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ABSTRACT 
 

SYNTHESIS, CHARACTERIZATION, AND SIMULATION OF TWO-DIMENSIONAL MATERIALS 

 
by 

 
Lawrence Hudy 

 
The University of Wisconsin-Milwaukee, 2023 

Under the Supervision of Professor Michael Weinert 
 

 This dissertation focuses on my journey through many aspects of surface science leading 

to the first principles investigation of transition metal dichalcogenides studying the impact of 

defects, twist, and decreasing interlayer separation to probe their effect on the electronic 

properties of these materials.  My journey started out learning many aspects of material 

science such as methods for material synthesis and characterization but later ended on 

simulation of material properties using density functional theory. 

 In the first experiments, we focus on two-dimensional material synthesis, mostly 

involving graphene, where we see that polymer transferred graphene forms a Schottky junction 

when interfaced with a semiconductor.  From atomic force microscopy and scanning tunneling 

microscopy we see that polymer transferred graphene is not entirely flat and forms ripples and 

ridges on the surface.  Scanning tunneling spectroscopy and temperature dependent current-

voltage measurements help to show that the behavior of these graphene Schottky diodes are 

not ideal.  The observed temperature dependent Schottky barrier height can be explained using 

a distribution of barriers with varying barrier heights. 

 The theoretical studies focus on various transition metal dichalcogenides, composed of 

MoSe2 and WSe2, using their monolayer and their homo and hetero bilayer counterparts.  The 
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first studies observed that adding defects alters the electronic band structure, and in particular, 

a copper dopant creates impurity states at the Fermi level and induces a significant magnetic 

moment in the material.  The resulting occupied unpaired spin states are the key contributor to 

the creation of the magnetic moment in this material.  Next, we see that twisted bilayer 

transition metal dichalcogenides, specifically bilayers composed of MoSe2 and WSe2, where we 

observe pressure induced flat bands and real space localization.  Using a commensurate set of 

twist angles and varying interlayer spacing led to the discovery of flat bands and real space 

localization.  These flat bands are a result of forcing the bilayers to interact causing a 

localization in real space.  It is only under special conditions where the closest chalcogens, along 

with the nearest metal atoms, form a hybridized state that contribute to the flat bands in the 

energy band diagram.  These findings help to highlight the impact impurities can have on 

transition metal dichalcogenides and the role of twist and interlayer separation has on the 

formation of flat bands as well as real space localization in these materials. 
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Chapter One Introduction and Motivation 

1.1 Overview 

 Modern society and its thirst for a technology driven lifestyle has put a high demand on 

smaller and more powerful semiconducting devices.  Current computational technology is 

based on silicon because it is readily available based on current processing techniques, it is 

resistant to very high temperatures and high currents [1].  Silicon also requires low voltages for 

operation and can be easily doped to tailor its characteristics [2].  There are physical limitations 

to shrinking conventional metal on semiconductor (CMOS) devices based on silicon in order to 

create more computational dense chips.  These limitations have fueled research on new devices 

that could possibly replace standard silicon CMOS technology.  One approach would be to 

investigate systems where the dimensionality is reduced, that is, as we constrain a dimension, 

we can see what possible physical characteristics we can exploit into a mechanism which can be 

used as an on/off switch for a logical device.  A natural extension would be to go from 3-

dimensional space to two-dimensional space and this is where layered van der Waals (vDW) 

systems come into play.  A single layer is the two-dimensional physical limit where the 

material’s thickness can be of a single atom.  Graphene is a good example of a single atom layer 

thick material. 

 Since the discovery of graphene’s properties by Novoselov et al. in 2004, there has been 

great interest in graphene and two-dimensional material systems [3].  Two dimensional 

materials have displayed numerous interesting properties such as spintronics, charge density 

waves, superconductivity, electron correlations, as well as, but not limited to, topological 
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effects [4-11].  These two-dimensional materials can be fabricated in many ways such as the 

simple and effective technique of mechanical exfoliation also known as the “Scotch” tape 

method [3].  This is achievable because the bulk material is made up of layers of two-

dimensional sheets that are weakly bounded by vdW forces.  This architecture also allows us an 

opportunity to engineer new materials by stacking different types of layers.  Not only can we 

stack different layers, but we can also rotate the layers with respect to each other to achieve 

other desired effects.  This twisting produces an interference pattern, called a Moiré pattern, in 

the material which also gives rise to new and exciting properties.  This gives us many knobs to 

turn in terms of functionalizing performance out of these stacked layered material systems. 

 Generally, two-dimensional materials fall into 4 families of materials.  Graphene and its 

analogues like hexagonal boron nitride, black phosphorous analogues, III-VI semiconductors, 

and transition metal dichalcogenides (TMDs).  These materials span a variety of electronic 

property types such as insulators, semiconductors, semimetals, metals, and superconductors 

[12].  Those also produce a variety of effects that can be used to create new novel devices such 

as spintronics or valleytronics [4,5]. 

1.2 Graphene 

 Graphene, the prototypical two-dimensional material, has shown great promise because 

of its unique band structure [14].  Graphene gets its unique band structure from the equivalent 

carbon sublattices, A and B in the honeycomb lattice.  This is a result of the fact that the 

irreducible representation is 2-fold degenerate.  Using conventional tight-binding theory, where 

the first nearest neighbor hoping is primarily considered leads to the linear energy dispersion 

relation at the corners of the hexagonal Brillouin zone (BZ) near the fermi level [13].  Since the 
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energy dispersion is linear at these high symmetry points, the charge carriers behave more like 

relativistic particles that obey the Dirac equation [14].  The band gap for graphene is 0 eV and 

the fermi level also lies at this point making graphene a semimetal [13,14].  It hosts many exotic 

properties such as relativistic carriers, high thermal and electrical conductivities, topological 

effects, and, but not limited to, unconventional superconductivity [3,8,10,15-17].  More 

recently small angle twisted bilayer graphene, or commonly referred to as “magic angle” 

twisted bilayer graphene, has shown flat electronic bands and unconventional 

superconductivity, which has been attributed to the strongly correlated electrons [8].  This has 

inspired research into other twisted bilayer material systems. 

1.3 Transition Metal Dichalcogenides 

 Transition metal dichalcogenides are composed of a transition metal atom like 

Molybdenum, M = Mo, and a chalcogen ion like Sulfur, X = S and are chemically designated as 

MX2.  These materials are similar to graphene in that they can be cleaved into a single layer 

except where graphene is one atomic layer TMDs consists of a metal layer sandwiched between 

the two chalcogen layers.  These materials are typically semiconducting and have a non-zero 

band gap, 0-2 eV, where spin orbit coupling (SOC) plays an important role in their band 

structures [18-21].  For systems without inversion symmetry but still have time reversal 

symmetry, the effect of SOC lifts the degeneracy for the valleys at K and K’ because they no 

longer correspond to time reversal invariant momenta [18].  The valence and conduction band 

valleys split into two spin polarized bands because time reversal symmetry requires that the 

spin and momentum degrees of freedom to be coupled to the symmetry points at K and K’ [18].  

This means that at those high symmetry points the charge carriers have opposite spin 
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polarizations.  Many TMDs have an indirect band gap in their bulk form meaning that additional 

crystal momentum is required to go from the valence band maximum to the conduction band 

minimum.  The band gap transitions from indirect to direct as we move from the bulk systems 

towards the monolayer systems [18]. 

1.4 Twisted Transition Metal Dichalcogenides 

 A natural extension from twisted bilayer graphene would be to investigate twisted 

bilayer TMDs.  There are many possibilities, such as combinations of atoms or twist angles, 

when it comes to creating twisted transition metal dichalcogenides.  The layers can be of the 

same species or of differing species, homo or hetero bilayers.  These quantities can be used to 

functionalize the material in order to yield desirable responses.  The twisting of the layers 

changes the interaction between the layers which impacts the orbital interaction, charge 

density, energy bands, and excitons.  Under special conditions, these twisted vDW materials 

have displayed flat bands, correlation effects, trapped excitons from the Moiré potential, inter 

and intra layer excitons, as well as many other interesting effects [22-27]. 

 This dissertation explores both experimental and theoretical methods used to test these 

thin film systems.  First is the discussion of methods used to create and characterize samples of 

graphene and TMDs.  Then there is the theoretical exploration of TMDs with defects as well as 

twisted TMDs using first principles calculations and their impact on the electronic properties of 

the TMDs.  Lastly, is the outlook on the results of this study as well as possible paths forward. 

1.5 Thesis Outline 

Chapter 2 
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 This chapter outlines the methods used in this dissertation to create, characterize, and 

also predict the properties of thin film samples.  This covers material synthesis using polymer-

based transfer method and molecular beam epitaxy.  It also covers characterizations methods 

such as atomic force microscopy, Raman spectroscopy, scanning tunneling microscopy, 

scanning tunneling spectroscopy, as well as electronic transport measurements.  This chapter 

also includes information on a custom built chamber used to perform temperature dependent 

current-voltage measurements.  The predictive methods that are covered in this chapter are 

density functional theory and the tight binding method.  This chapter lays the ground work for 

interpreting the results of the following chapters.  Overall, these are the tools used to make, 

characterize, and predict the properties of thin film systems. 

Chapter 3 

 This chapter discusses graphene including its crystal structure and its properties.  It also 

covers studies done on polymer transferred graphene onto a semiconducting substrate forming 

a Schottky junction.  This Schottky diode shows non-ideal performance by the temperature 

variation of the Schottky barrier height.  This variation in the barrier height is modeled by a 

gaussian distribution of barriers because the interface between graphene and the 

semiconducting material is not inherently uniform. 

Chapter 4 

 This chapter covers transition metal dichalcogenides including their crystal structure and 

their respective properties.  It also covers the effect of doping the transition metal 

dichalcogenides with manganese, iron, and copper.  Interestingly we find that the copper 
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doped systems display an induced magnetic moment and a non-zero off-diagonal component 

to the optical response. 

Chapter 5 

 This chapter covers twisted transition metal dichalcogenides including their crystal 

structure, properties, and current findings from my investigation.  We compressed the twisted 

bilayers to find the emergence of flat bands states in the band structure and localized states in 

the simulated scanning tunneling microscopy imagery.  Defects were also introduced into these 

twisted bilayer systems which results in the reduction of effects the dopants, reduced magnetic 

moments, and the features from the twist bilayers get washed out by the defects, real space 

localization is dominated by added defect. 

Chapter 6 

 This last chapter discusses the findings in this dissertation, their impact, as well as 

outlook on future studies. 
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Chapter Two Methodology 

2.1 Introduction 

 This chapter covers the methods we use to create two-dimensional samples, methods 

used to characterize those samples, as well as theoretical methods used to predict properties of 

those samples.  Typical methods used to create monolayer or few layer samples are mechanical 

exfoliation, chemical vapor deposition (CVD), and molecular beam epitaxy (MBE).  Methods 

used to characterize these samples are either used to image the surface of the sample such as 

atomic force microscopy (AFM) and scanning tunneling microscopy (STM) or they probe the 

sample to understand its physical properties such as Raman Spectroscopy, scanning tunneling 

spectroscopy (STS), and charge carrier transport measurements.  There are other methods used 

to probe sample information but are not the focus of this dissertation such as optical 

microscopy, ellipsometry, x-ray photoelectron spectroscopy, angle-resolved photoemission 

spectroscopy, etc. 

2.2 Material Synthesis 

 Two dimensional materials can be synthesized in many ways, some are most definitely 

easier than others.  Methods we used for two-dimensional material synthesis covered in this 

dissertation include mechanical exfoliation or the Scotch tape method [1,2], polymer-based 

transfer [3], and molecular beam epitaxy [4,5].  Methods like mechanical exfoliation and the 

polymer-based transfer are fast and simple but provide little control on sample creation.  

Chemical vapor deposition and molecular beam epitaxy allow much more control over the 

growth conditions allowing a user to fine tune sample creation.  Most of our high-quality thin 
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films are made using molecular beam epitaxy because it provides the ultimate control in terms 

of quality and repeatability. 

2.2.1 Polymer Transfer Method 

 The polymer transfer method is a technique that uses a polymer backing layer to 

transfer a two-dimensional material, like graphene, onto an arbitrary surface [3].  The graphene 

samples we used were monolayer graphene on copper made using chemical vapor deposition.  

These samples are readily available and can be bought from many material providers.  Figure 

2.1 is a simple diagram of the polymer transfer process we used to transfer graphene onto any 

arbitrary substrate. 

 The following outlines our polymer-based transfer method.  First, a polymethyl 

methacrylate (PMMA) polymer is spin coated at a rate of 3000 rpm for 45 seconds to create a 

uniform layer that is approximately 300 nm thick.  The polymer coated sample is then heated 

on a hot plate at 135 °C for 10 minutes to cure.  Then the sample is placed in a copper etch 

solution of iron chloride (𝐹𝑒𝐶𝑙3) to remove the copper backing layer.  The sample is then 

transferred to multiple deionized (DI) water baths in order to remove any residual particles.  To 

further clean the sample, it is placed into an RCA solution (1:1:10 HCL/𝐻2𝑂2/𝐻2𝑂) for 15 

minutes at room temperature and subsequently rinsed in DI a few more times.  The sample is 

then scooped out of the DI water and placed on an arbitrary surface.  To promote adhesion to 

the substrate, the sample is spun at 1000 rpm for 90 seconds.  Then the sample is heated at 135 

°C for 10 minutes to further promote adhesion and remove any residual liquid. Lastly, the 

topcoat polymer is removed using solvents like acetone.  Figure 2.9 is a picture of an AFM 
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image of PMMA transferred graphene where you can see the ridges of monolayer graphene on 

SiO2. 

 

Figure 2.1: Diagram of the polymer transfer process for graphene 

2.2.2 Ultrahigh Vacuum Systems 

 In order to grow high quality films, it is critical to prevent the films from exposure to 

contaminants during and after film growth.  Thin films grown using molecular beam epitaxy 

require an ultra-high vacuum (UHV) system that removes all the contaminants from the 

atmosphere and allows only the sources to interact with the surface of the substrate to grow a 

sample.  The main contaminants in a UHV system are gases from the atmosphere, water vapor 

which is mostly absorbed on the interior surface of the UHV chamber, and the other materials 

within the UHV chamber.  Most of the materials within a UHV chamber have low vapor 

pressure at room temperature and do not impact the level of vacuum in a UHV system. 

 UHV systems pump air out of the chambers using a variety of pumps.  The variety of 

pumps that are employed usually determines the level of vacuum that can be achieved in the 

UHV chamber.  Initially a mechanical pump, also known as a positive displacement pump, is 

used to pump the system down to approximately 10-4 Torr.  Figure 2.2 a) and b) displays a 

typical mechanical pump we used along with its cross section as well as the cycle it goes 

through in order to evacuate air out of the chamber.  This is done by moving gas from a low-
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pressure region to a high-pressure region through compression of the gas and subsequent 

exhaustion to the atmosphere.  The next stage employs a turbomolecular pump that uses 

spinning blades to transfer momentum to the remaining gas molecules and can achieve a 

pressure from 10-4 to 10-12 Torr.  Figure 2.3 displays a turbo pump and its cross section for its 

function.  After the initial pump down the UHV chamber is baked at 100 °C in order to remove 

all the water vapor from the chamber.  These are the typical components needed to achieve 

ultra-high vacuum for high quality crystal growth. 

 

Figure 2.2. Rotary vane mechanical pumps. a) Edwards rotary vane mechanical pumps [6]. b) Rotary vane cycle [7] 

 

Figure 2.3. Turbomolecular pump and operation. a) turbomolecular pump [8]. b) exploded 
view of a turbomolecular pump.  Also contains cartoon drawing of operation to 
help show the various stages of the stators in the turbo pump [8]. 
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2.2.3 Molecular Beam Epitaxy 

 Molecular beam epitaxy is the well-controlled thin film growth method we used to 

create layer by layer growth for various materials.  This allowed us to create high quality, single 

crystal epitaxial thin films.  Quality MBE films require UHV chambers to grow high-quality 

samples.  The main components required for an MBE chamber are the components required for 

UHV conditions, the platform for heating the substrate, and material sources such as effusion 

or electron beam sources.  There are different ideal growth conditions based on the growth 

materials and the substrate they want to grow their materials on.  This requires preparing a 

substrate by annealing at high temperatures.  This allows the atoms to diffuse on the surface 

leading to a low energy minimum configuration which commonly ends up being step-flow 

growth where flat terrace and steps will propagate across the surface of the sample.  Some of 

this step-flow growth by annealing at high temperature can be seen in the AFM image of 

Strontium Titanate (STO) in Figure 2.10. 

 We typically used silicon carbide (SiC) as a test substrate.  Samples of 6H-Si-SiC and 4H-

C-SiC were used to test thin film growth parameters before using the desired substrate.  SiC can 

be heated to release the silicon leaving flat layers of epitaxial graphene for films to grow on.  

Samples of SiC are useful for determining initial growth conditions given that bad films can be 

baked off and the growth conditions can be reset.  A simple method used for heating samples is 

by passing current through the conducting substrate.  SiC is a good candidate because it is 

semiconducting and can withstand high temperatures.  Heating of the samples provides the 

benefit of giving absorbed atoms mobility to diffuse on the surface and find other atoms to 

begin film growth as well as burning off poor films. Non conducting samples can be used as well 
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but they either need to be stacked on a conducting sample or heated by another method such 

as electron beam heating.  In electron beam heating, the metallic holder can be used as an 

electrode placing a bias between the sample and electron beam source, such as a wound wire 

filament.  The bias potential provides the thermionic electrons with kinetic energy.  As the 

electrons strike the surface of the other electrode, their kinetic energy gets converted into 

thermal energy thus heating the sample surface.  Figure 2.4 a) show the sample holder that was 

made from ceramic material to isolate the contacts from electricity and help isolate the 

temperature of the sample holder.  Figure 2.4 b) shows the glowing orange sample being 

heated by electron bombardment from the filament pictured in Figure 2.4 a).  Figure 2.10 a) is 

an AFM image of annealed strontium titanate that was annealed using electron beam heating.  

Figure 2.10 b) shows the line profile of the well-defined steps. 

 

Figure 2.4. Sample heating apparatus. a) electron beam heating stage b) sample holder heated using electron 
beam heating. 

 Material deposition is done by heating samples of elements to cause them to melt and 

evaporate.  The materials used for deposition need to be of high purity to ensure quality 

crystalline growth.  The UHV system provides an environment where the mean free path of the 

gas flux is larger than the UHV chamber, meaning that the gas molecules do not interact with 

each other in flight but rather interact with each other on the surface with which they are 

absorbed on. The heating of these elemental sources is typically done using Knudsen cells or 
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electron beam evaporators.  Figure 2.5 a) shows a Knudsen cell evaporator and Figure 2.5 b) is a 

picture of a 4-source electron beam evaporator that were used in the lab.  A bias potential 

between the filament and the source, or container, provides the mechanism for the thermionic 

electrons to bombard the sources as the current flows through the filament.  The rate of 

evaporation can be controlled by the bias voltage or the amount current running through the 

filament.  Typical growth rates are very slow to allow films to grow epitaxially, meaning they 

grow in a well-defined orientation typically sharing in plane lattice constants for similar 

crystalline structures. 

 

Figure 2.5. Molecular beam sources. a) sample Knudsen cell from Scienta Omicron [9] b) 4 source electron 
beam evaporator from Mantis Deposition 

2.2.4 Photolithography 

 A common method used in electronic device fabrication is photolithography.  

Photolithography uses chemicals that harden when exposed to ultraviolet radiation to create 

patterns on a material or substrate.  You can stack these patterns to create different types of 

devices.  The process varies based on the chemicals you use but the generic process is as 

follows [10].  Step 1 is substrate preparation.  In this step the key component is to remove 

contaminants from the surface using chemicals, etching, or high temperature.  Step 2 typically 

includes growing a thing film of the prepared substrate.  These steps are outlined in the process 

of creating samples using a technique like molecular beam epitaxy.  Step 3 involves spin coating 
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a photosensitive chemical to provide a coating on our prepared sample.  This is then 

subsequently baked to stiffen the photosensitive material.  Step 4 is the alignment of the 

shadow mask and the sample.  The sample and shadow mask are placed in a holder and 

subsequently aligned to create a predesigned pattern based on the device’s application.  Step 5 

is when the sample is exposed to ultraviolet radiation.  Step 6 is when the sample is placed in a 

vacuum chamber with an electron beam evaporator that will deposit either a dielectric film or 

metal layer.  Step 7 involves treating the sample to chemicals to remove the undeveloped 

photoresist material and dielectric or metal that was deposited in the electron beam 

evaporation chamber.  Some of the previous steps can be repeated to create stacks of dielectric 

material or metal based on the device design.  Figure 2.6 is a pictorial description of the 

photolithography process used to create electronic devices. 

 

Figure 2.6. Schematic diagram of the photolithography process used to create 
electronic devices. 

 A typical device that is used to measure the current-voltage (IV) characteristics of a 

material is a Hall bar sample.  We constructed Hall bars by using the photolithography process 

outlined in the previous section.  These Hall bars help to determine the conductivity of a sample 

as well as the type of carriers using IV measurements under a magnetic field.  Figure 2.7 shows 

a set of Hall bars of Bi2Se3 on sapphire used for conductivity measurements.  Contacts are made 
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from the large metal pads on the sample to the metal contacts on the chip carrier.  The 

contacts from the chip carrier to the pads of the Hall bar are made by a gold wire ball bonding 

machine.  This machine has parameters that can tune the heat of the sample, mostly to 

promote adhesion, as well as the pressure and time the tip contacts the surface.  The larger 

pads on the chip carrier make it easier to make electrical connections to other devices that can 

perform the IV characteristics of the sample. 

 

Figure 2.7. Samples of Bi2Se3 on sapphire that were created 
using photolithography. 

2.3 Material Characterization 

 Thin films can be characterized by many methods which probe their structural, 

mechanical, and electrical properties.  The two main methods we use for characterization are 

various types of microscopies and spectroscopies.  There are also other macroscopic types of 

testing that can probe properties of materials such as mechanical or electrical types of testing.  

Electrical testing plays a key role in characterizing new materials that could use a different type 

of mechanism which could be the basis of a new and emerging technology.  The electrical 

testing we utilize is the current-voltage measurements to help investigate the properties of our 

samples. 
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2.3.1 Atomic Force Microscopy 

 Atomic force microscopy is a scanning probe technique used to probe the surface of a 

material and extract its surface topography and force interactions, as well as material 

manipulation.  The typical set up of an atomic force microscope consists of a cantilever, 

piezoelectric element for oscillating the cantilever, or tip, system to detect the deflection of the 

cantilever, and an xyz stage to move the sample or the cantilever set up.  Figure 2.8 a) pictures 

an atomic force microscope from Agilent, similar to the one we used in our lab, and b) is the key 

components for an atomic force microscope.  This technique shares similarities with scanning 

tunneling microscopy except that the sample being imaged does not need to be conducting.  

Instead, the atomic forces between the tip and the sample are mapped to provide an image of 

the surface.  These forces are measured indirectly using the deflection of the cantilever which is 

typically monitored by a laser.  Figure 2.9 is a sample of polymer transferred graphene onto 

SiO2.  The image verifies that the sample of graphene was transferred onto the SiO2 substate.  

There are also clearly ridges of the graphene film formed through the polymer transfer process.  

