no change to
its conclusions—to yield a similar “Berge Minimum Theorem.” Indeed, one need only to
change “max” to “min” and “maximizers” to “minimizers” where appropriate in the above
statement. What we call Berge’s Theorem throughout this dissertation is meant to refer to
whichever of these theorems is appropriate in the given context. �

The proof of Berge’s Theorem relies upon the following two results, which we also call upon
a number of times throughout this dissertation. The first of these results is a trivial (but
necessary for our purposes) extension of Theorem 2.43 in Aliprantis and Border (2006),
which considers only real -valued functions; the proof, however, is no different.
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Theorem B.13. A (−∞,+∞]-valued lower semicontinuous function on a compact space
attains a minimum value, and the nonempty set of minimizers is compact. Similarly, a
(−∞,+∞]-valued upper semicontinuous function on a compact space attains a maximum
value, and the nonempty set of maximizers is compact.

The result below is Lemma 2.2 in Montes-de Oca and Lemus-Rodŕıguez (2012), but it can
be viewed as a corollary to Lemma 17.29 in Aliprantis and Border (2006).

Lemma B.14. Suppose ϕ : X � Y is a lower hemicontinuous correspondence and F :
Gr(ϕ) → (−∞,+∞] is an upper semicontinuous function. Then the function F ∗ : X → Y
defined by

F ∗(x) = min{F (x, y) : y ∈ ϕ(x)}

is upper semicontinuous.

The following is then a trivial corollary to the preceding lemma, but it allows us to simplify
some of our arguments.

Corollary B.15. Suppose the correspondence ϕ : X � Y is lower hemicontinuous at x = x0

and the function F : Gr(ϕ) → (−∞,+∞] is upper semicontinuous on {x0} × ϕ(x0). Then
the function F ∗ : X → Y defined by

F ∗(x) = min{F (x, y) : y ∈ ϕ(x)}

is upper semicontinuous at x = x0.

C Miscellaneous Results for Example V.2

In this section, we include the computations used to derive the density functions m0 and mα

for, respectively, the state marginal measures ρE and µ̂Eα in Example V.2. This derivation
involves some basic techniques from the theory of ordinary differential equations that one
encounters in an undergraduate course; see, e.g., Edwards et al. (2005). Using these tech-
niques, we see that an explicit expression for m0 can be obtained, but that mα is given only
implicitly as a solution to a second-order linear homogeneous ordinary differential equations.

We also provide some of the omitted details for the argument that the feasibility corre-
spondence ϕ in this diffusion problem is lower hemicontinuous at α = 0. Among these details
is an important theorem from Coddington and Levinson (1955) that provides the desired
existence and convergence results for the (α-parameterized) family of differential equations
that implicitly characterize the α-normalized state marginal densities.

C.1 Density for the Long-Term Average Linear Program

Let ρ0 ∈ ϕ(0). Then we have∫
[0,1]2

Lf(x, u) ρ0(dx, du) = 0, ∀f ∈ D(L).
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Now let m0 be the density function for ρE0 , let η0 be the regular conditional distribution of
ρ0, let ς = 1

2
σ2, and let

ū0(x) :=

∫
G

u η0(x, du), ∀x ∈ [0, 1].

Then, for each f ∈ D(L), we have

0 =

∫
E

(∫
G

{ςf ′′(x)− uf ′(x)} η0(x, du)

)
ρE0 (dx)

=

∫
E

({∫
G

ς η0(x, du)

}
f ′′(x)−

{∫
G

u η0(x, du)

}
f ′(x)

)
ρE0 (dx)

=

∫ 1

0

(ςf ′′(x)− ū0(x)f ′(x))m0(x) dx.

Put g := ςm0. Then integrating by parts yields∫ 1

0

(ςf ′′(x)m0(x)) dx = [g(x)f ′(x)]
1
0 −

∫ 1

0

f ′(x)g′(x) dx

= g(1)f ′(1)− g(0)f ′(0)−
∫ 1

0

f ′(x)g′(x) dx

= 0− 0−
(

[g′(x)f(x)]
1
0 −

∫ 1

0

f(x)g′′(x) dx

)
= −g′(1)f(1) + g′(0)f(0) +

∫ 1

0

f(x)g′′(x) dx

= −ςm′0(1)f(1) + ςm′0(0)f(0) +

∫ 1

0

ςf(x)m′′0(x) dx.

