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ABSTRACT 

THREE ESSAYS ON ARTIFICIAL INTELLIGENCE IN BUSINESS AND 

HEALTHCARE 
              by 

Zongxi Liu 

The University of Wisconsin-Milwaukee, 2023 

Under the Supervision of Professor Huimin Zhao 

 

 

The big data era has provided researchers with challenges and opportunities for data-

centric research. On the one hand, recent developments in AI technology have allowed advanced 

techniques to process text/image/audio/video and graph-structured data, providing new 

opportunities to employ big data for explanatory and predictive analytics in information systems 

research. On the other hand, the field requires a new level of artificial intelligence–transparent, 

robust, and ethical AI–to facilitate reliable business decision-making. My three dissertation 

essays apply, develop, and enhance state-of-the-art AI methods, leveraging various data sources 

as well as domain knowledge synthesis, to deal with issues in business and healthcare fields. 

 

In Essay 1, I investigate the possibility of using deep learning models for Computed 

Tomography (CT) localizer image reconstruction. CT has become an important clinical imaging 

modality, as well as the leading source of radiation dose from medical imaging procedures. 

Modern CT exams are usually led by two quick orthogonal localization scans, which are used for 

patient positioning and diagnostic scan parameter definition. These two localization scans 

contribute to the patient dose but are not used for diagnosis purposes. I investigate the possibility 

of using deep learning models to reconstruct one localization scan image from the other, thus 
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reducing the patient dose and simplifying the clinical workflow. I propose a modified encoder-

decoder network and a scaled mixture loss function specifically for the focal task. Experiment 

results indicate that although the reconstructed abdominal CT localization images may lack some 

details on the internal organ structures, they could be used effectively for tube current 

modulation calculation and patient positioning purposes, leading to a reduction of radiation dose 

and scan time in clinical CT exams. 

 

In Essay 2, I propose a robust meta-graph learning method for multimodal time series 

prediction. Multimodal time series prediction is a difficult problem given the intricate feature 

interrelationships. I explore interrelationships of multilevel features in multimodal time series 

data and disentangle the intricate interrelationships with a robust meta-graph learning method 

named RMGL. The design of RMGL is rooted in theoretical foundations regarding graph 

convolutional networks and a novel graph attention mechanism. The core of RMGL is a meta-

graph composed of three hierarchically interconnected graphs, representing feature-wise, 

modality-wise, and time-step-wise interrelationships, respectively. The interconnections across 

the graphs allow feature representations to propagate simultaneously, thereby quantifying 

multilevel feature interrelationships with graph structures synchronously and efficiently. 

Furthermore, RMGL introduces a novel weight regularization scheme to effectively learn the 

meta-graph for prediction based on the low-pass nature of graph convolutional filters. RMGL 

outperformed state-of-the-art alternatives in an empirical evaluation with a financial risk 

prediction task. Ablation experiments and further analyses indicated the effectiveness of RMGL. 
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In Essay 3, I propose a knowledge-enhanced, transformer-based text categorization 

model to detect employee trust indices from employee reviews. The indices of Employee Trust 

Model (ETM) are intangibles. Extant measurement options that require members of an 

organization to complete surveys make it difficult to collect data from large samples of firms 

across times. The use of small samples has led to conflicting results in managerial and finance 

research and made findings less appealing to practitioners. Furthermore, the absence of data in 

the time dimension has restricted analytical methods in use and limited the application of 

theoretical frameworks. I propose DeepEmployee, a novel design artifact based on automated 

text classification, to detect ETM indices from employee-generated reviews. DeepEmployee 

stems from design science research and includes three cohesive and complementary parts: (1) 

domain-specific knowledge construction based on theoretical frameworks in the management 

field, (2) a state-of-the-art deep learning design artifact that incorporates domain-specific 

knowledge to improve performance, and (3) a rigorous two-part evaluation of improvements in 

ETM detection and increased explanatory and predictive power in downstream tasks.   
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1. Essay 1: Abdominal Computed Tomography Localizer Image 

Generation: A Deep Learning Approach 

 

1.1 Introduction 

Medical imaging has now become an essential part of modern medicine, and computed 

tomography (CT) has been one of the most important medical imaging modalities since it was 

invented in the 1970s. It has been estimated that more than 90 million CT scans were performed 

in the U.S. in 2019 (Division 2019). While CT provides invaluable diagnostic information, it alone 

contributes almost half of the radiation dose from medical use and one quarter of the average 

radiation dose in the U.S. (NCRP 2019). It has been estimated that about 0.4% of all cancers in the 

U.S. may be attributable to the radiation from CT studies (De Gonzalez et al. 2004). Reducing 

unnecessary radiation dose in CT studies could directly lead to lowered radiation-induced cancer 

risks, in addition to possible workflow and time savings. 

“Normal” or diagnostic CT images are acquired by having the patient lie on a table that moves 

through the gantry while an x-ray tube rotates around the table and shoots x-rays through the 

patient body. However, before these images are acquired, one or more CT “localization” images 

are usually acquired first, where the x-ray tube is in stationary position and the table moves through 

the scan field. These localization images are not cross-sectional and are more similar to general x-

ray images. These localization images have various names from manufacturers, including localizer, 

scout, topogram, scanogram, pilot, surview, and preview, and we will call them localizer images 

herein. Localizer images are acquired mostly for two purposes: (1) to confirm the location of the 

patient and anatomy in the field of view and determine the location and range for the following 

diagnostic CT scan; and (2) to determine the parameters for the following diagnostic CT scan at 

different locations using tube current modulation. Although these localizer images usually do not 

provide additional diagnostic information due to low image quality, research shows that they 

account for 0.4%-8.6% of the corresponding organ doses for a typical CT scan and 1.1%-20.8% 

of the organ doses for a low-dose lung cancer screening scan (Hoye et al. 2019).  

In the current clinical practice, usually two orthogonal localizer images are acquired before the 

diagnostic CT scans can be started: an anterior–posterior (AP) view and a lateral view (Figure 1.1 
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shows an example). It is desirable to reduce the number of localizers if possible. If only one 

localizer image is acquired instead of two, about half of the dose introduced by localizer scans 

could be avoided, and the clinical workflow and efficiency will be improved significantly. 

 

 (a)  (b) 

Figure 1.1. The AP localizer (a) and lateral localizer (b) of a typical abdominal CT exam.  

 

Machine learning techniques, especially deep convolutional neural networks (CNNs), have 

been developed so fast recently and have almost revolutionized many fields of computer vision 

and image processing, including but not limited to, object detection (Liu et al. 2020), motion 

tracking (Kwok 2019), pose estimation (Mathis et al. 2018), and action recognition (Ji et al. 2013). 

Machine learning has also been successfully applied to the field of image transformation (Chen et 

al. 2020, Dong et al. 2014, Zhang et al. 2020). Researchers have demonstrated that it is possible to 

reconstruct 3D images from one or two 2D projection views (Henzler et al. 2018, Montoya et al. 

2019, Shen et al. 2019).   

In this study, we investigate the feasibility of generating one abdominal CT localizer from the 

other acquired orthogonal localizer (i.e., a 2D to 2D image transformation) using a deep learning 

approach. Although mathematically this transformation is challenging, our experiment results 

show that the additional information embedded in large datasets and extracted by the training 

process of our proposed encoder-decoder network could help and make it feasible.  
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1.2 Material and Methods 

1.2.1 Clinical Images and Information 

Institutional Review Boards approval was obtained for this HIPAA-compliant retrospective 

study and the requirement of written informed consent was waived.  

To ensure data consistency, we included only abdominal CT exams from one CT scanner 

(Somatom Definition Flash, Siemens Medical Solutions USA, Inc., Malvern, PA, USA) in this 

study. An initial search in the electronic medical records system (Epic Systems Corporation, 

Verona, WI, USA) of a major hospital in a metropolitan area in west U.S. for all the adult (age ≥

18) abdominal CT exams performed on this scanner between April 1, 2013 and June 4, 2020 

returned a total of 29,567 exams. 

We downloaded the images of the corresponding exams directly from the picture archiving and 

communication system (PACS). We then recorded DICOM (digital imaging and communications 

in medicine) header information, including table height and image resolution. 

1.2.1.1 Data Screening 

The data screening process is illustrated in Figure 1.2. First, we examined the images to make 

sure two orthogonal localizers exist for each exam. Exams that do not contain images or localizers, 

contain only one localizer, or contain more than two localizer images were excluded from this 

study. A total of 13,805 exams were excluded. 
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Figure 1.2 Data collection, screening, and splitting in the study. 

 

Since most of the localizer images have the resolution of 2mm/pixel in both horizontal and 

vertical directions, we excluded the images that have a different resolution. 2,130 exams were 

excluded in this step. 

For the purpose of this study, we also excluded large-patient exams in which localizer images 

do not cover the whole body. Since all of the images have the anatomy aligned in the same 

direction as shown in Figure 1, we applied a simple rule to exclude these exams: if the five leftmost 

or five rightmost columns of the images have patient body pixels, we deemed the patient size too 

big for this study and hence excluded the exam. 1,145 exams were excluded in this step.  

The 12,487 remaining exams eventually included in this study are mainly scanned with two 

kVp settings (100kVp and 120kVp). The protocol is always the same for the lateral and AP scans. 

The detailed protocol and reported dose (CTDI) are listed in Table 1.1. 

Table 1.1. Protocols of Exams 

1.2.1.2 Data Preprocessing 

The screened dataset includes 12,487 remaining exams and each exam has two orthogonal 

localizer images of the same patient, i.e., AP and lateral images, in the format of DICOM. We pre-

processed the exams in the following steps.  

Within each exam, the localizer images were first aligned at the y direction of the image 

coordinate system based on image position from the DICOM header. The localizer image with 

higher z-coordinate value of image position was shifted up at the y direction to match its 

corresponding localizer counterpart. The aligned AP and lateral localizer image pair was then 

cropped to make sure the two images have the same effective scan length and matching location. 

The cropped image pair was then squared through zero-padding or cropping out the image length 

k

Vp 

Number 

of Exams 

Tube 

Current 

(mA) 

Table 

Speed 

(mm/s) 

Focal Spot (mm) CTDI  

(reported, mGy) 

10

0 

224 35 100 0.7 0.085 

12

0 

12,263 35 100 0.7 0.140 
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to match the image width. After the cropping and squaring, all images are of 276×276 pixels 

(height×width).  

Since the range of DICOM intensity varies, to facilitate model training, we rescaled the images 

to a standard range of 0-255 (to be stored in one byte) with calculated minimum and maximum 

intensity values. Specifically, the rescaling was taken using equation (1.1), where 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 

are the means of the minimum intensity values and maximum intensity values across all images, 

respectively. 

 𝑔(𝑥, 𝑦) =  255 ×
𝑓(𝑥,𝑦)−𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
         (1.1) 

The occasional out-of-range intensity values were set to their closest boundary values, i.e., 0 or 

255. The scaled images were then down-sampled to 256×256 pixels and saved as gray-scaled PNG 

images. The PNG images were then used as inputs to the proposed deep learning model. 

1.2.2 Proposed Deep Learning Model 

We propose a deep learning model, a modified encoder-decoder network, to learn the mapping 

between the localizer images from one orientation to the other. Denote 𝐴 as a set of image pairs 

{(𝑋𝑖
𝑇 , 𝑌𝑖

𝑇), (𝑋𝑗
𝑉 , 𝑌𝑗

𝑉)}, where (𝑋𝑖
𝑇, 𝑌𝑖

𝑇), (𝑋𝑗
𝑉 , 𝑌𝑗

𝑉) ∈ 𝑅𝑚×n are localizer pairs of 𝑖 and 𝑗, such that 

1 ≤ 𝑖 ≤ 𝐾 , 1 ≤ 𝑗 ≤ 𝐿 , 𝐾  is the total number of training exams and 𝐿  is the total number of 

validation exams, and 𝑚 and n are the image height and width, respectively. Given an input set 𝐴, 

the goal is to train the model to find an optimal mapping ℱ, such that  

 ℱ = argmin
𝐹

{ℒ(𝐹(𝑋𝑗
𝑉 , (𝑋𝑖

𝑇, 𝑌𝑖
𝑇) ), 𝑌𝑗

𝑉)} , 1 ≤ 𝑖 ≤ 𝐾, 1 ≤ 𝑗 ≤ 𝐿,   (1.2) 

where ℒ is the loss function. We formulate the mapping as a composition of three sub functions 

to be learned by the model, i.e., 

 𝐹 = 𝐸 ∘ 𝑇 ∘ 𝐷 .         (1.3) 

𝐸 is the encoder function, which maps the 2D image domain to the feature domain, 𝑇 is the 

transformation function, which maps the feature representations across localizer orientations 

within the feature domain, and 𝐷 is the decoder function mapping the feature domain back to the 

2D image domain. Accordingly, the learning model is framed as a deep neural network composed 
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of three sub modules, i.e., encoder, transformation, and decoder, to jointly learn the mapping 

functions (Figure 1.3). 

 

 

Figure 1.3. Architecture of the proposed deep learning network. 

 

1.2.2.1 Encoder  

The encoder module (Figure 1.3(A)) learns a high-level semantic representation of a 2D image 

object in a sequence of down-sampling encoder blocks. We apply the classical encoder network 

(Badrinarayanan et al. 2017) and make a few adjustments according to the characteristics of our 

focal task. A classical encoder uses a max pooling layer to reduce the feature map’s resolution, but 

it may lose some pixel-level information which could be essential to a dense prediction problem. 

We remove the max pooling layers because the goal of the network is to predict at the pixel level 

(Gao et al. 2019). We then add residual connection to facilitate the training of the deep network 

(He et al. 2016).  

The encoder module consists of six encoder blocks. Each encoder block first starts with a 2D 

convolutional layer and batch normalization using a 4×4 kernel with sliding stride 2×2. This 

operation down-samples the spatial size by a factor 2 and goes through a ReLU activation to 

generate the first-layer output. Next is a 2D convolutional layer and batch normalization with a 

kernel size of 3×3 and sliding stride 1×1, keeping the spatial size unchanged. The output of the 

second convolutional layer is linked to that of the first layer by an element-wise addition before 

passing through the ReLU activation. The channel size of the feature map increases as the encoder 

block goes deeper. Our input image is of size 1×256×256 (channel size × image height × image 
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width) and the filter size of the first encoder block is 128. The filter size doubles as the model goes 

one step deeper, thereby the feature map dimensionality follows the sequence of changes:  

1×256×256→128×128×128→256×64×64→512×32×32→1024×16×16→2048×8×8→4096×4

×4 

1.2.2.2 Transformation  

The transformation module (Figure 1.3(B)) converts the feature representation from one 

localizer orientation to the other. Because the converted representation stays in the same feature 

domain, we construct the module to include two blocks, i.e., a 1x1 convolutional layer followed 

by a ReLU activation and a 1x1 deconvolutional layer followed by a ReLU activation. The 1x1 

convolutional and deconvolutional operations are coordinate-dependent linear transformations in 

the filter space. They are immediately followed by a non-linear ReLU activation. The 

transformation maintains the filter size of the feature map so that the output dimensionality does 

not change (i.e., 4096×4×4).  

1.2.2.3 Decoder  

The decoder module (Figure 1.3(C)) generates a new image from the transformed feature 

representation. To match the max pooling operation, a classical decoder block uses a max un-

pooling layer to enlarge the output feature map. We remove the un-pooling layers from the decoder 

module due to the adjustment in the encoder module. The adjusted decoder module consists of six 

deconvolutional blocks, a 1x1 convolutional layer followed by a ReLU activation, and a final 1x1 

convolutional layer. Each deconvolution block first starts with a 2D deconvolutional layer and 

batch normalization using a 4×4 kernel with sliding stride 2×2. This operation up-samples the 

spatial size by a factor 2 and goes through a ReLU activation. Next is a 2D deconvolutional layer 

and batch normalization with kernel size of 3×3 and sliding stride 1×1, maintaining the same 

spatial size. The output is then followed by a ReLU activation. The channel size of the feature map 

decreases as the deconvolution block goes deeper. After the deconvolution blocks, the output 

connects a 1×1 convolutional layer and a ReLU activation, reducing the dimensionality in the filter 

space to one. The last layer of the decoder module is a 1×1 convolutional layer, which learns a 

linear map from the up-sampled image to the final output image. The input matrix to the decoder 

module is of size 4096×4×4 (channel size × feature height × feature width) and the filter size of 

the first decoder block is 4096. The filter size cuts in half as the model goes one step deeper, 

thereby the dimensionality follows the sequence of changes:  
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4096×4×4→2048×8×8→1024×16×16→512×32×32→256×64×64→128×128×128→64×256×

256→1×256×256 

1.2.2.4 Loss Function 

We propose a novel loss function for the focal task. The proposed loss function is named scaled 

mixture loss as it consists of three major components: an ℓ2 loss, a structural similarity (SSIM) 

loss, and a scaling parameter. The ℓ2 loss (or MSE, the mean squared error) captures an overall 

prediction error by averaging the squares of pixel-wise prediction errors. Specifically, the MSE 

loss is defined as follows.  

,   (1.4) 

where 𝑚  and 𝑛  are the image height and width, and 𝑓 and 𝑓 are the intensity matrices of the 

ground-truth image and predicted image, respectively.  

The MSE loss does not consider image structures and tends to produce images that are overly 

smooth and blurry (Seif et al. 2018). To account for this issue, we introduce the second component, 

the SSIM loss, which is expected to help the network produce sharper and human-perceivable 

images. Specifically, the SSIM loss is defined as follows. 

 𝑆𝑆𝐼𝑀_𝐿𝑂𝑆𝑆(𝑓, 𝑓) = 1 −
(2𝜇𝑓𝜇�̂�+𝑐1)(2𝜎𝑓�̂�+𝑐2)

(𝜇𝑓
2+𝜇

�̂�
2+𝑐1)(𝜎

�̂�
2+𝜎

�̂�
2+𝑐2)

,    (1.5) 

where 𝜇𝑓 and 𝜇�̂� are the averages of 𝑓 and 𝑓, 𝜎𝑓  and 𝜎�̂� are the variances of 𝑓 and 𝑓, and 𝑐1 

and 𝑐2 are used to stabilize the weak denominator.  

In addition, we include a third component, the scaling parameter, to our focal task. The image 

intensity values are commonly processed (scaled and normalized) to have the magnitude between 

0 and 1 before being inputted to a deep neural network. Considering the depth of our proposed 

network (Figure 1.3), as well as the magnitude of the mean squared error loss, the notorious 

gradient vanishing issue is likely to occur and hinder the learning at a more granular level. 

Intuitively, the scaling parameter shifts the intensity value to a new space, increases the gradient 

of the MSE loss and allows it to stay at a certain magnitude when the error gets smaller, thus 

alleviating the gradient vanishing at an early stage and allowing the network to continue to improve 
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its accuracy. The output intensity values are then shifted back to its original scale at testing time. 

Specifically, the proposed scaled mixture loss is defined as follows.  

 ℒ = 𝛼 · 𝑀𝑆𝐸(𝑟 · 𝑓, 𝑟 · 𝑓) + 𝑟2(1 − 𝛼)𝑆𝑆𝐼𝑀_𝐿𝑂𝑆𝑆(𝑟 · 𝑓, 𝑟 · 𝑓),  (1.6) 

where 𝛼 is the weight parameter and 𝑟 is the scaling parameter.  

1.2.2.5 Ablation Experiments 

 

 (a)  (b)  (c) 

 (d)  (e)  (f) 

Figure 1.4. Predicted images at 200-epoch with subsampled training set of 615 localizer pairs (𝒓 = 
1000). (a) MSE loss. (b) SSIM loss. (c) MSE+SSIM loss. (d) Scaled MSE loss. (e) Scaled SSIM loss. (f) 

Scaled mixture loss. 

 

With a randomly subsampled dataset (with 615 localizer image pairs), we first conducted an 

ablation experiment on the selection of loss function using the proposed encoder-decoder network. 

Specifically, we evaluated six loss function options: MSE, SSIM, MSE+SSIM, Scaled MSE, 

Scaled SSIM, and Scaled Mixture (proposed). The results are summarized in Appendix B, and 

Figure 4 shows one example. The proposed scaled mixture loss function (Figure 1.4f) achieved 

the best overall performance and much better perceived image quality than the other loss functions.  
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Similarly, with the chosen loss function, we conducted another ablation experiment to compare 

the proposed encoder-decoder network (6-block encoder-decoder network) with five alternatives, 

i.e., (1) 4-block encoder-decoder network, (2) 5-block encoder-decoder network, (3) 4-block 

encoder-decoder network with skip-connection, (4) 5-block encoder-decoder network with skip-

connection, and (5) 6-block encoder-decoder network with a max pooling layer. The results 

(summarized in Appendix C) show that the proposed network achieved the best overall 

performance.  

1.2.3 Implementation and Evaluation 

We implemented the proposed deep neural network with the Pytorch library. In our evaluation 

experiment, we used an Amazon EC2 instance, which contains 8 Intel Xeon CPUs (2.50GHz) and 

a NVIDIA Tesla T4 GPU with 12 GB memory, to train the model.  

The initial learning rate was set to 0.00001.  If the loss stopped decreasing for more than 50 

epochs, the learning rate was reduced by a factor of 0.2. Adam was used as the optimizer and 

weight decay was set to 0.0001. We followed (Zhao et al. 2017) and empirically set 𝛼 = 0.16. 