Figure 2.10 a) is a sample of annealed STO imaged using atomic force microscopy.  The AFM 

image shows well defined steps that were created from the annealing process.  Figure 2.10 b) is 

a line profile across these steps showing the deflection of the tip and the flat surface of each of 

these steps.  Atomic force microscopy makes it simple to verify various steps in a sample or 

device making process. 
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Figure 2.8. Atomic force microscope overview. a) Agilent atomic force microscope [11] b) 
key components in the operation of an AFM [12] 

 

Figure 2.9: Atomic force microscopy image of polymer 
transferred graphene onto SiO2. 

 

Figure 2.10. Atomic force microscopy image of annealed STO. 
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2.3.2 Raman Spectroscopy 

 Raman spectroscopy is a non-destructive technique used to determine the chemical 

structure of a material.  A monochromatic laser is used to excite the vibrational modes within 

the material.  Most of the scattered light will be of the same wavelength as the source, known 

as Rayleigh scattering, but there will also be other scattered wavelengths, either shifted up or 

down, based on the chemical structure of the material.  This Raman spectrum will have several 

peaks that correspond to specific molecular vibrations within the material.  We use this 

technique to determine if monolayer graphene was present within our test samples that do not 

have good contrast and can’t be seen with an optical microscope.  Figure 2.11 a) is a Raman 

spectrum of transferred monolayer graphene onto SiO2/Si.  The more intense G, 1520-1640 

𝑐𝑚−1, and 2D, 2600-2750 𝑐𝑚−1, peaks are signatures of monolayer graphene [13].  The G peak 

is a symmetric 𝐸2𝑔 vibrational mode that corresponds to the top and bottom parts of the 

hexagon moving outward and the middle points moving inward as pictured in Figure 2.11 d).  

The D peak corresponds to the 𝐴1𝑔 symmetric vibrational mode where all the atoms located at 

the hexagon move outwardly as seen in Figure 2.11 e).  Raman spectroscopy allows us to 

indirectly gain useful chemical and structural information from newly made samples and help 

verify steps in the sample making process. 

 

Figure 2.11. Raman spectroscopy overview of graphene. a) Raman spectra of 
monolayer graphene on SiO2/Si and perforated silicon nitride using 
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514 nm laser adapted from Suk et al [13] b) G peak (1520-1640 
cm-1) c) 2D peak (2600-2750 cm-1) d) E2g vibrational mode e) A1g 
vibrational mode. 

2.3.3 Scanning Tunneling Microscopy 

 Scanning tunneling microscopy is another scanning probe technique that uses a metal 

tip over a conducting sample along with a feedback loop to provide an image of the surface.  A 

typical scanning tunneling microscope consists of a metal tip, piezoelectric element to control 

the tip, and electronics to monitor and control the feedback loop which is depicted in Figure 

2.12.  Scanning tunneling microscopes relies on the quantum mechanical effect of tunneling to 

image the sample’s surface.  The electrons have to overcome the potential barrier between the 

sample and the tip.  Using a simple 1-dimensional model, we can write the solution to the 

Schrödinger equation, where the energy is less than the potential barrier, as 𝜓(𝑧) =

𝜓(0)𝑒𝑥𝑝(±𝜅𝑧) where 𝜅 =
√2𝑚(𝑈−𝐸)

ℏ
.  The probability that the electron tunnels through the 

barrier is proportional to |𝜓(𝑧)|2 = |𝜓(0)|2𝑒𝑥𝑝(±2𝜅𝑧).  We can see from this relation that the 

tunneling current has an exponential relationship with the tip to sample distance which allows 

STM imaging to produce such high resolution STM imagery.  The tunneling current feedback 

loop can maintain a current set point by altering the location of the tip which then can be 

mapped to the topography of the sample.  Figure 2.13 shows the rectangular island growth of 

Iron Selenide (FeSe) on epitaxial graphene/SiC.  Figure 2.10 shows the annealed surface of 

Strontium Titanate (STO) where we can see the well-defined flat ridges.  This provides an ideal 

surface for films to grow to because it is flat.  Figure 2.14 is an STM image of FeSe growth on 

STO.  You can see the layer-by-layer growth as well as the excess Fe on the surfaces of each 

layer meaning that the flux of Fe is too high. 
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Figure 2.12. Model of the key components in a scanning tunneling 
microscope [14]. 

 

Figure 2.13. Scanning tunneling microscopy image 
of FeSe growth on epitaxial 
graphene/SiC. 

 

Figure 2.14. Scanning tunneling microscopy image of 
FeSe on STO. 

 In order to get high quality images, a user needs to make a high-quality tip.  Our tips 

were made using chemical etching where the tip, typically tungsten wire, which is placed in a 

NaOH solution and then a cathode placed in the same bath has a voltage applied between the 

tip and the cathode.  The rate of etching impacts the shape of the STM tip.  The most desirable 
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tip shape is one that is very sharp because it will produce the best images.  Changing a tip is a 

very time-consuming process, so when a tip is damaged in the ultra-high vacuum chamber it is 

easier to try and recover it by smashing it into the sample rather than replacing it altogether. 

2.3.4 Scanning Tunneling Spectroscopy 

 Scanning tunneling spectroscopy uses the same instrumentation as scanning tunneling 

microscopy except that the tip is kept at a constant position above the surface of the sample 

and the bias voltage is varied and the resulting differential conductance, dI/dV, is recorded.  

The differential conductance gives information about the local density of states.  We used this 

technique to determine the position of Dirac point, where the linear bands cross, of a sample of 

graphene.  This can give you information about the type of charge carriers or doping of the 

sample which can be seen in Figure 2.15 a) and b).  Figure 2.15 a) shows the Dirac point below 

the sample bias meaning that the charge carriers are electrons and in Figure 2.15 b) shows the 

Dirac point above the sample bias meaning that the carriers are holes. 

 

Figure 2.15. Scanning tunneling spectroscopy of graphene. a) 
Graphene on SiC - C Face from [15] b) Graphene on 
SiC - Si Face from [15] 



 

 24 

2.3.5 Charge Carrier Transport Measurements 

 Transport measurements can be used to characterize samples in many ways such as 

determining carrier type, carrier concentration, material doping, metal-insulator transitions, 

current-voltage characteristics, as well as but not limited to superconductivity.  Transport 

measurements help to highlight the viability of new electronic devices that could potentially 

replace the current silicon technology used in devices today.  Typically, the current and voltage 

are measured to determine the IV characteristics of the sample.  Using this information, you 

can also deduce the conductivity and resistivity of a sample.  This can also be recorded as a 

function of temperature to help understand the mechanisms involved in the conductance of a 

sample.  The main premise is that the carriers in the metals and semiconductors will react to 

either an applied electric field or temperature gradient.  In non-ballistic regimes, this flow is 

impacted by scattering from impurities, defects, as well as lattice vibrations, or phonons. 

 The equation of motion for a charge carrier under the influence of an applied field can 

be written as 

𝑭 = 𝑚
𝑑𝒗

𝑑𝑡
= −𝑞𝑬.      (2.1) 

Integrating over time τ, which is the time between scattering events we can write the velocity 

as 

𝒗 = −
𝑒𝜏

𝑚
𝑬.      (2.2) 

The current density can be written as the number of carriers carrying charge e at velocity v or 

𝒋 = −𝑛𝑒𝒗.  Then using Ohm’s law, 𝒋 = 𝜎𝑬, we can write the current density as 

𝒋 =
𝑛𝑒2𝜏

𝑚
𝑬.      (2.3) 

This gives us the relation of the conductivity as 
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𝜎 =
1

𝜌
=

𝑛𝑒2𝜏

𝑚
.      (2.4) 

We can see that as the relaxation time increases the conductivity also increases as one would 

expect.  If we include alternating time varying fields, the electric field and the velocity would 

include a term like 𝑒𝑥𝑝(−𝑖𝜔𝑡), where ω is the frequency.  Then the equation of motion for a 

charge particle can be written as 

𝑚
𝑑𝒗

𝑑𝑡
= −𝑒𝑬 − 𝑚

𝒗

𝜏
,     (2.5) 

yielding a new conductivity relation of 

𝜎 =
𝑛𝑒2𝜏

𝑚(1−𝑖𝜔𝜏)
.      (2.6) 

We see that with alternating time varying fields the conductivity is complex and has real and 

imaginary components. 

 Measuring the current and voltage are key components to the IV characteristics of a 

sample.  Simple 2 probe methods are not sensitive enough to measure minute changes in 

voltage, so for accurate methods a 4-point probe method is employed.  Figure 2.16 shows a 

sample Hall bar configuration that is commonly used to measure the IV characteristics of a 

material.  Typically, current is sent from connection 1 to 2 and the potential difference is 

measured from 3 to 5 and 4 to 6.  Then the current is sent in the opposite direction and the 

potential difference is measured again from the same contacts.  Then all the measurements are 

averaged to get a reading for either the resistivity and/or the conductivity since both are 

related to each other.  Starting from a form of Ohm’s law, V=IR, and the noting that the 

resistance R depends on the geometry of the sample we can write, 𝑅 = 𝜌
𝑙

𝑡
.  ρ is the resistivity, l 
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is the length between the voltage probes and t is the thickness of the sample.  We can write the 

resistivity as a function of the IV measurements in the region that the response is linear as 

𝜌 =
1

𝜎
=

𝑡

𝑙

𝑉

𝐼
.      (2.7) 

If the response is not linear then a more complex analysis is required to find the conductivity.  

The resistance that is measured is useful in determining the mechanisms that are involved 

during conduction.  The Hall bar sample is also advantageous because IV measurements under 

the presence of a magnetic field can also determine the type of charge carriers by the sign of 

the Hall coefficient RH. 

 

Figure 2.16. Sample Hall bar configuration for IV 
measurements. 

2.3.6 Custom Built Current-Voltage-Temperature Measurement System 

 A custom built station used to make current-voltage measurements as function of 

temperature consisted of mechanical vacuum pump, cryo pump, heating coil and control 

system, Keithley meters to control the current and measure the voltage.  The temperature 

control system and Keithley meters are able to communicate over the general purpose 

interface bus (GPIB) which can allow control using software such as National Instruments 

LabVIEW.  The custom LabVIEW programs are able to automate the measurements and collect 

the data. 
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Figure 2.17. A small UHV chamber that uses a cryopump to reduce the temperature in the 
system as well as other electronic devices used to measure the IV 
characteristics of a sample. 

 For polymer transferred graphene, there are many defects in the surface structure due 

to the transfer method used and induce varying gaps between the transferred material and the 

substrate.  Tomer at al. performed Schottky measurements to show that the surface between 

graphene and SiC/Si/GaAs has many inhomogeneities creating a distribution of barriers that 

become evident by the temperature dependence of the IV characteristics [16-18].  This is a 

challenge for any polymer transferred thin film device. 

2.4 Predictive Methods 

 Predictive methods allow scientists to theoretically probe a material’s properties 

through calculations based on a set of assumptions.  This allows many experiments that might 

be difficult to build in reality to instead take place theoretically.  This approach also allows 

scientists to push the boundary of knowledge and hopefully help guide experimentalists with 

what types of studies might be the most beneficial.  We used density functional theory and 

tight binding modeling to determine a material’s electronic band structure.  The electronic band 
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structure gives a lot of information about a material such as the types of carriers, possible 

energy gap, energy dispersion relation, and density of states.  The electronic band structure can 

yield important information about a material’s electronic, thermal, and optical properties. 

2.4.1 Supercell Atomic Structure 

 To study any system using an ab initio approach, one must accurately describe the 

crystal structure.  When calculations involve supercells, considerations involving supercell size 

need to be taken into account when determining which supercells to study.  For instance, any 

calculation involving the magic angle twisted bilayer graphene would require around 12,000 

atoms in the supercell which makes electron band calculations computationally intensive.  Not 

only would require a large amount of computational power but it would also require more time 

as well.  The approach that is used in this study will be to find the supercells with the least 

number of atoms to facilitate calculations.  We can find supercells for twisted bilayer materials 

by assuming the center of rotation is located at the center of the common hexagons.  In actual 

materials there is some deformation/relaxation that can occur.  For this study, we only allow 

relaxation to occur for atoms in the direction that is perpendicular to the axis of the layers. 

 The supercells can be found by starting from a simple hexagonal lattice where we 

choose an atom as the center and then move outward in concentric circles searching for the 

next nearest neighbor.  As each new atom is identified we can rotate that point into another 

point on the lattice creating and angle between those two points.  This is pictured in Figure 2.18 

where the two solid blue lines show the new larger supercell and, the solid red line corresponds 

to that same cell rotated onto a different lattice point.  The dashed magenta rings is how we 

move outward to check for possible orientations and new angles.  The angle between the blue 
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and the red supercells is the twist angle between these lattices.  We can continue to do this to 

identify new sets of supercells along with their twist angles.  The twist angles that are identified 

are commensurate and only exist for a certain set of angles.  As we continue to build larger 

supercells, some of the twist angles repeat but just for larger supercells which are actually 

multiples of the smaller supercells with the same angle.  This can be seen in Table 2.1 where 

the √21 𝑥 √21 supercells are repeat angles of the √7 𝑥 √7 supercells. 

 

Figure 2.18. Simple hexagonal lattice with 
concentric rings to show how the 
twisted structures are created. 

Table 2.1. Supercell basis vectors in relation to the primitive cell 

Cell Type Angle (°) Layer 

Direction 

A B C 

√7 𝑥 √7 

21.787 

top a1= 
2

7
 A1 - 

1

7
 A2 a2= 

1

7
 A1 + 

3

7
 A2 c 

bottom a1= 
1

7
 A1 - 

2

7
 A2 a2= 

2

7
 A1 + 

3

7
 A2 c 

38.213 

top a1= 
1

7
 A1 - 

2

7
 A2 a2= 

2

7
 A1 + 

3

7
 A2 c 

bottom a1= -
1

7
 A1 - 

3

7
 A2 a2= 

3

7
 A1 + 

2

7
 A2 c 

√13 𝑥 √13 27.796 

top a1= 
1

13
 A1 - 

3

13
 A2 a2= 

3

13
 A1 + 

4

13
 A2 c 

bottom a1= -
1

13
 A1 - 

4

13
 A2 a2= 

4

13
 A1 + 

3

13
 A2 c 
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32.204 

top a1= 
3

13
 A1 - 

1

13
 A2 a2= 

1

13
 A1 + 

4

13
 A2 c 

bottom a1= 
1

13
 A1 - 

3

13
 A2 a2= 

3

13
 A1 + 

4

13
 A2 c 

√19 𝑥 √19 

13.174 

top a1= 
3

19
 A1 - 

2

19
 A2 a2= 

2

19
 A1 + 

5

19
 A2 c 

bottom a1= 
2

19
 A1 - 

3

19
 A2 a2= 

3

19
 A1 + 

5

19
 A2 c 

46.826 

top a1= 
2

19
 A1 - 

3

19
 A2 a2= 

3

19
 A1 + 

5

19
 A2 c 

bottom a1= -
2

19
 A1 - 

5

19
 A2 a2= 

5

19
 A1 + 

3

19
 A2 c 

√21 𝑥 √21 

21.787 

top a1= 
1

21
 A1 - 

4

21
 A2 a2= 

4

21
 A1 + 

5

21
 A2 c 

bottom a1= -
1

21
 A1 - 

5

21
 A2 a2= 

5

21
 A1 + 

4

21
 A2 c 

38.213 

top a1= 
4

21
 A1 - 

1

21
 A2 a2= 

1

21
 A1 + 

5

21
 A2 c 

bottom a1= 
1

21
 A1 - 

4

21
 A2 a2= 

4

21
 A1 + 

5

21
 A2 c 

 

2.4.2 Density Functional Theory 

 There are many methods to extract information from crystal systems.  Here we focus on 

using density functional theory to calculate the electronic structure of various TMDs to include 

ones with defects and twists.  Density functional theory shifts away from the traditional 

approach of focusing on the wavefunction information but instead focuses on the electron 

density, or more accurately the system energy is a functional of the electron density [19].  It is 

standard to assume the Born-Oppenheimer approximation where the heavy nuclear centers 

move little in terms of their electron counterparts and thus can be fixed.  Then we can write the 

many electron Schrödinger equation as: 

�̂�Ψ =  [− ∑
ℏ2

2𝑚𝑒
∇𝑟𝑖

2
𝑖 − ∑

𝑍𝛼𝑒2

|𝑟𝑖−𝑅𝛼|𝑖,𝛼 +
1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|𝑖≠𝑗 ] Ψ = 𝐸Ψ    (2.8) 
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which includes the electron kinetic energies, electron potential from the nuclei, and the 

electron-electron interaction.  The many electron problem can be reduced using simple 

products of one electron orbitals that obey the Pauli exclusion principle.  These can be 

computed using the Slater determinant. 

 Moving towards an electron density approach, we then utilize 2 theorems proved by 

Hohenburg and Kohn [20]: 

Theorem 1. The electron density of a closed system determines the external potential uniquely, 

to within an additive constant. 

Proof: 

 Starting from the Schrödinger equation, let 𝑛(𝒓) be the non-degenerate ground state 

density in the potential 𝑣1(𝒓), then we can write 

𝐸1 = ⟨Ψ1|H1|Ψ1⟩     (2.9 a) 

      = ⟨Ψ1|𝑇 + 𝑈|Ψ1⟩ + ∫ 𝑣1(𝒓)𝑛(𝒓)𝑑𝒓  (2.9 b) 

where T and U are the kinetic energy and interaction energy operators.  Suppose there is 

another different wavefunction and potential that give the same density, then we can write 

𝐸2 = ⟨Ψ2|𝑇 + 𝑈|Ψ2⟩ + ∫ 𝑣2(𝒓)𝑛(𝒓)𝑑𝒓   (2.10) 

Using the variational method, we can use Ψ2 as a trial wavefunction for H1. 

𝐸1 < ⟨Ψ2|H1|Ψ2⟩     (2.11 a) 

      = ⟨Ψ2|𝑇 + 𝑈|Ψ2⟩ + ∫ 𝑣1(𝒓)𝑛(𝒓)𝑑𝒓  (2.11 b) 

      = 𝐸2 + ∫[𝑣1(𝒓) − 𝑣2(𝒓)]𝑛(𝒓)𝑑𝒓.  (2.11 c) 

Doing the same for use Ψ1 as a trial wavefunction for H2, 

      = 𝐸1 + ∫[𝑣2(𝒓) − 𝑣1(𝒓)]𝑛(𝒓)𝑑𝒓.  (2.12) 
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Now adding these equations, we arrive at the contradiction 

𝐸1 + 𝐸2 < 𝐸1 + 𝐸2,     (2.13) 

meaning that the second potential that does equal the first potential plus a constant does not 

give the same density must be wrong.  This means that the density 𝑛(𝑟) uniquely defines the 

potential and all ground state properties derived from the Hamiltonian H. 

Theorem 2. For any positive definite trial density , 𝜌𝑡, such that 

∫ 𝜌𝑡(𝒓) 𝑑𝒓 = 𝑁 then 𝐸[𝜌𝑡]  ≥  𝐸0    (2.14) 

Starting with a trial ground state wavefunction, we want to use the variational principle to show 

that 

𝐸 = 𝑚𝑖𝑛⟨𝜓|𝐻|𝜓⟩.     (2.15) 

For a given density n(r) which determines the ground state and external potential we can 

rewrite equation 2.15 as 

𝐸𝑣[𝑛(𝒓)] = 𝑚𝑖𝑛⟨𝜓𝑛|𝐻|𝜓𝑛⟩    (2.16 a) 

    = ∫ 𝑣(𝒓)𝑛(𝒓)𝑑𝒓 + 𝐹[𝑛(𝒓)]  (2.16 b) 

where F[n(r)] is a universal functional of the density and can be written as 

𝐹[𝑛(𝒓)] = 𝑚𝑖𝑛⟨𝜓𝑛|𝑇 + 𝑈|𝜓𝑛⟩.   (2.17) 

Minimizing the density n(r) we can write 

𝑚𝑖𝑛 𝐸𝑣[𝑛(𝒓)] = 𝑚𝑖𝑛[∫ 𝑣(𝒓)𝑛(𝒓)𝑑𝒓 + 𝐹[𝑛(𝒓)]] ≥ 𝐸0  (2.18) 

where the equality holds for the minimum density n0(r).  Now instead of minimizing the 

wavefunction to find the ground state energy, all that is required is to minimize the density to 

find the ground state of the system. 
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 The first theorem asserts that the electron density determines the Hamiltonian 

operator.  The second allows us to take a variational approach when solving for the ground 

state energy.  We can write the following equation using these two theorems 

𝛿[𝐸[𝜌] −  𝜇(∫ 𝜌(𝒓)𝑑𝒓 − 𝑁)] = 0    (2.19) 

where E is a functional of the density ρ, μ is a Lagrange multiplier or chemical potential, and N is 

the total number of electrons.  Then each term in the Hamiltonian can be written as a 

functional of the density.  Kohn and Sham later proposed a solution to this equation where they 

wrote the kinetic energy and the density as a set of non-interacting orbitals.  The kinetic term is 

not exact, but the density is the true density since it is constructed from a set of orbitals like so 

𝜌(𝒓) =  ∑ |𝜙𝑖(𝒓)|2𝑁
𝑖      (2.20) 

We can take a similar approach with the Coulomb interaction as we did with the density and 

rewrite the Hamiltonian to correct for the error in the kinetic and potential energies as 

𝐸[𝜌] =  𝑇𝑠[𝜌] +  𝑉𝑒𝑥𝑡[𝜌] + 𝑉𝐶[𝜌] +  𝐸𝑥𝑐[𝜌]    (2.21) 

where the subscript s denotes that this is not the true kinetic energy, 𝑉𝐶 is the classical 

Coulomb energy, 𝐸𝑥𝑐 is the exchange correlation which incorporates the error from our 

assumptions but allows us to calculate the energy using the density.  Lastly, we can write the 

Schrödinger equation as: 

[−
1

2
∇2 +  𝑣𝑒𝑥𝑡 + ∫

𝜌(𝒓′)

|𝒓−𝒓′|
𝑑𝒓′ +  𝑣𝑥𝑐(𝒓)] 𝜙𝑖(𝒓) =  𝜀𝑖𝜙𝑖(𝒓)   (2.22) 

where, 

𝑣𝑥𝑐(𝒓) =  
𝛿𝐸𝑥𝑐[𝜌]

𝛿𝜌
.     (2.23) 

These equations are the key components of DFT.  These set of equations are solved iteratively 

until self-consistency is achieved by the filled states 𝜙𝑖(𝒓) and the electron density used in 
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𝑣𝑥𝑐(𝒓).  The complex electron-electron interactions are absorbed in the exchange correlation 

functional and play an important role in calculating the ground state energy.  The exact form of 

the electron exchange correlation is not known but some common approximations to the 

exchange correlation functionals are the local-density approximation (LDA) or the generalized 

gradient approximation (GGA). 