It can furthermore be shown (via integrating by parts) that∫ 1

0

ū0(x)f ′(x)m0(x) dx = ū0(1)m0(1)f(1)− ū0(0)m0(0)f(0)−
∫ 1

0

f(x)(ū0m0)′(x) dx.

Thus, (MA1) can be written

0 = −ςm′0(1)f(1) + ςm′0(0)f(0) +

∫ 1

0

ςf(x)m′′0(x) dx

− ū0(1)m0(1)f(1) + ū0(0)m0(0)f(0) +

∫ 1

0

f(x)(ū0m0)′(x) dx

= [ςm′0(0) + ū0(0)m0(0)] f(0)− [ςm′0(1) + ū0(1)m0(1)] f(1)

+

∫ 1

0

[ςm′′0(x) + (ū0m0)′(x)] f(x) dx.
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Since (MA1) must hold for every f in the set

{f ∈ D(L) : f(0) = 0 = f(1); f(x) > 0, ∀x ∈ (0, 1)},

it follows that
ςm′′0(x) + (ū0m0)′(x) = 0, ∀x ∈ [0, 1].

So, let x ∈ [0, 1] be arbitrary. Then

0 =

∫ x

0

[ςm′′0(λ) + (ū0m0)′(λ)] dλ = [ςm′0(x) + ū0(x)m0(x)]− [ςm′0(0) + ū0(0)m0(0)] .

Thus,
ςm′0(x) + ū0(x)m0(x) = ςm′0(0) + ū0(0)m0(0), ∀x ∈ [0, 1];

i.e., the function x 7→ ςm′0(x) + ū0(x)m0(x) is constant on [0, 1]. By then choosing an f ∈
D(L) satisfying f(0) 6= 0 and f(x) = 0 for x ∈ (0, 1], it follows that ςm′0(0)+ū0(0)m0(0) = 0;
and so,

m′0(x) + ς−1ū0(x)m0(x) = 0, ∀x ∈ [0, 1].

The substitutions y := m0 and γ := ς−1ū0 then allow us to write this differential equation in
the standard form

y′ + γ(x)y = 0, ∀x ∈ [0, 1]. (C.1)

By then introducing the integrating factor

w(x) := exp

{∫ x

0

γ(z) dz

}
, ∀x ∈ [0, 1]

the differential equation (C.1) can be written

(wy)′(x) = 0, ∀x ∈ [0, 1],

which implies that
w(x)y(x) = C, ∀x ∈ [0, 1],

for some constant C ∈ R. Thus,

y(x) = C exp

{
−
∫ x

0

γ(z) dz

}
= C exp

{
−1

ς

∫ x

0

ū0(z) dz

}
, ∀x ∈ [0, 1];

and so,

m0(x) = C exp

{
− 2

σ2

∫ x

0

ū0(z) dz

}
, ∀x ∈ [0, 1].

Now, since
∫ 1

0
m0(x) dx = 1, we have

C

∫ 1

0

exp

{
− 2

σ2

∫ x

0

ū0(z) dz

}
dx = 1;
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and so,

C =

(∫ 1

0

exp

{
− 2

σ2

∫ x

0

ū0(z) dz

}
dx

)−1

.

Therefore, the density function m0 for ρE0 is given by

m0(x) =

(∫ 1

0

exp

{
− 2

σ2

∫ y

0

ū0(z) dz

}
dy

)−1

exp

{
− 2

σ2

∫ x

0

ū0(z) dz

}
, ∀x ∈ [0, 1].

C.2 Density for the α-Normalized Linear Program

Let µ̂α ∈ M̂α. Then we have∫
[0,1]2

Lαf(x, u) µ̂α = −αf(x0), ∀f ∈ D(L).