The scaling parameter 𝑟 was set to 1000. The training terminated if, after 200 epochs, the loss 

stopped decreasing for over 80 epochs.  

We randomly split the original 12,487 exams (from 10,553 patients) into training, validation, 

and test datasets in the ratio of 7:1:2. The three datasets were disjoint at the patient level; no exams 

from the same patient were included in different datasets (training, validation, or test) 

simultaneously. Demographics of the patient population are listed in Table 1.2. We trained two 

separate models, one model to predict the AP localizer based on the lateral localizer and the other 

to predict the lateral localizer based on the AP localizer.  

Note: Patient age is calculated based on the date of the first exam if multiple exams are included.  
*Certain patients’ age may not be accurate as the information is extracted from DICOM header, and 
demographic information of some emergency patients may be missing or incorrect. 

Table 1.2. Demographics of the Patients 

 

Dataset Number 

of Patients 

Male Female Mean 

Age 

Median 

Age 

Range of Age 

[Min, Max] 

Training 7,404 3,120 4,282 48.83 48 [18,120*] 

Validation 1,045 448 597 48.00 47 [18,120*] 

Test 2,104 883 1,221 49.02 48 [18,119*] 

All 10,553 4,451 6,100 48.79 48 [18,120*] 
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We evaluated the performance of the reconstruction using three metrics, i.e., location accuracy, 

profile accuracy, and attenuation accuracy. All metrics are based on comparisons between 

information extracted from the predicted images and that from the actual images in the test dataset, 

and these three metrics were chosen according to clinical needs. Location accuracy was chosen 

because this information is used clinically to determine if patients are correctly positioned or 

centered. Profile accuracy was chosen because this information is used to estimate the size of the 

patient (Boone et al. 2011). Attenuation accuracy was chosen because this information is used to 

calculate diagnostic scan parameters (more specifically, the “mAs” in tube current modulation). 

These three metrics collectively provide an insightful and comprehensive evaluation of the quality 

of the predicted localizer images. 

1.2.3.1 Location Prediction Error 

Location accuracy (or inversely, error) is important because we want the predicted images to 

accurately reflect the location of the patient, both in the AP direction and in the lateral direction. 

This information is essential for the quality control and the determination of the parameters for the 

following diagnostic CT scan. 

1.2.3.2 Lateral Location Prediction Error  

The lateral location can be represented by the table height in the DICOM header. The DICOM 

table height refers to the distance (in millimeters) from the top of the patient table to the center of 

rotation. Therefore, we extract the ground-truth table height from the lateral DICOM file. 

The predicted table height is estimated by detecting the table position in the horizontal direction 

from the predicted lateral image (pseudo code for detecting the table position in a lateral localizer 

image is presented in the Appendix A). The actual table height in the ground-truth lateral image is 

estimated by the same detection technique.  

To assess the accuracy of the detection algorithm, we compute the Pearson correlation between 

the estimated actual table height and the ground-truth table height and use a scatter plot to examine 

the fitted line. We then measure the lateral prediction error by taking the absolute difference 

between the predicted table height and the actual table height (scaled from number of pixels to 

millimeters).  
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1.2.3.3 AP Location Prediction Error  

The AP location can be represented by the patient center position in the horizontal direction. 

Since there is no ground-truth information for the patient center position, we apply the following 

steps to estimate the predicted patient center position and actual patient center position from the 

predicted AP image and ground-truth AP image, respectively. 

We first extract the patient profile (left boundary and right boundary) based on a heuristic 

patient boundary detection algorithm (pseudo code for extracting patient profile in an AP image is 

presented in the Appendix A). Denote the detected patient profile in the 256-dimensional vector 

space as follows.  

𝐵𝐷𝐿𝑇 = {𝑏𝑑𝑙𝑡𝑖}, 0 ≤ 𝑖 ≤ 255,       (7) 

𝐵𝐷𝑅𝑇 = {𝑏𝑑𝑟𝑡𝑖}, 0 ≤ 𝑖 ≤ 255,       (8) 

where 𝑏𝑑𝑙𝑡𝑖 is the pixel index of the patient’s left boundary at image row 𝑖 and 𝑏𝑑𝑟𝑡𝑖 is the 

pixel index of the patient’s right boundary at row 𝑖. 

A middle point between the left boundary and the right boundary is calculated at each row, and 

the patient center point is estimated by taking the most frequent value among all middle points. It 

can be written as follows. 

 𝐴𝑃_𝐿𝑂𝐶 = 𝑟 · argmax
𝑣𝑖

{𝑓𝑟𝑒𝑞(𝑣𝑖 =
𝑏𝑑𝑙𝑡𝑖+𝑏𝑑𝑟𝑡𝑖

2
)|0 ≤ 𝑖 ≤ 255},   (9) 

where 𝑟  is the scaling parameter (from number of pixels to millimeters).  

Finally, we measure the AP location prediction error by taking the absolute difference between 

the predicted patient center position and actual patient center position.  

1.2.3.4 Profile Prediction Error  

For both the AP and lateral images, patient profile is calculated based on the patient boundary, 

and the profile value is defined as follows. 

𝐵𝐷𝑆 = {𝑏𝑑𝑠𝑖 | 𝑏𝑑𝑠𝑖 = 𝑟(𝑏𝑑𝑟𝑡𝑖 − 𝑏𝑑𝑙𝑡𝑖)}, 0 ≤ 𝑖 ≤ 255.         (1.10) 

𝑏𝑑𝑠𝑖 is the number of pixels between the patient’s left and right boundaries at row 𝑖, and 𝑟 is 

the scaling parameter (millimeters per pixel). 
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Patient profile is calculated for both the AP and lateral directions. For each direction, the profile 

of the predicted image is compared with that of the ground-truth image at each row to acquire the 

absolute percentage difference. The mean absolute percentage difference (MAPD) is used to 

measure the profile prediction error.  

1.2.3.5 Attenuation Prediction Error 

Attenuation refers as the percentage of x-ray reduction after it penetrates the human body. Since 

in CT images, the attenuation is linearly correlated with the pixel intensity, the patient attenuation 

is defined as follows. 

.    (1.11) 

𝑏𝑑𝑣𝑖  is the sum of the intensity values of the pixels between the patient’s left and right 

boundaries at row 𝑖.  

Similar to patient profile, patient attenuation is computed at both directions. For each direction, 

the patient attenuation of the predicted image is compared with that of the ground-truth image at 

each row to acquire the absolute percentage difference. The mean absolute percentage difference 

(MAPD) is used to measure the attenuation prediction error. 

1.3 Results 

Figure 1.5 shows an example of model prediction, location calculation, patient profile, and 

attenuation. Figure 1.5(a) shows the actual AP localizer image, and Figure 1.5(b) shows the 

predicted AP localizer image. For both images, the calculated patient position (center line) and 

patient boundary are indicated. Figure 1.5(c) gives the overlap (between the actual and predicted 

images) display of center line, patient boundary, and patient body. Similarly, Figure 1.5(d) and (e) 

show the actual and predicted lateral localizers, with the table location and the patient boundary 

indicated, respectively, and Figure 1.5(f) gives the overlap display between the actual and 

predicted images. 

Figure 1.5(g) and (h) contrast the ground truth and prediction in patient profile for the AP and 

lateral predictions, respectively. For this particular patient, the AP prediction has a profile 
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prediction error averaged at 4.5% with a maximum of 11%. The lateral prediction has an average 

error of 2.2% and maximum of 5.6%. 

Figure 1.5(i) and (j) contrast the ground truth and prediction in attenuation for the AP and lateral 

predictions, respectively. For this particular patient, the AP prediction has an attenuation prediction 

error averaged at 4.9% with a maximum of 10.9%. The lateral prediction has an average error of 

9.1% and maximum of 14.4%. 

 

 (a)  (b)  (c) 

 (d)   (e)  (f)  

  (g)    (h) 
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  (i)    (j) 

Figure 1.5. Example of model prediction, location calculation, patient profile, and attenuation. (a) The 
actual AP localizer image, with the estimated patient position (center line) and patient boundary 

indicated. (b) The predicted AP localizer image. (c) Overlap display of (a) and (b). (d) The actual lateral 
localizer image, with the estimated table location and patient boundary indicated. (e) The predicted 

lateral localizer image. (f) Overlap display of (d) and (e). (g) The ground truth vs. prediction in patient 
profile for the AP prediction. (h) The ground truth vs. prediction in patient profile for the lateral 

prediction. (i) The ground truth vs. prediction in attenuation for the AP prediction. (j) The ground truth 
vs. prediction in attenuation for the lateral prediction. 

 

Two more examples of model prediction are presented in Figure 1.6. 

 

 

 

 

 

 

 

(a)    (b)   (c)   (d) 
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 (e)    (f)   (g)   (h)  

 

Figure 1.1.6. Two additional examples of model prediction. (a) and (e), (b) and (f), (c) and (g), (d) and 
(h) are actual AP images, predicted AP images, actual lateral images, and predicted lateral images, 

respectively. 

 

Table 1.3 summarizes the results of the location prediction error on the test dataset. The results 

look very promising, with an average prediction error of 1.02±3.37mm in the lateral direction and 

6.46±6.43mm in the AP direction.  

 Table 1.3 Location Prediction Error 

 

Figure 1.7 visualizes the table position detection accuracy and location prediction error results. 

Figure 1.7 (a) contrasts the true table height (extracted from DICOM header) and those estimated 

based on the actual and predicted images, showing that: 1. The Pearson correlation between the 

ground-truth and actual table heights is 0.9986, and the fitted line is straight with no significant 

outliers, indicating that the detection algorithm is accurate. 2. Most of the predictions for lateral 

location were accurate. Figure 1.7(b) and (c) show the histogram distributions of the absolute 

location difference between the ground-truth images and predicted images for lateral and AP 

predictions, respectively. Our model achieved very high accuracy in lateral prediction with over 

98% of the cases having < 2mm (1 pixel) errors. AP prediction was relatively less accurate but 

still reasonable with over 96% of the cases having < 2cm (10 pixels) errors. The lack of an apparent 

reference mark (the table) could be the reason that the AP prediction is less accurate than the lateral 

prediction.  
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  (a)   (b) 

 (c)     

Figure 1.7. Location prediction results. (a) The true table height (extracted from DICOM Header) vs. the 
table heights estimated based on the actual and predicted images. (b) The histogram distribution of the 

location difference between the ground-truth images and predicted images for lateral prediction. (c) The 
histogram distribution of the location difference between the ground-truth images and predicted images 

for AP prediction. 

 

Table 1.4 summarizes the results of the profile prediction error on the test dataset. The results 

also look very promising, with an MAPD of 4.43±2.02% in the lateral direction and 3.90±2.32% 

in the AP direction.  

Table 1.4. Profile Prediction Error (MAPD) 

Figure 1.8 visualizes the profile prediction error results. The histogram distributions of the 

average error for all test data are plotted in Figure 1.7(a) and (b) for the AP prediction and lateral 

prediction, respectively.  

Orient Mean 

(%) 

StdDev (%) Median 

(%) 

Max 

(%) 

<5% 

(%) 

<10

% 

 (%) 

Lateral 4.43 2.02 3.98 20.78 69.88 98.20 

AP 3.90 2.32 3.42 32.75 79.66 98.32 
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  (a)   (b) 

Figure 1.1.8. Histogram of patient profile mean absolute percentage difference (MAPD). (a) AP. (b) 
Lateral. 

 

Table 1.5 summarizes the results of the attenuation prediction error on the test dataset. The 

results again look very promising, with an MAPD of 6.20±2.94% in the lateral direction and 

7.12±3.54% in the AP direction. 

Orient Mean (%) StdDev 

(%) 

Median 

(%) 

Max 

(%) 

<5%  

(%) 

<10% 

(%) 

Lateral 6.20 2.94 5.51 27.42 41.05 89.55 

AP 7.12 3.54 6.58 31.80 30.16 82.98 

Table 1.5. Attenuation Prediction Error (MAPD) 

 

Figure 1.9 visualizes the attenuation prediction error results. The histogram distributions of the 

average error for all test data are plotted in Figure 1.8(a) and (b) for the AP prediction and lateral 

prediction, respectively.  

 

  (a)   (b)  
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Figure 1.1.9. Histogram of patient attenuation mean absolute percentage difference (MAPD). (a) AP. (b) 
Lateral. 

 

1.4 Discussion 

CT is one of the most, if not the most, important imaging modalities in healthcare. Researchers 

and developers constantly strive to improve image quality, shorten scan time, and lower patient 

dose. Knowledge of the patient position, anatomy localization, and attenuation distribution is very 

important to carry out a successful diagnostic scan, and that is the reason why it is currently still a 

common clinical practice to perform two localizer scans in advance, even though these two scans 

only contribute to patient dose but do not provide diagnostic information. Reducing the dual 

localizer scans to a single localizer scan will lower patient dose, and at the same time, improve 

workflow and clinical efficiency.  

Research on image transformation in medical imaging could be roughly divided into two 

directions: image transformation in the contrast domain and that in the geometry domain. In the 

contrast domain (also called image generation or image synthesis), researchers have demonstrated 

the feasibility of transforming MR images into CT images (Wolterink et al. 2017, Xiang et al. 2018, 

Han et al. 2017), CT images into MR images (Jin et al. 2019, Zhao et al. 2017), MR images into 

X-ray images (Stimpel et al. 2019), and so on, using deep CNN-based frameworks, such as GAN. 

The contrast or the appearance of the images is changed to meet various clinical needs, but the 

location and orientation of the images stay the same. In another direction of image transformation 

research (including this work), researchers transform images to different location and/or 

orientation but keep the contrast the same. Henzler et al. and Pradhan et al. demonstrated the 

feasibility of predicting 3D object based on single 2D x-ray image using a deep CNN-based 

network, but their research focused on high-intensity bone-only objects. Montoya et al. 

demonstrated that a volume 3D CT localizer could be predicted from two orthogonal 2D localizers, 

with a deep CNN-based network. Shen et al suggested that one could predict 3D )volume CT data 

from a single 2D view using an encoder-decoder architecture. Their work requires multiphase 3D 

CT of the same patient to train the network and is thus less applicable in the day-to-day diagnostic 

CT workflow, but its success made the encoder-decoder architecture very promising in solving 

image transformation problems. In this work, we have proposed a modified encoder-decoder 

network that can directly make 2D X-ray projection (localizer) prediction of CT images based on 
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an orthogonal projection in a clinical diagnostic CT setting, thereby providing the first solution to 

this particular clinical problem. 

Mathematically, predicting one projection view of a 3D object (patient) from another 

orthogonal projection view is very challenging if not impossible. Spatial information needed in the 

desired view is overlapped on the given orthogonal view, and without additional information, it is 

impossible to separate them. Fortunately, for this particular problem, there are three unique 

characteristics that we can leverage. First, our objects (i.e., patients) have very similar internal 

structures. The similarity in human anatomy makes it possible for the information to be extracted 

effectively from a large set of training examples. Second, the fast development in deep learning 

techniques now offers the opportunity to learn the information from large amount of data and make 

reliable predictions. Finally, since the localizer images are not used for actual diagnosis, there is 

no need to have all the details precisely predicted. As long as the predicted image can roughly 

represent the anatomy and accurately reflect the patient location, size (profile), and attenuation, 

for many clinical applications, it is good enough and could be used to replace the actual localizer 

scan. It should also be mentioned that although the predicted image has adequate perceived image 

similarity with the actual acquired image, the possibility of missing anatomy details and actual 

disease evidence is still high. In certain applications (such as perfusion or cardiac) where the 

technologists need more anatomy details to determine the scan range, they always have the option 

to use an acquired, instead of predicted, localizer.  

We have developed a modified encoder-decoder network for this CT image transformation task. 

We adopt the encoder module as the starting point for representation learning, as the convolutional 

encoder module has been widely used in medical imaging segmentation (Ronneberger et al. 2015, 

Wang et al. 2021) and image synthesis (Gao et al. 2019) tasks and achieved great success. We 

remove the max pooling layers to reduce the loss in pixel information and introduce the residual 

connection to overcome the gradient vanishing and exploding issues in training. We design a 

transformation module to learn the feature mapping across the localizer 2D domains. Finally, we 

use the decoder module to generate the predicted image in the target domain.  

Our experiment results appeared to be very promising. For location accuracy, most (98%) of 

our lateral predictions had an error within 5mm or 2 pixels. Lateral positioning is very important 

clinically as the perceived size of the patient directly affects the patient dose and image quality. 
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Our location prediction in the AP direction was relatively less accurate but still reasonable. The 

profile error and attenuation error of our predictions were all in the range of 3-7%. Given that the 

predicted images and the actual images in general correlate well in terms of profile and attenuation 

estimations (as shown in Figures 8 and 9), we are confident that the tube current modulation, which 

is the algorithm for CT scanners to adjust the strength of x-ray based on the attenuation, could 

work well on our predicted images.  

There are several limitations in this study. First, in order to get a quality prediction, our selected 

input/output image size is quite high (256×256) and the model used is quite deep. As a result, 

training requires a large memory and takes a long time. As a matter of fact, we needed to train on 

a low-resolution network to tune the hyper parameters first before we could start the actual 15-

days-long training. Second, as can be seen in Figure 1.4, the details of the anatomy are not 

completely predicted. If the predicted image is used to determine the scan range, some organs, 

such as the diaphragm, are harder to distinguish, compared to other high-contrast organs, such as 

the lungs. Third, since the model is trained largely based on the images of “regular” patients, 

prediction may fail in “irregular” situations. Figure 1.10 illustrates two “failed” cases, including 

the existence of foreign objects (Figure 1.10 (a) and (c) for the actual and predicted images, 

respectively) and irregular patient positioning (hands down in this case, Figure 1.10 (b) and (d) for 

the actual and predicted images, respectively). Finally, since our evaluation was based on a single 

scanner and a single anatomy, the robustness of the model in other contexts with different scanners 

and anatomies needs to be further validated in future research. However, even with these 

limitations, our results show great potential in the clinical applicability of our proposed technique. 

The predicted CT localizer could be displayed right after the acquired localizer, and if the 

prediction does not meet the expectation, the technologist could immediately start the second 

localizer. Even if only some of the dual localizer scans are replaced by single localizer scans, the 

clinical benefits may still be significant given the volume of scans that need to be done. 
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 (a)  (b) 

 (c)  (d) 

Figure 1.1.10. Examples of “irregular” situations. (a) The ground-truth image of a patient with foreign 
object. (b) The ground-truth image of a patient scanning with irregular position (hands down). (c) The 

model prediction for (a). (d) The model prediction for (b). 

 

Our work could be extended or improved in several directions in future research. First, from 

the network structure perspective, other networks, e.g., UNet (Ronneberger et al. 2015) and the 

generative adversarial network (GAN) (Goodfellow et al. 2015), could be integrated with our 

current encoder-decoder network. The UNet architecture allows to connect the high-resolution 

features from contracting path to the up-sampled outputs, and the larger number of feature channels 

and the skip connection feature might help improve the prediction accuracy. GAN has achieved 

superior performance in many image generation tasks (Marzullo et al. 2020, Armanious et al. 2020) 

and the network structure could potentially greatly improve the current prediction accuracy (Liu 

et al. 2019). Second, from the model robustness perspective, future research may conduct more 

comprehensive experiments with a wide coverage of patient sizes, positions, implants, external 

objects (tubes, lines, patient covers, etc.), CT scanner types, and institutions. Data augmentation 

operations, such as patient (or organ) position shifting and rotation, could also be considered to 
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increase the sample size and account for abnormally positioned patients. Third, as this is a 

retrospective study based on historical data, we could not insert the predicted image back to the 

CT system and generate the tube current modulation curve for the following spiral scan to compare 

the tube current with actual and predicted attenuation maps. Researchers may collaborate with 

major CT manufactures to implement such evaluation metrics in future studies. Finally, the 

generalizability of our approach can be tested by training and testing separate models for other 

anatomies, such as the head/neck area and chest/cardiac area. 

1.5 Conclusion 

We have demonstrated the feasibility of using a deep learning model to predict one CT localizer 

image based on the other orthogonal acquired localizer image with reasonable accuracy. This 

model could be used to clinically reduce the patient dose and simplify the workflow. 
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2. Essay 2:  Robust Meta-graph Learning: Exploring Multilevel Feature 

Interrelationships to Enhance Multimodal Time Series Prediction 

 

2.1 Introduction 

The booming digital economy has triggered the proliferation of multimodal data, promoting the 

seamless integration and use of multiple (e.g., textual, acoustic, and visual) modalities in various 

applications (Lahat et al. 2015). Empowered by recent advances in artificial intelligence, especially 

deep learning, multimodal data analysis is now increasingly used in a variety of fields, e.g., 

multimodal-data-based decision-making in Fintech (Sawhney et al. 2020), inferring multimodal 

latent topics from electronic health records in healthcare (Y. Li et al. 2020), and intelligent 

planning with multimodal data in transportation (Farahani et al. 2021). The competence of a 

multimodal deep learning method, which incorporates multiple data modalities into a unified 

learning framework, lies in its capability to enhance learning by reducing conflicts while 

leveraging the complementarity across modalities.  