2.4.2.1 Exchange Correlation Functionals 

 The exchange correlation functionals absorb the complex interactions between the 

many electrons within a system and its impact on the total energy of the system.  This arises 

from the fact that the electrons are indistinguishable and cannot occupy the same quantum 

mechanical state resulting in a repulsion between the electrons impacting the total energy of 

the system.  The exchange correlation functionals are not known and there are two main 

approximations that are used in density functional theory, the local density and generalized 

gradient approximations.  These approximations must incorporate the properties of the 

particles and their interaction such as the Pauli exclusion principle.  This leads to the concept of 

the exchange-correlation hole where the probability of finding an electron in the proximity of 

another to be reduced.  We can write the exchange correlation conditional probability of 

finding an electron at r2 given that there is an electron at r1 as 

𝑃𝑥𝑐(𝒓1, 𝒓2) =
𝑃2(𝒓1,𝒓2)

𝜌(𝒓1)
− 𝜌(𝒓2).    (2.24) 

We also require the normalization condition where integrating over all space we find exactly 

one electron, 

∫ 𝑃𝑥𝑐(𝒓1, 𝒓2)𝑑𝒓2 = −1    (2.25) 
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2.4.2.1.1 Local Density Approximation 

 The local density approximation assumes that the exchange correlation energy depends 

on the particle density at that point in space within a range of r and is not affected by changes 

outside that range [21].  For a system whose density varies slowly, an approximation of the 

exchange correlation energy can be written as 

𝐸𝑥𝑐 ≈ ∫ 𝜀𝑥𝑐[𝑛(𝒓)]𝑑𝒓     (2.26) 

which leads to the exchange correlation potential 

𝑣𝑥𝑐[𝑛(𝒓)] ≈
𝑑𝜀𝑥𝑐[𝑛(𝒓)]

𝑑𝑛(𝒓)
= 𝜇𝑥𝑐[𝑛(𝒓)].    (2.27) 

A simple approximation is to ignore the correlation effects and assume the exchange energy is 

Coulombic in nature and the density is the same of the homogeneous electron gas then we can 

write the exchange energy as [22] 

𝜀𝑥𝑐[𝑛(𝒓)] ≈ −
𝑒2

2𝜋1 3⁄ (3𝑛(𝒓))
4 3⁄

,    (2.28) 

as well as the exchange potential 

𝑣𝑥𝑐[𝑛(𝒓)] ≈ −2𝑒2 (
3𝑛(𝒓)

𝜋
)

1 3⁄

.    (2.29) 

Based on these simple assumptions, DFT using the LDA has been successful in calculating the 

energy bands for even complex structures.  Perdew and Wang published their model of the 

energy associated with correlation and it has proven to be accurate [23].  Unfortunately, LDA 

does a poor job in estimating the form of Pxc but it satisfies the sum condition of the Pauli 

exclusion principle. 
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2.4.2.1.2 Generalized Gradient Approximation 

 The generalized gradient approximation is an extension of the LDA with the inclusion of 

the gradient of the local density to account for the inhomogeneity of the true electron density.  

This can be interpreted as a Taylor series expansion of the density where LDA is first term in the 

expansion and is the uniform density.  Each additional term would be a correction to this 

uniform density and the gradient expansion approximation (GEA) includes the next lowest term 

which can be written as 

𝐸𝑥𝑐
𝐺𝐸𝐴[𝜌𝛼, 𝜌𝛽] = ∫ 𝜌𝜀𝑥𝑐(𝜌𝛼, 𝜌𝛽) 𝑑𝒓 + ∑ ∫ 𝐶𝑥𝑐

𝜎𝜎′(𝜌𝛼 , 𝜌𝛽)
∇𝜌𝜎

𝜌𝜎
2 3⁄

∇𝜌𝜎′

𝜌𝜎′
2 3⁄ 𝑑𝒓𝜎,𝜎′ . (2.30) 

The GEA performed poorly due to the fact that it did not enforce the exchange correlation hole 

condition.  Perdew used the real space cutoff in the density gradient to fulfill the exchange 

correlation hole condition [24] leading to the general gradient corrected exchange energy 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝜌𝛼, 𝜌𝛽] = ∫ 𝑓(𝜌𝛼 , 𝜌𝛽 , ∇𝜌𝛼, ∇𝜌𝛽) 𝑑𝒓.    (2.31) 

In an attempt to find functional forms of the exchange correlation energy using GGA we 

separate the exchange and correlation energies.  While this might be useful it has proven to be 

difficult to gain any physical insight using these forms so instead, we can write the exchange 

correlation energy in terms of a perturbation to the LDA.  We can write the exchange energy 

contribution as 

𝐸𝑋
𝐺𝐺𝐴 = 𝐸𝑋

𝐿𝐷𝐴 − ∑ ∫ 𝐹(𝑠𝜎)𝜌𝜎
4 3⁄ (𝒓)𝑑𝒓𝜎 .    (2.32) 

Here F is the reduced gradient density for spin σ 

𝑠𝜎 =
|∇𝜌𝜎(𝒓)|

𝜌𝜎
4 3⁄ (𝒓)

      (2.33) 

and accounts for the local inhomogeneity. 
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 In this work, the Perdew, Burke, and Ernzerhof (PBE) functionals are used for the density 

functionals in the calculations.  These functionals start from the work down by Perdew and 

Wang form of the exchange and correlation [23] and include modifications that provide an 

accurate description of the linear response of the uniform electron gas, correct behavior under 

uniform scaling, as well as a smoother potential [25]. 

2.4.2.2 Calculations using Vienna Ab initio Simulation Package 

 The Vienna ab-initio simulation package (VASP) is a computer program used for atomic 

scale modeling of materials [26].  In this dissertation, VASP is the main tool used in solving for 

the electronic structure properties such as the energy bands, charge densities, density of states, 

optical properties, as well as other physical properties.  VASP has many parameters that a user 

can enable to incorporate constraints based on the type of the materials under study, such as 

enable weak van der Waals interactions between layered materials like graphene, or TMDs. 

2.4.2.2.1 Energy Band Calculations 

 Energy band calculations were performed using the VASP software package and the 

projected augmented wave (PAW) approach.  The electron-electron interactions have been 

captured in the ultra-soft pseudopotentials available through the VASP database.  The 

Monkhorst-Pack sampling scheme was used to generate a uniform k-point grid sampling in the 

first Brillouin Zone.  The generalized gradient approximation using PBE functionals was also 

used to describe the electron exchange correlation interactions.  Band unfolding was also 

required to compare the energy bands of the supercell to the energy bands of the primitive cell 

in its BZ.  This way we can do a direct comparison of the effect twisting the bilayers has on the 

energy bands.  The band unfolding was achieved by comparing the lattice vectors of the 
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supercell and primitive cell given the constraints that the supercell reciprocal lattice vectors are 

also reciprocal lattice vectors of the primitive BZ.  In addition to band unfolding, layer 

projection was also performed on the systems to further determine which layer contributes to 

which part of the band structure.  This is helpful when the layers contain different types of 

atoms.  This can also be seen by doing an orbital band projection for each element and its 

orbitals.  This allows us to further probe not only the layers but the atoms themselves along 

with their contributing orbitals. 

2.4.2.2.2 Optical Conductivity 

 In section, we will briefly cover some key electromagnetic concepts that relate to the 

conductivity of a material and theoretical calculations that can be used to obtain the optical 

response of a material.  The optical response in TMDs plays a larger role because of the direct 

band gap at K and K’ and the large binding energy of the excitons formed in TMDs [27,28].  The 

strong light matter interaction within TMDs, resulting from their excitonic properties, presents 

itself as strong photoluminescence and absorption characteristics [27,28]. 

 The induced dipole moment from each charge carrier is �⃗� = −𝑒𝑟.  The displacement 𝑟 

can be found by integrating the velocity of the charge carriers.  Then summing over all charges, 

we can write the polarization as 

�⃗⃗� = −𝑛𝑒𝑟 = −
𝑛𝑒2

𝑚

1

𝜔2+𝑖𝜔 𝜏⁄
�⃗⃗�.    (2.34) 

Recall, �⃗⃗⃗� = 𝜖0�⃗⃗� + 𝜖0𝜒𝑒 �⃗⃗� = 𝜖�⃗⃗�, then we can write the frequency dependent dielectric function 

as 

𝜖(𝜔)

𝜖0
= 1 −

𝜔𝑝
2

𝜔2+𝑖𝜔 𝜏⁄
,     (2.35) 
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where the plasma frequency is written as 𝜔𝑝
2 =

𝑛𝑒2

𝜖0𝑚
.  The dielectric function has both real and 

imaginary components.  The Kramers-Kronig relations relate the real and imaginary parts of the 

dielectric function and are typically written as [29] 

𝑅𝑒 𝜖(𝜔) 𝜖0⁄ = 1 +
2

𝜋
𝑃 ∫

𝜔′𝐼𝑚 𝜖(𝜔′) 𝜖0⁄

𝜔′2−𝜔2
𝑑𝜔′

∞

0
   (2.36) 

𝐼𝑚 𝜖(𝜔) 𝜖0⁄ = −
2𝜔

𝜋
𝑃 ∫

[𝑅𝑒 𝜖(𝜔′) 𝜖0⁄ −1]

𝜔′2−𝜔2
𝑑𝜔′

∞

0
   (2.37) 

The imaginary part of the dielectric function can be measured using methods that probe the 

energy absorption of a material.  Using the Kramers-Kronig relations and the measured 

imaginary part of the dielectric function, one can obtain the real part of the dielectric function 

in order to understand the frequency response of the material. 

 The following is the derivation from VASP literature on how the dielectric properties are 

calculated.  The derivation relies on the fact that with small perturbations the response is 

linear.  An external potential is applied as a perturbation and the Kohn-Sham equations are 

solved giving information about the excited states.  The dielectric function is calculated from 

the excited states.  Starting from the response of the internal electric field in a material to an 

external electric field we can write [30] 

𝑬 = 𝜖−1𝑬𝑒𝑥𝑡.      (2.38) 

where ϵ is the dielectric tensor.  This external field causes a change in the charge density which 

results in an induced potential which can be written as 

𝜌𝑖𝑛𝑑 = 𝜒𝑣𝑒𝑥𝑡      (2.39) 

𝜌𝑖𝑛𝑑 = 𝑃𝑣𝑡𝑜𝑡       (2.40) 
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where 𝑣𝑡𝑜𝑡 = 𝑣𝑒𝑥𝑡 + 𝑣𝑖𝑛𝑑, χ is the reducible polarizability, and P is the irreducible polarizability.  

Relating the dielectric constant and the polarizability we can write 

𝜖−1 = 1 + 𝜐𝜒      (2.41) 

𝜖 = 1 − 𝜐𝑃      (2.42) 

𝜒 = 𝑃 + 𝑃𝜐𝜒      (2.43) 

where ν is the Coulomb kernel and can be written as 𝜐 =
4𝜋𝑒2

𝑞2 . 

We can also write equation 2.38 in terms of micro and macroscopic dielectric functions, 

𝑬(𝒓, 𝜔) = ∫ 𝜖𝑚𝑎𝑐
−1 (𝒓 − 𝒓′, 𝜔)𝑬𝑒𝑥𝑡(𝒓′, 𝜔)𝑑𝒓′    (2.44) 

𝒆(𝒓, 𝜔) = ∫ 𝜖−1(𝒓, 𝒓′, 𝜔)𝑬𝑒𝑥𝑡(𝒓′, 𝜔)𝑑𝒓′,    (2.45) 

where the macro form focuses on averages over the sample whereas the micro form focuses on 

where you are in the material and where the other charges are.  We can also write equations 

2.44 and 2.45 in momentum space as 

𝑬(𝒒, 𝜔) = 𝜖𝑚𝑎𝑐
−1 (𝒒, 𝜔)𝑬𝑒𝑥𝑡(𝒒, 𝜔)    (2.46) 

𝒆(𝒒 + 𝑮, 𝜔) = ∑ 𝜖𝑮,𝑮′
−1 (𝒒, 𝜔)𝑮′ 𝑬𝑒𝑥𝑡(𝒒 + 𝑮′, 𝜔).   (2.47) 

Now relating the microscopic dielectric function to the external field we can write 

𝜖𝑮,𝑮′
−1 (𝒒, 𝜔) = 𝛿𝑮,𝑮′ +

4𝜋𝑒2

|𝒒+𝑮||𝒒+𝑮′|

𝜕𝜌𝑖𝑛𝑑(𝒒+𝑮,𝜔)

𝜕𝑣𝑒𝑥𝑡(𝒒+𝑮′,𝜔)
    (2.48) 

𝜖𝑮,𝑮′(𝒒, 𝜔) = 𝛿𝑮,𝑮′ −
4𝜋𝑒2

|𝒒+𝑮||𝒒+𝑮′|

𝜕𝜌𝑖𝑛𝑑(𝒒+𝑮,𝜔)

𝜕𝑣𝑡𝑜𝑡(𝒒+𝑮′,𝜔)
    (2.49) 

where 

𝜒𝑮,𝑮′(𝒒, 𝜔) =
𝜕𝜌𝑖𝑛𝑑(𝒒+𝑮,𝜔)

𝜕𝑣𝑒𝑥𝑡(𝒒+𝑮′,𝜔)
    (2.50) 

𝑃𝑮,𝑮′(𝒒, 𝜔) =
𝜕𝜌𝑖𝑛𝑑(𝒒+𝑮,𝜔)

𝜕𝑣𝑡𝑜𝑡(𝒒+𝑮′,𝜔)
    (2.51) 
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𝑣𝑮,𝑮′
𝑠 (𝒒) =

4𝜋𝑒2

|𝒒+𝑮||𝒒+𝑮′|
.     (2.52) 

Using the Dyson equation, we can also relate P and χ which takes on the form 

𝜒𝑮,𝑮′(𝒒, 𝜔) = 𝑃𝑮,𝑮′(𝒒, 𝜔) + ∑ 𝑃𝑮1,𝑮2
(𝒒, 𝜔)𝑣𝑮1,𝑮2

𝑠 (𝒒)𝜒𝑮2,𝑮′(𝒒, 𝜔)𝑮1,𝑮2
. (2.53) 

In the Kohn-Sham picture along with the independent particle approximation we can access the 

irreducible polarizability χ0 and Adler [31] derived an expression in terms of Bloch functions in 

reciprocal space which can be written as 

𝜒𝑮,𝑮′
0 (𝒒, 𝜔) =

1

Ω
∑ 2𝜔𝒌(𝑓𝑛′𝒌+𝒒 − 𝑓𝑛′𝒌)𝑛𝑛′𝒌

⟨𝜓𝑛′𝒌+𝒒|𝑒(𝑖(𝒒+𝑮)𝒓)
|𝜓𝑛𝒌⟩⟨𝜓𝑛𝒌|𝑒(−𝑖(𝒒+𝑮′)𝒓′)

|𝜓𝑛′𝒌+𝒒⟩

𝜖𝑛′𝒌+𝒒−𝜖𝑛𝒌−𝜔−𝑖𝜂
. (2.54) 

We can also rewrite equations 2.41, 2.42, and 2.43 to include the exchange correlation terms 

such that 

𝜒 = 𝜒0 + 𝜒0(𝜐 + 𝑓𝑥𝑐)𝜒     (2.55) 

𝑃 = 𝜒0 + 𝜒0𝑓𝑥𝑐𝑃      (2.56) 

𝜒 = 𝑃 + 𝑃𝜐𝜒       (2.57) 

where 𝑓𝑥𝑐 =
𝜕𝜐𝑥𝑐

𝜕𝜌
|
𝜌=𝜌0

.  Using the random phase approximation (RPA), 𝑃 = 𝜒0, then we can 

write equation 2.49 as 

𝜖𝑮,𝑮′(𝒒, 𝜔) = 𝛿𝑮,𝑮′ −
4𝜋𝑒2

|𝒒+𝑮||𝒒+𝑮′|
𝜒𝑮,𝑮′

0 (𝒒, 𝜔).    (2.58) 

In the long wavelength limit, where 𝒒 → 0, the dominant term in the dielectric tensor is the 𝜖0,0 

term.  Then we can finally arrive at the imaginary part of the dielectric function 

𝜖𝛼𝛽
(2)(𝜔) =

4𝜋𝑒2

Ω
lim
𝑞→0

1

𝑞2
∑ 2𝜔𝒌𝛿(𝜖𝑐𝒌 − 𝜖𝑣𝒌 − 𝜔)⟨𝑢𝑐𝒌+𝑞𝑒𝛼

|𝑢𝑣𝒌⟩ ⟨𝑢𝑣𝒌|𝑢𝑐𝒌+𝑞𝑒𝛽
⟩𝑣,𝑐,𝒌  (2.59) 

where c and v are the conduction and valence band states.  The summation is performed over 

the empty states yielding the imaginary part of the dielectric function.  We can use the 
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Kramers-Kronig relations to find the real part of the dielectric function and also the optical 

conductivity because those quantities are related.  To find the relationship between the 

dielectric function and the conductivity we start with the electric current and the displacement 

under alternating time varying fields.  We can write them as 

𝒋(𝜔) = 𝜎𝑬(𝜔)     (2.60) 

𝑫(𝜔) = 𝜖0𝑬(𝜔).     (2.61) 

Now using Maxwell’s equations for the curl of the auxiliary field we can write 

∇ × 𝑯 = 𝜇0
𝜕𝑫

𝜕𝑡
+ 𝜇0𝒋 = 𝜇0 (𝜖0 +

𝑖𝜎

𝜔
)

𝜕𝑬

𝜕𝑡
= 𝜇0𝜖(𝜔)

𝜕𝑬

𝜕𝑡
.  (2.62) 

Rearranging terms to write the conductivity in terms of the dielectric function as 

𝜎(𝜔) = 𝑖𝜔(𝜖0 − 𝜖(𝜔)).    (2.63) 

2.4.3 Tight Binding Method 

 The tight binding method is used to calculate the energy bands of a system using a 

linear combination of atomic orbitals (LCAO).  The main concepts in the tight binding method 

are that if we have wavefunctions of separate atoms, ψA and ψB, that are far apart and, we 

bring them closer together, their wavefunctions overlap resulting in states that are linear 

combinations of the wavefunctions with differing energy levels, ψA±ψB.  Starting with the 

electron wavefunction of a system and the Hamiltonian operator, 𝐻 = 𝐻𝑎𝑡 + Δ𝑈 where Hat is 

the atomic Hamiltonian, we can write the Hamiltonian as 

𝐻|𝜓𝑛𝑘⟩ = 𝐸|𝜓𝑛𝑘⟩.     (2.64) 

where n and k are the band index and wavevector respectively.  The atomic wavefunctions are 

eigenstates of the atomic Hamiltonian, 

𝐻𝑎𝑡𝜙𝑖(𝒓) = 𝜖𝑖𝜙𝑖(𝒓)     (2.65) 
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where ϵi is the energy of the ith isolation atom.  The states φi are not required to be 

orthonormal but typically are in order to make the math easier.  The electron wavefunction 

must have the periodicity of the lattice, meaning that is going to be similar to the Bloch form, so 

we can write 

𝜓𝑛𝑘(𝒓) =
1

√𝑁
∑ 𝑒𝑥𝑝(𝑖𝒌 ∙ 𝑹)𝜙𝑛𝑘(𝒓 − 𝑹)𝑅 .   (2.66) 

Proof: 

If T is a translation vector then 

𝜓𝑛𝑘(𝒓 + 𝑻) =
1

√𝑁
∑ 𝑒𝑥𝑝(𝑖𝒌 ∙ 𝑹)𝜙𝑛𝑘(𝒓 − 𝑹 + 𝑻)𝑅    (2.67 a) 

=
1

√𝑁
𝑒𝑥𝑝(𝑖𝒌 ∙ 𝑻) ∑ 𝑒𝑥𝑝(𝑖𝒌 ∙ (𝑹 − 𝑻))𝜙𝑛𝑘(𝒓 − (𝑹 − 𝑻))𝑅   (2.67 b) 

= 𝜓𝑛𝑘(𝒓)
1

√𝑁
𝑒𝑥𝑝(𝑖𝒌 ∙ 𝑻).      (2.67 c) 

Which is the Bloch condition we sought to satisfy.  Now writing the total wavefunction as a 

linear combination of periodic wavefunctions, ψα, we have 

𝜓 = ∑ 𝑢𝛼𝜓𝛼𝛼 .      (2.68) 

We can find the eigenvalues of the system by solving the Hamiltonian matrix formed from 

⟨𝜓|𝐻|𝜓⟩.  This can be written as 

⟨𝜓𝛽|𝐻(∑ 𝑢𝛼|𝜓𝛼⟩𝛼 ) = 𝐸⟨𝜓𝛽| ∑ 𝑢𝛼𝛼 |𝜓𝛼⟩   (2.69 a) 

∑ 𝑢𝛼𝛼 ⟨𝜓𝛽|𝐻|𝜓𝛼⟩ = 𝐸 ∑ 𝑢𝛼⟨𝜓𝛽|𝜓𝛼⟩𝛼    (2.69 b) 

𝐻𝛽𝛼𝑎𝛼 = 𝐸𝑆𝛽𝛼𝑎𝛼    (2.69 c) 

(𝐻𝛽𝛼 − 𝐸𝑆𝛽𝛼)𝑎𝛼 = 0    (2.69 d) 

where 

𝐻𝛽𝛼 = ⟨𝜓𝛽|𝐻|𝜓𝛼⟩     (2.70) 
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𝑆𝛽𝛼 = ⟨𝜓𝛽|𝜓𝛼⟩.     (2.71) 

A non-trivial solution is found by finding the determinant of equation 2.69 d, which can be 

written as 

|𝐻𝛽𝛼 − 𝐸𝑆𝛽𝛼| = 0,     (2.72) 

where the eigenvalues of this matrix are also the eigenvalues of the system, or rather energy 

bands of the system. 

2.4.3.1 Slater-Koster Parameters 

 Writing equations 2.70 and 2.71 in terms of the orbitals in real space we have 

𝐻𝛽𝛼 =
1

𝑁
∑ ∑ 𝑒(𝑖𝑘∙(𝑅−𝑅′)) ∫ 𝜙𝛽

∗ (𝑟 − 𝑅)𝐻𝜙𝛼(𝑟 − 𝑅′)𝑑𝑟𝑅′𝑅    (2.73) 

𝑆𝛽𝛼 =
1

𝑁
∑ ∑ 𝑒(𝑖𝑘∙(𝑅−𝑅′)) ∫ 𝜙𝛽

∗ (𝑟 − 𝑅)𝜙𝛼(𝑟 − 𝑅′)𝑑𝑟𝑅′𝑅 .   (2.74) 

The integral part of equation 2.73 is known as the hopping parameters and the integral part of 

equation 2.74 is known as the overlap integrals.  Slater and Koster simplified the matrix 

elements found in solving the tight binding problem [32].  These are typically known as the 

direction cosines and they focus on the vector from one state to the other.  They are of the 

form 

𝑟𝑖 = 𝑙�̂� + 𝑚�̂� + 𝑛�̂�     (2.75) 

and the solution to the hopping integral is of the form 

𝐸𝛼,𝛽 = ⟨𝑅, 𝛽|𝐻|𝑅′, 𝛼⟩ =
1

𝑁
∑ ∑ 𝑒(𝑖𝑘∙(𝑅−𝑅′)) ∫ 𝜙𝛽

∗ (𝑟 − 𝑅)𝐻𝜙𝛼(𝑟 − 𝑅′)𝑑𝑟𝑅′𝑅 . (2.76) 

The solutions are in terms of the vector from one state to the other and the strength of the 

potential as well as the type of bond noted as Vαβγ where α,β are the basis orbitals and γ is the 

type of bond between those orbitals.  The basis set used in this dissertation to represent the 
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atomic orbitals are the real atomic orbitals: s, px, py, pz, dxy, dyz, dzx, 𝑑𝑥2−𝑦2 and 𝑑𝑧2.  Now using 

the basis set relevant to our material system we can solve the determinant of the matrix using 

the simplified direction cosines in table 2.2.  The potential terms are used as fit parameters 

used when fitting tight binding bands to DFT energy bands calculations.  Typically, bands 

around the Fermi level or around the symmetry points are used when determining the strength 

of these potentials. 