Now, let mα be the density function for µ̂Eα , let ηα be the regular conditional distribution of
µ̂α, let ς := 1

2
σ2, and let

ūα(x) :=

∫
G

u ηα(x, du), ∀x ∈ [0, 1].

Then, for each f ∈ D(L), we have

−αf(x0) =

∫
E

(∫
G

{ςf ′′(x)− uf ′(x)− αf(x)} ηα(x, du)

)
µ̂Eα (dx)

=

∫
E

(
ςf ′′(x)−

{∫
G

u ηα(x, du)

}
f ′(x)− αf(x)

)
µ̂Eα (dx)

=

∫ 1

0

(ςf ′′(x)− ūα(x)f ′(x)− αf(x))mα(x) dx.

So, again, we analyze the integral∫ 1

0

(ςf ′′(x)− ūα(x)f ′(x)− αf(x))mα(x) dx

term by term.
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Put g := ςmα. Then integrating by parts yields∫ 1

0

(ςf ′′(x)mα(x)) dx = [g(x)f ′(x)]
1
0 −

∫ 1

0

f ′(x)g′(x) dx

= g(1)f ′(1)− g(0)f ′(0)−
∫ 1

0

f ′(x)g′(x) dx

= 0− 0−
(

[g′(x)f(x)]
1
0 −

∫ 1

0

f(x)g′′(x) dx

)
= −g′(1)f(1) + g′(0)f(0) +

∫ 1

0

f(x)g′′(x) dx

= −ςm′α(1)f(1) + ςm′α(0)f(0) + ς

∫ 1

0

f(x)m′′α(x) dx.

Integrating by parts also yields∫ 1

0

ūα(x)f ′(x)mα(x) dx = ūα(1)mα(1)f(1)− ūα(0)mα(0)f(0)−
∫ 1

0

f(x)(ūαmα)′(x) dx.

So, the adjoint condition (MN1) can be written

−αf(x0) = −ςm′α(1)f(1) + ςm′α(0)f(0) + ς

∫ 1

0

f(x)m′′α(x) dx

− ūα(1)mα(1)f(1) + ūα(0)mα(0)f(0) +

∫ 1

0

f(x)(ūαmα)′(x) dx

− α
∫ 1

0

f(x)mα(x) dx

= [ςm′α(0) + ūα(0)mα(0)] f(0)− [ςm′α(1) + ūα(1)mα(1)] f(1)∫ 1

0

(ςm′′α(x) + (ūαmα)′(x)− αmα(x)) f(x) dx.

Since this must hold for every f ∈ D(L), it follows that

m′′α(x) + ς−1(ūαmα)′(x)− ς−1αmα(x) = 0, ∀x ∈ [0, 1]. (C.2)

Now, assuming that ūα is differentiable, we have

(ūαmα)′ = ūαm
′
α + ū′αmα.

So, (C.2) becomes the second-order linear homogeneous ordinary differential equation

m′′α(x) +
2

σ2
ūα(x)m′α(x) +

2

σ2
(ū′α(x)− α)mα(x) = 0, ∀x ∈ [0, 1]. (C.3)
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C.3 Lower Hemicontinuity of Feasibility Correspondence

The following theorem appears as Theorem 4.1 in Chapter 2 of Coddington and Levinson
(1955), with some minor changes in notation.

Theorem C.4. Let D be a domain of (x, y) space, Iα the domain |α − α0| < c, c > 0, and
Dα the set of all (x, y, α) satisfying (x, y) ∈ D,α ∈ Iα. Suppose f is a continuous function
on Dα bounded by a constant M there. For α = α0 let

y′ = f(x, y, α), y(τ) = ξ (C.5)

have a unique solution m0 on the interval [a, b] where τ ∈ [a, b]. Then there exists a δ > 0
such that, for any fixed α satisfying |α−α0| < δ, every solution mα of (C.5) exists over [a, b]
and

mα → m0 as α→ α0

uniformly over [a, b].