When multimodal data are used in real-world settings, they are often accompanied by dynamic 

variation patterns of data modalities along the temporal dimension, e.g., a company’s financial risk 

depicted by a series of quarterly accounting reports and earnings calls (Li et al. 2020) and a user’s 

sequential preference modeled by changing demographical and networking characteristics over 

time (Wu et al. 2019). In such cases, multimodal data analysis is extended to multimodal time 

series (MTS) analysis, especially MTS prediction (MTSP), an emerging research trend that 

accommodates temporal and spatial variation patterns1 and temporal-spatial covariation patterns 

in prediction (Chambon et al. 2018, Cheng et al. 2022, Tan et al. 2020). 

 
1 We use the temporal and spatial dimensions to describe the data patterns over time and across features, respectively. 
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Given the existence of intricate feature interrelationships2, effective MTSP is non-trivial. 

While traditional time series studies have either used a single modality or ignored the spatial 

variation patterns (Brockwell and Davis 2009, Hochreiter and Schmidhuber 1997, Whittle 1951), 

recent studies have attempted to account for both temporal and spatial variation patterns. Examples 

are temporal-spatial neural networks (Eldele et al. 2021) and sequential multimodal deep learning 

methods (Akbari et al. 2021, Zhang et al. 2020). Both types of methods have adopted a two-stage 

aggregation strategy, i.e., aggregating features in temporal and spatial dimensions at separate 

stages sequentially. The aggregation process has commonly applied attention mechanisms (Ma et 

al. 2019, Song et al. 2019) and diverse multimodal deep learning methods (Kosaraju et al. 2019, 

Wang et al. 2019) to incorporate the intricate feature interrelationships. Importantly, since the 

temporal and spatial features are aggregated at separate stages, the temporal-spatial covariations 

are not captured. However, this may give rise to such issues as information loss, information 

redundancy, and information conflict. For instance, in a temporal-spatial neural network, where 

spatial features are aggregated at the first stage, fine-grained predictive clues may get annihilated 

due to the ignoration of information in the temporal dimension. Meanwhile, the aggregated spatial 

features may be redundant and get confounded by the second-stage aggregation. Furthermore, 

because temporal-spatial covariations are ignored, conflicting temporal and spatial features may 

not be processed properly, consequently impairing the prediction performance. 

Intuitively, mitigating the issues of information loss, information redundancy, and 

information conflict in MTSP requires effectively disentangling multilevel feature 

interrelationships within multimodal time series. According to different data granularities and 

 
Specifically, the spatial dimension can include both intra- and cross-modal features. 
2 We use the term “feature interrelationships” to refer to the combination of interrelationships across temporal and spatial 

dimensions. 
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dimensions, we categorize multilevel feature interrelationships in MTS into seven types: (1) 

feature-wise (F2F) interrelationships, (2) modality-wise (M2M) interrelationships, (3) time-step-

wise (T2T) interrelationships, pairwise superposed (interaction), i.e., (4) F2F-M2M (FM2FM), (5) 

F2F-T2T (FT2FT), and (6) M2M-T2T (MT2MT), interrelationships, and finally, (7) ternary 

superposed (interaction), i.e., F2F-M2M-T2T (FMT2FMT), interrelationships 3 . We posit that 

effectively disentangling multilevel feature interrelationships would benefit MTSP with fine-

grained temporal and spatial features and allow it to search for an effective combination of the 

fine-grained features for prediction tasks. Given the growing importance of MTSP, in this study, 

we strive to design an MTSP method that can effectively disentangle multilevel feature 

interrelationships for improved prediction performance.  

We first probe into our first research question (RQ1): how to effectively disentangle multilevel 

feature interrelationships in MTSP? To this end, based on theoretical foundations regarding graph 

convolutional networks (GCNs) and a novel graph attention mechanism, we propose a novel meta-

graph learning (MGL) method to disentangle multilevel feature interrelationships. The proposed 

method learns a meta-graph, which is composed of three hierarchically interconnected graphs, to 

represent multilevel feature interrelationships. Intuitively, each graph consists of an adjacency 

matrix with learnable weights, representing F2F, M2M, and T2T feature interrelationships, 

respectively. The interconnections across the graphs allow feature representations to propagate 

simultaneously through a novel graph attention mechanism, which captures superposed 

interrelationships (i.e., FM2FM, FT2FT, MT2MT, and FMT2FMT), thereby quantifying multilevel 

feature interrelationships with graph structures synchronously and efficiently. The quantification 

 
3 The ternary interaction, i.e., FMT2FMT, subsumes (implies) the pairwise binary interactions, i.e., FM2FM, FT2FT, and 

MT2MT.  
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with hierarchically interconnected graphs avoids the combinatorial explosion issue faced by MGL 

when searching for an optimal combination of fine-grained features.  

The main challenge in applying the proposed meta-graph is that fine-grained temporal and 

spatial features and their multilevel interrelationships can lead to a growth in the number of 

learnable parameters, thus threatening the efficiency and reliability of the model optimization. To 

overcome this difficulty, we delve into our second research question (RQ2): how to effectively 

learn the meta-graph and the multilevel feature interrelationships for MTSP? In response to RQ2, 

we inject a novel robust learning objective to the meta-graph learning method based on the low-

pass nature of graph convolutional filters. We propose RMGL, a robust meta-graph learning 

method, to learn the meta-graph and the multilevel feature interrelationships in low-rank parameter 

space for MTSP. 

We have evaluated the effectiveness of RMGL in an MTSP problem in the finance area. The 

dataset consists of multimodal financial data of Standard & Poor’s 1500 companies, spanning the 

period from 2009 to 2020. We constructed MTS features from time-varying contents in acoustic, 

textual, and numerical modalities to predict firm-level financial risks. The results show that RMGL 

consistently outperformed state-of-the-art alternatives (i.e., benchmarks) in the MTSP task.  

Our work contributes to both research and practice. In the era of big data, MTSP is 

increasingly becoming an appealing way to boost performance in various applications. Rooted in 

theoretical foundations regarding GCNs, RMGL introduces a novel meta-graph to disentangle 

multilevel feature interrelationships for fine-grained representations. The representations are 

learned through interconnected graphs with a novel graph attention mechanism designed for the 

graph propagation phase. Drawing upon the low-pass nature of GCNs’ convolutional filters, 

RMGL introduces a novel robust learning objective to ensure the effectiveness and stability of the 
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learning process. From a practical perspective, RMGL has learned fine-grained feature 

representations and consistently outperformed state-of-the-art alternatives in a real MTSP 

prediction problem, providing a promising solution for informed decision-making.  

2.2. Literature Review 

2.2.1 Multimodal Time Series Prediction 

Traditional methods for time series analysis, e.g., autoregression, vector autoregression, and 

their variants, have been commonly applied to prediction tasks with low-dimensional features. 

While deep-learning-based methods capture non-linearity within high-dimensional features in 

the temporal dimension, they tend to ignore spatial variation patterns. Examples are recurrent 

neural networks and their variants (e.g., long short-term memory (LSTM) and gated recurrent 

units (GRUs)), which are specially designed for sequential inputs. Recently, multimodal deep 

learning methods (Cheng et al. 2019, Liu et al. 2018) have evolved to learn modality fusion with 

deep neural networks (DNNs). Learning modality fusion can be seen as modeling spatial 

variation patterns, but such multimodal deep learning methods do not account for temporal 

variation patterns.  

Given the increasing prevalence of multimodal time series data, MTSP has become an 

appealing way to boost performance in various fields, including finance, online marketing, 

healthcare, and transportation (Farahani et al. 2021, Y. Li et al. 2020, Sawhney et al. 2020). For 

instance, Wang et al. (Wang et al. 2021) showed that applying multimodal financial data (e.g., 

financial indicators, annual reports, and news) enables earlier prediction of firm-level financial 

risks. Tao et al. (Tao et al. 2020) obtained a more accurate personalized recommendation using a 

graph attention network to capture a user’s historical preferences over items with multimodal 

contents. In another case, Mohamed et al. (Mohamed et al. 2020) showed that pedestrian 

trajectory can be forecasted with video clips modeled through a spatial-temporal graph neural 
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network. Although MTSP fares better compared to traditional methods, there are several 

methodological challenges, among which the most salient one is in effectively modeling the 

intricate feature interrelationships. 

2.2.2 Learning Feature Interrelationships in Deep Learning 

As noted earlier, we categorize multilevel feature interrelationships in MTS into seven types: 

F2F, M2M, T2T, FM2FM, FT2FT, MT2MT, and FMT2FMT interrelationships. The literature on 

representation learning has accumulated studies using diverse methods to model different types 

of feature interrelationships. Among them, attention-based and DNN-based methods have been 

widely adopted in the deep learning literature. For instance, Song et al. (Song et al. 2019) 

integrated an attention mechanism with a residual network to model F2F interrelationships; the 

method first transforms features into an embedding space and then applies a multi-head self-

attention mechanism to infer interrelationships between feature embeddings. Luo et al. (Luo et 

al. 2018) adopted GRU cells in a generative adversarial network to model T2T interrelationships 

for missing value imputation. In multimodal representation learning, Wang et al. (Wang et al. 

2019) modeled M2M interrelationships using a cross-modal correlation metric in the loss 

function. In another case, Wang et al. (Wang et al. 2016) first encoded visual and linguistic 

modalities separately and then fine-tuned the feature representations using intra-cross-modal loss 

to simultaneously capture FM2FM interrelationships. 

Intuitively, modeling feature interrelationships can be seen as learning a function to map 

raw features to an embedding space and to infer the interrelationships based on inherent feature 

associations embedded in the data. While attention mechanisms explicitly learn feature 

interrelationships through distance metrics or non-linear functions, DNN-based methods rely on 

network architecture (e.g., LSTM, GRU, convolutional neural network (CNN), convolutional 
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LSTM (ConvLSTM), Transformer, and graph neural network (GNN)) or curated objective 

functions to implicitly learn a mapping function. However, both methods fall short of capturing a 

holistic structure of multilevel feature interrelationships. 

Extant methods have primarily adopted a two-stage aggregation strategy to account for parts 

of multilevel feature interrelationships. For instance, Gu et al. (Gu et al. 2018) proposed a 

multimodal hierarchical attention network to deal with affection analysis. In the first stage, audio 

and text contents are aligned in the temporal dimension and then fed into an attention module to 

capture T2T interrelationships within the same modality. In the second stage, another attention 

module is used to fuse the features across modalities (M2M) for making the final prediction. 

Similarly, temporal-spatial neural networks and sequential multimodal deep learning methods 

have commonly applied a two-stage aggregation strategy. Specifically, temporal-spatial neural 

networks aggregate first on the spatial dimension and then on the temporal dimension (Eldele et 

al., Qin et al.), whereas sequential multimodal deep learning methods aggregate first on the 

temporal dimension and then on the spatial dimension (Akbari et al. 2021, Zhang et al. 2020). As 

noted earlier, such a two-stage aggregation strategy can lead to such issues as information loss, 

information redundancy, and information conflicts due to the ignoration of temporal-spatial 

covariations.  

2.2.3 Graph Convolutional Networks 

In recent years, GCNs (Kipf and Welling 2016) have gained explosive development due to 

their unique capability in learning deep representations from graph-structured data (Fani et al. 

2020, Gao et al. 2018, Mohamed et al. 2020, Yao et al. 2019). For a given graph, GCNs 

formulate it into an adjacency matrix, whose elements indicate the existence, polarity, and 

intensity of node-to-node interrelationships. Rooted in the graph theory, GCNs adopt spatial 
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graph convolutions, which approximate spectral graph convolutions through aggregations on 

neighboring nodes (S. Zhang et al. 2019). Specifically, a GCN layer first encodes inputs into 

messages and then aggregates the messages from neighboring nodes to obtain node 

representations. GCNs can be used to model undirected graphs, directed graphs, signed graphs, 

and heterogeneous graphs, and caters to a wide range of tasks, such as personalized 

recommendation (He et al. 2020), traffic prediction (Zhao et al. 2019), and molecular structure 

inference (Ryu et al. 2018). 

In MTSP, GCNs have also shown advantages in learning feature interrelationships. For 

example, by taking each feature modality as a set of graph nodes, Mai et al. (Mai et al. 2020a) 

used a hierarchical graph neural network to learn M2M interrelationships. Yan et al. (Yan et al. 

2018) represented human body skeletons as graphs and modeled the spatial and temporal 

dynamics (FT2FT) using a GCN for human action recognition. Zhao et al. (Zhao et al. 2019) 

used a GCN to model the topological structures of the road network (F2F) for traffic prediction. 

Song et al. (Song et al. 2020) captured the temporal and spatial dependencies (FT2FT) of 

network data using a GCN. However, in MTSP, extant GCN methods only capture one or a few 

aspects of multilevel feature interrelationships. Moreover, they tend to rely on the unique 

characteristics of particular settings to construct the graph (e.g., the traffic network, human body 

skeletons, and social networks), whereas in general MTSP, a prior graph structure of features is 

not available, thus calling for learnable graphs. 

2.2.4 Research Gaps 

Our review of existing studies pinpoints their incompetence in disentangling multilevel 

feature interrelationships in MTSP. First, extant methods tend to model feature interrelationships 

using a two-stage aggregation strategy, which falls short of utilizing temporal-spatial 
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covariations. Second, although there are a few studies that explore temporal and spatial dynamics 

simultaneously, they fail to investigate multilevel feature interrelationships systematically in a 

holistic way. Third, in MTSP, GCN methods often model the network with prior graph 

structures, whereas investigating multilevel feature interrelationships calls for learnable graphs. 

To overcome the challenges, we propose RMGL, a novel robust meta-graph learning method, for 

MTSP. To manifest the advantages of our proposed method in filling the abovementioned gaps 

in the literature, we compare it with major related studies in terms of the ability to model 

multilevel feature interrelationships (Table 2.1). 

Study F

2F 

M

2M 

T

2T 

FM2

FM 

MT2

MT 

FT

2FT 

FMT2F

MT 

(Song et al. 2019) √       

(Wang et al. 2019)  √      

(Wang et al. 2016)    √    

(Duke et al. 2021, Song et al. 2020, 

Tonekaboni et al. 2021, Yan et al. 2018) 

     √  

(Cao et al. 2020, Shih et al. 2019, Zhao 

et al. 2019) 

√  √     

(Akbari et al. 2021, Cheng et al. 2022, 

Eldele et al., Gu et al. 2018, Mai et al. 

2020a, Qin et al., Tan et al. 2020, Zhang et 

al. 2020) 

 √ √     

(Luo et al. 2018, C. Zhang et al. 2019) √  √     

(Deng and Hooi 2021) √  √     

(Chambon et al. 2018, Mai et al. 2020b) √ √      

(Wei et al. 2019)  √      

RMGL √ √ √ √ √ √ √ 

Table 2.1. Comparison of RMGL with Existing Relevant Methods. 
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2.3. Proposed Method 

2.3.1 Design Rationales 

Our proposed method, RMGL, has been built on sound design rationales, which theoretically 

ensure its effectiveness in learning robust multilevel feature interrelationships. First, our design 

of meta-graph learning is based on the theoretical foundations of GCNs (Kipf and Welling 2016, 

Schlichtkrull et al. 2017) and a novel graph attention mechanism. Second, prior studies have 

analytically pinpointed that GCN is essentially a low-pass filter for its node features (NT and 

Maehara 2019). That is, when the features of the neighboring nodes are aggregated toward a 

central node, the ones corresponding to low-frequency graph signals tend to be more intensively 

scaled. The frequency of graph signals herein can be understood as the feature-wise variance 

between the neighboring nodes and the central node, with a larger variance corresponding to 

higher filtering (or smoothing) intensity. 

2.3.1.1 Design Rationale of Meta-Graph Learning 

Relational GCNs have been used to model large-scale relational data using directed and 

labeled multi-graphs to deal with various prediction tasks (Kipf and Welling 2016, Schlichtkrull 

et al. 2017). In MTSP, multilevel feature interrelationships include three unit-level 

interrelationships, i.e., F2F, M2M, and T2T interrelationships, each of which can be represented 

by a relational graph. Furthermore, RMGL considers fine-grained interrelationships of multilevel 

features as a superposed effect of F2F, M2M, and T2T interrelationships. Therefore, the design 

of RMGL essentially implements three learnable relational graphs and acquires the fine-grained 

interrelationships of multilevel features through a novel graph attention mechanism. 

Traditional graph attention networks (GATs) (Veličković et al. 2017) learn the edge weight 

𝑒𝑖𝑗 between nodes 𝑖 and 𝑗 by the self-attention between the nodes’ hidden states. Specifically,  

𝑒𝑖𝑗 = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐰𝐟𝑖 , 𝐰𝐟𝑗),  (2.1) 
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𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖𝑗) =
𝑒𝑥𝑝(𝑒𝑖𝑗)

∑ exp (𝑒𝑖𝑘)𝑘∈𝑁𝑖

,  (2.2) 

where 𝐰𝐟𝑖 and 𝐰𝐟𝑗 are the hidden states of nodes 𝑖 and 𝑗, 𝛼𝑖𝑗 is the normalized edge weight 

(i.e., importance) between nodes 𝑖 and 𝑗, and 𝑁𝑖 is the set of the neighboring nodes of node 𝑖. In 

this way, GATs implement graph edge weighting at the feature level.  

In contrast to traditional GATs, which learn edge weights (or attention weights) at the 

feature level through self-attention, RMGL learns edge weights at multiple levels (i.e., in 

multiple hierarchically interconnected graphs) and integrates the multilevel edge weights into 

fine-grained edge weights in a meta-graph through operations of broadcasting and 

multiplication. Therefore, through the novel graph attention mechanism, RMGL learns the edge 

weights (or attention weights) for graph convolutions.  

Specifically, RMGL defines three graph adjacency matrices 𝐀𝐹 ∈ ℝ𝑝×𝑝, 𝐀𝑀 ∈ ℝ𝑞×𝑞, and 

𝐀𝑇 ∈ ℝ𝑇×𝑇 to represent the F2F, M2M, and T2T graphs, respectively. The F2F graph contains 

𝑝 = 𝑑 × 𝑀 × 𝑇 feature nodes, the M2M graph contains 𝑞 = 𝑀 × 𝑇 modality nodes, the T2T 

graph contains 𝑇 time-step nodes, and 𝑑 is the number of feature nodes within a modality. 

Therefore, RMGL has the attended edge weights at the feature, modality, and time-step levels, 

denoted, respectively, as 

𝛼𝑖𝑗
𝐹 =

𝑎𝑖𝑗
𝐹

∑ 𝑎𝑖𝑘
𝐹𝑝

𝑖,𝑘=1

,  (2.3) 

𝛼𝑖𝑗
𝑀 =

𝑎𝑖𝑗
𝑀

∑ 𝑎𝑖𝑘
𝑀𝑞

𝑖,𝑘=1

,  (2.4) 

and 
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𝛼𝑖𝑗
𝑇 =

𝑎𝑖𝑗
𝑇

∑ 𝑎𝑖𝑘
𝑇𝑇

𝑖,𝑘=1

.  (2.5) 

Finally, the edge weight in the meta-graph 𝐀 is computed as 

𝐀 = 𝐀𝑇 ≺ 𝐀𝑀 ≺ 𝐀𝐹,  (2.6) 

which accommodates multilevel feature interrelationships (i.e., FMT2FMT interrelationships 

and hence FM2FM, FT2FT, and MT2MT interrelationships). ≺ denotes the operation of 

broadcasting and element-wise multiplication. Specifically, 𝐀𝑇 ≺ 𝐀𝑀 first broadcasts 𝐀𝑇 to the 

dimension of 𝑞 and then performs the Hadamard product with 𝐀𝑀. The broadcasting operation 

expands each edge weight inside 𝐀𝑇 into an 𝑀 × 𝑀 matrix and then concatenates the matrices to 

match the corresponding sub-matrices in 𝐀𝑀. Similarly, 𝐀𝑀 ≺ 𝐀𝐹 first broadcasts 𝐀𝑀 to the 

dimension of 𝑝 × 𝑝 and then performs the Hadamard product with 𝐀𝐹. 

3.1.2 Design Rationale of Robust Graph Learning 

Consider a general undirected graph 𝐺 = (𝑉, 𝐸), where |𝑉| =  𝑎 and |𝐸| =  𝑎 × 𝑎; 𝑉 is the 

set of a nodes; 𝐸 is the set of 𝑎 × 𝑎 edges. Let 𝐀 ∈ ℝ𝑎×𝑎 denote an adjacency matrix of 𝐺, where 

𝑎𝑖𝑗 ∈ {0, 1} indicates whether an edge 𝑒𝑖𝑗 exists. In our case, the nodes 𝑉 are the elementary 

features within and across modalities and time steps. Let the degree matrix of 𝐀 be the diagonal 

matrix 𝐃 = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, … , 𝑑𝑎) ∈ ℝ𝑎×𝑎, where 𝑑𝑖 = ∑ 𝑎𝑖𝑗𝑗∈𝑉 . Define the graph Laplacian as 

𝐋 = 𝐃 − 𝐀 ∈ ℝ𝑎×𝑎 and the augmented normalized graph Laplacian �̃� = 𝐈 − �̃�−
1

2�̃��̃�−
1

2, where 

�̃� = 𝐀 + 𝐈, 𝐈 ∈ ℝ𝑎×𝑎 is the identity matrix, and �̃� is the degree matrix of the adjacency matrix �̃� 

augmented with self-loops. Denote the matrix of node features as 𝐅 ∈ ℝ𝑑×𝑑. The GCN model 

can be expressed as 
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𝐅𝑙+1 = 𝜎(�̃�−
1

2�̃��̃�−
1

2𝐅𝑙𝐖𝑙),  (2.7) 

where 𝜎 is the nonlinear activation function, the superscript 𝑙 denotes the 𝑙-th GCN layer, and 

𝐖𝑙 is the feature weighting matrix of the 𝑙-th GCN layer. 