Table 2.2. Energy integrals as a function of direction cosines 

𝐸𝑠,𝑠  𝑉𝑠𝑠𝜎  

𝐸𝑠,𝑥 𝑙𝑉𝑠𝑝𝜎  

𝐸𝑥,𝑥 𝑙2𝑉𝑝𝑝𝜎 + (1 − 𝑙2)𝑉𝑝𝑝𝜋 

𝐸𝑥,𝑦 𝑙𝑚𝑉𝑝𝑝𝜎 − 𝑙𝑚𝑉𝑝𝑝𝜋  

𝐸𝑥,𝑧 𝑙𝑛𝑉𝑝𝑝𝜎 − 𝑙𝑛𝑉𝑝𝑝𝜋  

𝐸𝑠,𝑥𝑦 √3𝑙𝑚𝑉𝑠𝑑𝜎  

𝐸𝑠,𝑥2−𝑦2  1

2
√3(𝑙2 − 𝑚2)𝑉𝑠𝑑𝜎  

𝐸𝑠,3𝑧2−𝑟2 
[𝑛2 −

1

2
(𝑙2 + 𝑚2)] 𝑉𝑠𝑑𝜎  

𝐸𝑥,𝑥𝑦 √3𝑙2𝑚𝑉𝑝𝑑𝜎 + 𝑚(1 − 2𝑙2)𝑉𝑝𝑑𝜋 

𝐸𝑥,𝑦𝑧 √3𝑙𝑚𝑛𝑉𝑝𝑑𝜎 − 2𝑙𝑚𝑛𝑉𝑝𝑑𝜋 

𝐸𝑥,𝑧𝑥 √3𝑙2𝑛𝑉𝑝𝑑𝜎 + 𝑛(1 − 2𝑙2)𝑉𝑝𝑑𝜋 

𝐸𝑥,𝑥2−𝑦2  1

2
√3𝑙(𝑙2 − 𝑚2)𝑉𝑝𝑑𝜎 + 𝑙(1 − 𝑙2 + 𝑚2)𝑉𝑝𝑑𝜋  

𝐸𝑦,𝑥2−𝑦2  1

2
√3𝑚(𝑙2 − 𝑚2)𝑉𝑝𝑑𝜎 − 𝑚(1 + 𝑙2 − 𝑚2)𝑉𝑝𝑑𝜋 

𝐸𝑧,𝑥2−𝑦2  1

2
√3𝑛(𝑙2 − 𝑚2)𝑉𝑝𝑑𝜎 − 𝑛(𝑙2 − 𝑚2)𝑉𝑝𝑑𝜋  

𝐸𝑥,3𝑧2−𝑟2  
𝑙 [𝑛2 −

1

2
(𝑙2 + 𝑚2)] 𝑉𝑝𝑑𝜎 − √3𝑙𝑛2𝑉𝑝𝑑𝜋 
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𝐸𝑦,3𝑧2−𝑟2 
𝑚 [𝑛2 −

1

2
(𝑙2 + 𝑚2)] 𝑉𝑝𝑑𝜎 − √3𝑚𝑛2𝑉𝑝𝑑𝜋  

𝐸𝑧,3𝑧2−𝑟2 
𝑛 [𝑛2 −

1

2
(𝑙2 + 𝑚2)] 𝑉𝑝𝑑𝜎 − √3𝑛(𝑙2 + 𝑚2)𝑉𝑝𝑑𝜋 

𝐸𝑥𝑦,𝑥𝑦  3𝑙2𝑚2𝑉𝑑𝑑𝜎 + (𝑙2 + 𝑚2 − 4𝑙2𝑚2)𝑉𝑑𝑑𝜋 + (𝑛2 + 𝑙2𝑚2)𝑉𝑑𝑑𝛿  

𝐸𝑥𝑦,𝑦𝑧 3𝑙𝑚2𝑛𝑉𝑑𝑑𝜎 + 𝑙𝑛(1 − 4𝑚2)𝑉𝑑𝑑𝜋 + 𝑙𝑛(𝑚2 − 1)𝑉𝑑𝑑𝛿  

𝐸𝑥𝑦,𝑧𝑥  3𝑙2𝑚𝑛𝑉𝑑𝑑𝜎 + 𝑚𝑛(1 − 4𝑙2)𝑉𝑑𝑑𝜋 + 𝑚𝑛(𝑙2 − 1)𝑉𝑑𝑑𝛿  

𝐸𝑥𝑦,𝑥2−𝑦2 3

2
𝑙𝑚(𝑙2 − 𝑚2)𝑉𝑑𝑑𝜎 + 2𝑙𝑚(𝑚2 − 𝑙2)𝑉𝑑𝑑𝜋 +

1

2
𝑙𝑚(𝑙2 − 𝑚2)𝑉𝑑𝑑𝛿  

𝐸𝑦𝑧,𝑥2−𝑦2  3

2
𝑚𝑛(𝑙2 − 𝑚2)𝑉𝑑𝑑𝜎 − 𝑚𝑛(1 + 2(𝑙2 − 𝑚2))𝑉𝑑𝑑𝜋 + 𝑚𝑛 (1 +

1

2
(𝑙2 − 𝑚2)) 𝑉𝑑𝑑𝛿  

𝐸𝑧𝑥,𝑥2−𝑦2  3

2
𝑛𝑙(𝑙2 − 𝑚2)𝑉𝑑𝑑𝜎 + 𝑛𝑙(1 − 2(𝑙2 − 𝑚2))𝑉𝑑𝑑𝜋 − 𝑛𝑙 (1 −

1

2
(𝑙2 − 𝑚2)) 𝑉𝑑𝑑𝛿  

𝐸𝑥𝑦,3𝑧2−𝑟2 
√3𝑙𝑚 [𝑛2 −

1

2
(𝑙2 + 𝑚2)] 𝑉𝑑𝑑𝜎 − √32𝑙𝑚𝑛2𝑉𝑑𝑑𝜋 +

1

2
√3𝑙𝑚(1 + 𝑛2)𝑉𝑑𝑑𝛿  

𝐸𝑦𝑧,3𝑧2−𝑟2  
√3𝑚𝑛 [𝑛2 −

1

2
(𝑙2 + 𝑚2)] 𝑉𝑑𝑑𝜎 − √3𝑚𝑛(𝑙2 + 𝑚2 − 𝑛2)𝑉𝑑𝑑𝜋 −

1

2
√3𝑚𝑛(𝑙2 + 𝑚2)𝑉𝑑𝑑𝛿  

𝐸𝑧𝑥,3𝑧2−𝑟2 
√3𝑙𝑛 [𝑛2 −

1

2
(𝑙2 + 𝑚2)] 𝑉𝑑𝑑𝜎 + √3𝑙𝑛(𝑙2 + 𝑚2 − 𝑛2)𝑉𝑑𝑑𝜋 −

1

2
√3𝑙𝑛(𝑙2 + 𝑚2)𝑉𝑑𝑑𝛿  

𝐸𝑥2−𝑦2,𝑥2−𝑦2  3

4
(𝑙2 − 𝑚2)2𝑉𝑑𝑑𝜎 + [𝑙2 + 𝑚2 − (𝑙2 − 𝑚2)2]𝑉𝑑𝑑𝜋 + [𝑛2 +

1

4
(𝑙2 − 𝑚2)2] 𝑉𝑑𝑑𝛿  

𝐸𝑥2−𝑦2,3𝑧2−𝑟2 1

2
√3(𝑙2 − 𝑚2) [𝑛2 −

1

2
(𝑙2 + 𝑚2)] 𝑉𝑑𝑑𝜎 + √3𝑛2(𝑚2 − 𝑙2)𝑉𝑑𝑑𝜋 +

1

4
√3(1 + 𝑛2)(𝑙2 − 𝑚2)𝑉𝑑𝑑𝛿  

𝐸3𝑧2−𝑟2,3𝑧2−𝑟2  
[𝑛2 −

1

2
(𝑙2 + 𝑚2)]

2

𝑉𝑑𝑑𝜎 + 3𝑛2(𝑙2 + 𝑚2)𝑉𝑑𝑑𝜋 +
3

4
(𝑙2 + 𝑚2)2𝑉𝑑𝑑𝛿  

 

2.4.4 Band Unfolding using K-Projection 

 In order to compare electronic band structures in varying supercells a projection onto 

the primitive 1x1 Brillouin zone is required.  This k-projection is a method where the 

wavefunctions of the supercell are decomposed into linear combinations of Bloch states that 

are associated with the primitive unit cell [33].  This can be written as 
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𝜓𝑘
𝑠 = ∑ 𝑐𝑘𝜓𝑘.      (2.77) 

The supercell reciprocal lattice vector can be written as a linear combination of primitive 

supercell reciprocal lattice vectors or primitive cell reciprocal basis vectors if 

𝐺𝑠 = ∑ 𝑚𝑖𝐵𝑖 = ∑ 𝑔𝑗𝑏𝑗    (2.78) 

where m, B, b are integers, primitive supercell reciprocal lattice vector, and primitive reciprocal 

lattice vector respectively.  The term gj can be written as 

𝑔𝑗 = ∑ 𝑚𝑖(𝐵𝑖𝑎𝑗).     (2.79) 

where aj is the primitive lattice vector.  The weights associated with states in the supercell that 

correspond to states in the primitive cell enables someone to plot something more 

representative of what would be observed from experiments such as angle resolved 

photoemission spectroscopy (ARPES). 

  



 

 48 

References 

1.  Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., & Firsov, A. 
A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-
669. doi:10.1126/science.1102896 

2.  Mak, K. F., Lee, C., Hone, J., Shan, J., & Heinz, T. F. (2010). Atomically Thin MoS2: A New 
Direct-Gap Semiconductor. Physical Review Letters, 105, 1-4. 
doi:10.1103/PhysRevLett.105.136805 

3.  Caldwell, J. D., Anderson, T. J., Culbertson, J. C., Jernigan, G. G., Hobart, K. D., Kub, F. J., . . . 
Gaskill, K. D. (2010). Technique for the Dry Transfer of Epitaxial Graphene onto Arbitrary 
Substrates. ACS Nano, 4, 1108-1114. doi:10.1021/nn901585p 

4.  Liu, Y., Weinert, M., & Li, L. (2012). Spiral Growth without Dislocations: Molecular Beam 
Epitaxy of the Topological Insulator Bi2Se3 on Epitaxial Graphene/SiC(0001). Physical 
Review Letters, 108, 1-5. doi:10.1103/PhysRevLett.108.115501 

5.  Liu, Y., Li, Y. Y., Rajput, S., Gilks, D., Lari, L., Galindo, P. L., . . . Li, L. (2014). Tuning Dirac states 
by strain in the topological insulator Bi2Se3. Nature Physics, 10, 294-299. 
doi:10.1038/NPHYS2898 

6.  Edwards Vacuum. (2023, 6 21). RV Two Stage Rotary Vane Pumps. Retrieved from Edwards: 
https://www.edwardsvacuum.com/en-us/our-products/oil-sealed-pumps/rv-rotary-
vane 

7.  VAC AERO International. (2023, 6 21). Oiled Sealed Rotary Vane Pumps. Retrieved from VAC 
AERO International INC.: https://vacaero.com/information-resources/vacuum-pump-
technology-education-and-training/195875-oil-sealed-rotary-vane-pumps.html 

8.  Agilent. (2023, 6 21). Turbo Pumps: Turbo-V 1K-G Pump. Retrieved from Agilent: 
https://www.agilent.com/en/product/vacuum-technologies/turbo-pumps-
controllers/turbo-pumps/turbo-v-1k-g-pump 

9.  Scienta Omicron. (2023, 6 21). Effusion Cells. Retrieved from scientaomicron: 
https://scientaomicron.com/en/productDetailPages/products-solutions/thin-film-
deposition/Effusion%20Cells 

10. Mack, C. (2007). Fundamental Principles of Optical Lithography: The Science of 
Microfabrication. Hoboken, New Jersey: John Wiley & Sons, Ltd. 

11. Agilent. (2023, 6 21). Agilent 5400 AFM/SPM Data Sheet. Retrieved from Agilent: 
https://www.agilent.com/cs/library/datasheets/public/5989-5842EN.pdf 

12. National Institute of Standards and Technology. (2023, 6 21). NIST. Retrieved from 
Schematic of an Atomic Force Microscope: https://www.nist.gov/image/afmschematic 

13. Suk, J. W., Kitt, A., Magnuson, C. W., Hao, Y., Ahmed, S., Swan, A. K., . . . Ruoff, R. S. (2011). 
Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. ACS Nano, 5(9), 
6916-6924. doi:10.1021/nn201207c 

14. Nanoscience Instruments. (2023, 6 21). Scanning Tunneling Microscopy. Retrieved from 
nanoScience Instruments: https://www.nanoscience.com/techniques/scanning-
tunneling-microscopy/ 

15. Rajput, S., Chen, M. X., Liu, L., Li, Y. Y., Weinert, M., & Li, L. (2013). Spatial fluctuations in 
barrier height at the graphene–silicon carbide Schottky junction. Nature 
Communications, 4, 2752. doi:10.1038/ncomms3752 



 

 49 

16. Tomer, D., Rajput, S., Hudy, L. J., Li, C. H., & Li, L. (2014). Intrinsic inhomogeneity in barrier 
height at monolayer graphene/SiC Schottky junction. Applied Physics Letters, 105, 
021607. doi:10.1063/1.4890405 

17. Tomer, D., Rajput, S., Hudy, L. J., Li., C. H., & Li, L. (2015). Carrier transport in reverse-biased 
graphene/semiconductor Schottky junctions. Applied Physics Letters, 106, 173510. 
doi:10.1063/1.4919727 

18. Tomer, D., Rajput, S., Hudy, L. J., Li., C. H., & Li, L. (2015). Inhomogeneity in barrier height at 
graphene/Si (GaAs) Schottky junctions. 26(21), 215702. 

19. Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136, 
B964-B871. doi:https://doi.org/10.1103/PhysRev.136.B864 

20. Kohn, W., & Sham, L. J. (1965). Self-Consistent Equations Including Exchange and 
Correlation Effects. Physical Review, 140, A1133-A1138. 
doi:https://doi.org/10.1103/PhysRev.140.A1133 

21. Kohn, W. (1996). Density Functional and Density Matrix Method Scaling Linearly with the 
Number of Atoms. Physical Review Letters, 76, 3168-3171. 

22. Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density-functional 
approximations for many-electron systems. Physical Review B, 23, 5048-5079. 
doi:https://doi.org/10.1103/PhysRevB.23.5048 

23. Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the 
electron-gas correlation energy. Physical Review B, 45, 13244-13249. 
doi:https://doi.org/10.1103/PhysRevB.45.13244 

24. Perdew, J. P. (1985). Accurate Density Functional for the Energy: Real-Space Cutoff of the 
Gradient Expansion for the Exchange Hole. Physical Review Letters, 55, 1665-1668. 
doi:https://doi.org/10.1103/PhysRevLett.55.1665 

25. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made 
Simple. Physical Review Letters, 77, 3865-3868. 
doi:https://doi.org/10.1103/PhysRevLett.77.3865 

26. VASP Software GmbH. (2023, 07 10). The Vienna Ab initio Simulation Package: atomic scale 
materials modelling from first principles. Retrieved from VASP: https://www.vasp.at/ 

27. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics 
and optoelectronics of two-dimensional transition metal dichalcogenides. Nature 
Nanotechnology, 7, 699-712. doi:10.1038/NNANO.2012.193 

28. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V., & Kis, A. (2017). 2D transition metal 
dichalcogenides. Nature Reviews Materials, 2, 1-15. doi:10.1038/natrevmats.2017.33 

29. Jackson, J. D. (1999). Classical Electrodynamics (3rd ed.). Hoboken, New Jersey: John Wiley 
& Sons, Inc. 

30. VASP. (2023, 07 10). VASP: Dielectric response Perturbation theory, linear response, and 
finite electric fields. Retrieved from NERSC: 
https://www.nersc.gov/assets/Uploads/VASP-lecture-Dielectric.pdf 

31. Adler, S. L. (1962). Quantum Theory of the Dielectric Constant in Real Solids. Physical 
Review, 126, 413-420. doi:https://doi.org/10.1103/PhysRev.126.413 

32. Slater, J. C., & Koster, G. F. (1954). Simplified LCAO Method for the Periodic Potential 
Problem. Physical Review, 94, 1498-1524. doi:https://doi.org/10.1103/PhysRev.94.1498 



 

 50 

33. Chen, M. X., & Weinert, M. (2014). Revealing the Substrate Origin of the Linear Dispersion 
of Silicene/ Ag(111). Nano Letters, 14, 5189-5193. 
doi:https://doi.org/10.1021/nl502107v 

 
  



 

 51 

Chapter Three Electronic Properties of Graphene 

 Since graphene’s isolation and publication of its electric field effect by Novoselov and 

Geim [1], it has fueled research into graphene-based devices, 2 dimensional materials, as well 

as many other aspects of materials science [2,3].  This chapter covers the basic aspects of 

graphene’s electronic properties as well as findings on polymer transferred graphene based 

Schottky devices. 

3.1 Crystal Structure 

 Graphene is composed of carbon atoms on a hexagonal lattice, or commonly referred to 

as a honeycomb lattice.  This crystal structure is pictured in Figure 3.1 a).  The lattice vectors for 

this structure can be written as 

𝒂1 =
𝑎

2
(3, √3)     (3.1) 

𝒂2 =
𝑎

2
(3, −√3)     (3.2) 

where a = 1.42 Å and the lattice constant is √3𝑎 = 2.47 Å .  Each carbon has 3 nearest 

neighbors separated by 1.42 Å which is the carbon-carbon distance.  The three nearest 

neighbor positions can be written as 

𝛿1 =
𝑎

2
(1, √3)      (3.3) 

𝛿2 =
𝑎

2
(1, −√3)     (3.4) 

𝛿3 = −𝑎(1,0).      (3.5) 

The 6 next nearest neighbors can be written as 

𝛿1′ = ±𝒂1      (3.6) 

𝛿2′ = ±𝒂2      (3.7) 
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𝛿3′ = ±(𝒂2 − 𝒂1).     (3.8) 

The formula for the reciprocal lattice vectors can be found in any standard solid state [4] 

textbook and for graphene they are 

𝒃1 =
2𝜋

3𝑎
(1, √3)     (3.9) 

  𝒃2 =
2𝜋

3𝑎
(1, −√3)     (3.10) 

where they satisfy the condition that 𝑏𝑖 ∙ 𝑎𝑗 = 2𝜋𝛿𝑖𝑗.  The Brillouin zone for graphene is also 

hexagonal and is pictured in Figure 3.1 b).  There are 4 key symmetry points in the BZ.  They are 

Γ, K, K’, and M which are pictured in Figure 3.1 b).  2 important points within graphene’s BZ is 

the K and K’ point which are referred to as the Dirac points.  This is where many of the 

interesting properties of graphene stem from.  In reciprocal space the K and K’ points are 

 𝑲 = (
2𝜋

3𝑎
,

2𝜋

3√3𝑎
)     (3.11) 

𝑲′ = (
2𝜋

3𝑎
, −

2𝜋

3√3𝑎
)     (3.12) 

 

Figure 3.1. Graphene lattice, basis vectors, nearest neighbors, and Brillouin zone. 

3.2 Electronic Band Structure 

 The electronic band structure of graphene is studied using density function theory and 

tight binding modeling.  The band structure helps to highlight graphene’s properties based on 
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its chemical composition and crystal structure.  Graphene has a unique symmetry point, 

labelled the K point, where the energy dispersion is linear and the system has a vanishing 

density of states. 

3.2.1 Density Functional Theory 

 The electronic band structure calculated using VASP is simple for graphene.  Using the 

coordinates of the 2 carbon atoms for the unit cell and the pseudopotentials for carbon one can 

generate the band structure diagram pictured in Figure 3.2. 

 

Figure 3.2. Energy bands for graphene generated using DFT 

3.2.2 Tight Binding Approach 

 In order to solve the tight binding Hamiltonian, one needs to consider what orbitals play 

a more important role in the energy range you are interested in.  For graphene, we have either 

the s or p orbitals to consider.  The pz orbitals are the main contributors to the bands around 

the Fermi level.  Constructing a trial wavefunction that includes these orbitals and the two 

atoms within the unit cell, labeled a and b, we have 

𝜓𝑘 = ∑ 𝑒𝑥𝑝(𝑖(𝛼𝒌 ∙ 𝒂1 + 𝛽𝒌 ∙ 𝒂2)) (𝑐𝑎𝜙𝑝𝑧𝑎(𝒓 − 𝛼𝒂1 − 𝜷𝒂2) + 𝑐𝑏𝜙𝑝𝑧𝑏(𝒓 − 𝛼𝒂1 − 𝜷𝒂2))𝛼,𝛽 .  (3.13) 

We can then write the tight binding matrix as  

[
⟨𝜙𝑎|𝐻|𝜙𝑎⟩ − 𝐸 ⟨𝜙𝑎|𝐻|𝜙𝑏⟩ ∑ 𝑒𝑖𝒌∙𝝆𝑚

𝑚

⟨𝜙𝑏|𝐻|𝜙𝑎⟩ ∑ 𝑒−𝑖𝒌∙𝝆𝑚
𝑚 ⟨𝜙𝑏|𝐻|𝜙𝑏⟩ − 𝐸

] [
𝑐𝑎

𝑐𝑏
] = 0   (3.14) 
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where m is the summation over nearest neighbors.  The determinant of the tight binding matrix 

will yield the energy eigenvalues of the system.  This takes on the form 

𝐸(𝒌) = 𝜀 ± 𝑡√1 + 4𝑐𝑜𝑠 (
√3𝑘𝑥𝑎

2
) 𝑐𝑜𝑠 (

𝑘𝑦𝑎

2
) + 4𝑐𝑜𝑠2 (

𝑘𝑦𝑎

2
)   (3.15) 

where the onsite energy ε and hopping energy t are defined as 

𝜀 = ⟨𝜙𝑎|𝐻|𝜙𝑎⟩ = 𝐸𝑝      (3.16) 

𝑡 = −⟨𝜙𝑎|𝐻|𝜙𝑏⟩ = 𝑉𝑝𝑝𝜋.     (3.17) 

A plot of these energy bands are shown in Figure 3.3 a) where we can see that near the K point 

the bands are linear.  These points are referred to as the Dirac points in this material because 

the energy dispersion mimics solutions to the Dirac equation. 