Remark C.6. Though (C.5) need not have a unique solution for α 6= α0, its solutions are
nevertheless continuous in α at α0. �

So, consider the differential equation

m′′α(x) +
2

σ2
ūα(x)m′α(x) +

2

σ2
(ū′α(x)− α)mα(x) = 0, ∀x ∈ [0, 1]. (C.7)

which we can write in the form

m′′α(x) = γ(x)m′α(x) + λα(x)mα(x), ∀x ∈ [0, 1],

where

γ(x) = − 2

σ2
ūα(x) and λα(x) = − 2

σ2
(ū′α(x)− α) , ∀x ∈ [0, 1].

By then letting
y1 := mα, and y2 := m′α,

we obtain the following system of two first-order linear equations:

y′1 = y2,

y′2 = γ(x)y2 + λα(x)y1.

Now, by writing y = (y1, y2), we can express the above system in form

y′ = (y2, γy2 + λαy1) = f(x, y, α).

So, taking α0 = 0 and c = 1 in the statement of Theorem C.4, and assuming that ūα ∈
C1(E◦), it is then clear that f is continuous and bounded on the set Dα (which we may
assume is some compact subset of E ×R+× [0, 1]). Our derivation of the long-term average
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density m0 further shows that the differential equation y′ = f(x, y, 0) has the unique solution
m0 on the interval E = [0, 1], where the initial condition

y(τ) = y(x0) = (m0(x0),m′0(x0)) = (ξ1, ξ2) = ξ

can be considered arbitrary. Thus, the hypotheses of Theorem C.4 are satisfied.
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D List of Abbreviations and Symbols

The following table provides a guide to the notation used throughout the main body of this
manuscript. Occasionally, this notation may differ from that which appears in the Appendix.
We make an effort to indicate when this is the case, and we furthermore attempt to keep
notation consistent within each particular section of the Appendix.

R+ the set of nonnegative real numbers; i.e., R+ := [0,+∞)
N the set of positive integers; i.e., N := {1, 2, 3, . . . }
B(S) the Borel σ-algebra on the set S
M(S) the space of positive finite measures on the measurable space (S,B(S))
Ms(S) the space of signed finite measures on the measurable space (S,B(S))
P(S) the space of probability measures on the measurable space (S,B(S))

Λ a P(G)-valued process; i.e., Λ := {Λt : t ∈ R+}
D(L) the domain of the linear operator L
R(L) the range of the operator L
M(S) the space of Borel-measurable functions on the measurable space (S,B(S))
C(S) the space of continuous, real-valued functions on the set S
C̄(S) the space of continuous, bounded, real-valued functions on the set S

Ĉ(S) the space of continuous, real-valued functions on the set S that vanish at infinity
Cc(S) the space of continuous, real-valued functions on the set S with compact support
c(x, u) the cost rate function c evaluated at (x, u) ∈ E ×G
c1(x, u) the budget rate function c1 evaluated at (x, u) ∈ E ×G
E[X] the expectation of the random variable X
IS the indicator function for the set S
M the set of relaxed solutions (X,Λ) to the controlled martingale problem for L

J(X,Λ) the long-term average expected cost of a solution (X,Λ) ∈M
Jα(X,Λ; ν0) the α-discounted expected cost of a solution (X,Λ) ∈M with X0 ∼ ν0

M the set of feasible measures for the long-term average linear program
Mα the set of feasible measures for the α-discounted linear program (for α > 0)

M̂α the set of feasible measures for the α-normalized linear program (for α > 0)
M∗ the set of optimal measures for the long-term average linear program
M∗

α the set of optimal measures for the α-discounted linear program (for α > 0)

M̂∗
α the set of optimal measures for the α-normalized linear program (for α > 0)
ρ a generic long-term average expected occupation measure
µα a generic α-discounted expected occupation measure (for α > 0)
µ̂α a generic α-normalized expected occupation measure (for α > 0)
J∗ the optimal value of the long-term average linear program
J∗α the optimal value of the α-discounted linear program (for α > 0)

Ĵ∗α the optimal value of the α-normalized linear program (for α > 0)
ϕ a generic correspondence
π the Prohorov metric on the space P(E ×G)
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