Let �̂� = �̃�−
1

2�̃��̃�−
1

2. It has been shown that multiplying 𝐅𝑙 with �̂� is equivalent to applying a 

low-pass filter, resulting in a decrease of high-frequency components (NT and Maehara 2019, F. 

Wu et al. 2019) of node features and accurate estimations of the true features (Heng et al. 2021, 

F. Wu et al. 2019). Specifically, denote �̂� as a GCN filter,  

         �̂� = �̃�−
1

2�̃��̃�−
1

2 = �̃�−
1

2(�̃� − 𝐋)�̃�−
1

2 = 𝐈 − �̃�−
1

2𝐋�̃�−
1

2.  (2.8) 

Let �̂� = �̃�−
1

2𝐋�̃�−
1

2. �̂� can be decomposed as �̂� = �̂��̂��̂�𝐓, where �̂� = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑎) ∈

ℝ𝑎×𝑎 is the diagonal matrix with the diagonal elements filled with eigenvalues of �̂�. It has been 

proven that the eigenvalues of �̂�, i.e., 𝜆𝑖 ∈ [0,2) (F. Wu et al. 2019). Furthermore, we have 

�̂� = �̂�(𝟏 − �̂�)�̂�𝐓.  (2.9) 

Therefore, the eigenvalue of the GCN filter �̂� is (1 − 𝜆𝑖) ∈ [−1,1). Thus, the GCN model 

(Equation 2.7) can be deemed as a low-pass filter of the node features. Such a result indicates 

that high-frequency signals (i.e., neighboring nodes with large variance) will be smoothed by the 

GCN filter.  

With an in-depth analysis, researchers have revealed that not all low-pass filters are robust in 

that lower-frequency components (𝜆𝑖 ∈ [0, 1) or 1 − 𝜆𝑖 ∈ (0, 1]) of the GCN filter can be more 

robust than higher-frequency ones (𝜆𝑖 ∈ (1, 2] or 1 − 𝜆𝑖 ∈ [-1, 0)) (Heng et al. 2021). In light of 

this, we introduce the trace norm to regularize the singular values of the graph Laplacian matrix 
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within the low-rank space (i.e., to induce low-frequency components) to learn robust graph 

filters. Specifically, let 𝐀 be the adjacency matrix of a relational graph in RMGL. We define its 

graph Laplacian matrix 𝐋 = 𝐃 − 𝐀, where 𝐃 is the degree matrix of 𝐀. Define �̂� = �̃�−𝟏�̃� as the 

augmented normalized graph Laplacian matrix, where �̃� = 𝐀 + 𝐈 and �̃� is the degree matrix of 

�̃�. Similar to equation (2.8), we have 

�̂� = �̃�−1�̃� = �̃�−1(�̃� − 𝐋) = 𝐈 − �̃�−1𝐋. (2.10) 

Let �̂� = �̃�−1𝐋 and ‖�̂�‖
𝑡𝑟

 denote the trace norm of �̂�, that is, 

‖�̂�‖
𝑡𝑟

= ‖σ‖1 = ∑ 𝜎𝑖
𝑎
𝑖=1 ,   (2.11) 

where 𝜎𝑖 is the 𝑖-th singular value of matrix �̂�. ‖�̂�‖
𝑡𝑟

 is essentially the L1 norm of the singular 

values of �̃�. Therefore, we impose ‖�̂�‖
𝑡𝑟

 to impel the singular values to be smaller and have �̂� 

optimized in a low-rank space to induce the low-frequency components (i.e., graph filters), such 

that noise signals can be more effectively filtered.  

In this study, we fill 𝐀 with learnable weights and decompose �̂� using the standard vector 

decomposition �̂� = �̂��̂��̂�𝑻. Denote �̃� as a diagonal matrix filled with a set of descending-ordered 

diagonal elements in �̂�, explaining k percent of the total sum of all diagonal elements in �̂�. We 

then decompose �̂� = �̂� + �̂�, where �̂� = �̂��̃��̂�𝑻, to consider filter-wise and weight-wise 

robustness, i.e., 

min
�̂�,�̂�

‖�̂�‖
𝑡𝑟

+ ‖�̂�‖
21

 s. t. �̂� = �̂� + �̂�,  (2.12) 

where ‖�̂�‖
21

 is the L21 norm of �̂� and is set to increase the robustness of node-wise (row-

wise) feature weights. 



38 
 

2.3.1.3 Methodological Challenges 

We summarize the challenges we have identified, along with our proposed solutions for 

addressing them, in Table 2.2 RMGL identifies multilevel feature interrelationships based on 

fine-grained temporal and spatial features and leverages them for MTSP through synchronous 

temporal-spatial modeling. 
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Challenge Description  Impact Solution 

Two-stage 

aggregation 

Conducting temporal and 

spatial aggregation separately 

Information loss, redundancy, 

and conflict 

Synchronous 

temporal-spatial 

modeling 

Multilevel feature 

interrelationships 

F2F Feature-wise interrelationships 

affect the joint prediction effect of 

two features. 

Meta-graph 

learning at the 

feature level 

M2M Modality-wise 

interrelationships affect the joint 

prediction effect of two feature 

modalities. 

Meta-graph 

learning at the 

modality level 

T2T Time-step-wise 

interrelationships affect the joint 

prediction effect of features from 

two time steps. 

Meta-graph 

learning at the time 

step level 

FT2FT, FM2FM, MT2MT, 

FMT2FMT 

Fine-grained feature 

interrelationships with superposed 

feature interrelationships.  

Interconnection 

of F2F, M2M, and 

T2T graphs 

Synchronous 

temporal-spatial 

modeling 

Delivering fine-grained 

temporal and spatial features 

synchronously to prediction 

The large number of 

parameters increases overfitting 

risk and weakens the robustness of 

optimization. 

Robust graph 

learning 

Table 2.2. Challenges in Leveraging Multilevel Feature Interrelationships for MTSP. 
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Figure 2.1 Framework of RMGL 

2.3.2 Framework Overview and Problem Formulation 

Overall, RMGL is an end-to-end MTS-based deep learning method that learns multilevel 

feature interrelationships with MTS data and leverages them for MTSP in a robust way. The 

overall framework of RMGL is outlined in Figure 2.1. It first aligns the MTS data in modalities 

and time steps for the given MTSP task. Next, for each data modality, it applies a one-layer deep 

neural network to ensure a uniform dimensionality of feature modalities before constructing the 

graphs. Then, taking each feature, modality, and time step as a graph node successively, it 

formulates F2F, M2M, and T2T graphs, respectively. The graphs comprise edges representing 

the intensity and polarity of the interrelationships. Zero edges herein induce graph structures 

such that a robust feature interaction can be learned for MTSP. Furthermore, the graphs are 
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interconnected, constituting the meta-graph through operations of broadcasting and Hadamard 

product to capture the ternary FMT2FMT interrelationships. Finally, a robust meta-graph 

learning objective leverages the fine-grained interrelationships to enhance the prediction. 

Granularity Concept Definition 

Interrelationship 

Level 

F2F Interrelationship Interrelationship between two features. 

M2M Interrelationship Interrelationship between two feature modalities. 

T2T Interrelationship Interrelationship between two time steps. 

FM2FM Interrelationship F2F-M2M superposed interrelationship. 

FT2FT Interrelationship F2F-T2T superposed interrelationship. 

MT2MT Interrelationship M2M-T2T superposed interrelationship. 

FMT2FMT Interrelationship Fine-grained F2F-M2M-T2T superposed interrelationship. 

Feature 

Importance Style 

Inner Importance The importance of a feature itself. 

Outer Importance The sum of the contribution degrees of a feature to other 

features. Interrelationship 

Style 

Positive Interrelationship The positive interrelationship value learned by RMGL 

between two features/modalities/time steps. Zero Interrelationship The zero interrelationship value learned by RMGL between 

two features/modalities/time steps. Negative Interrelationship The negative interrelationship value learned by RMGL 

between two features/modalities/time steps. Table 2.3. Definitions of Concepts Related to Multilevel Feature Interrelationships 

We formulate the MTSP problem as follows. Consider MTS data instances along with M 

modalities, i.e., 𝐷 = {𝑆1, 𝑆2, … , 𝑆𝑀}, where 𝑆𝑗 = {𝑆𝑗
(1)

, 𝑆𝑗
(2)

, … , 𝑆𝑗
(𝑇)

} is the instance set containing 

instances of the 𝑗-th modality across 𝑇 time steps. 𝑆𝑗
(𝑡)

= {𝑆1𝑗
(𝑡)

, 𝑆2𝑗
(𝑡)

, … , 𝑆𝑛𝑗
(𝑡)

}, where 𝑆𝑖𝑗
(𝑡)

 is the 𝑖-

th instance of the 𝑗-th modality at the 𝑡-th time step. Denote the variable to be predicted as 𝐲 =

[𝑦1, 𝑦2, … , 𝑦𝑛] ∈ ℝ𝑛. To ensure a uniform dimensionality for all feature modalities, we use a 

one-layer neural network for each modality instance set (i.e., 𝑆𝑗) to map the dimensionality of the 

modality to d. In line with D, we define a batch of MTS representation features of it as 𝐗 =

[𝐗1, 𝐗2, … , 𝐗𝑀] ∈ ℝ𝑏×𝑀×𝑇×𝑑, where 𝐗𝑗 = [𝐗𝑗
(1)

, 𝐗𝑗
(2)

, … , 𝐗𝑗
(𝑇)

] ∈ ℝ𝑏×𝑇×𝑑 and 𝐗𝑗
(𝑡)

=

[𝐱𝑗1
(𝑡)

, 𝐱𝑗2
(𝑡)

, … , 𝐱𝑗𝑑
(𝑡)

] ∈ ℝ𝑏×𝑑 is the output matrix of the 𝑗-th modality at the 𝑡-th time step over b 

(i.e., batch size) instances. The MTSP task can be expressed as 𝐲 = 𝑓𝑀𝑇𝑆(𝐗). For the clarity of 
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model description in subsequent sections, we define concepts related to multilevel feature 

interrelationships in Table 2.3. 

2.3.3 Meta-graph Construction for Multilevel Feature Interaction 

Given the MTS-based representation features, i.e., X, the first goal of RMGL is to learn fine-

grained multilevel feature interrelationships, in response to RQ1. Specifically, corresponding to 

the three types of feature interrelationships, i.e., F2F, M2M, and T2T interrelationships, RMGL 

constructs three levels of graphs. At the feature level, RMGL takes 𝑝 = 𝑑 × 𝑀 × 𝑇 

representation features of X as p feature nodes and constructs a feature-wise (F2F) graph (square 

adjacency matrix) 𝐀𝐹 ∈ ℝ𝑝×𝑝, where 𝑎𝑖𝑗
𝐹 ∈ ℝ    is a trainable weight for measuring the 

interrelationship intensity and polarity between 𝐱𝑖 and 𝐱𝑗. Similarly, for 𝑞 = 𝑀 × 𝑇 feature 

modalities and T time steps at the modality and time-step levels, RMGL constructs the modality-

wise (M2M) graph 𝐀𝑀 ∈ ℝ𝑞×𝑞 and the time-step-wise (T2T) graph 𝐀𝑇 ∈ ℝ𝑇×𝑇, respectively. 

𝑎𝑖𝑗
𝑀 ∈ ℝ  (or 𝑎𝑖𝑗

𝑇 ∈ ℝ ) is a trainable weight for evaluating the interrelationship intensity and 

polarity between the 𝑖-th and 𝑗-th modalities (or time steps). 

Especially, using a novel graph attention mechanism, RMGL interconnects 𝐀𝐹, 𝐀𝑀, and 

𝐀𝑇and thus creates a meta-graph that provides channels to accommodate the interflow of feature 

information across modalities and time steps. For a given elementary feature, while RMGL leans 

its interrelationship with other features, the feature interrelationship weights will be adjusted by 

the weights of modality-wise interrelationships, which will be further adjusted by the weights of 

time-step-wise interrelationships. In doing so, the learned feature interrelationships are indeed 

superposed multilevel interrelating effects. This conforms to the methodological requirements of 

delivering fine-grained temporal and spatial features synchronously to MTSP by considering 

their intricate interrelationships. 
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2.3.4 Robust Meta-graph Learning 

In response to RQ2, RMGL leverages multilevel feature interrelationships to enhance MTSP 

in a robust way. To this end, it performs graph convolutions on the meta-graph to realize the 

meta-graph learning effect and, in the meanwhile, introduces a robust learning objective to 

realize the robust meta-graph learning effect. Figure 2.2 illustrates the meta-graph structure for 

learning multilevel feature interrelationships. 

 

Figure 2.2. Illustration of Meta-graph for Multilevel Feature Interrelationships. From left to right: 
adjacency matrices of T2T, M2M, and F2F graphs, respectively. The particular values (+, -, 0) in the 
matrices are arbitrary examples for illustration only. Plus sign (+): positive weight; Negative sign (-): 

negative weight; Zero (0): zero weight. 

 

Specifically, RMGL conducts graph convolutions over MTS features, i.e., 

𝐳𝐴 = 𝜎(�̃�−1�̃�𝐗𝑇𝐖𝐺)  ∈ ℝ𝑑𝐴
    

,  (2.13) 

�̃� = 𝐀 + 𝐈, 𝐀 = 𝐀𝑇 ≺ 𝐀𝑀 ≺ 𝐀𝐹.  (2.14) 

𝐳𝐴 are the representation features output by RMGL’s meta-graph layer, which can be 

single/multi-layer. Adding an output layer on 𝐳𝐴, which encodes multilevel feature 
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interrelationships, RMGL can make the final prediction. The prediction loss depends on the 

prediction task, e.g., mean square error if 𝐲 is continuous: 

ℒ𝑚𝑠𝑒 =
1

𝑏
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑏
𝑖=1 ,  (2.15) 

Besides, to realize a robust learning effect for multilevel feature interrelationships and better 

leverage them for MTSP, RMGL conducts meta-graph learning in the robust low-rank parameter 

space. Specifically, it adds the following penalty terms on the prediction loss (ℒ𝑚𝑠𝑒):  

 ℒ𝑟𝑒𝑔 = 𝜆1 (‖𝐀(𝑇)‖
1

+ ‖𝐀(𝑀)‖
1

+ ‖𝐀(𝐹)‖
1

) + 𝜆2 (‖𝐀(𝑇)‖
𝐹

+ ‖𝐀(𝑀)‖
𝐹

+ ‖𝐀(𝐹)‖
𝐹

) +

𝜆3‖�̂�‖
𝑡𝑟

+ 𝜆4‖�̂�‖
21

,            

          (2.16) 

where �̂� and �̂� are decomposed from the augmented normalized Laplacian matrix (�̂� =

�̃�−1𝐋), representing the low-rank and residual matrices of �̂�, respectively. The decomposition is 

defined as  

�̂� = �̂� + �̂�,           

        (2.17)                               

where �̂� = �̂��̃��̂�𝑻, �̂� and �̂� are the corresponding left and right rotation matrices from the 

standard value decomposition on �̂�, and �̃� is defined as k percent of the stretching matrix �̂�,  

�̂� = �̂��̂��̂�𝑻 and �̃� = 𝑘 of �̂�.                  

    (2.18) 
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The operation of “𝑘 of �̂�” is defined as a diagonal matrix whose diagonal elements are filled 

with a set of descending-ordered diagonal elements in �̂�, explaining k percent of the total sum of 

all diagonal elements in �̂�.  

‖. ‖1 denotes the elementwise L1-norm-based penalty term over a matrix to ensure 

elementwise matrix sparsity (i.e., zero edge weights in F2F, M2M, and T2T graphs). ‖. ‖𝐹 

denotes the Frobenius-norm-based penalty term to regularize the weight elements of a matrix to 

overcome overfitting. ‖. ‖𝑡𝑟 denotes the trace-norm-based penalty term over a matrix to increase 

the robustness of graph filters. ‖. ‖21 denotes the L21-norm-based penalty terms over a matrix to 

induce structural sparsity.  

By equation (2.16), RMGL optimizes the weights of multilevel feature interrelationships in 

the low-rank parameter space. That is, RMGL applies the regularizations on the decomposed 

graph Laplacian matrix, respectively with the trace-norm-based penalty (‖. ‖𝑡𝑟) and the L21-

norm-based penalty (‖. ‖21). As we analyzed before, ‖. ‖𝑡𝑟 helps to increase the robustness of 

graph filters in the low-rank space and ‖. ‖21 helps to increase the robustness of the residual 

matrix, inducing patterns of node-wise (row-wise) weights such that row weight vectors with 

greater importance tend to be less shrunk.  

In summary, the overall learning objective of RMGL can be expressed as  

     ℒ𝑅𝑀𝐺𝐿 = ℒ𝑚𝑠𝑒 + ℒ𝑟𝑒𝑔.                                                    (2.19) 

2.3.5 The Algorithm for RMGL 

The proposed algorithm for RMGL is outlined in Figure 2.3. 

Input:  D, y 

Parameters:  𝑑, 𝑘, 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝑒, 𝑏  

Output:  �̂� = 𝑓𝑀𝑇𝑆(𝐗), along with learned multilevel feature interrelationships �̅�𝐹, �̅�𝑀, �̅�𝑇 
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1: Construct feature modalities for MTS. 

2: Map the dimensionality of each feature modality to 𝑑 using a one-layer neural network. 

3: Encode D as MTS representation features 𝐗 by feature modalities. 

4: Initialize 𝐀𝐹, 𝐀𝑀, 𝐀𝑇, 𝐖𝐺 with Xavier initializer (Glorot and Bengio 2010) 

5: for epoch←1 to 𝑒 

6:     for batch ←1 to 𝑏 

7:         Normalize 𝐀𝐹, 𝐀𝑀, 𝐀𝑇 by Eq. (3-5). 

8:         Derive the meta-graph 𝐀 by Eq. (6). 

9:         Derive 𝐳𝐴 by Eq. (13-14). 

10:         Pass 𝐳𝐴 through the output layer to get prediction �̂�𝑖. 

11:         Compute prediction loss by Eq. (15). 

12:         Compute robustness loss by Eq. (16-18). 

13:         Compute overall loss by Eq. (19). 

14:     end for 

15:     Run a backpropagation for optimization. 

16: end for 

Return The trained model 𝑓𝑀𝑇𝑆(𝐗), along with �̅�𝐹, �̅�𝑀, �̅�𝑇. 

Figure 2.3. The Algorithm for RMGL 

 

2.4. Empirical Evaluation 

2.4.1 Data 

We have collected a financial dataset of Standard & Poor’s 1500 companies (S&P1500), 

spanning the period from 2009 to 2020, to evaluate the proposed method. Specifically, the 

dataset includes 1) quarterly accounting information collected from the Compustat database, 2) 

audio recordings of firms’ quarterly earnings call collected from the Factset Database, 3) trader- 

and investor-generated content at the firm level collected from a social media platform dedicated 

to stock markets, 4) employee-generated content at the firm level collected from a social media 

platform dedicated to employer brandings, and 5) firms’ daily stock prices collected from the 

Center for Research in Securities Prices (CRSP). Based on the dataset, we extracted five 

modalities of features and formulated the forecasting of the 𝑛-day stock volatility following 

quarterly earnings call events (i.e., each time step corresponds to a quarter) as an MTSP problem.  
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Earnings calls are quarterly conference calls hosted by company executives to discuss the 

firm’s overall performance with outside investors and analysts. They can result in significant 

stock price moves, which are also known as post-earnings announcement drift, a phenomenon 

widely studied in finance and accounting research (Bernard and Thomas 1989). Investors and 

analysts analyze the earnings announcement, interpret the vocal and verbal cues during the 

conference call, such as the tones and emotions of firm CEOs, and then react on the market. In 

the meanwhile, it has been shown that user-generated content on social media platforms can 

predict stock price moves. For instance, Deng et al. (Deng et al. 2018) showed that microblog 

sentiments extracted from Stocktwits.com can reflect firms’ fast stock price moves at the hourly 

level. In another case, Green et al. (Green et al. 2019) showed that employee ratings on 

Glassdoor.com reveal firms’ intangible assets and therefore can predict future stock returns.  