 Another common tight-binding Hamiltonian that considers nearest and next nearest 

neighbor atoms has the form given in [5] 

𝐻 = −𝑡 ∑ (𝑎𝜎,𝑖
† 𝑏𝜎,𝑗 + ℎ. 𝑐. ) − 𝑡′ ∑ (𝑎𝜎,𝑖

† 𝑎𝜎,𝑗 + 𝑏𝜎,𝑖
† 𝑏𝜎,𝑗 + ℎ. 𝑐. )〈〈𝑖,𝑗〉〉𝜎〈𝑖,𝑗〉𝜎   (3.18) 

where ħ = 1, aiσ, biσ, (𝑎𝜎,𝑖
† , 𝑏𝜎,𝑖

† ) annihilates (creates) an electron with spin σ on site Ri on 

sublattice A, B, t is the nearest neighbor hopping energy (~2.8 eV), and t’ is the next nearest 

neighbor hopping energy.  Energy bands for this Hamiltonian have been derived by Wallace [6] 

and are of the form 

𝐸±(𝒌) = ±𝑡√3 + 𝑓(𝒌) − 𝑡′𝑓(𝒌)    (3.19) 

where 

𝑓(𝒌) = 2𝑐𝑜𝑠(√3𝑘𝑦𝑎) + 4𝑐𝑜𝑠 (
√3

2
𝑘𝑦𝑎) 𝑐𝑜𝑠 (

3

2
𝑘𝑥𝑎).  (3.20) 

Wallace also showed that expanding the energy bands near the K or K’ point takes on the form 

𝐸±(𝒒) ≈ ±𝑣𝑓|𝒒| + 𝑂[(𝑞 𝐾⁄ )2]    (3.21) 
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where q is the momentum relative to the Dirac point, vF is the Fermi velocity, ≈ 1𝑥106 m/s.  

This is done by writing k as k + δK, expanding f(k) in a Taylor series expansion, and letting 𝜀 → 0 

in the tight binding matrix.  Wallace also showed that the Fermi velocity, 𝑣𝐹 = 3𝑡𝑎 2⁄ , and it 

doesn’t depend on the momentum as in the usual case, 𝑣 = 𝑘 𝑚⁄ = √2𝐸 𝑚⁄ . 

 A comparison of the bands generated using DFT and the tight-binding method are 

pictured in Figure 3.3 b).  We can see that the tight-binding method does well in producing 

energy bands that have the same features as the energy bands generated using DFT.  The same 

linear energy dispersion is represented near the Dirac point.  A better comparison could be 

generated if the s and other p orbitals were included in the tight binding model as well as 

including beyond next nearest neighbors. 

 

Figure 3.3. Energy band comparison of graphene. a) bands only consider pz orbitals b) DFT bands 
using all orbitals 

3.3 Density of States 

 The density of states is the number of orbitals per unit energy, or commonly known as 

the number of states per unit energy.  We can write the number of states as 

𝑁 = 𝑔
𝜋𝑘𝐹

2

(2𝜋 𝐿⁄ )2 = 𝑔
𝐴

4𝜋
𝑘𝐹

2     (3.22) 
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where g is the degeneracy of the system, which is typically set to 2 for each spin of the electron, 

and A is the area of the unit cell.  Near the Dirac points the energy has the form in equation 

3.21, then we the number of states as 

𝑁 = 𝑔
𝐴

4𝜋
(

𝐸

𝑣𝐹
2)

2

.     (3.23) 

The density of states is defined as 𝑛(𝐸) = 𝑑𝑁 𝑑𝐸⁄  [4], which we can then write as 

𝑛(𝐸) = 𝑔
𝐴

4𝜋

𝐸

(ℏ𝑣𝐹)2     (3.24) 

We see that within graphene that the density of states formulation has a linear relationship in 

terms of energy differing from the typical energy dependence of a two-dimensional system, 

𝑛(𝐸) =
𝐴

2𝜋

2𝑚

ℏ2 .      (3.25) 

A plot of the density of states for graphene is pictured in Figure 3.4 b) below.  One can see that 

from Figure 3.4 b) in the density of states plot that the bands around the K point are only 

composed of pz states.  It is appropriate to use only pz orbitals in the tight-binding model 

because those energy bands are dominated by those states.  We can also see that the density 

states at the K point vanishes in Figure 3.4 b). 

 

Figure 3.4. Graphene energy band plot along with the density of states 
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3.4 Electronic Transport Properties 

 Since the publication of the electric field effect in graphene [1], there has been much 

research in graphene-based devices that could possibly replace the current silicon-based 

technology.  Initial work by Novoselov et al performed transport measurements on graphene 

measuring the temperature dependence of the carrier concentration as well as the field effect 

due to back gating the graphene films using the thin layer of SiO2, ~300 nm, as a dielectric [1].  

Figure 3.5 (D) adapted from Novoselov et al shows that graphene becomes more conducting as 

the temperature increases, increasing n means increasing σ because 𝜎 = 𝑛𝑒𝜇.  Or to include 

both types of carriers we can write the conductivity as 𝜎 = 𝑒(𝑛𝜇𝑒 + 𝑝𝜇ℎ), μe is the electron 

mobility and μh is the hole mobility.  The conductivity as a function of temperature increases at 

a faster rate as the number of layers decrease [1].  We also see that the type of carriers, 

electrons or holes, can be controlled by the bias of the back gate in Figure 3.5 (C).  These results 

show promise in terms of creating graphene-based devices.  Schwierz wrote a review on 

graphene and its potential to be implemented as a field effect transistor (FET) [7].  He focuses 

on graphene-based devices that are extremely thin with short channels that can take advantage 

of graphene’s large scattering times τ, or mean free path, which is related to the scattering time 

by 𝑙 = 𝑣𝑑𝜏 [7].  This means that the carriers operate in the ballistic regime [8].  Graphene-based 

devices will be more advantageous because these devices will also be smaller than current 

CMOS devices composed of silicon.  Using small graphene devices such as nanoribbons not only 

decreases the size of the components but, it also opens the bandgap making these devices 

more suitable as logic devices [9]. 
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Figure 3.5. Field effect in graphene adapted from 
Novoselov et al [4].  A) Graphene 
resistivity as a function of gate voltage. B) 
Graphene conductivity as a function of 
gate voltage. C) Hall coefficient as a 
function of gate voltage at T = 5 K. D) 
Graphene carrier concentration as a 
function of temperature. 

3.4.1 Graphene Schottky Diodes 

 Schottky diodes can be formed between the interface with graphene and other 

semiconductors.  Tomer et al studied the formation of Schottky diodes formed with Graphene 

on SiC, Si, and GaAs under both forward and reverse bias [10-12].  The temperature dependent 

IV characteristics departed from the ideal Schottky diodes where the Schottky barrier height 

changed as a function of temperature suggesting a non-ideal Schottky junction.  Rajput et al 

observed the spatial fluctuations of the barrier height of the polymer transferred graphene in 

the graphene-SiC Schottky junctions using STM/STS suggesting variations in the interface [13]. 
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3.4.1.1 Schottky Diode Physics 

 A Schottky junction is formed at the metal-semiconductor interface [14].  This is due to 

the differences in work functions of the materials which forms a barrier called the Schottky 

barrier height and this can be written as [15] 

𝜙𝐵 = 𝜙𝑀 − 𝜒      (3.26) 

where φB is the Schottky barrier height, φM is the metal work function and χ is the electron 

affinity of the semiconductor.  When the materials come into contact, the Fermi level will 

normalize and reach equilibrium, causing the semiconductor bands to bend up or down 

depending on the semiconductor Fermi level with respect to the Fermi level within the metal.  

Figure 3.6 is the case where the Fermi level of the semiconductor is higher than the fermi level 

of the metal therefore the energy bands in the semiconductor will bend downwards to reach 

the equilibrium state.  The Schottky barrier height is experienced by electrons going from the 

metal into states in the semiconductor.  The electrons have to overcome this barrier in order to 

transfer into the semiconductor.  The built in potential, Vbi, is the potential barrier seen by 

electrons that are going from the conduction band in the semiconductor into states within the 

metal.  We can see that the built in potential can be written as  

𝑉𝑏𝑖 = 𝜙𝑀 − 𝜙𝑆.     (3.27) 

where φS is the work function of the semiconductor.   

 

Figure 3.6. Energy bands of the metal-semiconductor interface. a) Energy bands of the isolated metal and semiconductor. b) 
energy bands after the metal and semiconductor become in contact and reach equilibrium. 
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3.4.1.1.1 Transport Mechanisms 

 There are four main mechanisms used in carrier transport in Schottky diodes.  These are 

thermionic emission, quantum mechanical tunneling, electron-hole recombination in the 

depletion region, and hole injection from the metal to the semiconductor.  Schottky junctions 

operate by the flow of the majority carriers and around room temperature, ~300 K, thermionic 

emission is the main transport mechanism where, the current density from the metal to 

semiconductor can be written as [15] 

𝐽𝑆→𝑀 = 𝐶1𝑁𝐶𝑒𝑥𝑝 (−
𝑞𝜙𝐵

𝑘𝑇
).     (3.28) 

C1 is a constant and NC is the density of states in the conduction band.  Solving for the 

proportionality constant it can be shown that the IV characteristics for the metal-

semiconductor interface under thermionic emission can be written as [15] 

𝐽 = 𝐽𝑠 (𝑒𝑥𝑝 (
𝑞𝑉

𝑘𝑇
) − 1)      (3.29) 

where  

𝐽𝑠 = 𝐴∗𝑇2𝑒𝑥𝑝 (−
𝑞𝜙𝐵

𝑘𝑇
).     (3.30) 

A* is the Richardson constant and the current density has the typical exponential dependence, 

or rectifying behavior.  The barrier height can be found by linearizing the saturation current as a 

function of temperature and relating the slope to the barrier height. 

3.4.1.1.2 Spatial Inhomogeneity of Schottky Junctions Formed with Graphene 

 Samples using polymer transferred graphene have been shown to form ripples and 

ridges on the surface due to an imperfect contact with the substrate.  This can be seen in AFM 

imagery pictured in Figure 2.9.  These imperfections alter the Schottky barrier height creating a 
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distribution of barrier heights.  At high enough temperatures, the majority carriers have 

energies that are larger than the Schottky barrier and these devices display the typical rectifying 

behavior.  As the temperature decreases the majority carriers have less energy and require 

other modes of mechanism of transport.  If there are also a distribution of barrier heights, then 

there are fewer channels where thermionic carriers can conduct.  If we model the barrier as a 

Gaussian distribution, we can rewrite the barrier height as [16] 

𝜙𝐵0 = 𝜙𝑏𝑚(𝑇 = 0) −
𝑞𝜎𝑠

2

2𝑘𝑇
     (3.31) 

where σs is the zero bias standard deviation and φbm is the mean barrier height.  This leads to 

the following saturation current density definition 

𝐽𝑠 = 𝐴∗𝑇2𝑒𝑥𝑝 (− (
𝑞𝜙𝑏𝑚

𝑘𝑇
−

𝑞2𝜎𝑠
2

2𝑘2𝑇2)).    (3.32) 

 

 

Figure 3.7. Graphene-SiC Schottky junction characteristics adapted from Tomer et al. [10]. a) IV characteristics (inset 
show device construction) b) IV temperature dependence. c) Barrier temperature dependence. 
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Figure 3.8. Graphene-Si Schottky junction characteristics adapted from Tomer et al. [11]. a) IV characteristics (inset show device 

construction) b) IV temperature dependence. c) Barrier temperature dependence. 

 Now fitting to the data above we see that there is a temperature dependence to the 

Schottky barrier height, meaning that the Schottky junction is not ideal in these systems.  We 

can use a linear fit to the plots in Figures 3.7 c) and 3.8 c) to the barrier height temperature 

dependence to find the intrinsic Schottky barrier height.  Overall, the linear fits perform well 

and the model of a Gaussian distribution of barrier heights explains the variation in the barrier 

height as a function of temperature. 
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Chapter Four Electronic Properties of Transition Metal Dichalcogenides 

 With the discovery of graphene and its electronic field effect publication by Novoselov 

and Geim [1], there has been a push to investigate other van der Waals and two-dimensional 

materials [2-6].  Transition metal dichalcogenides are great candidates when it comes to 

designing new and interesting electronic devices considering that they are semiconducting, 

meaning that they have band gap unlike graphene, and they also typically transition to a direct 

band gap semiconductor in the monolayer form [2].  This chapter covers the basic electronic 

properties of transition metal dichalcogenides such as the energy band structure, its 

optoelectronic properties, as well as their transport properties. 

4.1 Crystal Structure 

 Transition metal dichalcogenides are layered materials that are composed of stacks of 

transition metals sandwiched between chalcogen atoms.  This can be seen in Figure 4.1 b) 

where the transition metal is colored blue and chalcogens are colored yellow.  These stacks are 

loosely bound by van der Waals forces and the single layers can be isolated by mechanical 

exfoliation much like graphene.  The monolayer lattice structure shares the same hexagonal 

symmetry as graphene except spin-orbit coupling plays a larger role in these materials.  We can 

write the basis lattice vectors as 

𝒂1 =
𝑎

2
(1, −√3)     (4.1) 

𝒂2 =
𝑎

2
(1, √3)     (4.2) 

where a is the lattice constant.  The formula for the reciprocal lattice vectors can be found in 

any standard solid state [7] textbook and they are 
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𝒃1 =
2𝜋

3𝑎
(3, −√3)     (4.3) 

𝒃2 =
2𝜋

3𝑎
(3, √3)     (4.4) 

where they satisfy the condition that 𝑏𝑖 ∙ 𝑎𝑗 = 2𝜋𝛿𝑖𝑗.  There are 4 key symmetry points in the 

BZ.  They are Γ, K, K’, and M which are pictured in Figure 4.1 c).  In reciprocal space we can write 

these 4 special symmetry points as 

Γ = (0,0)      (4.5) 

K =
1

3
𝒃1 +

1

3
𝒃2 = (

4𝜋

3𝑎
, 0)     (4.6) 

M =
1

2
𝒃2 =

𝜋

3𝑎
(3, √3)     (4.7) 

K′ = −
1

3
𝒃1 +

2

3
𝒃2 =

2𝜋

3𝑎
(1, √3)    (4.8) 

The six nearest neighbors can be written as 

𝛿±1 = (0,
𝑎√3

3
, ±𝛼)     (4.9) 

  𝛿±2 = (−
𝑎

2
, −

𝑎√3

6
, ±𝛼)    (4.10) 

  𝛿±3 = (
𝑎

2
, −

𝑎√3

6
, ±𝛼).    (4.11) 

where α is the distance in the c direction from the metal atom to the chalcogen. 

 

Figure 4.1. Transition metal dichalcogenides crystal structure and Brillouin zone. a) crystal structure 
viewed from c direction. b) crystal structure from a direction. c) Brillouin zone labeled 
with high symmetry points. 
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 Now for the multilayer crystal structure, there is some variation in the stacking and 

orientation of the layers such as AA and AB stacked transition metal dichalcogenides.  Below we 

are going to cover regular stacking where there is no twist applied between the layers.  Chapter 

5 will cover twisted transition metal dichalcogenide structures as well as their properties.  Many 

of the TMDs can exist in both H and T type but their transport and optical responses differ 

based on their respective band structures. 

4.1.1 H-Type AA Stacking Transition Metal Dichalcogenides 

 AA stacked transition metal dichalcogenide crystal structures have 3-fold rotation 

symmetry, a horizontal mirror plane, and a 2-fold rotational axis perpendicular to the principal 

axis thus belonging to the 6̅𝑚2 Hermann-Manguin symmetry group, or 𝐷3ℎ in the Schoenflies 

notation.  In this orientation the chalcogen atoms which are directly above each other result in 

breaking inversion symmetry in the system.  Figure 4.2 a) shows the stacking of AA TMDs. 

 

Figure 4.2. Layer stacking in transition metal dichalcogenides. a) AA 
stacking. b) AB stacking. 

 AA stacked transition metal dichalcogenides, where M = Mo, W and X = S, Se, Te, are 

usually semiconducting [2,8-10].  These TMDs typically have a band gap of 1-2 eV [2,8-10].  The 

broken inversion symmetry coupled with large spin orbit coupling results in the splitting of the 

energy bands typically at the valence band edge.  The charge carriers can be labelled by the 
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valley degree of freedom of the two inequivalent K points, K and K’, at the Brillouin zone edge.  

Bound states also exist between the electron hole pairs in the valence and conduction bands 

which are commonly referred to as excitons.  Within TMDs, they typically have large binding 

energies because the monolayer or few layer materials do not have the same dielectric 

screening that is experienced within the bulk.  In bilayer systems, this effect can be tuned based 

on the interaction between the layers. 

 AA stacked transition metal dichalcogenides, where M = Nb, Ta and X = S, Se, often 

display phenomenon such as superconductivity or charge density waves [8-10].  Their band 

structures are similar to the previous types, but they have less valence electrons and can only 

partially fill the bands near the Fermi level.  Less is well understood between the relationship of 

the superconducting states and the charge density waves. 

4.1.2 H-Type AB Stacking Transition Metal Dichalcogenides 

 AB stacked crystal structures are similar to H type AA stacked, but they also have 

inversion symmetry between the layers.  This is pictured in Figure 4.2 b).  This can be thought of 

as shifting the layer a half of a step to put the chalcogen in between each other similar to ABA 

stacking.  These materials have similar properties to the AA stacked transition metal 

dichalcogenides.  The interplay between charge density wave order and superconductivity still 

plays a key role [10,11].  The quantum spin hall effect has been reported in WTe2 materials [12].  

This effect along with superconductivity are the key components necessary for topological 

superconductivity and Majorana particles [11]. 
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4.2 Electronic Band Structure 

 This dissertation is going to focus on a few of the transition metal dichalcogenides, 

primarily MoSe2 and WSe2, both in their monolayer and bilayer forms.  The electronic band 

structures are generated using density functional theory and the tight-binding method.  This 

dissertation will also compare the inclusion of spin-orbit coupling in these materials as it plays a 

larger role in breaking the degeneracy in the valence and conduction bands at K and K’ thus 

splitting these spin bands when time reversal symmetry exist but inversion symmetry does not. 

4.2.1 Spin-Orbit Coupling 

 Spin-orbit coupling can be thought of as adding a perturbation, specifically a relativistic 

effect, to the standard Hamiltonian where we include the interaction of the electron magnetic 

moment with an electric field.  We can write this as [13] 

𝐻 = 𝐻0 + 𝐻𝑆.𝑂.     (4.12) 

where 

𝐻𝑆.𝑂. =
𝑒2

2𝑚2𝑐2𝑟3 𝑳 ∙ 𝑺.     (4.13) 

We can see that atoms with larger total angular momentum, typically heavier metal atoms, will 

have a larger spin-orbit effect.  There is another type of spin-orbit effect that can take place in 

transition metal dichalcogenides which is the Rashba effect.  Rashba spin-orbit coupling is an 

effect that is due to broken inversion symmetry which can be done using an external electric 

field.  We can write this spin orbit coupling term as [14] 

𝐻𝑆.𝑂. = −𝜇𝐵𝝈 ∙ (𝒑 ×
𝑬

2𝑚𝑐2)    (4.14) 
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where μB is the Bohr magneton, σ are the Pauli matrices, m is the effective mass of the carriers, 

and c is the speed of light.  Not only does this effect split the bands at the corners of the 

Brillouin zone, but it also leads to interesting effects like the spin Hall effect and spin ballistic 

transport [15,16]. 

4.2.2 Density Functional Theory 

 The electronic band structure for these transition metal dichalcogenide systems were 

generated using VASP.  The pseudopotentials used were the projected augmented wave (PAW) 

using the generalized gradient approximation along with the PBE exchange functional.  The 

Monkhorst pack spacing was typically set to 18 x 18 x 1.  There was also an approximate 30 Å 

vacuum between monolayers or bilayers to isolate those TMD systems.  The lattice constant for 

MoSe2 was set to 3.376 Å and the lattice constant for WSe2 was set to 3.361 Å.  These values 

were found by plotting the total energy, from a self-consistent DFT calculation, as a function of 

the lattice constant and finding the minimum of that function.  Figure 4.3 shows the fits to find 

the lattice constant for MoSe2 and WSe2. 

 

Figure 4.3. Total energy as a function of TMD lattice constants. a) MoSe2 b) WSe2 

4.2.2.1 Monolayer Films 

 The monolayer films show a direct band gap with the following band gap energies, 1.55 

eV (MoSe2) and 1.64 eV (WSe2), which is depicted in Figure 4.4.  We can see that the direct 
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band gap occurs at the K and K’ points in these materials.  We also see that the spin-up and 

spin-down states are the same at K and K’ meaning that they are degenerate without SOC. 

 

Figure 4.4. Monolayer TMD energy bands. a) MoSe2 b) WSe2 

Including Spin-Orbit Coupling 

 Monolayer films with spin-orbit coupling, pictured in Figure 4.5, show minor (MoSe2) to 

modest (WSe2) splitting based on the transition metal dichalcogenide atoms.  This difference in 

splitting is due to the larger tungsten atom in monolayer WSe2.  We also see that the larger 

splitting of the bands takes place near the valence band maximum around the K point.  This is a 

result of a lack of inversion symmetry and the inclusion of spin-orbit coupling lifting the 

degeneracy of the spin states at the K and K’ points. 

 

Figure 4.5. Monolayer TMD energy bands including spin-orbit coupling. a) MoSe2 b) WSe2 

4.2.2.2 Bilayer Films 

 In the bilayer films, pictured in Figure 4.6, we see the transition from a direct band gap 

to an indirect one.  This can be seen in Figure 4.6 for bilayer films composed of MoSe2, WSe2, 
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and MoSe2-WSe2 with the following band gaps 1.36 eV, 1.43 eV, and 0.84 eV respectively.  The 

stacking also alters the bands slightly where we see larger splitting of the energy bands from K 

to M to K’ around -2 eV for H type TMDs. 

 

Figure 4.6. Bilayer TMD energy bands. a) AB stack MoSe2 b) AB stack WSe2 c) AB stack MoSe2-WSe2 d) AA stack MoSe2 e) AA 
stack WSe2 

Including Spin-Orbit Coupling 

 Bilayer films with spin-orbit coupling show minor (MoSe2) to modest (WSe2) splitting 

based on the transition metal dichalcogenide atoms.  This difference in splitting is due to the 

larger tungsten atom in monolayer WSe2.  We also see that the larger splitting of the bands 

takes place near the valence band maximum around the K and K’ points.  This is a result of the 

spin-orbit coupling lifting the degeneracy of the spin states at the K and K’ points. Bilayer 

MoSe2-WSe2 seems to basically produce a linear combination of the monolayers in the energy 

bands but with slight differences because of the influence of other layer with the different 

metal atoms. 
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Figure 4.7. Bilayer TMD energy bands including spin-orbit coupling. a) AB stack MoSe2 b) AB stack WSe2 c) AB stack MoSe2-WSe2 
d) AA stack MoSe2 e) AA stack WSe2 f) AA stack MoSe2-WSe2 

4.2.3 Tight Binding Approach 

 The tight binding approach for transition metal dichalcogenides employs the following 

orbitals: px, py, and pz for the chalcogen atoms and dxy, dyz, dzx, 𝑑𝑧2, and 𝑑𝑥2−𝑦2  for the metal 

atoms similar to other approaches in [17].  Some initial tight-binding models that I worked on 

did not produce the best fitting bands and I also struggled to develop routines that could better 

fit the bands.  It seemed that I kept finding local minima as opposed to the global minimum.  A 

better fit routine would produce bands that align closer to the DFT bands like in Figure 4.9 for 

MoS2 TMD films. 