Variable Value 

Dimensionality of FI  12 

Dimensionality of EA 12 

Dimensionality of ET 1,024 

Dimensionality of TC 1,024 

Dimensionality of EC 1,024 

ET text length in words (Min / Max / Mean / Std) 215 / 27,221 / 7,879.84 / 2,479.75 

EA audio length in seconds (Min / Max / Mean / Std) 486.03 / 10,148.26 / 3,331.39 / 893.80 

TC text length in words (Min / Max / Mean / Std) 1 / 808,370 / 4,828.70 / 30,845.79 

EC text length in words (Min / Max / Mean / Std) 9 / 126,360 / 2,052.94 / 5,283.33 

Number of companies / Sample size (𝑇=1) 1,369 / 26,496 

Number of companies / Sample size (𝑇=2) 1,199 / 18,815 

Number of companies / Sample size (𝑇=3) 1,053 / 14,870 

Number of companies / Sample size (𝑇=4) 951 / 12,390 

Number of companies / Sample size (𝑇=5) 826 / 10,622 

Number of companies / Sample size (𝑇=6) 733 / 9,263 

Number of companies / Sample size (𝑇=7) 637 / 8,205 

Number of companies / Sample size (𝑇=8) 571 / 7,351 

Table 2.4. Descriptive Statistics of the S&P1500 MTS dataset 
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The 𝑛-day stock volatility captures the stock price moves in a window of 𝑛 days and is an 

essential measure of risk levels in the financial market (Qin and Yi 2019). With the availability 

of MTS data, predicting the n-day stock volatility following earnings call events presents an 

opportunity for evaluating the proposed graph learning artifact (i.e., RMGL). The collected 

dataset consists of a large sample of firms with MTS data representing firm values in various 

dimensions, including 1) Financial and accounting Indicators (the FI modality), 2) vocal features 

of CEOs embedded in the Earnings call Audio (the EA modality), 3) verbal features of CEOs 

embedded in the Earnings call Transcripts (the ET modality), 4) text features embedded in the 

Trader- and investor-generated Content (the TC modality), and 5) text features embedded in the 

Employee-generated Content (the EC modality). RMGL can capture the feature interrelationships 

within and between modalities and across the time dimension, thereby improving the overall 

prediction performance. Table 2.4 summarizes descriptive statistics about the dataset. 

2.4.2 Multimodal Time Series Processing and Feature Alignment 

We preprocessed the dataset to obtain the variable to be predicted (i.e., 𝑛-day stock volatility) 

and five modalities of features and then aligned the multimodal features in the time dimension to 

carry out the experiments. Specifically, the 𝑛-day stock volatility is defined as 

𝑣[0,𝑛] = ln (√
∑ (𝑟𝑖−𝑟)2𝑛

𝑖=1

𝑛
),          

     (2.20) 

where 𝑟𝑖 = (𝑃𝑖 − 𝑃𝑖−1)/𝑃𝑖−1 is the stock return on day i, 𝑟 is the average stock return in a 

window of n days following an earnings call, and 𝑃𝑖 is the adjusted closing price of a stock on 

day i. Based on equation (2.20) and the dates of earnings call events, we constructed the n-day 



49 
 

stock volatility with varying number of days (𝑛=7, 15, 30) to capture short- and long-term 

predictions. 

The five feature modalities (i.e., 𝑀=5) we constructed essentially cover three data types: 

quantitative data (FI), text data (ET, TC, EC), and audio data (EA). To construct the quantitative 

FI features, following the finance and accounting literature (Edmans 2011, 2012, Green et al. 

2019, Pointer and Khoi 2019), we first merged the CRSP and Compustat databases based on the 

fiscal year and quarter of an earnings call event and then extracted twelve financial indicators at 

the firm level, including total asset size, fixed asset size, research and development asset size, 

cash asset size, debt asset size, capital expenditure, operating income, book to market, return on 

assets, return on equity, Tobin’s q, and the quarterly stock returns prior to the earnings call event. 

To obtain the EA features, we applied librosa, a python package to extract Mel-Frequency 

cepstral coefficients (MFCC), a common parametric representation of acoustic signals. We 

extracted, from each firm-quarter audio, a 1024-dimensional MFCC vector and used it to 

represent the EA modality. To obtain the ET features, we first applied a commercial speech-to-

text software to convert each audio recording to a text document and then employed BERT 

(Bidirectional Encoder Representations from Transformers), a common pre-trained text 

representation model (Devlin et al. 2018), to obtain a 1024-dimensional vector representing the 

document. Because BERT limits the input length to 512 characters, we split the document into 

multiple sub-documents at the unit length of 512 characters, fed the sub-documents into BERT, 

and then obtained an aggregated 1024-dimensional vector by averaging the feature vectors of the 

sub-documents. Thus, we obtained a 1024-dimensional vector per firm-quarter transcript to 

represent the ET modality. To obtain the TC features, for each earnings call, we collected a 

document of the trader- and investor-generated messages posted under the firm’s stock symbol in 
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a 30-day window prior to (including) the date of the earnings call. We then applied the pre-

trained BERT model to obtain an aggregated 1024-dimensional vector per firm-quarter to 

represent the TC modality. Similarly, to obtain the EC features, for each earnings call, we first 

collected a document of the employee-generated messages posted under the firm’s branding in a 

time window between the dates of two quarterly earnings calls and then used the pre-trained 

BERT model to obtain an aggregated 1024-dimensional vector per firm-quarter to represent the 

EC modality.  

To prepare the final dataset to train RMGL, we filtered the instances in two ways. First, if 

any of the five modalities is missing in an instance, we removed the instance. Second, in the 

setting of 𝑇 time steps, we removed an instance if any of its previous 𝑇-1 quarterly instances is 

missing. 

2.4.3 Experiments 

We conducted three experiments to evaluate RMGL in the following aspects:  

1) to compare RMGL against several benchmarks in terms of prediction performance,  

2) to show consistent performance margins of RMGL against varying modalities in a 

modality ablation study, 

3) to validate and gain further insights into the design choices of RMGL with an ablation 

study comparing RMGL against several variants. 

In Experiment 1, we compared RMGL against nine benchmarks selected from state-of-the-

art attention-based deep learning methods, multimodal deep learning methods, and temporal-

spatial neural network methods. We first included two attention-based deep learning methods, 

i.e., LSTM+Attention, a long short-term memory network with an attention mechanism on the 
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sequential inputs, and AutoInt (Song et al. 2019), a deep learning method that learns high-order 

feature interactions with multi-head attention mechanism and residual connection. Next, in view 

of the design of modality-wise interrelationships incorporated by RMGL, we also identified five 

benchmarks from multimodal deep learning methods, which are aimed at synergizing multiple 

data modalities within a unified deep learning framework through various fusion methods. The 

multimodal deep learning benchmarks include: 1) Soft-HGR (Wang et al. 2019), a deep learning 

method that extracts informative features from multiple data modalities by modeling modality-

wise correlations and makes predictions for the downstream prediction task by feeding the joint 

representation into a SoftMax layer, 2) MAG (Rahman et al. 2020), a multimodal adaptation gate 

that allows pre-trained deep neural networks to be fine-tuned with multimodal data, 3) ARGF 

(Mai et al. 2020b), an adversarial representation graph fusion framework for multimodal fusion, 

which learns a discriminative joint embedding space for various modalities via adversarial 

training and fuses modalities with a hierarchical graph network, 4) MRACNN (Zhang et al. 

2020), a multimodal recurrent attention convolutional neural network that models high-order 

feature interactions with a multimodal factorized bilinear pooling approach, and 5) BBFN (Han 

et al. 2021), a bi-bimodal fusion network that performs fusion and separation on pairwise 

modality representations. Finally, we identified two deep learning methods that account for 

temporal and spatial dynamics when modeling modality-wise interrelationships. The two 

temporal-spatial benchmarks are: 1) STAN (Cheng et al. 2020), a spatial-temporal-attention-

based neural network that measures the importance of temporal and spatial slices, and 2) 

MAGNN (Cheng et al. 2022), a multimodal graph neural network for forecasting temporal 

dynamics by incorporating sources of lead-lag relationships. In addition, we examined short-term 

(7-day) and long-term (15-day and 30-day) volatility predictions (i.e., 𝑛=7, 15, 30), as well as 
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varying number of time steps from one to eight (i.e., 𝑇= 1, 2, …, 8). Therefore, Experiment 1 has 

10 (RMGL + 9 benchmarks) * 3 (n values) * 8 (numbers of time steps) = 240 settings. 

In Experiment 2, we conducted a modality ablation study to evaluate the stability of 

RMGL’s performance. We are interested in investigating how the performance would change 

w.r.t. different settings of modalities and whether RMGL with all modalities can outperform 

RMGL with ablated modalities. Specifically, in each run, the input modalities excluded one of 

the FI, EA, ET, TC, and EC modalities, respectively. We conducted Experiment 2 using the 

short-term (i.e., 7-day) volatility prediction task (i.e., 𝑛=7) because it is a more challenging task. 

We chose the number of time steps as six (i.e., 𝑇=6) because RMGL yielded the best 

performance in Experiment 1 under this setting. Experiment 2, therefore, has 6 (five ablated sets 

of modalities + all modalities) settings. 

In Experiment 3, we conducted an ablation study to investigate the utility of the design 

components introduced in RMGL. Specifically, we compared RMGL, which models FMT2FMT 

interrelationships and hence FM2FM, FT2FT, and MT2MT interrelationships, with its three 

variants, i.e., (1) RMGL without the effect of the feature-wise (F2F) graph, modeling MT2MT 

interrelationships, (2) RMGL without the effect of the modality-wise (M2M) graph, modeling 

FT2FT interrelationships, and (3) RMGL without the effect of the time-step-wise (T2T) graph, 

modeling FM2FM interrelationships. To ablate the effect of each graph (i.e., F2F, M2M, or 

T2T), we set the corresponding adjacency matrix (i.e., 𝐀𝐹, 𝐀𝑀, or 𝐀𝑇) to an all-one matrix and 

kept the other two adjacency matrices still learnable. We conducted Experiment 3 using the 

short-term (i.e., 7-day) volatility prediction task with six time steps (i.e., 𝑛=7, 𝑇=6), the same as 

in Experiment 2. Therefore, Experiment 3 has 4 (RMGL + 3 ablated variants) settings.  
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For each setting in the experiments, we estimated the prediction performance through five 

independent runs of 10-fold cross validation, resulting in 50 estimates. We used root mean 

square error (RMSE) as the performance metric. Information on the implementation, execution, 

and parameter setting is available in Appendix D. 

2.4.4. Experiment Results 

2.4.4.1. Experiment 1: Performance Comparisons 

Table 2.5 summarizes the prediction performance (RMSE) of RMGL vs the nine benchmarks. 

Tukey-Kramer test showed that RMGL consistently outperformed all benchmarks under every 

setting (see Appendix E). Among all comparisons, the maximum performance gain of RMGL 

was 49.3% when predicting 30-day volatility with two time steps (RMSE=0.352), compared to 

that of AutoInt (RMSE=0.694). Meanwhile, RMGL obtained the minimum gains of 6.3%, 21.4%, 

and 23.1%, when achieving the best performance in predicting 7-day volatility with six time 

steps (RMSE=0.507), 15-day volatility with one time step (RMSE=0.370), and 30-day volatility 

with two time steps (RMSE=0.352), compared to that of MAG (RMSE=0.541), ARGF 

(RMSE=0.471), and BBFN (RMSE=0.458), respectively. When RMGL achieved the best short-

term prediction performance (7-day volatility, T=6), the minimum improvements were 6.5% 

over the attention-based methods, 6.3% over the multimodal deep learning methods, and 9.9% 

over the temporal-spatial neural network methods. For long-term prediction (30-day volatility, 

T=2), the minimum improvement over the benchmarks was 46.1% over the attention-based 

methods, 23.1% over the multimodal deep learning methods, and 44.3% over the temporal-

spatial neural network methods, respectively. Consistent with the literature (J. Li et al. 2020, Qin 

and Yi 2019), RMGL obtained better performance for long-term prediction (RMSE=0.352), 

compared to that for short-term prediction (RMSE=0.507). 5) Finally, RMGL obtained the 

minimum prediction error at 𝑇=6 (RMSE=0.507), 1 (RMSE=0.435), and 2 (RMSE=0.384) for 
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the 7-, 15-, and 30-day volatility, respectively, indicating that RMGL can use a long or short 

MTS to improve the prediction performance.  

Method 
𝑛 𝑻 

1 2 3 4 5 6 7 8 

LSTM+Atten

tion 

 

 

 

 

7 

0.559 

(0.063) 

0.574 

(0.095) 

0.55

5 (0.028) 

0.589 

(0.002) 

0.552 

(0.028) 

0.542 

(0.099) 

0.603 

(0.029) 

0.598 

(0.030) 

AutoInt 
0.561 

(0.068) 

0.561 

(0.029) 

0.55

5 (0.018) 

0.597 

(0.057) 

0.561 

(0.029) 

0.547 

(0.039) 

0.584 

(0.060) 

0.583 

(0.021) 

Soft-HRG 
0.577 

(0.021) 

0.559 

(0.025) 

0.54

9 (0.018) 

0.597 

(0.023) 

0.565 

(0.058) 

0.601 

(0.001) 

0.570 

(0.137) 

0.595 

(0.047) 

MAG 
0.570 

(0.014) 

0.569 

(0.019) 

0.56

9 (0.003) 

0.592 

(0.047) 

0.597 

(0.015) 

0.542 

(0.080) 

0.565 

(0.014) 

0.575 

(0.070) 

ARGF 
0.555 

(0.022) 

0.553 

(0.113) 

0.55

8 (0.017) 

0.589 

(0.009) 

0.560 

(0.064) 

0.554 

(0.028) 

0.569 

(0.043) 

0.575 

(0.011) 

MARCNN 
0.553 

(0.059) 

0.555 

(0.043) 

0.56

5 (0.021) 

0.580 

(0.052) 

0.547 

(0.030) 

0.566 

(0.005) 

0.567 

(0.087) 

0.577 

(0.017) 

BBFN 
0.579 

(0.034) 

0.595 

(0.006) 

0.58

5 (0.075) 

0.597 

(0.125) 

0.568 

(0.078) 

0.568 

(0.055) 

0.588 

(0.140) 

0.578 

(0.065) 

STAN 
0.552 

(0.007) 

0.559 

(0.006) 

0.57

3 (0.022) 

0.615 

(0.038) 

0.552 

(0.019) 

0.569 

(0.005) 

0.591 

(0.080) 

0.597 

(0.035) 

MAGNN 
0.559 

(0.036) 

0.635 

(0.057) 

0.60

5 (0.128) 

0.580 

(0.039) 

0.548 

(0.010) 

0.563 

(0.117) 

0.576 

(0.028) 

0.609 

(0.049) 

RMGL 
0.526 

(0.015) 

0.513 

(0.014) 

0.51

8 (0.054) 

0.546 

(0.074) 

0.512 

(0.041) 

0.507 

(0.013) 

0.515 

(0.062) 

0.535 

(0.053) 

LSTM+Atten

tion 

 

 

 

 

 

1

5 

0.479 

(0.013) 

0.487 

(0.066) 

0.69

2 (0.002) 

0.482 

(0.008) 

0.680 

(0.092) 

0.501 

(0.034) 

0.687 

(0.019) 

0.690 

(0.056) 

AutoInt 
0.491 

(0.182) 

0.474 

(0.009) 

0.66

8 (0.036) 

0.676 

(0.039) 

0.671 

(0.025) 

0.510 

(0.042) 

0.484 

(0.006) 

0.473 

(0.063) 

Soft-HRG 
0.691 

(0.023) 

0.676 

(0.001) 

0.52

7 (0.074) 

0.508 

(0.030) 

0.671 

(0.085) 

0.540 

(0.002) 

0.502 

(0.039) 

0.691 

(0.028) 

MAG 
0.503 

(0.059) 

0.494 

(0.029) 

0.66

9 (0.003) 

0.671 

(0.021) 

0.686 

(0.070) 

0.493 

(0.202) 

0.504 

(0.105) 

0.533 

(0.044) 

ARGF 
0.471 

(0.033) 

0.483 

(0.021) 

0.51

4 (0.019) 

0.474 

(0.024) 

0.473 

(0.034) 

0.514 

(0.069) 

0.478 

(0.024) 

0.477 

(0.017) 

MARCNN 
0.671 

(0.026) 

0.470 

(0.017) 

0.68

5 (0.061) 

0.511 

(0.022) 

0.684 

(0.065) 

0.534 

(0.013) 

0.679 

(0.007) 

0.515 

(0.003) 

BBFN 
0.490 

(0.048) 

0.515 

(0.137) 

0.49

3 (0.161) 

0.496 

(0.008) 

0.494 

(0.019) 

0.496 

(0.171) 

0.486 

(0.093) 

0.515 

(0.013) 

STAN 
0.528 

(0.022) 

0.678 

(0.016) 

0.65

9 (0.018) 

0.667 

(0.064) 

0.698 

(0.025) 

0.688 

(0.049) 

0.686 

(0.011) 

0.561 

(0.085) 

MAGNN 
0.484 

(0.122) 

0.497 

(0.038) 

0.52

4 (0.031) 

0.476 

(0.158) 

0.474 

(0.124) 

0.544 

(0.069) 

0.668 

(0.076) 

0.482 

(0.083) 
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RMGL 
0.370 

(0.037) 

0.439 

(0.022) 

0.44

9 (0.074) 

0.424 

(0.098) 

0.381 

(0.049) 

0.411 

(0.016) 

0.428 

(0.084) 

0.395 

(0.045) 

LSTM+Atten

tion 

 

 

 

 

 

3

0 

0.443 

(0.150) 

0.654 

(0.031) 

0.61

9 (0.009) 

0.629 

(0.053) 

0.462 

(0.063) 

0.635 

(0.032) 

0.635 

(0.025) 

0.627 

(0.004) 

AutoInt 
0.663 

(0.076) 

0.694 

(0.030) 

0.44

7 (0.095) 

0.631 

(0.057) 

0.636 

(0.012) 

0.463 

(0.185) 

0.442 

(0.073) 

0.451 

(0.174) 

Soft-HRG 
0.641 

(0.006) 

0.642 

(0.027) 

0.61

2 (0.007) 

0.669 

(0.046) 

0.600 

(0.000) 

0.697 

(0.034) 

0.613 

(0.056) 

0.639 

(0.046) 

MAG 
0.451 

(0.019) 

0.471 

(0.004) 

0.45

5 (0.062) 

0.444 

(0.078) 

0.434 

(0.062) 

0.664 

(0.005) 

0.652 

(0.067) 

0.648 

(0.001) 

ARGF 
0.623 

(0.039) 

0.657 

(0.047) 

0.43

4 (0.049) 

0.445 

(0.065) 

0.440 

(0.103) 

0.694 

(0.009) 

0.632 

(0.003) 

0.439 

(0.066) 

MARCNN 
0.642 

(0.072) 

0.632 

(0.010) 

0.66

2 (0.025) 

0.656 

(0.015) 

0.608 

(0.001) 

0.632 

(0.067) 

0.622 

(0.011) 

0.637 

(0.031) 

BBFN 
0.446 

(0.083) 

0.458 

(0.075) 

0.46

2 (0.170) 

0.454 

(0.005) 

0.449 

(0.129) 

0.460 

(0.128) 

0.458 

(0.116) 

0.442 

(0.085) 

STAN 
0.652 

(0.068) 

0.632 

(0.003) 

0.68

7 (0.072) 

0.637 

(0.037) 

0.618 

(0.042) 

0.649 

(0.075) 

0.660 

(0.061) 

0.671 

(0.012) 

MAGNN 
0.641 

(0.024) 

0.668 

(0.038) 

0.66

4 (0.091) 

0.437 

(0.145) 

0.450 

(0.057) 

0.670 

(0.004) 

0.670 

(0.094) 

0.641 

(0.057) 

RMGL 
0.399 

(0.049) 

0.352 

(0.038) 

0.38

6 (0.055) 

0.387 

(0.019) 

0.362 

(0.007) 

0.397 

(0.008) 

0.397 

(0.045) 

0.368 

(0.021) 

Table 2.5. Prediction Error (RMSE) of RMGL vs the Benchmarks 

2.4.4.2 Experiment 2: Modality Ablation 

Table 2.6 summarizes the results of Experiment 2. Under this setting of absenting a modality 

in each run (each column header indicates the modality being absented from the experiment), 

RMGL with full modalities achieved the best performance, outperforming RMGL with reduced 

modalities by a margin ranging from 4.3% to 8.6%, indicating that RMGL is quite powerful in 

terms of leveraging new modalities for prediction (See Appendix F for Tukey-Kramer test 

result). Furthermore, the result shows that compared to other modalities, the FI modality 

contributed the most to the 7-day volatility prediction task, since when ablating the FI modality 

from the experiment, the prediction error (RMSE) increased the most. On the other hand, the EC 

modality contributed the least to the 7-day volatility prediction task, as when ablating the EC 

modality, the prediction error (RMSE) increased the least. 
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Set of 

Modalities 

RMSE 

-FI 0.555 (0.024) 

-EA 0.538 (0.049) 

-ET 0.542 (0.043) 

-TC  0.546 (0.020) 

-EC 0.530 (0.038) 

Full 0.507 (0.038) 

Table 2.6. Prediction Error (RMSE) of RMGL with Ablated Sets of Modalities 

2.4.4.3 Experiment 3: Design Ablation 

Table 2.7 summarizes the results of Experiment 3. The removal of any of the three 

components in RMGL led to a significant decline in performance (see Appendix G for Tukey-

Kramer test result). Specifically, the removal of modality-wise interaction led to the most 

significant decline of 23.9% in predicting the 7-day volatility, followed by the removal of 

temporal interaction, which led to a decline of 10.6%. Finally, the removal of feature-wise 

interaction led to a decline of 4.7%. The ablation study shows that by incorporating multilevel 

feature interrelationships in the design, RMGL improved the prediction performance 

significantly. 