 

Figure 4.8. DFT bands along with tight binding bands 
for monolayer MoSe2 



 

 73 

 

Figure 4.9. Tight binding bands fit to DFT data taken from Zahid 
et al. [18]. a) monolayer MoS2 b) bilayer MoS2 

4.4 Density of States 

 The density of states for transition metal dichalcogenides helps to highlight some of 

these material’s properties.  We see that in the density of state plots in both the monolayer and 

bilayer films, there is a gap between the valence and conduction bands highlighting their 

semiconducting behavior.  Another utility of the density of states is that you can look at the 

individual orbitals to see which ones contribute to which parts of the energy band structure.  

The partial density of states for the different TMD films are plotted in Figures 4.10 through 

4.14. 

4.4.1.1 Monolayer Films 

 In the monolayer films, pictured in Figures 4.10 and 4.11, we see the distribution of the 

density of states from the energy range of -7 eV to 5 eV.  We also see the band gap of these 

materials where the DOS drops to 0.  The composition of the states at the valence and 

conduction band edges has contributions from both the metal and chalcogen atoms, except the 

metal atoms seem to contribute more to these states.  The main orbital contributing state 

seems to be the metal 𝑑𝑧2 at the conduction band edge and dxy and 𝑑𝑥2−𝑦2 at the valence band 

edge. 
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Figure 4.10. Density of states for monolayer MoSe2. a) Mo partial density of states b) Se partial density of states c) total 
density of states 

 

Figure 4.11. Density of states for monolayer WSe2. a) W partial density of states b) Se partial density of states c) total density of 
states 

4.4.1.2 Bilayer Films 

 In the bilayer films, pictured in Figures 4.12 through 4.14, we similar types of 

observations as in the monolayer films except that there seems to be more contribution from 

the 𝑑𝑧2 at valence band edge.  There are also slight differences based on the bilayer stackings.  

It seems that at the valence band edge, the chalcogen atom has more pz character in the AB 

stacking configuration. 
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Figure 4.12. Density of states for bilayer MoSe2. a) AA stack Mo partial density of states b) AA stack Se partial density of states c) 
AA stack total density of states d) AB stack Mo partial density of states e) AB stack Se partial density of states 

 

Figure 4.13. Density of states for bilayer WSe2. a) AA stack W partial density of states b) AA stack Se partial density of states c) 
AA stack total density of states d) AB stack W partial density of states e) AB stack Se partial density of states f) AB 
stack total density of states 
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Figure 4.14. Density of States for Bilayer AA stacking MoSe2-WSe2. a) Mo partial density of states b) W partial density of states c) 
Se partial density of states d) total density of states 

4.5 Charge Distribution 

 The charge distribution not only depends on factors such as the material but also on the 

energy range as well.  The energy range determines the states of the atoms in the material that 

are available or can be excited.  The charge distribution helps to highlight the states and their 

interaction in bonding or anti-bonding.  Figure 4.15 shows the charge distribution of various 

TMD films in the energy range -1 eV ≤ E ≤ 0 eV.  Notice that most films in this energy range are 

dominated by the metal 𝑑𝑧2 orbitals except AA stacked MoSe2 where the orbital looks slightly 

different than the others. 
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Figure 4.15. Charge distribution of TMD films. a) Monolayer WSe2 b) Monolayer MoSe2 c) AA stacked bilayer 
MoSe2 d) AB stacked MoSe2 e) AB stacked MoSe2-WSe2 

4.6 Optical Properties 

 The optical properties we are primarily concerned with are ones where they can be 

manipulated into creating electronic devices.  These optoelectronic devices can take advantage 

of the monolayer transition metal dichalcogenides direct band gap, meaning that only a photon 

with the correct energy can be absorbed or emitted.  It has also been observed that at the 

direct transition circularly polarized light can be used to control the optical transitions [21,22].  

The multilayer and bulk TMD structures can be used as well but also require an additional 

phonon with the correct momentum to transfer an electron from the valence band into the 

conduction band.  In the case of monolayer MoS2, the band gap not only shifts to a direct band 

gap but, it also increases in magnitude [2].  The two main components involved in any 

optoelectronic device are either absorption or emission of photons.  TMDs are prime 

candidates for thin film solar cells, photodetectors, or light emitting diodes (LEDs) considering 

their direct band gap [23-25]. 
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4.6.1 Excitons 

 Excitons are created when an electron is excited from a bound state into an excited 

state leaving a hole in its place.  This electron-hole pair is what is referred to as an exciton.  This 

happens when a material absorbs energy, e.g. a photon, and it excites an electron from the 

valence band to the conduction band creating an exciton from the electron-hole pair.  These 

quasi-particles are useful in describing a material’s optical properties because they have energy, 

momentum, characteristic lifetimes, and can be described using quantum theory.  This can yield 

useful information about excitonic processes that take place such as diffusion or 

recombination. 

4.6.2 Optical Conductivity 

 The optical conductivity and the dielectric function give information about a materials 

response to electromagnetic radiation.  The real part of the dielectric function gives 

information about a material’s ability to store and transmit electrical energy and the imaginary 

part relates to energy absorption or dissipation.  These quantities are related by equation 2.63 

which was derived in section 2.6.  We would expect that large spikes in the density of states 

provide different levels for excited states to transition to, resulting in peaks in the dielectric 

function.  Figures 4.16 and 4.17 display the dielectric function and conductivity for monolayer 

and bilayer MoSe2, WSe2, and MoSe2-WSe2. 
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Figure 4.16. Dielectric function ϵ and conductivity σ for monolayer TMDs. a) ϵxx for monolayer MoSe2 b) ϵzz for monolayer 
MoSe2 c) ϵxx for monolayer WSe2 d) ϵzz for monolayer WSe2 e) σxx for monolayer MoSe2 f) σzz for monolayer 
MoSe2 g) σxx for monolayer WSe2 h) σzz for monolayer WSe2 

 

Figure 4.17. Dielectric function ϵ and conductivity σ for bilayer AB stack TMDs. a) ϵxx for bilayer MoSe2 b) ϵzz for bilayer 
MoSe2 c) ϵxx for bilayer WSe2 d) ϵzz for bilayer WSe2 e) σxx for bilayer MoSe2 f) σzz for bilayer MoSe2 g) σxx for 
bilayer WSe2 h) σzz for bilayer WSe2 

4.6.3 Photoluminescence 

 Photoluminescence is a process where a material absorbs energy, typically light, then 

enters an excited state where it then decays back into the ground state emitting a photon.  This 

process can happen directly between states or through other intermittent states until that 

excited state returns to the ground state.  There is also a stronger photoluminescence response 

for few and monolayer TMDs compared with the bulk [1,9,19,20].  Figure 4.18 a) is a 
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photoluminescence plot of MoS2 where we see a large peak corresponding to the band gap of 

monolayer MoS2 as well as a comparison between layers pictured in Figure 4.18 b) adapted 

from the work done by Mak et al. [2]. 

 

Figure 4.18. Photoluminescence response of MoS2 adapted from Mak et al. [2] a) monolayer and 
bilayer comparison b) normalized photoluminescence for layer comparison. 

4.7 Simulated Scanning Tunneling Microscopy 

 Theoretical scanning tunneling microscopy images can be produced using VASP by 

calculating the partial charge densities for a particular energy range.  This can help highlight 

states around the valance or conduction band which can be tested experimentally.  This can 

also be used to probe specific bands to determine the state composition of that band.  Figure 

4.19 is a sample STM of image of monolayer and bilayer MoSe2, WSe2, and MoSe2-WSe2.  We 

see the typically hexagonal structure that we would expect.  There also is very little difference 

in the STM between monolayer and bilayer films because STM is probing the surface. 
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Figure 4.19. Simulated STM Imagery in the energy range -1 eV ≤ E ≤ 0 eV. a) monolayer MoSe2 b) monolayer WSe2 c) AB stacked 
bilayer MoSe2 d) AB stacked bilayer WSe2 e) AB stacked bilayer MoSe2-WSe2 

4.8 Transport Properties 

 Several experiments using transition metal dichalcogenides as transistors have proven 

to be unsuccessful in producing devices with high mobilities compared to graphene 

[6,10,26,28].  This is because the TMD transistor charge carriers, specifically MoS2, are heavily 

impacted by impurities as well as the dielectric environment [6,10,26].  Bare monolayer MoS2 

produced higher mobilities than ones encapsulated in a dielectric but, it still produced 

mobilities lower than that of bulk material [28].  Using a MoS2 field effect transistor, the 

mobilities were enhanced by using a top gate but, the carrier mobility was still limited by 

impurity scattering [27,28].  The low carrier mobility can be attributed to Coulomb scattering 

from interfacial charge traps and phonon scattering limiting any TMD based logical device [10]. 

4.9 Defect States 

 Defects can occur when an impurity is absorbed on the surface, intercalated between 

the layers of a van der Waals material, or possibly though substitution.  Interesting effects can 

take place when substitution occurs in a transition metal dichalcogenide film.  It has been 
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shown that using another transition metal like copper can induce a large magnetic moment 

even though neither copper nor the TMDs possess [29,30]. 

4.9.1 Crystal Structure 

 The crystal structures used when adding an impurity as a replacement require larger 

supercells.  This is because we want to ensure that the impurity does not interact with each 

other and, we essentially only want to add a small fraction of replacements with respect to the 

overall composition.  Here we use √13 𝑥 √13 supercells which an example is pictured in Figure 

4.20 where the magenta atoms are metal, the green atoms are chalcogen, and the defect is 

pictured in orange.  The black parallelogram is the supercell unit cell used for DFT calculations.  

We replaced the metal atoms with manganese, iron, and copper.  As we go from to right in the 

periodic table from molybdenum or tungsten, we add more electrons to the system.  In typical 

semiconductors like silicon, we can replace a small amount of the silicon with phosphorous 

doping the system with electrons raising the fermi level into the conduction band.  This makes 

the material n-type with its majority carriers as electrons.  We observe a different scenario in 

these TMD systems mainly because the band gap is too large to shift the Fermi level into the 

conduction band. 

 

Figure 4.20. Crystal structure of a √13 𝑥 √13 
supercell consisting of monolayer MoSe2 
with a copper replacement. 
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4.9.2 Electronic Band Structure 

 The electronic band structure of copper doped transition metal dichalcogenides are 

pictured in Figures 4.21 – 4.22.  We can see that the copper impurity adds flat states within the 

energy gap for both the monolayer and bilayer films.  This also happens for the manganese and 

iron doped films.  The energy bandwidth of the copper impurity states in the gap is on the order 

of 200 meVs.  These states also lie at the Fermi level meaning that they are occupied or partially 

occupied. 

 

Figure 4.21. Unfolded electronic band structure of copper doped monolayer TMDs. a) 
MoSe2 b) WSe2 

 

Figure 4.22. Unfolded electronic band structure of copper doped bilayer TMDs. a) MoSe2 b) WSe2 c) MoSe2-WSe2 

Including Spin-Orbit Coupling 

 If we include spin-orbit coupling, we see a multitude of interesting things happen.  The 

impurity bands in the gap for the materials split which is evident in Figures 4.23-4.25.  We also 

notice that the bands around K and K’ are no longer degenerate meaning that adding these 

impurities has broken a symmetry in these systems.  From the spin polarized calculation in 
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VASP we see in the WSe2 films doped with manganese, iron, and copper have a magnetic 

moment of 1.179, 2.031, and 4.098 μB respectively.  We also added copper to monolayer MoSe2 

where we see a magnetic moment on the order of 2.484 μB.  It would seem that the interaction 

between the copper and the tungsten atoms creates a larger moment in the material but 

something more complex must be taking place.  This magnetic moment in this material breaks 

time reversal symmetry and thus breaks the degeneracy that exists at the K and K’ points in 

these TMDs.  This is evident in the energy band structures for monolayer and bilayer films with 

spin-orbit included where we see that the valence band maximum has shifted up in energy at 

the K point and down in energy at the K’ point.  If we measure the splitting at the valence band 

valleys, we see a splitting of 255, 286, and 128 meV for Mn, Fe, and Cu respectively.  The 

measured splitting in the conduction bands are 26, 59, and 23 meV for Mn, Fe, and Cu 

respectively. 

 

Figure 4.23. Unfolded electronic band structure of monolayer WSe2 doped films. a) monolayer WSe2 doped with Mn b) 
monolayer WSe2 doped with Fe c) monolayer WSe2 doped with Cu 
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Figure 4.24. Unfolded electronic band structure of copper doped monolayer TMDs with 
spin-orbit interaction included. a) monolayer MoSe2 b) monolayer WSe2 

 When spin orbit-coupling is added to the copper doped bilayers we observe the 

following magnetic moment in these materials: 3.994 μB for bilayer MoSe2, 3.438 μB for bilayer 

WSe2, and 3.980 μB for bilayer MoSe2-WSe2.  Interestingly we see that bilayer WSe2 has a 

slightly smaller moment than bilayer MoSe2 and MoSe2-WSe2 even though in the monolayer 

case we see that monolayer WSe2 had a larger magnetic moment than monolayer MoSe2.  If we 

measure the splitting at the valence band valleys, we see a splitting of 181, 432, and 425 meV 

for MoSe2, WSe2, and MoSe2-WSe2 respectively. 

 

Figure 4.25. Unfolded electronic band structure of copper doped bilayer TMDs with spin-orbit interaction included. a) bilayer 
MoSe2 b) bilayer WSe2 c) bilayer MoSe2-WSe2 

4.9.3 Density of States 

 We are going to focus on the density of states information for the copper doped films 

primarily because the behavior of the manganese and iron films show similar behavior but the 

copper doped films displaying a magnetic moment is more interesting.  The density of states for 

monolayer transition metal dichalcogenides doped with copper are pictured in Figures 4.26 – 
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4.27.  We can see that the composition of the flat states within the energy gap are composed of 

all the atoms in the material meaning that states from the copper dopant, metal atom, and 

chalcogen atoms all contribute to the flat states around the Fermi level. 

 

Figure 4.26. Density of states for copper doped monolayer MoSe2 TMD films. a) Cu partial density of states b) Mo partial density 
of states c) Se partial density of states 

 

Figure 4.27. Density of states for copper doped monolayer WSe2 TMD films. a) Cu partial density of states b) W partial density of 
states c) Se partial density of states 

 The density of states for bilayer transition metal dichalcogenides doped with copper are 

pictured in Figures 4.28 – 4.30.  We can see a similar scenario that we see in the bilayer films 

where all the atoms contribute to the flat states within the gap except that there is almost no 

contribution from the tungsten atoms in bilayer MoSe2-WSe2. 
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Figure 4.28. Density of states for copper doped bilayer MoSe2 TMD films. a) Cu partial density of states b) Mo partial density of 
states c) Se partial density of states 

 

Figure 4.29. Density of states for copper doped bilayer WSe2 TMD films. a)Cu partial density of states b) W partial density of 
states c) Se partial density of states 

 

Figure 4.30. Density of states for copper doped bilayer MoSe2-WSe2 TMD films. a) Cu partial density of states b) Mo partial 
density of states c) W partial density of states d) Se partial density of states 

Origin of the magnetic moment 

 If we try and investigate where this magnetic moment comes from, we could see if the 

spin resolved density of states can give us any insight.  Magnetism can arise from 3 principal 

sources: the spin of an electron, their orbital angular momentum, and the change in orbital 

moment due to an applied field [7].  Looking at the spin resolved density of states in Figure 4.31 

for monolayer WSe2 doped with copper, we see that the filling of the electron levels according 

to Hund’s rules leaves an unequal spin pairing below the Fermi level.  This unequal pairing is 
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also seen in the films doped with manganese and iron but, those materials already show 

magnetic ordering.  We attribute this unequal pairing to the reason why copper doped TMD 

films display a large magnetic moment.  We also see that the magnetic moment for the copper 

doped films does not have an integer magnetic moment even though there are 5 unpaired 

electrons that copper can contribute.  This is due to the fact that the energy levels of the spin 

up and spin down states are close and overlapping.  As these states are filled up to the Fermi 

level results in a non-integer observed magnetic moment. 

 

Figure 4.31. Spin resolved partial density of states 
for copper doped monolayer WSe2. 

4.9.4 Charge Distribution 

 The charge distribution for copper doped transition metal dichalcogenides is pictured in 

Figure 4.32.  We can see the large contribution due to the copper atom for the states in the gap 

that are in the energy range of 0.2 eV ≤ E ≤ 0.2 eV.  Looking at the density states plot in the 

previous section we can see that there are contributions from the other atoms within the same 

layer but, the charge density shows that most of the charge contribution comes from the 

copper atom.  This charge density also extends far beyond the copper atom in all directions. 
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Figure 4.32. Charge distribution of copper doped TMDs where -0.2 eV ≤ E ≤ 0.2 eV. a) monolayer MoSe2 viewed from the c-axis 
b) monolayer MoSe2 viewed from the a-axis c) bilayer MoSe2 viewed from the a-axis 

4.9.5 Optical Properties 

 The interesting response from the copper doped transition metal dichalcogenides 

occurs because of the large magnetic moment that is produced when copper replaces one of 

the metal atoms.  We can see from the optical responses that an off-diagonal component of the 

dielectric function has a non-zero value.  This means that non-reciprocal behavior can take 

place in these materials where something like an applied field in one direction induces a current 

in a different direction.  Most materials, including TMDs, do not have a non-zero off-diagonal 

component.  This can lead to effects like second harmonic generation, frequency doubling, and 

other non-linear optical effects.  Some of these effects can be functionalized into devices like an 

optical diode that can have current flow in only one direction because of the non-zero off-

diagonal component. 

Monolayer Films 

 The optical response for copper doped monolayer MoSe2 is pictured in Figure 4.33 

where we can see that off-diagonal component of the dielectric function, ϵxy and σxy, and 
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conductivity are non-zero.  The peaks in these functions are smaller than their diagonal 

counterparts.  We can also see that σxy conductivity has a response in the energy range that 

spans from 0 eV ≤ E ≤ 10 eV. 

 

Figure 4.33. Dielectric function ϵ and conductivity σ for monolayer MoSe2. a) ϵxx b) ϵxy c) ϵzz d) σxx e) 
σxy f) σzz 

 The optical response for copper doped monolayer WSe2 is pictured in Figure 4.34.  We 

have the same sort of behavior we see in monolayer MoSe2 except that the response in the σxy 

conductivity is slightly stronger than in monolayer MoSe2 but, it also does not span the entire 

energy range from 0 eV ≤ E ≤ 10 eV. 
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Figure 4.34. Dielectric function ϵ and conductivity σ for monolayer WSe2. a) ϵxx b) ϵxy c) ϵzz d) σxx 
e) σxy f) σzz 

Bilayer Films 

 The optical response for copper doped bilayer MoSe2 is pictured in Figure 4.35.  We see 

similar features that we do in the monolayer films except that the peaks in the off-diagonal 

component are smaller and shifted. 

 

Figure 4.35. Dielectric function ϵ and conductivity σ for bilayer MoSe2. a) ϵxx b) ϵxy c) ϵzz d) σxx 
e) σxy f) σzz 

 The optical response for copper doped bilayer WSe2 is pictured in Figure 4.36.  We see 

similar features as in the monolayer films except that the peak values have been enhanced 

showing a stronger response than its monolayer counterpart. 
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Figure 4.36. Dielectric function ϵ and conductivity σ for bilayer WSe2. a) ϵxx b) ϵxy c) ϵzz d) σxx e) 
σxy f) σzz 

 The optical response for copper doped bilayer MoSe2-WSe2 is pictured in Figure 4.37.  

We can see that this response seems more similar to the bilayer WSe2 films. 

 

Figure 4.37. Dielectric function ϵ and conductivity σ for bilayer MoSe2-WSe2. a) ϵxx b) ϵxy c) ϵzz d) σxx 
e) σxy f) σzz 

4.9.6 Simulated Scanning Tunneling Microscopy Imagery 

 The simulated scanning tunneling microscopy imagery for copper doped transition 

metal dichalcogenide films are pictured in Figure 4.38.  We can see the large contribution from 

the copper orbitals that show up on the surface.  There is a pronounced effect from the 

hybridization that takes place between the copper and chalcogen atoms.  This effect seems to 
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be larger in WSe2 than in MoSe2.  The simulated STM images are similar to what you see in the 

charge density and are dominated by the effect of adding the copper atom.  What is interesting 

is when you place the copper atom in the bottom layer so that when imaging the surface, we 

still see effects of the replacement on the surface.  This is pictured in 4.38 d) where the effect 

seems more pronounced than when the copper atoms are in the same layer. 

 

Figure 4.38. Simulated scanning tunneling microscopy imagery for copper doped TMDs in the energy 
range -0.2 eV ≤ E ≤ 0.2 eV. a) monolayer MoSe2 b) monolayer WSe2 c) bilayer MoSe2-
WSe2 where the copper is in the Mo layer on top d) bilayer MoSe2-WSe2 where the 
copper is in the W layer in the bottom 
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Chapter Five Electronic Properties of Twisted Transition Metal 

Dichalcogenides 

 Twisted transition metal dichalcogenides is a new emerging field of study based on work 

done on twisted bilayer graphene.  Bilayer systems where a twist is applied between the layers 

creates a Moiré pattern and superlattice that can host exciting phenomenon.  For small twist 

angles, these superlattice unit cells are extremely large and contain a large number of atoms.  

These superlattice unit cells are commensurate for only a specific set of twist angles.  Twisted 

bilayer graphene displayed flat bands at the magic angle near 1° twist that led to the 

observation of superconductivity in those systems [1].  These flat bands lead to a high density 

of states where correlation effects can lead to different interesting phenomena such as 

superconductivity, mott insulators, magnetism and also but not limited to topological effects 

[1-5]. 

 These discoveries have extended similar research into other two-dimensional van der 

Waals systems such as bilayer transition metal dichalcogenides [6-24].  Studies have shown 

spin-layer locking to exist in stacked TMD heterostructures [25,26].  More recent studies have 

shown flat bands and correlation effects in twisted TMD systems.  Mit H. Naik and Manish Jain 

report results from a DFT study for twisted layers of MoS2 where flat bands are observed at 

angles of 3.5° and 65.5° near the valance band edge [10]. Zhiming Zhang et al. report detecting 

flat bands in twisted TMDs consisting of homo-bilayers of WSe2 at angles of 3° and 57.5° near 

the valence band as well.  They determine the existence of flat bands by peaks in the dI/dV 

spectra, which are proportional to the DOS, and related to the wave functions of the flat band 
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states [6].  Shabani et al. created samples of twisted bilayers of MoSe2 and WSe2 and showed 

that at small angles a Moiré potential that describes the structural rippling and electronic 

coupling can store a significant amount of charge carries [7]. This Moiré potential is larger at 

the valence band and on the order of 300 meV [7].  They also argue that the interlayer strain is 

a more significant contributor to the Moiré potential [7].  These states created by the Moiré 

potential can be probed using optical experiments such as photoluminescence (PL) and Raman 

spectroscopy.  Specifically in these PL experiments, they create intralayer and interlayer 

excitons and observe that twisting these bilayers typically decreases the intensities of the PL 

peaks as well as shifting their peak positions based on the level of interlayer interaction [11-14].  

They also observe an increase in the lifetimes of these excitons because of twisting of these 

bilayers [11-14]. 

5.1 Crystal Structure 

 This dissertation covers the followings angles for the twisted bilayer transition metal 

dichalcogenide MoSe2-WSe2: 13.174°, 21.787°, 27.796°, 32.204°, 38.213°, and 46.826°.  The 

twisted crystal structures are found based on methods outlined in chapter 2 section 2.4.1.  The 

next subsections are going to go over the twisted crystal structure supercell, basis vectors, 

reciprocal lattice vectors and their relation to the primitive 1 x 1 hexagonal cells, as well as the 

high symmetry points in k-space for both the supercell and the primitive cell.  These quantities 

help to compare the twisted band structures to the non-twisted ones.  Figure 5.1 shows the 

standard non twisted MoSe2-WSe2 bilayer crystal structure where we denote the interlayer 

separation as the distance between the metal atoms.  Figure 5.2 shows the primitive Brillouin 

zones in the layers, pictured as blue and green hexagons, and their relation to the supercell 
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Brillouin zone pictured in black.  Note, that the twist angle θ separates the K point in the 

primitive Brillouin zones which is the same separation between the K and K’ point in the 

supercell Brillouin zone.  Figures 5.3-5.5 show the crystal structures for the various angles under 

study when viewed from the c and a axes. 

 

Figure 5.1. Bilayer MoSe2-WSe2 crystal structure. a) view from c-axis 
b) view from a-axis 

 

Figure 5.2. Primitive Brillouin zones in the 
layers and their relation to the 
supercell Brillouin zone. 
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Figure 5.3. √7𝑥√7 crystal structures. a) view from c-axis for 𝜃 =
21.787° b) view from a-axis for 𝜃 = 21.787° c) view 
from c-axis for 𝜃 = 38.213° d) view from a-axis for 𝜃 =
38.213° 

 

Figure 5.4. √13𝑥√13 crystal structures. a) view from c-axis for 𝜃 = 27.796° 
b) view from a-axis for 𝜃 = 27.796° c) view from c-axis for 𝜃 =
32.204° d) view from a-axis for 𝜃 = 32.204° 



 

 100 

 

Figure 5.5. √19𝑥√19 crystal structures. a) view from c-axis for 𝜃 = 13.174° b) view 
from a-axis for 𝜃 = 13.174° c) view from c-axis for 𝜃 = 46.826° d) view 
from a-axis for 𝜃 = 46.826° 

 From here on out I am going to denote the primitive lattice vectors for the 1 x 1 

hexagonal Brillouin zone as A1 and A2 and their corresponding reciprocal lattice vectors as B1 

and B2.  Table 5.1 contains the relationship between the primitive reciprocal lattice vectors and 

the supercell reciprocal lattice vectors along with their symmetry points in order to generate 

the correct band structure in the 1 x 1 Brillouin zone.  This information along with the band 

unfolding describe in chapter 2 section 2.4.4. 

Table 5.1. Reciprocal lattice vector relationship between the primitive Brillouin zone and the supercell Brillouin zone along with 
the standard symmetry points, K, M, and K’, in the primitive Brillouin zone. 

Cell Type Angle (°) Layer 

Direction Symmetry Points 

A B K (1/3, 1/3) M (0, 1/2) K’ (-1/3, 2/3) 

√7 𝑥 √7 

21.787 

top b1= 3 B1 - B2 b2= B1 + 2 B2 (4/3, 1/3) (1/2, 1) (-1/3, 5/3) 

bottom b1= 3 B1 - 2 B2 b2= 2 B1 + B2 (5/3, -1/3) (1, 1/2) (1/3, 4/3) 

38.213 

top b1= 3 B1 - 2 B2 b2= 2 B1 + B2 (5/3, -1/3) (1, 1/2) (1/3, 4/3) 

bottom b1= 2 B1 - 3 B2 b2= 3 B1 - B2 (5/3, -4/3) (3/2, -1/2) (4/3, 1/3) 

√13 𝑥 √13 27.796 
top b1= 4 B1 - 3 B2 b2= 3 B1 + B2 (7/3, -2/3) (3/2, 1/2) (2/3, 5/3) 

bottom b1= 3 B1 - 4 B2 b2= 4 B1 - B2 (7/3, -5/3) (2, -1/2) (5/3, 2/3) 
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32.204 

top b1= 4 B1 - B2 b2= B1 + 3 B2 (5/3, 2/3) (1/2, 3/2) (-2/3, 7/3) 

bottom b1= 4 B1 - 3 B2 b2= 3 B1 + B2 (7/3, -2/3) (3/2, 1/2) (2/3, 5/3) 

√19 𝑥 √19 

13.174 

top b1= 5 B1 - 2 B2 b2= 2 B1 + 3 B2 (7/3, 1/3) (1, 3/2) (-1/3, 8/3) 

bottom b1= 5 B1 - 3 B2 b2= 3 B1 + 2 B2 (8/3, -1/3) (3/2, 1) (1/3, 7/3) 

46.826 
top b1= 5 B1 - 3 B2 b2= 3 B1 + 2 B2 (8/3, -1/3) (3/2, 1) (1/3, 7/3) 

bottom b1= 3 B1 - 5 B2 b2= 5 B1 - 2 B2 (8/3, -7/3) (5/2, -1) (7/3, 1/3) 

 To find the equilibrium interlayer separation, we perform self-consistent DFT 

calculations and plot the total energy as a function of interlayer separation which is shown in 

Figures 5.6 – 5.8.  The minimum of this function is the ideal interlayer separation.  We also 

constrict the atoms from relaxing in this step. 

 

Figure 5.6. Interlayer separation determination for √7𝑥√7 supercells. a) interlayer separation for 𝜃 = 21.787° b) interlayer 
separation for 𝜃 = 38.213° 

 

Figure 5.7. Interlayer separation determination for √13𝑥√13 supercells. a) interlayer separation for 𝜃 = 27.796° b) interlayer 
separation for 𝜃 = 32.204° 
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Figure 5.8. Interlayer separation determination for √19𝑥√19 supercells. a) interlayer separation for 𝜃 = 13.174° b) interlayer 
separation for 𝜃 = 46.826° 

5.2 Electronic Band Structure 

 This electronic band structures for twisted bilayer MoSe2-WSe2 are plotted for the 

following angles: 13.174°, 21.787°, 27.796°, 32.204°, 38.213°, and 46.826°.  These band 

structures are plotted in the supercell Brillouin zone as well as the 1 x 1 Brillouin zone to help 

better compare the band structures.  We also include spin-orbit coupling to see its effects at 

the K and K’ points. 

5.2.1 Density Functional Theory 

 Density functional theory calculations were once again performed using VASP.  The 

pseudopotentials made from projected augmented wave with the generalized gradient 

approximation using the Perdew-Burke-Ernzerhof exchange correlation functionals were used.  

The supercells also included approximately 20 Å of vacuum in the c direction between the 

bilayers in order to isolate these twisted bilayer TMD systems.  The Monkhorst-Pack k point grid 

sampling that was used was 9 x 9 x 1 because denser k meshes did not alter any of the results. 

Some initial results on the relaxation of the twisted bilayer MoSe2-WSe2 structures did not alter 

the energy bands significantly so in this dissertation relaxation was not considered.  Later in 

section 5.7, we instead investigate the role of the interlayer spacing and orbital interaction 

between the layers. 
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 Figures 5.9 and 5.10 plot the electronic band structure for twisted MoSe2-WSe2 in the 

supercell Brillouin zone.  Figure 5.9 a) has all the bands that have been folded back in whereas 

in Figure 5.9 b) the bands are unfolded in the 1 x 1 Brillouin zone.  Since the size of the circle 

corresponds to the weight of the band in the 1 x 1 BZ, we see that the majority of the weight 

corresponds to the bands of MoSe2 and WSe2 layers in the supercell BZ.  Figure 5.10 shows the 

angular dependence of the bands along the k path in the supercell BZ.  Here we can see that 

the band structures in the same supercells but different angles produce similar energy bands 

when unfolded in the 1 x 1 BZ. 

 

Figure 5.9. Energy band plots of twisted MoSe2-WSe2 bilayers, where 𝜃 =

21.787° (√7𝑥√7 supercells) a) full band structure in the supercell 
Brillouin zone b) unfolded in the 1 x 1 Brillouin zone. 
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Figure 5.10. Energy band plots of the twisted MoSe2-WSe2 bilayers along the high symmetry points in the supercell 

Brillouin zone and unfolded in the 1 x 1 Brillouin zone. a) √19𝑥√19 supercell where 𝜃 = 13.174° b) √7𝑥√7 

supercell where 𝜃 = 21.787° c) √13𝑥√13 supercell where 𝜃 = 27.796° d) √13𝑥√13 supercell where 𝜃 =

32.204° e) √7𝑥√7 supercell where 𝜃 = 38.213° f) √19𝑥√19 supercell where 𝜃 = 46.826° 

 Figure 5.11 shows the comparison when the energy bands are plotted in the supercell 

BZ, a), and unfolded in either the bottom, b), or top layer, c), in red along with the untwisted 

bilayer MoSe2-WSe2 in black.  We can see that there are 2 different levels of bands at the K 

point corresponding to states in either the bottom or top layer.  Figure 5.12 a)-f) are energy 

band plots for twisted MoSe2-WSe2 viewed from the bottom layer and unfolded in the 1 x 1 

Brillouin zone.  We can see the splitting at K corresponds to different states in the different 

layers.  Figure 5.12 helps to highlight the states in the bottom MoSe2 layer.  We also see that in 

figure 5.12 a) – f) that there are only slight differences in the energy band structure for these 

various twist angles.  In table 5.2, we list the band gap as a function of twist angle and we see 

that there is only minute difference in the band gap values. 
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Figure 5.11. Energy band plots of twisted MoSe2-WSe2 bilayers, where 𝜃 = 21.787° (√7𝑥√7 supercells). Black is 
standard bilayer and red is twisted bilayer. a) bands plotted in the supercell Brillouin zone (note: the scale 
along the k-path is not the same length as in b) and c)) b) unfolded in the 1 x 1 Brillouin zone and in the 
bottom layer c) unfolded in the 1 x 1 Brillouin zone and in the top layer 

 

Figure 5.12. Energy band plots of the twisted MoSe2-WSe2 bilayers viewed from the bottom layer and unfolded in the 1 x 

1 Brillouin zone. Black is standard bilayer and red is twisted bilayer. a) √19𝑥√19 supercell where 𝜃 =

13.174° b) √7𝑥√7 supercell where 𝜃 = 21.787° c) √13𝑥√13 supercell where 𝜃 = 27.796° d) √13𝑥√13 

supercell where 𝜃 = 32.204° e) √7𝑥√7 supercell where 𝜃 = 38.213° f) √19𝑥√19 supercell where 𝜃 =
46.826° 

Table 5.2. Band gap information for twisted bilayer MoSe2-WSe2 

Angle (°) Supercell Size Interlayer Separation (Å) Band Gap (eV) 

0 1 x 1 6.77 0.842 

13.174 √19 𝑥 √19 6.58 0.732 

21.787 √7 𝑥 √7 6.57 0.728 



 

 106 

27.796 √13 𝑥 √13 6.58 0.732 

32.204 √13 𝑥 √13 6.58 0.732 

38.213 √7 𝑥 √7 6.56 0.718 

46.826 √19 𝑥 √19 6.58 0.732 

Including Spin Orbit Coupling 

 If we include spin-orbit coupling, we see similar results as we have seen in the simple 

monolayer and bilayer systems.  That is, these systems without inversion symmetry and 

including spin-orbit coupling, we see a larger spin splitting due to the heavier tungsten atom in 

the top layer.  Figure 5.13 plots the energy bands including spin-orbit coupling where θ = 

21.787°.  We see similar splitting at K and K’ at the valence band edge we have seen in the 

bilayer TMD films. 

 

Figure 5.13. Energy band plots of the twisted MoSe2-WSe2 
bilayers including spin-orbit coupling where 

𝜃 = 21.787° (√7 𝑥 √7 supercell). Black is 
standard bilayer and red is twisted bilayer. a) 
viewed from the bottom layer and unfolded in 
the 1 x 1 Brillouin zone b) plotted in the 
supercell Brillouin zone 

5.3 Density of States 

 The density of states for twisted bilayer MoSe2-WSe2 are plotted in Figures 5.14 – 5.16.  

For the θ = 21.787° (√7 𝑥 √7 supercells), θ = 27.796° (√13 𝑥 √13 supercells), and θ = 46.826° 

(√19 𝑥 √19 supercells) we see that the orbital character of the valence band is 𝑑𝑧2 for the 
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metal atoms and slight s but mostly pz character for the chalcogens.  At the conduction band 

edge, we see that the metal atoms are 𝑑𝑧2 still but the chalcogens are slightly more px as well 

as py in character.  For the θ = 38.213° (√7 𝑥 √7 supercells), θ = 32.204° (√13 𝑥 √13 supercells), 

and θ = 13.174° (√19 𝑥 √19 supercells) we see that the orbital character of the metal atoms is 

still 𝑑𝑧2 at both the conduction and valence band edges.  For the chalcogens we see that orbital 

character at the conduction band is slightly more py than px in character opposite of what we 

see for θ = 21.787° (√7 𝑥 √7 supercells), θ = 27.796° (√13 𝑥 √13 supercells), and θ = 46.826° 

(√19 𝑥 √19 supercells). 

 

Figure 5.14. Density of states for twisted MoSe2-WSe2 bilayers √7𝑥√7 supercells. a) Mo partial density of states 𝜃 = 21.787° b) 
W partial density of states 𝜃 = 21.787° c) Se partial density of states 𝜃 = 21.787° d) total density of states 𝜃 =
21.787° e) Mo partial density of states 𝜃 = 38.213° f) W partial density of states 𝜃 = 38.213° g) Se partial density 
of states 𝜃 = 38.213° h) total density of states 𝜃 = 38.213° 
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Figure 5.15. Density of states for twisted MoSe2-WSe2 bilayers √13𝑥√13 supercells. a) Mo partial density of states 𝜃 = 27.796° 
b) W partial density of states 𝜃 = 27.796° c) Se partial density of states 𝜃 = 27.796° d) total density of states 𝜃 =
27.796° e) Mo partial density of states 𝜃 = 32.204° f) W partial density of states 𝜃 = 32.204° g) Se partial density 
of states 𝜃 = 32.204° h) total density of states 𝜃 = 32.204° 

 

Figure 5.16. Density of states for twisted MoSe2-WSe2 bilayers √19𝑥√19 supercells. a) Mo partial density of states 𝜃 = 13.174° 
b) W partial density of states 𝜃 = 13.174° c) Se partial density of states 𝜃 = 13.174° d) total density of states 𝜃 =
13.174° e) Mo partial density of states 𝜃 = 46.826° f) W partial density of states 𝜃 = 46.826° g) Se partial density 
of states 𝜃 = 46.826° h) total density of states 𝜃 = 46.826° 

5.4 Charge Distribution 

 The charge distribution for θ = 21.787° (√7 𝑥 √7 supercells) is plotted along the c-axis in 

Figure 5.17 a) and along a-axis in Figure 5.17 b).  These charge distributions correspond to the 

valence band edge in the energy range -1 eV ≤ E ≤ 0 eV.  We can see the obvious 𝑑𝑧2 character 

for the metal atoms in the twisted bilayer MoSe2-WSe2 in Figure 5.17 a) and b).  The character 
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of the chalcogen atoms are not as clear but, from the density of states plots in the previous 

section, 5.3, we know that they are mostly px and py in character. 

 

Figure 5.17. Charge distribution for twisted MoSe2-WSe2 bilayers √7𝑥√7 supercells 
where 𝜃 = 21.787° in the energy range-1 eV ≤ E ≤ 0 eV. a) viewed from 
c-axis b) viewed from a-axis. 

5.5 Optical Properties 

 The optical properties for twisted bilayer MoSe2-WSe2 share some of the same 

properties as regular bilayer MoSe2-WSe2.  Optical studies typically focus on 

photoluminescence and Raman spectroscopy [8,11,12,23].  Photoluminescence of twisted 

bilayer TMDs can help reveal information about excitons and their processes in these materials.  

Raman spectroscopy can show how the twisting of the bilayers effects the vibrational modes in 

the materials. 

5.5.1 Excitons 

 Twisted bilayer MoSe2-WSe2 has been shown to increase the lifetimes of excitons in 

these materials [8,9,12,23].  This has been attributed to the Moiré superlattice and potential 

that arises due to the twisting of the bilayers that creates pockets where the excitons can get 

trapped increasing their lifetime by isolating them.  There are also interlayer excitons that can 
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be created between the conduction and valence bands of the layers which are more isolated 

and result in longer lifetimes. 

Alexeev et al perform a study where they observe hybridized excitons in MoSe2-WS2 

bilayers which manifested in angle-dependent shifts in the photoluminescence peak position 

[12].  This can be seen in Figure 5.18 adapted from [12] where we see a variation in the PL peak 

position as a function of twist angle.  We can see that the peak position varies around the order 

of 50 meV.  From this variation we would expect the band gap to also vary as a function of the 

twist angle but based on the DFT results it seems to not be the case meaning that there are 

more complex processes involved in twisted TMDs.  Things like exciton diffusion or possible 

recombination can alter the PL peak position but not effect the band gap because the excitons 

depend on the transition between initial and final states which can be other than the states 

that span the gap. 

 

Figure 5.18. Photoluminescence response of twisted bilayer 
MoSe2-WS2 adapted from Alexeev et al. [12]. a) PL 
response in monolayer MoSe2 (black), WS2 (pink), 

and bilayer MoSe2-WS2 (blue) b) PL response of 
bilayer MoSe2-WS2 as a function of twist angle c) PL 

peak energy position as a function of twist angle 
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5.5.2 Optical Conductivity 

 The optical conductivity and the dielectric function are plotted in Figures 5.19 – 5.21.  It 

seems that the twist angle has little impact on the dielectric function and the optical 

conductivity.  This should be expected since there was little difference in the electronic band 

structure as a function of twist angle. 

 

Figure 5.19. Dielectric function ϵ and conductivity σ for twisted bilayer MoSe2-WSe2 √7 𝑥 √7 supercells. a) ϵxx where 𝜃 =
21.787° b) ϵzz where 𝜃 = 21.787° c) ϵxx where 𝜃 = 38.213° d) ϵzz where 𝜃 = 38.213° e) σxx where 𝜃 =
21.787° f) σzz where 𝜃 = 21.787° g) σxx where 𝜃 = 38.213° h) σzz where 𝜃 = 38.213° 

 

Figure 5.20. Dielectric function ϵ and conductivity σ for twisted bilayer MoSe2-WSe2 √13 𝑥 √13 supercells. a) ϵxx where 𝜃 =
27.796° b) ϵzz where 𝜃 = 27.796° c) ϵxx where 𝜃 = 32.204° d) ϵzz where 𝜃 = 32.204° e) σxx where 𝜃 =
27.796° f) σzz where 𝜃 = 27.796° g) σxx where 𝜃 = 32.204° h) σzz where 𝜃 = 32.204° 
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Figure 5.21. Dielectric function ϵ and conductivity σ for twisted bilayer MoSe2-WSe2 √19 𝑥 √19 supercells. a) ϵxx where 𝜃 =
13.174° b) ϵzz where 𝜃 = 13.174° c) ϵxx where 𝜃 = 46.826° d) ϵzz where 𝜃 = 46.826° e) σxx where 𝜃 =
13.174° f) σzz where 𝜃 = 13.174° g) σxx where 𝜃 = 46.826° h) σzz where 𝜃 = 46.826° 

5.6 Simulated Scanning Tunneling Microscopy Imagery 

 Simulated scanning tunneling microscopy images for twisted MoSe2-WSe2 are plotted in 

Figure 5.22 a) through f) in the energy range -1 eV ≤ E ≤ 0 eV.  The black parallelogram 

corresponds to the unit cell for reference.  This highlights the states at the valence band edge 

where we can easily see the Moiré pattern in the larger supercells in Figure 5.22 c) and f).  We 

are able to see the 7 1 x 1 unit cells in Figure 5.22 a) and d), 13 1 x 1 unit cells in Figure 5.22 b) 

and e), and 19 1 x 1 unit cells in Figure 5.22 c) and f). 



 

 113 

 

Figure 5.22. Simulated scanning tunneling microscopy images of twisted bilayer MoSe2-WSe2 in the energy range -

0.5 eV ≤ E ≤ 0 eV. a) 𝜃 = 21.787° (√7 𝑥 √7 supercells) b) 𝜃 = 27.796° (√13 𝑥 √13 supercells) c) 𝜃 =

13.174° (√19 𝑥 √19 supercells) d) 𝜃 = 38.213° (√7 𝑥 √7 supercells) e) 𝜃 = 32.204° (√13 𝑥 √13 

supercells) f) 𝜃 = 46.826° (√19 𝑥 √19 supercells) 

5.7 Pressure Induced Flat Bands 

 There are also studies that observe the effect of pressure on the existence and variation 

of flat bands within the energy band structure [27-29].  These studies observe that flat bands 

can be observed for slightly larger twist angles under pressure in twisted bilayer graphene [27-

29].  Carr et al., using density functional theory (DFT) and localized Wannier functions, observe 

flat band states in twisted bilayer graphene at angles larger than 1°, specifically θ=1.47° and 

θ=2.0°, with added pressure of 5% and 10% compression respectively.  This suggests that there 

is an interplay in the formation of flat bands with the level of interlayer coupling. 

 We can relate the level of interaction by the decrease in the interlayer spacing from 

estimating the pressure of these compressed films.  The pressure can be estimated by [27], 

𝑃 = −
1

Ω𝑠

𝑑𝐸𝑡𝑜𝑡

𝑑ℎ
      (5.1) 

where Ω𝑠 is the surface area of the supercell (𝑎1⃗⃗⃗⃗⃗  ×  𝑎2⃗⃗⃗⃗⃗).  This gives us a metric to gauge how 

the orbitals between the layers interact. 
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5.7.1 Electronic Band Structure 

 The electronic band structure in twisted bilayer transition metal dichalcogenides, 

specifically bilayer MoSe2-WSe2, has many interesting features, especially when we force the 

bilayers to interact.  This can be accomplished by applying pressure to the bands forcing the 

layers to come into closer proximity.  We can see in figures 5.23 – 5.25 that as we decrease the 

interlayer separation, bands near the valence band maximum get pushed out of the valence 

band and into the gap of the twisted films.  As we decrease the interlayer separation the bands 

begin to flatten out which can be seen in Figures 5.23 – 5.25.  This is not seen by the normal 

non-twisted bilayer MoSe2-WSe2 films plotted in Figure 5.23 for both AB stacked and AA 

stacked.  We can attribute the flattening and forcing of the bands out of the valence band into 

the gap to the twisting of the bilayers.  Later in section 5.7.2 and 5.7.3 we can see the orbital 

composition of these flat band states to help highlight the nature of these flat bands. 