Ablated variant RMSE 

Without feature-wise interaction (MT2MT) 0.532 (0.023) 

Without modality-wise interaction (FT2FT) 0.666 (0.042) 

Without temporal interaction (FM2FM) 0.567 (0.024) 

Full  0.507 (0.013) 

Table 2.7. Prediction Error (RMSE) of RMGL vs Ablated Variants 

2.4.5. Further Analyses 

We conducted further analyses following the main experiments. We first evaluated the 

effectiveness of RMGL’s robust learning objective through a sensitivity analysis of the 
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hyperparameters of the penalty terms in the loss function (Equation 2.16). We then visualized the 

graph adjacency weights of RMGL to investigate the temporal and spatial variation patterns. We 

chose the same settings as previous experiments to conduct the analysis, i.e., the short-term (7-

day) volatility prediction with six time steps.  

2.4.5.1 Sensitivity of Hyperparameters of the Penalty Terms 

Figure 2.4 shows that the prediction error (RMSE) of RMGL varied across different settings 

of the values of the four hyperparameters. Specifically, RMGL obtained the best performance 

with the following settings of the four hyperparameters: 𝝀𝟏 = 0.0001, 𝝀𝟐 = 0.001, 𝝀𝟑 = 0.01, 

and 𝝀𝟒 = 0.00005. When fixing 𝝀𝟐, 𝝀𝟑, and 𝝀𝟒 to their optimal settings and varying the value of 

𝝀𝟏 to 0.000001, 0.00005, 0.0001, 0.001, 0.01, and 0.1 respectively, the prediction error of RMGL 

gradually decreased, achieving the minimum at 𝝀𝟏 = 0.0001 (RMSE=0.507), and then started to 

increase (𝝀𝟏 = 0.1, RMSE=0.68). The pattern occurred similarly for 𝝀𝟐, 𝝀𝟑, and 𝝀𝟒. The results 

show that every penalty term in the loss function contributed to the prediction performance of 

RMGL, indicating the effectiveness of the robust learning objective designed for RMGL. 
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Figure 2.4. Sensitivity Analysis on Hyperparameters of the Penalty Terms 

2.4.5.2 Visualization of the Learned Graph Weights  

Figure 2.5 displays the adjacency weights of the T2T graph. RMGL learned T2T 

interrelationships that exhibited different directions and magnitudes across six time steps. For 

instance, the first time step had a positive and strong interrelationship with the sixth time step, 

whereas it had negative and weaker interrelationships with the second, fourth, and fifth time 

steps. The varying T2T interrelationships indicate that RMGL learned intricate T2T 

interrelationships.  
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Figure 2.5. Adjacency Weights of the Time-step-wise Graph  

Figure 2.6 displays the adjacency weights of the modality-wise graph extracted from six 

time steps. Within the same time step, the M2M interrelationships differed in their directions and 

magnitudes. Moreover, the variation patterns of the M2M interrelationships varied across time 

steps. For instance, in the first time step, the first modality is negatively related to the second 

modality and positively related to the third, fourth, and fifth modalities, whereas in the second 

time step, the first modality is positively related to the second, third, and fifth modalities, and 

negatively related to the fourth modality.  

Figure 2.7 displays the full adjacency weights of the modality-wise graph. The varying M2M 

interrelationships within- and across-temporal dimensions indicate that RMGL learned intricate 

M2M interrelationships.  
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Figure 2.6. Adjacency Weights of the Modality-wise Graph Extracted from Six Time Steps  

 

  

Figure 2.7. Adjacency Weights of the Modality-wise Graph  
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2.5. Contributions and Implications 

This study makes several contributions to the literature. First, RMGL is rooted in theoretical 

foundations regarding GCNs (Kipf and Welling 2016, Schlichtkrull et al. 2017) and designed to 

model multilevel feature interrelationships in MTS. RMGL introduces a novel meta-graph to 

disentangle multilevel feature interrelationships for MTSP. The meta-graph is composed of three 

interconnected graphs, which simultaneously learn edge weights to represent three unit-level 

feature interrelationships (i.e., F2F, M2M, and T2T). To account for the binary and ternary 

superposed feature interrelationships in MTS (i.e., FM2FM, FT2FT, MT2MT, and FMT2FMT), 

RMGL incorporates a novel graph attention mechanism that allows the meta-graph to learn the 

superposed interrelationships through interactions among the interconnected graphs. Second, 

RMGL introduces a novel robust learning objective to ensure the effectiveness and stability of 

the learning process. Specifically, given the large number of learning parameters, RMGL adopts 

elementwise L1-norm-based and Frobenius-norm-based regularizations over the three graph 

adjacency matrices to induce weight sparsity and to prevent overfitting. Furthermore, drawing on 

the low-pass nature of GCN filters, RMGL introduces trace-norm-based regularizations over the 

low-rank space of the normalized graph Laplacian matrices to learn robust low-frequency 

components of GCN filters. In addition, RMGL introduces L21-norm-based regularization over 

the residual matrices of the normalized graph Laplacian matrices to optimize row-wise weights 

of GCN filters by reserving more important row-weight (interrelating) patterns. The proposed 

regularization scheme ensures that RMGL effectively learns multilevel feature interrelationships 

for MTSP. RMGL consistently outperformed state-of-the-art alternatives in the empirical 

evaluation, providing promising results for MTSP. Although we evaluated RMGL with a 

regression problem, its design can be extended to deal with classification problems too. 
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The proposed method (i.e., RMGL) has practical implications in various fields. For instance, 

in finance, we have demonstrated that RMGL can significantly improve the performance of risk 

predictions using data collected from multiple channels, including social media and financial 

platforms. Similarly, RMGL can be applied to other financial MTSP tasks, such as fraud 

detection, stock movement prediction, and market anomaly detection. In video analysis, RMGL 

can be applied to tasks such as emotion detection, sentiment analysis, or person re-identification 

using visual, acoustic, and textual data extracted from videos in temporal and spatial dimensions 

(Yang et al. 2020). In urbanization traffic management, RMGL can be applied to predict real-

time traffic problems using MTS data collected from weather forecasting systems, social media 

platforms (e.g., Twitter and Facebook), and traffic sensor systems (Semwal et al. 2015). Other 

examples include pedestrian trajectory detection in autonomous car systems (Mohamed et al. 

2020) and personalized recommendations (Tao et al. 2020), among others. 

2.6. Conclusion 

The big data era has provided unprecedented opportunities for researchers on data-centric 

studies. In this study, we explore multilevel feature interrelationships to enhance multimodal 

time-series prediction. We have designed a novel robust meta-graph learning method to 

disentangle multilevel feature interrelationships and shown its effectiveness in the empirical 

evaluation with a financial risk prediction task.  

Our study has several limitations, which may be addressed in future research. First, although 

the proposed method can be extended to solve supervised classification problems, in this study, 

we only evaluated it with a supervised regression problem. The effectiveness of the proposed 

method for classification needs to be evaluated in future studies. Second, while we demonstrated 

the effectiveness of the proposed method using acoustic, textual, and numerical modalities, 
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future studies can examine its effectiveness with other (e.g., visual, video, and network) 

modalities. Third, while the proposed method falls into the category of supervised learning, 

future studies can consider extending the method to support unsupervised learning.  
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3. Essay 3: Measuring Employee Trust: A Deep Learning Approach 

3.1. Introduction  

Employee Trust Model (ETM), also known as Trust Index©, has been developed to 

evaluate and rank employee trust and satisfaction among companies (Mitchell 1985; Fulmer et al., 

2003). ETM is operationalized through a comprehensive survey that consists of 57 items to address 

five dimensions of employee satisfaction, i.e., credibility, respect, fairness, pride, and camaraderie. 

Since employee trust and satisfaction are considered critical drivers of product quality, customer 

satisfaction, and productivity (Ibrahim et al., 2020), they can influence organizational performance 

from various aspects, such as leadership development, competitive advantage strengthening, 

product quality improvement, productivity enhancement, and financial performance optimization. 

For instance, companies perceived to have a high level of ETM dimensions tend to outperform 

similar ones in the same industry (Nold, 2012). Worker pride, employer reliability, and 

camaraderie are sources of competitive advantage (Butler et al., 2016).  Respect and credibility are 

essential capabilities to establish leadership (Duggar, 2009; Verschoor, 2006) because the 

foundation of leadership requires a careful balance between respect and responsibility (Turknett, 

2005). In corporate finance, ETM is also used to study corporate culture, stock value, and portfolio 

performance (Edmans, 2012; Mishra, 2018; Guiso et al., 2015).  

Moreover, employee perception is also linked to environmental, social, and governance 

(ESG) indices, financial risk, and distress. ESG encompasses factors in the environment, society, 

and governance that may impact a firm’s ability to execute its strategy and enhance corporate value 

(Jebe 2019). Specifically, the “S” (society) component evaluates whether a company effectively 

implements social responsibility, including aspects such as human rights, community contributions, 

labor practices, employment stability, and consumer safety and protection (Kotsantonis et al. 2016). 
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According to Morgan Stanley Capital International, when calculating ESG indices, employee 

treatment is taken into consideration, as worker pride, employer reliability, and camaraderie serve 

as sources of competitive advantage (Butler et al. 2016). 

A recent survey of business professionals suggests that employees play a crucial role in a 

firm’s development. Specifically, “talent and skill shortages” were identified as the second most 

significant risk faced by modern organizations, surpassed only by the risk of “customer loss” and 

ranking higher than factors like “changing legislation” (Lloyds 2011). Employees who have higher 

job satisfaction are less likely to turnover. The human capital risk borne by a firm increases with 

the costliness of replacing employees. Managing this resulting human capital risk is similar to 

managing other risks outside of risk management, such as debt (e.g., Bolton et al. 2011). To 

mitigate risk, firms seek to improve employee satisfaction. For instance, workers who feel 

respected are less likely to turnover, hence reducing human capital risks. Firms allocate resources 

to enhancing employee satisfaction, just as they invest in research and development, property, 

plant, and equipment, and organizational capital. Like other forms of investment, expenditures on 

employees need to be financed through either internal cash flow or externally raised capital. Some 

of these activities involve direct spending on salaries and pensions. Firms also allocate 

considerable resources to intangible activities that impact respect and fairness, including the 

working environment, policies and procedures, training, and supervision. These efforts can help 

prevent financial distress. However, other theories suggest that firms with better employee 

perception are less likely to experience financial distress. For example, having a competitive 

advantage, such as superior human capital, is a key factor explaining why some firms outperform 

others (Acedo et al. 2006; Barney et al. 2001;). Both individuals and society can benefit 
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economically by investing in people, such as through investments in education and respect 

(Sweetland 1996). Firms with a competitive advantage are less likely to face financial distress. 

Existing measurement of employee trust and satisfaction requires members of an 

organization to complete a 10- to 15-minute survey anonymously. This makes it difficult to collect 

large samples of data over time (Chatman 2016). The use of small-size dataset has led to 

conflicting results in managerial and finance research (Iaffaldano & Muchinsky 1985; Edmans 

2011), making the findings less appealing to practitioners. Furthermore, the absence of data in the 

time dimension has restricted analytical methods in use and limited the application of theoretical 

frameworks. In the meanwhile, the proliferation of digital platforms has provided researchers 

access to large amounts of secondary data, including employee-generated reviews that cover a 

wide range of organizations and time, providing opportunities for innovative methods to fill in the 

research gap.  

In this study, we propose DeepEmployee, a novel design artifact based on automated text 

classification, to detect employee trust and satisfaction from employee-generated reviews. 

DeepEmployee stems from design science research (Hevner et al. 2004) and includes three 

cohesive and complementary parts: (1) domain-specific knowledge construction based on 

theoretical frameworks in the management field, (2) a state-of-the-art deep learning design artifact 

that incorporates domain-specific knowledge to improve performance, and (3) a rigorous two-part 

evaluation of improvements in ETM detection and increased predictive power of the derived 

variables.  

The contribution of DeepEmployee is three-fold. First, DeepEmployee uses a new 

technical means to enrich managerial theories and extends their applications to various fields in 
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real-world settings. Second, DeepEmployee is among the first deep learning design artifacts to 

incorporate domain-specific knowledge for text classification with employee-generated reviews. 

Specifically, DeepEmployee includes three major components in its design: (1) an embedding 

model named  EmpBERT, which transfers contextual word embeddings (Devlin et al. 2019) from 

the public text domain to employee-generated reviews, (2) a knowledge representation module 

that represents structural relationships, and (3) a triple attention mechanism, namely phrase-set 

semantic attention, transformer-based self-attention, and structural attention, to dynamically learn 

important feature weights for joint classification. Lastly, through a rigorous evaluation, we show 

that DeepEmployee outperforms baseline and state-of-the-art learning methods, and the more 

accurate detection can lead to higher predictive power in various downstream tasks.  

Our work has important implications for information systems research. We show that new 

information technologies, natural language processing (NLP) in particular, have provided critical 

opportunities for research to enable the long-standing measurement of culture and management 

constructs with digital data logs, thereby contributing to computational management science. 

Furthermore, our work has practical implications for managers to facilitate their decision-making 

by including employee trust in a broader analytical context.  

3.2. Background  

3.2.1 ETM and organizational performance 

ETM has commonly been used as a measurement method for employee trust and 

satisfaction in management and business decision-making studies through five dimensions: 

credibility, respect, fairness, pride, and camaraderie. It has a strong impact on organizational 

performance. Employee trust and satisfaction represent how employees feel about their working 

environment and can provide an indication of employees’ emotional well-being (Spector, 
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1997). Among ETM dimensions, leadership with a high degree of credibility can enhance 

organizational performance (Williams et al., 2018). Respect is the way an organization treats its 

employees. The relationship between organizational justice and performance is moderated by 

organizational respect (Saboor et al., 2018). Furthermore, scholars suggest that organizational 

performance should include not only internal and external dimensions of efficiency and 

effectiveness but also fairness (Brewer and Selden, 2000). Managers must ensure that all 

employees are treated fairly and with respect. Employees get pride from knowing that they are 

doing something right. Pride has a positive impact on employee behavior, which consequently 

affects organizational performance (Gouthier and Rhein, 2011). Employee loyalty, trustworthiness, 

and camaraderie have been confirmed as factors contributing to competitive advantage and 

organizational performance (Butler et al., 2016). 

3.2.3 Automated NLP-based ETM Detection 

Employee-generated reviews encapsulate nuances of ETM (Swain et al. 2020). For 

instance, the review, “long hours, low direction provided by management” encapsulates two ETM 

dimensions. First, the mentioning of “long hours” refers to the reviewer’s experiences with 

management’s care for employees in terms of work-life balance and can be matched to the 

measurement item “people are encouraged to balance their work life and their personal life” under 

the “respect” dimension of ETM. Second, “low direction provided by management” indicates poor 

management communication and can be matched to the measurement item “management keeps 

me informed about important issues and changes” under the “credibility” dimension of ETM. In 

another case, the review “great team environment and good pay” has indicated that the 

organization’s management style is characterized by teamwork and therefore can be categorized 
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as the clan culture type. In addition, the “team environment” and “good pay” are related to the 

ETM dimensions of camaraderie and fairness.  

Accordingly, ETM detection consists of assigning multiple target labels to employee-

generated reviews and therefore can be categorized as a multi-label text classification problem. 

Multi-label text classification is a fine-grained approach and a generalization of binary and multi-

class text classification. Prior research has mainly used (1) problem transformation and (2) 

algorithm adaption to deal with multi-label classification problems. Problem transformation first 

transforms a multi-label classification problem into multiple binary or multi-class classification 

problems (e.g., binary relevance (Boutell et al. 2004), label ranking (Fürnkranz et al. 2008), and 

label powerset (Tsoumakas et al., 2011)) through data manipulation and then builds independent 

or chain of classifiers (Osojnik et al., 2017) to deal with classification problems. Algorithm 

adaption, on the other hand, adjusts existing machine learning algorithms, such as k-nearest 

neighbor, decision tree, support vector machine, and neural networks, to deal with multi-label 

problems. Examples of adapted algorithms are ML-kNN (multi-label k-Nearest Neighbor, Zhang 

2007), MMAC (multi-class, multi-label associative classification, Thabtah et al., 2004), MLNB 

(multi-label naïve Bayes, Zhang, et al., 2009), RankSVM (Elisseeff et al., 2001), and MLTSVM 

(Chen et al, 2018).  

Recent studies have fed linguistic features into end-to-end learning methods and obtained 

state-of-the-art performance in a variety of text classification tasks (Kim et al 2014; Devlin et al. 

2019).  

2.3 Feature Representations in Text Classification Tasks 
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Feature representation is of central importance to the performance of an end-to-end 

learning method, in which the model learns all parameters in a single processing step. The 

representation of text features can be broadly categorized as shallow and deep linguistic features. 

Shallow linguistic features, such as tfidf, one-hot embeddings, and n-grams, often ignore 

contextual information and word order in texts and are short of capturing the semantics of words. 

In addition, shallow linguistic features are subject to a feature selection process due to the data 

sparsity problem. On the other hand, deep linguistic features employing word embeddings and 

language models have shifted the paradigm for learning methods to incorporate meaningful 

linguistic features while greatly alleviating the data sparsity problem. For example, word 

embeddings (e.g., Word2Vec and GloVe (Mikolov et al., 2013; Pennington et al., 2014)) can 

capture meaningful semantic and syntactic regularities through training a deep neural network on 

large corpora of general-domain texts. Recent advances in language models have switched the 

focus to learning contextual representations. For instance, CoVe (Context Vectors, McCann et al. 

2017) contextualizes word representations through a deep LSTM network trained on machine 

translation datasets and has achieved better performance than GloVe on various tasks. ELMo 

(deep contextualized word representations, Peters et al. (2018) uses Bi-LSTM networks and 

concatenates the outputs from Bi-LSTM to encode contextual information from both directions of 

input sequences. BERT (Bidirectional Encoder Representations from Transformers, Devlin et al. 

(2019) uses Masked Language Model (MLM), which renders text representations the predictive 

power for randomly masked words in input sequences. When coupled with an end-to-end learning 

method, deep linguistic features have shown effectiveness in various text classification tasks. For 

instance, Kim et al. (2014) used pretrained Word2Vect embeddings as input features to a 

convolutional neural network (CNN) and achieved good results in a variety of sentence 
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classification tasks. In another case, Devlin et al. (2019) used a transformer-based deep learning 

network with BERT embeddings and obtained state-of-the-art performance in various NLP tasks.  

One limitation of end-to-end learning methods is the insufficient representation of domain 

knowledge (Marcus and Davis 2019, Marcus 2020, Nie et al. 2019, Jin et al. 2019). Specifically, 

deep linguistic features are commonly transferred from general-domain texts and do not capture 

the word distribution shift in the target domain. Therefore, when applied to domain-specific tasks, 

it often yields unsatisfactory results (Lee et al. 2019, Araci et al. 2019). Another reason is the lack 

of integration methods such that domain knowledge represented in end-to-end learning artifacts 

mainly pertains to opaque feature correlations (Marcus 2018), rather than abstractions like 

quantified statements.  

In the meanwhile, rule-based methods, a different approach for automated text 

classification tasks, use hand-crafted features and rules to represent prior linguistic and domain-

specific knowledge. For instance, in classifying consumer opinions from product reviews, Hu and 

Liu (2004) first extracted frequent terms of product features through part-of-speech tagging and 

association rule mining, then identified opinion words from frequent terms through syntactic 

patterns, and finally extracted infrequent terms of product features through a predefined set of rules. 

In another case, while classifying sentiments in financial texts, Chan and Chong (2017) used an 

ensemble method (meta-level decision tree) to build a linguistic constituent parser tree and 

proposed heuristic rules to propagate the sentiments from the leaves to the root node of the parser 

tree to derive an overall sentiment for a sentence. Leveraging prior knowledge, rule-based methods 

have served as vital approaches for text classification tasks when labeled corpus and computing 

resources are limited.  

2.4 Attention Mechanism in Text Classification Tasks 
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First derived from human intuition and then adapted to machine translation for automatic 

token alignment, attention mechanism, a dynamic weight adjustment process of input features, has 

been widely applied to and attained significant improvement in various NLP tasks. In most cases, 

attention mechanisms can be formulated as 

Attended Input = 𝑓𝑤(𝑔𝑤(𝐻), 𝐻), 

where H represents hidden states of input features before the attention layer, 𝑔𝑤  and 𝑓𝑤  are 

parametric functions to be learned; 𝑔𝑤 is an attention function to compute feature weights, and 𝑓𝑤 

is a fusion function to compute the attended input. A variety of choices on the functional form of 

𝑔𝑤 and 𝑓𝑤 have led to diverse attention mechanisms. For instance, in self-attention (also referred 

to as Scaled Dot-Product Attention (Vaswani 2017)), H is linearly transformed to Q, K, and V, 

namely the query, key, and value matrix; 𝑔𝑤 is a softmax function on the scaled inner product of 

Q and K; and 𝑓𝑤 is an elementwise multiplication between 𝑔𝑤  and V. In another case, addictive 

attention (Bahdanau & Bengio 2015) uses a one-hidden layer feed-forward network to calculate 

the attention alignment score. Other attention mechanisms include hierarchical attention (Yang et 

al. 2016; Ji et al. 2017), multi-scale multi-head attention (Zhang et al. 2019), and memory-based 

attention (Kumar et al. 2016), among others. In text classification tasks, attention mechanisms have 

been bundled with various deep learning artifacts, including RNN (Wang et al. 2016), CNN (Du 

et al. 2018), and transformer-based networks (Devlin et al. 2019), to learn weighting scores for 

input features, expecting key features to receive heavier weights, and weights of the features 

contribute to the classification task.  

3.3. Proposed Method  

We propose DeepEmployee, a deep-learning design artifact for ETM detection based on 

employee reviews. Extant automatic text classification methods can be broadly grouped into two 
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categories: (1) rule-based and (2) end-to-end learning methods. Rule-based methods represent 

prior knowledge explicitly through a set of hand-engineered features and rules, while it is difficult 

to ensure quality with manual rule selection and pruning (Liu et al. 2015). The applicability of 

rule-based methods is further limited because of the complex linguistic forms and information loss 

during the feature engineering process. On the other hand, end-to-end machine learning methods, 

which infer the correlations between input features and the output results based on the inherent 

associations embedded in data observations, are considered self-contained and isolated from 

potential useful prior knowledge (Marcus et al. 2018). In face of representational richness as an 

essential but challenging goal for learning models, DeepEmployee incorporates the following 

components in its design artifact:  

(1) Prior knowledge construction is based on the central thesis of ETM. 

(2) Feature representation including contextualized word representation and prior 

knowledge. 

(3) Feature weighting and joint classification 

We believe that incorporating prior knowledge of the central thesis of ETM into the learning 

artifact can benefit from the complementary strengths of both rule-based and end-to-end learning 

methods. Accordingly, we present the major components of our design artifact and compare its 

performance with various state-of-the-art methods.  

3.3.1 Knowledge Construction  

Prior studies have used survey items to operationalize the central thesis of ETM. An ETM 

survey consists of 57 items to address five dimensions of employee trust, i.e., credibility, respect, 

fairness, pride, and camaraderie. Each dimension of employee trust has its corresponding items to 
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assess fine-grained meanings under that dimension. For instance, the credibility dimension 

contains three sub-dimensions–communication, competence, and integrity–of employee trust in 

the management team, and in total, there are fourteen survey items to measure the three sub-

dimensions in finer granularity. For example, the first four survey items– “management keeps me 

informed about important issues and changes”, “management makes its expectations clear”, “I can 

ask management any reasonable question and get a straight answer”, and “management is 

approachable, easy to talk with”–are used to assess the informativeness and accessibility of the 

communication between employees and the management team.  

To collect domain knowledge, we first identify dimensional structures based on theoretical 

frameworks of ETM (Great Place To Work 2017; Edman 2012; Cameron and Quinn 1999;). We 

then match the survey items to the dimensions and sub-dimensions they measure. Next, for each 

survey item, we identify the key terms and phrases to be focused on during the labeling process.  

3.3.2 Feature Representation  

3.3.2.1 Contextualized Word Representation 

DeepEmployee uses embeddings of BERT, a contextualized word representation technique, 

as the feature representation base for three main reasons. First, BERT embeddings have been used 

in transformer-based classifiers and obtained state-of-the-art performance in a variety of NLP tasks 

(Devlin et al. 2019). Second, features such as position embedding and MLM render BERT 

embeddings with bidirectional information flow to the target word simultaneously, unlike other 

contextualized representations that either consider the information flow from only one direction or 

use a shallow concatenation of the bidirectional context (e.g., ELMo). Third, BERT embeddings 

include both sentence-level and word-level representations, fitting our task of representing prior 

knowledge of the central thesis of ETM (see 3.2.2 and 3.2.3).  
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However, directly applying pre-trained BERT embeddings on new domain-specific tasks 

often yields unsatisfactory results due to word distribution shifts in the target domain. We observed 

that the texts from employee reviews are often terse and could imply a meaning different from the 

common interpretation. For instance, the sentence “not sure how to move up the ladder” in the 

context of employee reviews implies that the career path is unclear to the employee, which touches 

upon the fairness dimension of employee trust, and the implicit meaning is different from the direct 

interpretation of having no knowledge of climbing a ladder. Research has shown that BERT 

embeddings further trained with domain-specific corpora can improve performance. For instance, 

Lee et al. (Lee et al.) retrained BERT embeddings with a large-scale biomedical corpus, namely 

BioBERT, to understand complex biomedical texts. BioBERT outperformed previous state-of-the-

art models on three representative biomedical text-mining tasks. In another case, Araci et al. (2017) 

introduced FinBERT, a BERT model retrained with a financial corpus including 29 million words 

and 400 thousand sentences. FinBERT obtained state-of-the-art performance in two financial 

sentiment analysis tasks.  

In response to the domain adaption issue, we build EmpBERT, a BERT model further 

retrained with an employee-review corpus, to improve representations of employee-review texts. 

The domain-specific corpus contains large-scale employee-generated texts, enabling EmpBert to 

shift the word distribution to the specific domain.  

DeepEmployee detects ETM at the review sentence level. An employee review can contain 

multiple sentences. We use spacey, a python NLP package, to split each review into sentences. For 

each review sentence, we tokenize it, add symbols CLS and EOS at the beginning and end of the 

review sentence, and then input the tokens to EmpBERT to obtain both sentence- and word-level 
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representations for that sentence. Let 𝑆𝑖 = (𝐶𝐿𝑆, 𝑠𝑖1, … , 𝑠𝑖𝑗 , … , 𝑠𝑖𝐿𝑠
, 𝐸𝑂𝑆)  denote the tokens of the 

𝑖-th review sentence, where 𝑠𝑖𝑗 is the token for the 𝑗-th word in the sentence. Define  

𝑆𝑅𝑖 = (𝑆𝑅𝑖1, … , 𝑆𝑅𝑖𝑗 , … , 𝑆𝑅𝑖𝐿𝑠
) = 𝐸𝑚𝑝𝐵𝐸𝑅𝑇(𝑆𝑖),      (3.1) 

where 𝐸𝑚𝑝𝐵𝐸𝑅𝑇 (.) is the EmpBERT function that maps ℝ
𝐿𝑠𝑗  to the embedding space ℝ

𝐿𝑠𝑗
×d

, 

and 𝑆𝑅𝑖1 and 𝑆𝑅𝑖𝐿𝑠
(the first and last in 𝑆𝑅𝑖) are d-dimensional contextualized representations at 

the sentence level, and 𝑆𝑅𝑖𝑗 is a 𝑑-dimensional contextualized representation for the 𝑗-th word in 

the sentence. 

3.3.2.2 Knowledge Representation  

DeepEmployee aims to learn a domain knowledge representation and integrate it with 

contextualized word representation of a review sentence to enhance the accuracy of ETM detection 

from the sentence. To this end, we break down the constructed domain knowledge into two 

categories and apply separate schemes for the representation: (1) a dimensional structure and 

phrase associations, which serve as a guideline for the labeling process, and (2) structural patterns 

of cooccurrence of dimensions and patterns of the cooccurrence of dimension and n-grams.  

The dimensional structure of ETM and the association between dimensions and phrases 

can be considered as rules that contain a set of phrases so that if a sentence is semantically close 

to any of the phrases in the set then the sentence can be categorized as the dimension associated 

with the set of phrases. For each phrase, we tokenize it, add symbols CLS and EOS at the beginning 

and end of the phrase, and then input the tokens to EmpBERT to obtain both phrase- and word-

level representations for that phrase.  Formally, let 𝑃𝑖 = {𝑃𝑖𝑗} be the i-th phrase set governing 

dimension 𝐷𝑖 , where 𝑃𝑖𝑗  is the j-th phrase in 𝑃𝑖 , and 𝑃𝑖𝑗 = {𝐶𝐿𝑆, 𝑝𝑖𝑗1, … 𝑝𝑖𝑗𝑘 … , 𝑝𝑖𝑗𝑁𝑅𝑖𝑗
, 𝐸𝑂𝑆} 

where 𝑝𝑖𝑗𝑘 is the token for the 𝑘-th word in the sentence. Define  
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𝑃𝑅𝑖𝑗 = (𝑝𝑟𝑖𝑗1, … 𝑝𝑟𝑖𝑗𝑘 … , 𝑝𝑟𝑖𝑗𝑁𝑅𝑖𝑗
) = 𝐸𝑚𝑝𝐵𝐸𝑅𝑇(𝑃𝑖𝑗) ,     

 (3.2) 

where p𝑟𝑖𝑗1 and p𝑟𝑖𝑗𝑁𝑅𝑖𝑗
 are 𝑑-dimensional contextualized representations at the phrase level, and 

𝑝𝑟𝑖𝑗𝑘 is a 𝑑-dimensional contextualized representation for the 𝑘-th word in phrase j and phrase set 

i.  

To capture the structural pattern among dimensions, and dimension and n-grams, we apply 

a graph neural network (GNN), an effective approach to model structural relationships. Formally, 

consider an undirected graph 𝒢 = (𝒱, ℰ, 𝒜, 𝒟), where 𝒱 is a set of nodes including dimensions 

and n-grams; ℰ is a set of edges between dimension to dimension and dimension to n-grams; 𝒜  

is the adjacency matrix built based on the PMI (Pointwise Mutual Information) function from the 

labeled corpus, where 

𝒜𝑖𝑗 = {
𝑙𝑜𝑔

𝑝(𝑣𝑖,𝑣𝑗)

𝑝(𝑣𝑖)𝑝(𝑣𝑗)
 𝑖𝑓 𝑜𝑛𝑒 𝑜𝑟 𝑏𝑜𝑡ℎ 𝑜𝑓 𝑣𝑖 𝑎𝑛𝑑 𝑣𝑗  𝑎𝑟𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠

1 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑  𝑏𝑜𝑡ℎ 𝑣𝑖 𝑎𝑛𝑑 𝑣𝑗  𝑎𝑟𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.     (3.3) 

𝒟  is the degree matrix. We adopt the propagation rule of graph convolutional network (GCN, 

Kipf and Welling 2017): 

 𝐻𝑙+1
𝑟𝑒𝑙 = 𝜎(𝒟−

1

2. 𝒜. 𝒟−
1

2. 𝐻𝑙
𝑟𝑒𝑙 . 𝑊𝑔𝑙

𝑟𝑒𝑙),       (3.4) 

where 𝑊𝑔𝑙
𝑟𝑒𝑙 is the learnable weight matrix of the l-th layer, 𝐻𝑙

𝑟𝑒𝑙 ∈ ℝ𝑁𝑣×𝑑𝑔𝑐𝑛 is the hidden state of 

the l-th layer, 𝑁𝑣 is the number of nodes in the network, and 𝑑𝑔𝑐𝑛 is the dimensionality of the 

network’s hidden state. 𝜎 is the activation function. We use a 2-layer GCN whose nodes include 

dimensions of ETM and n-grams from labeled sentences. Specifically, we acquire unigram, bigram, 
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and 3-gram by removing stop words and then selecting the top (say, 100) tf-idf weighted n-grams 

from each dimension. We use one-hot encoding as the initial state of the nodes and ReLU as the 

activation function of the 2-layer GCN. Hence, the representation of a dimension can be written 

as follows. 

𝐻𝑖 = 𝜎 (𝒟−
1

2. 𝒜. 𝒟−
1

2. 𝜎 (𝒟−
1

2. 𝒜. 𝒟−
1

2. 𝑋. 𝑊𝑔1
𝑟𝑒𝑙) . 𝑊𝑔2

𝑟𝑒𝑙) [𝑖] (3.5) 

3.3.3 Feature Weighting and Joint Classification 

The feature representation process generates three groups of features, i.e., (1) the 

contextualized representations at the sentence and word levels, (2) the contextualized 

representations of structural dimension at the phrase and word level, and (3) the hidden state of 

the structural pattern between dimension and dimension, and dimension and n-grams. To apply 

the features for ETM detection, DeepEmployee uses a unique triple-attention-based framework for 

feature weighting and joint classification. Specifically, DeepEmployee adopts scaled dot product 

attention to compute a similarity score between features in the respective space. Intuitively, the 

triple attention mechanism serves as three different score functions to evaluate the dimension 

scores from three perspectives and then applies the scores to a joint classification.  

The first attention mechanism, phrase-set semantic attention, is used to compute 

semantic/syntactic/concept relevance between phrases and sentence. First, for each phrase, an 

attended feature representation is acquired through the scaled dot product attention between the 

contextualized phrase representation, which serves as a query, and the contextualized sentence 

representation, which serves as an information base to be queried from. Next, the phrase-level 

attended representations of the phrases in the same phrase set are concatenated and fed into a feed-

forward network to learn a semantic relevance score of the ETM dimension associated with the 

phrase set. Figure 3.1 shows the process of phrase set attention mechanism.  
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  Figure 3.1. Phase-set attention 

The second attention mechanism, the transformer-based self-attention, is used to compute 

contextual relevance between phrases and sentence. First, DeepEmployee adds position 

embeddings from the transformer network to the contextualized sentence representations. Next, 

self-attention is used to learn the weights of contextualized word representations in a sentence. 

Finally, the attended sentence representation is used in a feedforward network to learn a contextual 

relevance score for each ETM dimension. The third attention mechanism, structural attention, is 

used to compute structural relevance between the hidden states of ETM dimensions and a sentence. 

The scaled dot product attention is used to compute the attended structural representation of ETM 

dimensions, and then the attended structural representation is fed into a feedforward network to 

learn a structural relevance score for each ETM dimension. Finally, for each ETM dimension, its 

semantic relevance score, contextual relevance score, and structural relevance score are 
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concatenated and input to a feedforward network for the joint classification. Figure 3.2 shows the 

major components of DeepEmployee.  

 

Figure 3.2. Design Overview 

3.4. Empirical Evaluation  

3.4.1 Data 

We have collected a dataset containing employee-generated reviews of Standard & Poor’s 

1500 companies (S&P1500), spanning the period from 2009 to 2020, to evaluate the proposed 

method. On the employee review platform, when an anonymous user posts a review for a company, 

the user must write comments on the pros and cons of the company under a separate text area. The 
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domain-specific corpus contains large-scale employee-review sentences and words (over 9 million 

sentences and 90 million words) and covers employee reviews of S&P1500 companies from the 

year 2009 to 2020. We retrained EmpBERT with the employee-review corpus using an NVIDIA 

GPU with 10GB memory in three epochs for two weeks.  

To generate a set of training and testing data, we obtained the pros and cons of reviews and 

split them into sentences. Out of the over 9 million review sentences, we sampled 3,615 sentences 

for manual labeling. Two researchers of this study manually and independently labeled the 

employee review sentences. We randomly sampled 3,615 review sentences from the full dataset 

for labeling. If a review sentence explicitly or implicitly conveys similar meanings represented by 

the phrases, the sentence will be labeled with the corresponding dimensions matched by the 

phrases. In the end, the dataset contains 3,615 review sentences, and 2,433 of them have at least 

one label. Table 3.1 presents the summary statistics of the ETM labels.  

ETM respect fairness credibility camaraderie pride 

Number of labels 1019 409 446 348 414 

 

Table 3.1. Summary Statistics of ETM labels 

3.4.2 Experiment 

We conducted three experiments to evaluate DeepEmployee in the following aspects:  

1) to compare DeepEmployee against several benchmarks in terms of prediction performance, 

2) to validate and gain further insights into the design choices of DeepEmployee with an 

ablation study comparing DeepEmployee against several ablated variants,  
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3) to assess the explanatory power of the derived ETM variables in a downstream explanatory 

task.  

In experiment 1, we compared DeepEmployee against nine benchmarks selected from the 

multi-label text classification literature. We first included k-Nearest Neighbors (kNN), support 

vector machine (SVM), XGBoost (XGB), and random forest (RF) using the binary relevance 

transform for multi-label classification. We then included a support vector machine using the label 

powerset transform. Finally, we included Convolutional Neural Network (CNN), CNN+attention, 

Long Short-Term Memory (LSTM), bi-LSTM, and LSTM+attention for multi-label classification 

from the deep learning literature. For each method, we estimated the prediction performance, in 

terms of (micro) F1 and (micro) AUC, through 10 independent runs of 10-fold cross validation. 

Table 3.2 summarizes the result, which shows that DeepEmployee outperformed the benchmarks 

in terms of both F1 and AUC. 

Method Respect Fairness Credible Camaraderie Pride F1 AUC 

br-kNN 0.418 0.180 0.065 0.427 0.290 0.315 0.738 

br-Svm 0.644 0.619 0.445 0.732 0.460 0.610 0.896 

br-xgb 0.672 0.696 0.548 0.748 0.518 0.661 0.914 

br-RF 0.402 0.339 0.251 0.309 0.125 0.352 0.673 

lp-RF 0.318 0.197 0.164 0.252 0.117 0.275 0.694 

cnn 0.697 0.675 0.499 0.762 0.480 0.663 0.913 

cnn+attention 0.649 0.689 0.496 0.762 0.496 0.648 0.902 

lstm 0.691 0.678 0.547 0.778 0.527 0.670 0.914 

bi-lstm 0.687 0.687 0.533 0.774 0.534 0.671 0.914 

lstm+attention 0.692 0.687 0.549 0.789 0.530 0.677 0.914 

DeepEmployee 0.737 0.745 0.609 0.829 0.648 0.718 0.933 
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Table 3.2. Comparison of Detection Performance 

In experiment 2, we conducted an ablation study to investigate the utilities of the design 

components introduced in DeepEmployee. Specifically, we compared DeepEmployee with its three 

variants, i.e., (1) DeepEmployee with only the knowledge representation module, (2) 

DeepEmployee with only structural relation, (3) DeepEmployee with only self-attention module, 

(4) DeepEmployee with only self-attention module and domain-specific BERT. Table 3.3 

summarizes the result. The result of experiment 2 indicates that DeepEmployee achieved the best 

performance when all design components were combined.  

Method F1 AUC 

Knowledge Representation 0.598  0.873 

Structural Relation 0.510 0.851 

Self-Attention 0.690 0.925 

Self-Attention + Domain-specific BERT 0.693 0.927 

DeepEmployee 0.718 0.933 

Table 3.3. Ablation of DeepEmployee 

In experiment 3, we obtained employee review ratings and texts from Glassdoor, quarterly 

accounting data from CompStat, and stock return data from CRSP for explaining financial risks 

with ETM indices. First, we calculated the mean of overall rating from Glassdoor for each quarter 

as a proxy of employee satisfaction. We used DeepEmployee for ETM detection and calculated 

the following ETM indices  

𝑐𝑎𝑚𝑎𝑟𝑎𝑑𝑒𝑟𝑖𝑒 𝑟𝑎𝑡𝑖𝑜 =  
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 camaraderie −𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 camaraderie 

𝑟𝑒𝑣𝑖𝑒𝑤 𝑐𝑜𝑢𝑛𝑡𝑠
, 

𝑐𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 =  
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 credibility − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 credibility 

𝑟𝑒𝑣𝑖𝑒𝑤 𝑐𝑜𝑢𝑛𝑡𝑠
,  
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𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 =  
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠−𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠

𝑟𝑒𝑣𝑖𝑒𝑤 𝑐𝑜𝑢𝑛𝑡𝑠
, 

𝑝𝑟𝑖𝑑𝑒 𝑟𝑎𝑡𝑖𝑜 =  
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 pride − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 pride 

𝑟𝑒𝑣𝑖𝑒𝑤 𝑐𝑜𝑢𝑛𝑡𝑠
, 

𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 =  
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 respect −𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 respect 

𝑟𝑒𝑣𝑖𝑒𝑤 𝑐𝑜𝑢𝑛𝑡𝑠
. 

We followed the methodology outlined by Ang et al. (2006), Edmans (2012), and Green et 

al. (2018) to control for firm size, book to market, ROA, and average ratings. In terms of risk 

measurement, we use volatility around the announcement period. Specifically, we calculated the 

standard deviation of stock returns in the subsequent 3, 5, and 7 trading days using the CRSP return 

data. Table 3.4 reports summary statistics of the data.  

 Mean Std. Dev. Median Min Max 

Risk [0,3] 0.021 0.022 .015 0 .999 

Risk [0,5] 0.021 0.020 .016 0 .804 

Risk [0,7] .021 0.019 .016 0 1.081 

Average rating 3.27 0.793 3.32 1 5 

ROA 0.012 0.039 0.011 -2.319 2.402 

Size 8.402 1.760 8.289 -.021 15.139 

Book to market 2.321 10.262 1.006 0.006 1939.120 

Camaraderie 

ratio 

0.177 0.258 0.127 -2 4 

Credibility ratio -0.339 0.616 -0.250 -14 4 

Fairness ratio -0.133 0.462 -.056 -8 6 

Respect ratio 0.224 0.642 0.235 -15 12 

Pride ratio 0.266 0.359 0.211 -4 6 

Table 3.4. Summary Statistics of Financial Risks Regression Variables 

We estimated a regression model to explain the impact of ETM indices on the announcement 

volatility as a proxy of firm-level financial risks,  
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𝑅𝑖𝑠𝑘 = 𝛽1𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑛𝑔𝑠 + 𝛽2𝐶𝑎𝑚𝑒𝑟𝑎𝑑𝑖𝑟𝑖𝑒 𝑟𝑎𝑡𝑖𝑜 + 𝛽3𝐶𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜

+ 𝛽4𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 + 𝛽5𝑅𝑒𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 + 𝛽6𝑃𝑟𝑖𝑑𝑒 𝑟𝑎𝑡𝑖𝑜 + 𝛽7𝑅𝑂𝐴 + 𝛽8𝑆𝑖𝑧𝑒

+ 𝛽9𝐵/𝑀 + 𝜇𝑖 + 𝜇𝑡 + 𝜀𝑖𝑡 

𝜇𝑖  represents industry fixed effect and 𝜇𝑡  represents year fixed effect. To avoid unobservable 

industry differences and year shock, we also controlled for industry fixed effects and year fixed 

effects. The results (in Table 3.5) show that the coefficient for respect was negative and significant 

(p<0.01) for all three risk measurements, indicating that firms that manage their employees with 

respect can reduce financial risks. Respect can also enhance employee performance. Additionally, 

employees are more likely to remain with an organization when they feel respected. Interestingly, 

the coefficient for fairness ratio was positive and significant (p<0.01) for all three risk 

measurements. Compensation fairness, to some extent, can increase firm risks. First, struggles in 

meeting the competing demands of customers and managers can arise, leading to collusion 

between customers and employees against the firm’s interests (Eddleston et al. 2002). Second, 

when compensation is linked to revenue, employees may be motivated to provide poor service to 

customers perceived as poor tippers, which can result in lawsuits and the loss of business from 

discriminated customers (Lynn 2004). 