 

Figure 5.23. Bilayer MoSe2-WSe2 as a function of interlayer spacing. a) AB stacked bilayer MoSe2-WSe2 with an interlayer 
spacing of 6.5 Å b) AB stacked bilayer MoSe2-WSe2 with an interlayer spacing of 6 Å c) AB stacked bilayer MoSe2-
WSe2 with an interlayer spacing of 5.5 Å d) AB stacked bilayer MoSe2-WSe2 with an interlayer spacing of 5 Å e) AA 
stacked bilayer MoSe2-WSe2 with an interlayer spacing of 6.5 Å f) AA stacked bilayer MoSe2-WSe2 with an interlayer 
spacing of 6 Å g) AA stacked bilayer MoSe2-WSe2 with an interlayer spacing of 5.5 Å h) AA stacked bilayer MoSe2-
WSe2 with an interlayer spacing of 5 Å 
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Figure 5.24. Electronic energy bands of twisted bilayer MoSe2-WSe2 as a function of interlayer spacing for √7 𝑥 √7 supercells. 
Black is standard bilayer and red is twisted bilayer. a) – d) 𝜃 = 21.787° and e) – h) 𝜃 = 38.213° 

 

Figure 5.25. Electronic energy bands of twisted bilayer MoSe2-WSe2 as a function of interlayer spacing for √13 𝑥 √13 supercells. 
Black is standard bilayer and red is twisted bilayer. a) – d) 𝜃 = 27.796° and e) – h) 𝜃 = 32.204° 
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Figure 5.26. Electronic energy bands of twisted bilayer MoSe2-WSe2 as a function of interlayer spacing for √19 𝑥 √19 supercells. 
Black is standard bilayer and red is twisted bilayer. a) – d) 𝜃 = 13.174° and e) – h) 𝜃 = 46.826° 

Including Spin-Orbit Coupling 

 The electronic band structures where spin-orbit coupling is included are plotted in 

Figures 5.27 – 5.28.  We see that spin-orbit coupling splits the bands at the K and K’ point as we 

have seen earlier.  In Figure 5.27 for θ = 21.787° (√7 𝑥 √7 supercells) with an interlayer 

separation of 5.4 Å we see that including spin-orbit coupling only slightly splits the flat band in 

the gap.  In Figure 5.28 for θ = 46.826° (√19 𝑥 √19 supercells) with an interlayer separation of 

5.2 Å we see that including spin-orbit coupling it does not have much of an impact on the 

electronic band structure.  The effect of spin-orbit coupling is minimal for these TMD films. 

 

Figure 5.27. Electronic energy bands for twisted bilayer MoSe2-
WSe2 including spin-orbit coupling where 𝜃 =

21.787° (√7 𝑥 √7 supercells) and with an interlayer 
spacing of 5.4 Å. Black is standard bilayer and red is 
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twisted bilayer. a) unfolded in the 1 x 1 Brillouin 
zone b) plotting in the supercell Brillouin zone 

 

Figure 5.28. Electronic energy bands for twisted bilayer 
MoSe2-WSe2 including spin-orbit coupling 

where 𝜃 = 46.826° (√19 𝑥 √19 supercells) 
and with an interlayer spacing of 5.2 Å. Black 
is standard bilayer and red is twisted bilayer. 
a) unfolded in the 1 x 1 Brillouin zone b) 
plotting in the supercell Brillouin zone 

Spin Resolved Energy Bands 

 We can attempt to extract more information about the bands and their spin resolution 

by plotting the energy bands and their spin components.  This is plotted in Figure 5.29 where 

we see the complex nature of the flat bands in the gap for θ = 21.787° (√7 𝑥 √7 supercells) with 

an interlayer separation of 5.4 Å.  It seems that the flat band split in the gap where the spin 

component pointing in the -sx direction is lower in energy along this k path.  Whereas the spin 

component pointing in the -sy and -sz goes from lower in energy to higher in energy along this k 

path.  We also notice that the valleys around the conduction band maximum at K and K’ have 

different spin polarizations as we would expect from including spin-orbit coupling. 
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Figure 5.29. Spin texture of the electronic energy bands for twisted MoSe2-WSe2 bilayers with a twist angle of 21.787° 

(√7 𝑥 √7 supercells) and an interlayer separation of 5.4 Å. Red (blue) represents the spin pointing in the 
positive (negative) direction. Spin components are as follows: a) sx b) sy c) sz 

5.7.2 Density of States 

 The density of states of the twisted bilayer MoSe2-WSe2 gives useful information about 

the composition of the bands.  We can see in Figure 5.30 where θ = 21.787° (√7 𝑥 √7 

supercells) with an interlayer separation of 5.4 Å that there exists a flat band in the gap and a 

subsequent spike in the density of states in Figure 5.30 c).  This highlights the composition as 

well as the nature of a flat band.  We also see that there is a larger spike in the density of states 

for selenium in both Figure 5.30 c) and Figure 5.31 c) highlighting the higher composition of 

selenium and its possible influence on creating these flat bands.  We also see a similar effect in 

the twisted bilayer films where θ = 46.826° (√19 𝑥 √19 supercells) with an interlayer 

separation of 5.2 Å except that there is a higher contribution from the metal atoms than the 

chalcogen atoms.  We can also see that from the partial density of states plots in Figures 5.31 

and 5.33 that there are multiple orbitals that contribute to these flat bands highlighting their 

complex nature. 
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Figure 5.30. Energy bands and density of states for twisted bilayer MoSe2-WSe2 where 𝜃 = 21.787° 

(√7 𝑥 √7 supercells) and with an interlayer spacing of 5.4 Å. Black is standard bilayer and 
red is twisted bilayer. a) Energy band unfolded in the 1 x 1 Brillouin zone b) energy bands 
plotted in the supercell Brillouin zone c) Total partial density of states for each element 

 

Figure 5.31. Partial density of states for twisted bilayer MoSe2-WSe2 where 𝜃 = 21.787° (√7 𝑥 √7 supercells) and with an 
interlayer spacing of 5.4 Å. a) Partial density of states for Mo orbitals b) Partial density of states for W orbitals 
c) Partial density of states for Se orbitals 

 

Figure 5.32. Energy bands and density of states for twisted bilayer MoSe2-WSe2 where 𝜃 =

46.826° (√19 𝑥 √19 supercells) and with an interlayer spacing of 5.2 Å. Black is 
standard bilayer and red is twisted bilayer. a) Energy band unfolded in the 1 x 1 
Brillouin zone b) energy bands plotted in the supercell Brillouin zone c) Total partial 
density of states for each element 
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Figure 5.33. Partial density of states for twisted bilayer MoSe2-WSe2 where 𝜃 = 46.826° (√19 𝑥 √19 supercells). a) Partial 
density of states for Mo orbitals b) Partial density of states for W orbitals c) Partial density of states for Se 
orbitals 

5.7.3 Charge Distribution 

 The charge distribution for these twisted bilayer MoSe2-WSe2 films helps to highlight the 

key states and orbitals that contribute to features in the electronic energy band structure that 

are of interest.  If we look at the charge density distribution in the energy range -0.5 eV ≤ E ≤ 0 

eV where the flat band exists for θ = 21.787° (√7 𝑥 √7 supercells) with an interlayer separation 

of 5.4 Å we see that there is a large contribution from the seleniums and metal atoms where 

the seleniums are in closest proximity, approximately 2.15 Å apart, which is pictured in Figure 

5.34.  The metal atoms surrounding the chalcogens in closest proximity bond with each other 

creating a triangular type state and the chalcogen atom create an antibonding state which can 

be seen in Figure 5.34 b).  A similar scenario exists for θ = 46.826° (√19 𝑥 √19 supercells) with 

an interlayer separation of 5.2 Å except we see that there are 3 times more seleniums in closest 

proximity, approximately 2.0 Å apart, pictured in Figure 5.35. 
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Figure 5.34. Charge density for twisted bilayer MoSe2-WSe2 where 𝜃 = 21.787° (√7 𝑥 √7 supercells) and with an 
interlayer spacing of 5.4 Å in the energy range -0.5 eV ≤ E ≤ 0 eV. a) slice of charge density viewed from c-
axis b) slice of charge density viewed along slice 1 in a) c) slice of charge density viewed along slice 2 in a) 

 

Figure 5.35. Charge density for twisted bilayer MoSe2-WSe2 where 𝜃 = 46.826° (√19 𝑥 √19 supercells) and with an 
interlayer spacing of 5.2 Å in the energy range -0.5 eV ≤ E ≤ -0.25 eV. a) slice of charge density viewed from 
c-axis b) slice of charge density viewed along slice 1 in a) c) slice of charge density viewed along slice 2 in a) 
d) slice of charge density viewed along slice 3 in a) 

5.7.4 Optical Properties 

 The optical properties we are going to focus on are the dielectric function and the 

optical conductivity of the compressed twisted bilayers.  The optical conductivity and dielectric 

function for twisted bilayer MoSe2-WSe2 where θ = 21.787° and an interlayer separation of 5.4 

Å is plotted in Figure 5.36.  We can see that peaks have been suppressed.  This is mostly likely 

due to the fact that there are more available states that can transition from occupied states 

below the Fermi level to unoccupied states within the conduction band. 
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Figure 5.36. Dielectric function ϵ and conductivity σ for twisted bilayer MoSe2-WSe2 where 𝜃 = 21.787° (√7 𝑥 √7 supercells) 
and with an interlayer spacing of 5.4 Å. a) σxx b) σzz c) ϵxx d) ϵzz 

5.7.5 Simulated Scanning Tunneling Microscopy Imagery 

 The simulated scanning tunneling microscopy imagery for θ = 21.787° (√7 𝑥 √7 

supercells) with an interlayer separation of 5.4 Å and θ = 46.826° (√19 𝑥 √19 supercells) with 

an interlayer separation of 5.2 Å are plotted in Figure 5.37 b)-d) and Figure 5.38 b)-d) 

respectively.  We can see that as we decrease the interlayer spacing the states become more 

localized as we would expect from the flat bands that occur in the electronic band structure in 

Figures 5.30 and 5.32 and the charge distribution we see in Figures 5.34 and 5.35. 

 

Figure 5.37. Pressure dependent scanning tunneling microscopy images for twisted bilayer MoSe2-WSe2 

where 𝜃 = 21.787° (√7 𝑥 √7 supercells). a) calculated pressure as a function of interlayer 
separation b)-d) STM imagery in the energy range -0.5 eV ≤ E ≤ 0 eV at approximately 4 Å 
from the surface. 
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Figure 5.38. Pressure dependent scanning tunneling microscopy images for twisted bilayer MoSe2-WSe2 where 𝜃 =

46.826° (√19 𝑥 √19 supercells). a) calculated pressure as a function of interlayer separation b)-d) STM 
imagery in the energy range -0.5 eV ≤ E ≤ -0.25 eV at approximately 4 Å from the surface. 

5.8 Defect States in Compressed Twisted Bilayer Transition Metal Dichalcogenides 

 Now we introduce an impurity like copper as we did in section 4.9 to probe the effects 

of both the copper replacement and the twisting of the bilayers.  If we choose the correct 

interlayer separation and twist angle, we can have the pressure induced flat bands as well as 

the impurity bands overlap and see what sort of effects these have on each other and the 

overall material system.  What we observe is that it is non-trivial to create a scenario where the 

flat bands from the impurities and the flat bands from the compressed twisted bilayers overlap 

because they exist too far apart in energy.  Overall, what we observe is that these two effects in 

a sense destructively interfere with each other and reduce their individual effects to the 

material system. 

5.8.1 Crystal Structure 

 The crystal structures are created the same as in section 5.1 except that one of the 

metal atoms is replaced by copper.  Figure 5.39 show a sample crystal structure for the 
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√13 𝑥 √13 supercells where θ = 27.796° and a Mo is replaced by a Cu, picture as orange within 

the crystal structure, in the MoSe2 layer.  Once again, supercell size plays a role in whether or 

not these impurities interact with each other so supercells of at least √13 𝑥 √13 were used. 

 

Figure 5.39. √13𝑥√13 crystal structure with a copper impurity (orange in picture) in the MoSe2 layer. a) view 
from c-axis for 𝜃 = 27.796° b) view from a-axis for 𝜃 = 27.796° 

5.8.2 Electronic Band Structure 

 The electronic band structure of copper doped twisted bilayer MoSe2-WSe2 has similar 

features to ones we see in section 4.9.2 where there are flat states around the Fermi energy 

due to the copper replacement.  Figure 5.40 plots the electronic energy bands for twisted 

bilayer MoSe2-WSe2 as a function of decreasing interlayer separation.  We can see that the 

effect of pushing the bands around the valence band maximum out of the bulk and into the gap 

still happens as we decrease the interlayer separation.  Unfortunately matching the flat bands 

due to decreasing the interlayer separation did not occur for the list of commensurate angles 

studied mostly because the flat bands creating from decreasing interlayer separation and the 

flat states from the copper replacement never quite aligned.  We can see that some of the 

bands that are pushed out of the valence band intersect the band around the Fermi level from 

the copper replacement. 
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Figure 5.40. Energy band plots of copper doped twisted MoSe2-WSe2 for √13𝑥√13 supercells where 𝜃 = 27.796° viewed from 
the bottom layer and unfolded in the 1 x 1 BZ as a function of interlayer spacing. Black is standard twisted bilayer 
and red is with the copper impurity. a) interlayer spacing of 6.58 Å b) interlayer spacing of 6 Å c) interlayer spacing 
of 5.5 Å d) interlayer spacing of 5 Å 

Including Spin-Orbit Coupling 

 If we include spin-orbit coupling, we see similar trends in section 4.9.1 in Figure 5.41 

where the flat states around the Fermi split.  From the spin polarized calculation in VASP we see 

that the copper atom has added a magnetic moment to this material.  For twisted bilayer 

MoSe2-WSe2 √13 𝑥 √13 supercells where θ = 27.796° we see that the induced magnetic 

moment is on the order of 4.006 μB for an interlayer separation of 6.58 Å, 3.545 μB for an 

interlayer separation of 6 Å, and 2.422 μB for an interlayer separation of 5.5 Å.  It would seem 

that decreasing the interlayer separation tends to decrease the strength of the overall magnetic 

moment of these materials.  The effect of twist and adding the impurity seems to negate the 

effect of both of their overall effects, meaning suppression of the magnetic moments and the 

real space localization is dominated by the impurity state. 

 

Figure 5.41. Energy bands (black) including spin-orbit coupling (red) of copper doped 

twisted MoSe2-WSe2 for √13𝑥√13 supercells where 𝜃 = 27.796° viewed 
from the bottom layer and unfolded in the 1 x 1 BZ as a function of 
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interlayer spacing. a) interlayer spacing of 6.58 Å b) interlayer spacing of 6 Å 
c) interlayer spacing of 5.5 Å 

5.8.3 Density of States 

 The density of states helps to highlight the contributions, not only in terms of atoms but 

also in terms orbitals, to the electronic band structure.  We can see that the copper doped 

twisted bilayer TMDs at the equilibrium interlayer separation produce similar band structures 

and density of states as the non-twisted bilayers in sections 4.9.2 and 4.9.3.  When we decrease 

the interlayer separation, we see that density of states in the flat bands from the copper 

replacement is suppressed compared to the equilibrium separation. 

 

Figure 5.42. Electronic energy bands and density of states of twisted bilayer Cu:MoSe2-

WSe2 for √13𝑥√13 supercells where 𝜃 = 27.796° and an interlayer 
separation of 6.58 Å. a) energy bands viewed from the bottom layer and 
unfolded in the 1 x 1 BZ. Black is standard twisted bilayer and red is with the 
copper impurity. B) total density of states decomposed into the main atoms 

 

Figure 5.43. Electronic energy bands and density of states of twisted bilayer Cu:MoSe2-

WSe2 for √13𝑥√13 supercells where 𝜃 = 27.796° and an interlayer 
separation of 5.5 Å. a) energy bands viewed from the bottom layer and 
unfolded in the 1 x 1 BZ. Black is standard twisted bilayer and red is with the 
copper impurity. B) total density of states decomposed into the main atoms 
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Figure 5.44. Density of states of twisted bilayer Cu:MoSe2-WSe2 for √13𝑥√13 supercells where 𝜃 = 27.796° for an interlayer 
separation of 6.58 Å. a) Cu partial density of states b) Mo partial density of states c) W partial density of states d) Se 
partial density of states 

 

Figure 5.45. Density of states of twisted bilayer Cu:MoSe2-WSe2 for √13𝑥√13 supercells where 𝜃 = 27.796° for an interlayer 
separation of 5.5 Å. a) Cu partial density of states b) Mo partial density of states c) W partial density of states d) Se 
partial density of states 

5.8.4 Charge Distribution 

 The charge distribution helps to highlight the states and their interaction in the desired 

energy range.  For copper doped twisted bilayer MoSe2-WSe2 √13 𝑥 √13 supercells where θ = 

27.796° we see that the charge distribution is similar to what we see in the untwisted case 

meaning that even though the charge distribution of the copper atom is extended, both in and 

out plane, it does not change anything in the other layer since they are loosely coupled.  Note 

that the copper atom is highlighted with a black circle for reference.  This is pictured in Figure 

5.46 a) and b) and we also see in c) that as we decrease the interlayer separation the states in 

the layer containing the copper atom starts to effect the states in the opposite layer.  This can 

be seen by the increase in the charge distribution of the selenium in the tungsten layer not 

containing the copper atom. 
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Figure 5.46. Charge density for twisted bilayer Cu:MoSe2-WSe2 where 𝜃 = 27.796° (√13 𝑥 √13 supercells) in the energy range -
0.25 eV ≤ E ≤ 0.25 eV. a) slice of charge density viewed from c-axis. b) slice of the charge density viewed along the a-
axis with an interlayer separation of 6.58 Å. c) slice of the charge density viewed along the a-axis with an interlayer 
separation of 5.5 Å. Note: the black circle highlights the position of the copper atom. 

5.8.5 Optical Properties 

 The optical properties for copper doped twisted bilayer MoSe2-WSe2 √13 𝑥 √13 

supercells where θ = 27.796° differ from the non-twisted case where we see a non-zero off-

diagonal component.  It seems that twisting the layers suppresses the off-diagonal component 

because the values we see are small that they might be due to noise.  These are pictured in 

Figure 5.47 for reference.  We also observe the small non-zero values for the yz and zx 

components but, given that they are small and can also be effected by the supercell selection 

size, they cannot be trusted. 

 

Figure 5.47. Dielectric function ϵ and conductivity σ for twisted bilayer Cu:MoSe2-WSe2 where 𝜃 = 27.796° (√13 𝑥 √13 
supercells) and with an interlayer spacing of 6.58 Å. a) ϵxx b) ϵzz c) σxx d) σzz 
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Figure 5.48. Dielectric function ϵ and conductivity σ for twisted bilayer Cu:MoSe2-WSe2 where 

𝜃 = 27.796° (√13 𝑥 √13 supercells) and with an interlayer spacing of 6.58 Å. a) 
ϵxy b) ϵyz c) ϵzx d) σxy e) σyz f) σzx 

5.8.6 Simulated Scanning Tunneling Microscopy Imagery 

 The simulated scanning tunneling microscopy images helps to highlight what an 

experimentalist might observe for the copper doped twisted bilayer MoSe2-WSe2 films.  We can 

see in Figure 5.49 that the dominant features come from the hybridization between the copper 

atom and the other local atoms.  It almost looks like 3 water molecules where the hydrogen 

lobes are pointed outward and are separated 120° apart from the center.  The larger 

contribution comes from the bonding between the copper and the local chalcogen atoms but 

also extends outward to the next ring of metal atoms.  The interaction between the copper and 

the chalcogens show up as pronounced yellow spheres.  If we compare what we saw in the 

pressured induced simulated STM imagery in section 5.7, we can see that the localization from 

the twist angle is washed out by the stronger interaction from the copper dopant.  We can also 

that the simulated STM imagery of the non-twisted TMS in section 4.9.6 are almost identical to 

the twisted bilayer MoSe2-WSe2 films. 
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Figure 5.49. Simulated scanning tunneling microscopy images of twisted bilayer Cu:MoSe2-WSe2 for √13 𝑥 √13 supercells where 
𝜃 = 27.796° in the energy range -0.25 eV ≤ E ≤ 0.25 eV. a) interlayer spacing of 6.58 Å where copper is in the top 
Mo layer b) interlayer spacing of 6.58 Å where copper is in the top W layer c) interlayer spacing of 5.5 Å where 
copper is in the top Mo layer 
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10. Waters, D., Nie, Y., Lüpke, F., Pan, Y., Fölsch, S., Lin, Y.-C., . . . Feenstra, R. M. (2020). Flat 
Bands and Mechanical Deformation Effects in the Moiré Superlattice of MoS2-WSe2 
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Chapter Six Summary and Outlook 

6.1 Summary 

 This dissertation focused on methods to synthesize, characterize, and simulate 

properties of two-dimensional materials.  These methods are important in the discovery and 

characterization of new materials that could possibly replace the digital electronics that rely on 

silicon technology. 

 The main methods that were used for synthesis included polymer transferred graphene 

and molecular beam epitaxy.  We covered the components and conditions required to create 

these samples including growing high quality crystalline materials in a UHV chamber using 

molecular beam epitaxy.  Using these methods, we create samples of polymer transferred 

graphene onto arbitrary substrates and grow samples of FeSe on epitaxial graphene and STO. 

 We demonstrated typical methods used to characterize the success of transferred 

graphene using Raman spectroscopy and atomic force microscopy.  In the AFM imagery, we can 

clearly see that the polymer transferred graphene produces ripples and ridges on the surface 

indicate a non-uniform contact with the surface of the substrate.  This non-uniform contact was 

confirmed by STS studies as well as temperature dependent IV measurements.  The 

temperature dependent IV characteristics show that the Schottky barrier had temperature 

dependence indicating an imperfect contact that was later model using a Gaussian distribution 

of barrier heights. 

 We doped the monolayer and bilayer TMD films with manganese, iron, and copper 

where observed a large induced magnetic moment in copper doped films and a non-zero off-

diagonal component to the dielectric function.  The copper creates flat impurity bands that lie 
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around the Fermi level within the gap.  The copper atom hybridized with the local chalcogens 

and the next nearest metal atoms to form a state that is extended in plane and out of plane.  

The filling of the states up to the Fermi level, which results in unpaired spins, accounts for the 

magnetic moment of these materials. 

 We studied twisted bilayer TMDs as a function of twist angle and interlayer separation 

to determine that stronger interaction between the layers can give rise to flat bands.  This 

electronic information was calculated using DFT and VASP to produce the energy band 

structure, density of states information, and charge density distribution to confirm the states 

that contribute to the flat bands.  These flat bands create localized charge densities around the 

chalcogens that are in closest proximity along with the surrounding metal atoms. 

 Lastly, we looked at the effect of adding a copper replacement to the compressed 

twisted bilayer TMDs.  We saw that the flat band states from the copper impurity and the flat 

band states from the twist were not close enough energy to overlap and interact.  Adding the 

twist to the copper replacement suppressed the observed magnetic moment and the effect of a 

non-zero off-diagonal component to the optical response.  Also, the simulated STM imagery is 

dominated by the effect of adding the copper replacement and any effect of the twist is 

suppressed. 

6.2 Outlook 

 Considering the breadth of material covered in this dissertation, there are many new 

aspects that can be investigated.  Devices of polymer transferred graphene that have extremely 

small channels can be studied [1,2].  This can take advantage of graphene’s high mobility and 

also induce a gap making it a suitable replacement for transistor-based devices.  There are 
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other aspects of the twisted bilayer TMD structures that can be investigated such as including 

relaxation, investigating other twist angles, investigating other structural properties, as well as 

using different metal or chalcogen atoms.  Investigation of the flat bands for the √13 𝑥 √13  

supercells, where θ = 27.796° with an interlayer separation of 5.2 Å, around the energy level of 

-0.5 eV where we see the real space localization can lead to the possible creation of a quantum 

dot lattice. 
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