 Risk (3 day) Risk (5 day) Risk (7 day) 

ROA -.052*** (0.009) -0.0534 *** (0.008)  -0.054 *** (0.008) 

Firm size -0.002*** (0.000) -0.00161*** (0.000)  -0.002 *** (0.000) 

B/M 0.001*** (0.000) 0.001 *** (0.000) 0.001 *** (0.000) 

Rate mean -0.001 (0.000) -0.002+ (0.000) -0.0004 (0.000) 

Respect ratio -0.008** (0.003)  -0.007** (0.002) -0.007*** 

(0.002) 

Fairness ratio 0.0127** (0.00435)  0.011 ** (0.004)  0.011** (0.003) 

Credibility ratio -0.0110* (0.00553) -0.007 (0.005) -0.00797+ 

(0.00455) 

Camaraderie ratio 0.0161** (0.00553) 0.0148 ** (0.00468) 0.012** (0.004) 
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Pride ratio 0.001 (0.004)  -0.00153 (0.00317) -0.002 (0.002) 

Industry fixed effect Yes Yes Yes 

Year fixed effect Yes Yes Yes 

Note: *** p < 0.001, ** p < 0.01, * p < 0.05, + p < 0.01 

Table 3.5. Regression Result of Financial Risks on Employee Trust Model Indices 

The coefficient for camaraderie was positive and significant (p<0.01) for all three risk 

measurements, indicating that a higher camaraderie ratio can increase firm risk during the 

announcement period. Firms with high camaraderie ratings resemble family firms, which maintain 

relationships based on family kinship. Family firms face additional instability due to the kinship 

sphere. Camaraderie relationships can also lead to an increase in organizational “entropy” and thus 

increase uncertainty (Coli 2013). 

The results are important for firm policymakers to understand which aspects are crucial in 

internal risk management. Instead of relying on the abstract concept of employee satisfaction, we 

provide empirical evidence on which areas should be improved. For instance, firms should provide 

employees with positive feedback and align their work assignments with their skills to increase 

the respect rate and decrease risks. A novel finding we document is that camaraderie can increase 

risks. 

3.5. Discussion  

This study makes several contributions to the literature. Firstly, DeepEmployee uses innovative 

technical methods to enrich managerial theories and extend their applications to various real-world 

fields. By incorporating deep learning techniques, DeepEmployee enables the analysis of 

employee-generated reviews, contributing to a deeper understanding of employee experiences and 

sentiments. Secondly, DeepEmployee stands as one of the pioneering deep learning design 

artifacts that incorporate domain-specific knowledge for text classification in the context of 

employee-generated reviews. Its design comprises three major components: (1) EmpBERT, an 
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embedding model that transfers contextual word embeddings from the public text domain to 

employee-generated reviews, leveraging advancements like Devlin et al.'s (2019) work, (2) a 

knowledge representation module that captures structural relationships within the data, and (3) a 

triple attention mechanism, consisting of phrase-set semantic attention, transformer-based self-

attention, and structural attention. These components work together to dynamically learn important 

feature weights for joint classification. Lastly, through rigorous evaluation, we demonstrate that 

DeepEmployee outperformed baseline and state-of-the-art learning methods. The improved 

detection accuracy provided by DeepEmployee contributes to higher predictive power in various 

downstream tasks. This underscores its potential value in practical applications. 

3.6.Conclusion 

Our work carries significant implications for information systems research. We showcase how 

new information technologies, specifically NLP, open critical opportunities for measuring culture 

and management constructs using digital data logs. This contributes to the emerging field of 

computational management science. Furthermore, our research has practical implications for 

managers, offering a broader analytical context that includes employee trust and satifaction. By 

considering these factors in decision-making processes, managers can enhance their understanding 

of the organizational climate and make more informed decisions. 

Our study has several limitations that can be addressed in future research. Firstly, the detection 

model relies on manual labeling work, which necessitates the expertise of domain specialists and 

human labelers. Finding ways to reduce or automate the labeling process could enhance efficiency. 

Secondly, pretraining the EmpBert model demands a substantial amount of text data and 

computing resources. Exploring strategies to optimize the pretraining phase, such as using transfer 

learning techniques or leveraging smaller-scale resources, may facilitate broader adoption of the 
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model. Thirdly, although we demonstrated the effectiveness of the proposed method using 

supervised learning algorithms, future studies could delve into the efficacy of unsupervised or 

semi-supervised learning algorithms for detection purposes. Examining alternative learning 

approaches may provide valuable insights into the detection of employee sentiments. Addressing 

these limitations in future research will contribute to refining and expanding the scope of our 

findings, ultimately enhancing the applicability and robustness of the proposed method.  
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APPENDICES 

Appendix A: Pseudo Codes (Essay 1) 

Pseudo Code for Table Position Detection 

Pseudo Code for Patient Boundary Detection 

 

 

def get_table_position(f: lateral localizer image): 

for j from 255 to -1: # search for the table position from the right side of the image 

pixel_count = sum(f[0:255, j] > 95) # count pixels with high intensity value 

percentage = pixel_count/256 

if percentage > 0.8: # intensity value is consistent across all image rows 

  table_position = j 

  break 

    return table_position 

 
def detect_patient_boundary(f: localizer image):  

    # detect the patient boundary at each row 

    k = 7 # empirical threshold less than body width and greater than table width 

for i from 0 to 256: # iterate through image rows to find the boundary at each row

for j from 0 to 256: 

  if sum(f[i, j:j+k] > 95) == k: 

   BDLT[i] = j 

break 

for j from 255 to -1:  

  if sum(f[i, j:j+k] > 95) == k: 

   BDRT[i] = j 

   break 

BDLT, BDRT = smooth_patient_boundary(f, BDLT, BDRT)   

return BDLT, BDRT 
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Pseudo Code for Patient Boundary Smoothening 

 

def smooth_patient_boundary(f: localizer image, BDLT: left boundary, BDRT: right boundary):  

    # set image intensity values to zero and patient boundary intensity values to 255 

for i from 0 to 256: 

 for j from 0 to 256: 

  if j != BDLT[i] and j !=BDRT[i]: 

   f[i, j] = 0 

  else: 

   f[i, j] = 255 

# smooth the boundary 

for i from 0 to 255: 

 f = 8 adjacency connect from BDLT[i] to BDLT[i+1] on f 

 f = 8 adjacency connect from BDRT[i] to BDRT[i+1] on f 

scaleup(f) # apply scale-up on the image  

    medianBlur(f) # apply median-blur on the image 

scaledown(f) # apply scale-down on the image 

for i from 0 to 256: 

 for j from 0 to 256: 

  if f[i, j] > 0: 

   BDLT[i] = j 

   break 

 for j from 255 to -1: 

  if f[i, j] > 0: 

   BDRT[i] = j 

   break 

return BDLT, BDRT 
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Appendix B: Ablation Experiment on Loss Function (Essay 1) 

Using a randomly sub-sampled dataset (with 615 image pairs), we performed an ablation 

experiment to select the loss function for our network. We evaluated six loss function options: 

MSE, SSIM, MSE+SSIM, Scaled MSE, Scaled SSIM, and Scaled Mixture (Proposed). We gauged 

the performance of these loss functions in terms of the three metrics, i.e., location accuracy, profile 

accuracy, and attenuation accuracy, as well as the perceived image quality (as illustrated in Figure 

1.4). 

The quantitative results are summarized as the following. The proposed scaled mixture loss 

achieved the best performance in terms of location prediction error and profile prediction error for 

predictions from both directions. MSE loss achieved the best performance in terms of attenuation 

prediction error. However, with MSE loss, the predicted images are blurry (Figure 1.4), and the 

model could not generate table lines in the lateral prediction. Therefore, we used the proposed 

scaled mixture loss to conduct experiments on the full dataset. Future work could consider adding 

a constraint loss at the image row level to improve the attenuation prediction performance. 

Location Prediction Error 

 

Loss Orient Mean 

(mm) 

StdDev

(mm) 

Median 

(mm) 

<2mm 

(%) 

<5mm 

(%) 

<15mm 

(%) 

<20mm 

(%) 

MSE Lateral 

 AP 10.01 8.03 8.63 4.94 33.3

3 

81.4

8 

90.0

9 

SSIM Lateral 

 AP 8.99 8.33 6.47 4.94 40.7

4 

81.4

8 

90.0

9 

MSE+SSI

M 

Lateral 16.28 18.0

1 

8.63 19.0

5 

42.8

6 

59.0

5 

61.9

0 

 AP 8.19 7.03 6.47 9.88 43.2

1 

82.7

2 

90.0

6 

Scaled 

MSE 

Lateral 8.63 16.9

9 

2.16 32.1

4 

79.0

5 

84.7

6 

84.7

6 

 AP 9.13 9.57 6.47 13.5

8 

41.9

6 

77.7

8 

90.0

2 

Scaled 

SSIM 

Lateral 

 AP 8.70 7.54 6.47 7.41 37.0

4 

83.9

5 

90.0

9 

Scaled 

Mixture * 

Lateral 3.94 9.04 2.15 32.3

8 

88.5

7 

95.2

4 

95.2

4 

 AP 8.12 7.80 6.47 14.8

1 

45.6

8 

85.1

8 

90.1

2 
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Profile Prediction Error 

 

Attenuation Prediction Error 

  

Loss Orient Mean 

(%) 

StdDev

(%) 

Median 

(%) 

5% (%) <10% 

(%) 

MSE Lateral 7.05 2.78 6.36 25.61 85.37 

 AP 5.46 2.20 5.10 47.56 96.34 

SSIM Lateral 5.61 2.24 5.25 43.90 97.56 

 AP 5.66 2.99 4.66 53.66 92.68 

MSE+SSIM Lateral 5.01 2.79 4.72 67.07 95.12 

 AP 5.84 3.30 5.03 50.00 89.02 

Scaled MSE Lateral 6.99 4.09 6.05 39.02 81.70 

 AP 5.14 3.06 4.41 60.98 92.68 

Scaled SSIM Lateral 5.44 2.61 5.08 47.56 95.12 

 AP 6.52 3.21 5.80 37.80 85.37 

Scaled 

Mixture * 

Lateral 4.89 2.08 4.57 59.76 97.56 

 AP 4.33 1.94 4.13 70.73 98.78 

Loss Orientat

ion 

Mean 

(%) 

StdDev

(%) 

Median 

(%) 

<5% 

(%) 

<10% 

(%) 

MSE * Lateral 4.8 1.89 4.52 59.75 98.78 

 AP 5.68 1.77 5.36 42.68 98.78 

SSIM Lateral 6.60 3.18 5.92 36.59 86.59 

 AP 5.94 3.26 4.85 52.44 93.90 

MSE+SSIM Lateral 6.98 3.96 6.07 30.48 84.15 

 AP 6.87 4.09 5.58 39.02 80.49 

Scaled MSE Lateral 11.04 4.62 10.72 8.54 45.12 

 AP 8.24 4.80 7.22 32.93 68.29 

Scaled SSIM Lateral 8.72 4.71 7.49 25.61 70.73 

 AP 7.72 3.52 7.40 24.39 74.39 

Scaled 

Mixture 

Lateral 5.02 2.01 4.53 59.76 97.56 

 AP 6.28 2.70 5.97 41.46 89.02 
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Appendix C: Ablation Experiment on Network Structure (Essay 1) 

We conducted an ablation experiment to compare the proposed encoder-decoder network (6-

block encoder-decoder network) with 5 alternatives, i.e., (1) 4-block encoder-decoder network, (2) 

5-block encoder-decoder network, (3) 4-block encoder-decoder network with skip-connection, (4) 

5-block encoder-decoder network with skip-connection, and (5) 6-block encoder-decoder network 

with a max pooling layer. 

The results in terms of location prediction error, profile prediction error, and attenuation 

prediction error are summarized in Tables C.1, C.2, and C.3. The proposed network (6-block 

encoder-decoder network) achieved the best performance in terms of location prediction error and 

profile prediction error for predictions from both directions. The proposed network structure and 

its variant (6-block + max pooling) comparably achieved the best performance in terms of 

attenuation prediction error. However, adding a max pooling layer after each encoder block caused 

the predicted images to become blurry and failed to generate a straight table line in the lateral 

prediction. We therefore chose the proposed network to conduct the experiments on the full dataset. 

The experiment on the various numbers of encoder-decoder blocks shows that the performance 

improves as the number of encoder-decoder blocks increases, although at the price of increased 

consumption of computing resources. The experiment on skip-connection shows that without 

proper transformation, connecting the outputs from the feature domain (encoder blocks) to the 

transformed domain (decoder blocks) simply consumes more GPU memory yet offers no help on 

the performance in our focal task. 

 

Location Prediction Error 

Network 

Structure 

Orientat

ion 

M

ean 

(mm) 

Std

Dev(m

m) 

Me

dian 

(mm) 

<2

mm 

(%) 

<5

mm 

(%) 

<15

mm 

(%) 

<20

mm 

(%) 

4-Block Lateral 

 AP 11.

23 

8.13 8.63 3.70 32.1

0 

64.2

0 

85.1

9 

5-Block Lateral 

 AP 9.4

8 

7.90 8.63 8.64 33.3

3 

75.3

1 

90.1

0 

Max-pooling AP 9.0

0 

7.94 6.47 8.64 38.2

7 

80.2

4 

90.0

1 
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Profile Prediction Error 

 

Attenuation Prediction Error 

 

 

 

 

 

6-Block  

Proposed 

Network * 

Lateral 3.9

4 

9.04 2.15 32.3

8 

88.5

7 

95.2

4 

95.2

4 

AP 8.1

2 

7.80 6.47 14.8

1 

45.6

8 

85.1

8 

90.1

2 

Network 

Structure 

Orient Mean (%) StdDev(%

) 

Median 

(%) 

<5% (%) <10% (%) 

4-Block Lateral 5.91 3.11 5.27 47.56 90.24 

AP 7.01 3.23 6.39 34.15 82.92 

5-Block Lateral 5.57 2.77 4.65 58.54 91.46 

AP 5.85 2.73 5.41 42.68 92.68 

6-Block + 

Max pooling 

Lateral 5.32 2.26 4.73 53.66 97.56 

AP 5.17 2.57 4.85 51.22 92.68 

6-Block  

Proposed 

Network * 

Lateral 4.89 2.08 4.57 59.76 97.56 

AP 4.33 1.94 4.13 70.73 98.78 

Network 

Structure 

Orient Mean (%) StdDev(%

) 

Median 

(%) 

<5% (%) <10% (%) 

4-Block Lateral 6.46 3.34 5.52 41.46 89.02 

AP 7.31 3.41 6.79 26.83 82.93 

5-Block Lateral 5.44 2.69 4.62 58.54 91.46 

AP 6.97 2.89 6.86 29.27 87.80 

6-Block + 

Max pooling * 

Lateral 5.98 2.68 5.35 43.90 91.46 

AP 6.27 3.65 5.02 50.00 89.02 

6-Block  

Proposed 

Network * 

Lateral 5.02 2.01 4.53 59.76 97.56 

AP 6.27 2.70 5.97 41.46 89.02 
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Appendix D: Implementation and Execution (Essay 2) 

We implemented the proposed RGML and the benchmark methods based on the programs of 

tensorflow-gpu-2.0.0, keras-2.3.1, PyTorch-1.8.0, and scikit-learn-0.23.2. We used the pre-trained BERT 

model from https://github.com/google-research/bert, and the MFCC feature extraction module from 

https://librosa.org/doc/latest/feature.html. In the experiments, we performed parameter tuning for the 

benchmarks to ensure the fairness of the method comparisons. The following table summarizes the 

experiment settings of some key parameters.  

All experiments were run on two servers, each with a NVIDIA RTX 2080Ti GPU. The deployment and 

execution of RGML (for multimodal data preprocessing, model pre-training, model training, and cross-

validation) can be completed end-to-end within several hours on a GPU server (specifically, within 240 

minutes on a single PC with a NVIDIA RTX 2080Ti GPU).  

Parameter Setting in the Experiment. 

Model Parameter Setting Description 

Pre-trained 

BERT 

Text embedding size 1,024 The output dimensionality of the CLS hidden 

cell of the pre- 

trained BERT 

MFCC Audio embedding size 1,024 The feature dimensionality of MFCC for 

earnings call audios 

LSTM+Attentio

n 

 

Representation output 

dimensionality 

32 The output dimensionality of each hidden cell 

of LSTM for each data modality  

Number of heads 3 The number of heads in the attention 

mechanism 

Query dimensionality 32 The dimensionality of the query-vector in self-

attention 

Key dimensionality 32 The dimensionality of the key-vector in self-

attention 
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Value dimensionality 32 The dimensionality of the value-vector in self-

attention 

AutoInt Feature output 

dimensionality 

96 Number of neurons of the representation 

layer for AutoInt 

Soft-HRG Feature output 

dimensionality 

96 Number of neurons of the representation 

layer for Soft-HRG 

MAG Feature output 

dimensionality 

160 Number of neurons of the representation 

layer for MAG 

ARGF Feature output 

dimensionality 

96 Number of neurons of the representation 

layer for ARGF 

MARCNN Feature output 

dimensionality 

96 Number of neurons of the representation 

layer for MARCNN 

STAN Feature output 

dimensionality 

32 Number of neurons of the representation 

layer for STAN 

MAGNN Feature output 

dimensionality 

96 Number of neurons of the representation 

layer for MAGNN 

BBFN Feature output 

dimensionality 

192 Number of neurons of the representation 

layer for BBFN 

RMGL Feature output 

dimensionality 

32 Number of neurons of each data modality for 

meta-graph learning 

Number of layers 1 Number of hidden layers in the GCN model 

Epochs  10 Number of epochs to train the model 

Batch size 128 Number of instances per gradient update 

k 80 Percentage of the sum of singular values 

𝝀𝟏 0.0001  Threshold factor of L1 norm 

𝝀𝟐 0.001 Threshold factor of Frobenius norm 

𝝀𝟑 0.01 Threshold factor of trace norm 

𝝀𝟒 0.000001 The trade-off factor of L21 norm 
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Appendix E. Tukey-Kramer Test (t and p) of RMGL vs the Benchmarks. (Essay 2) 

Benchm

ark 

LSTM

+ 

Attention 

AutoI

nt 

Soft-

HRG 
MAG 

ARG

F 

MARC

NN 

BBF

N 

𝑛

= 

7 

𝑇

=1 
5.86*** 

6.21*

*** 

9.05***

* 

7.81*

*** 

5.15*

* 
4.79** 

9.41*

*** 

𝑇

=2 

8.00***

* 

6.30*

*** 

6.04***

* 

7.35*

*** 

5.25*

** 
5.51*** 

10.76

**** 

𝑇

=3 
4.98** 

4.98*

* 
4.17* 

6.86*

*** 

5.38*

** 

6.32***

* 

9.01*

*** 

𝑇

=4 
5.30*** 

6.29*

*** 

6.29***

* 

5.67*

** 

5.30*

** 
4.19* 

6.29*

*** 

𝑇

=5 

6.59***

* 

8.08*

*** 

8.74***

* 

14.01

**** 

7.91*

*** 
5.77*** 

9.23*

*** 

𝑇

=6 
4.16* 

4.75*

* 

11.16*

*** 
4.16* 

5.58*

** 

7.01***

* 

7.24*

*** 

𝑇

=7 

7.80***

* 

6.12*

*** 
4.88** 4.43* 

4.79*

* 
4.61** 

6.47*

*** 

𝑇

=8 

10.08*

*** 

7.68*

*** 

9.60***

* 

6.40*

*** 

6.40*

*** 

6.72***

* 

6.88*

*** 

𝑛

= 

1

5 

𝑇

=1 

10.10*

*** 

11.22

**** 

29.76*

*** 

12.33

**** 

9.36*

*** 

27.90*

*** 

11.12

**** 

𝑇

=2 

6.52***

* 

4.75*

* 

32.19*

*** 

7.47*

*** 

5.98*

** 
4.21* 

10.32

**** 

𝑇

=3 

26.09*

*** 

23.52

**** 

8.38***

* 

23.62

**** 

6.98*

*** 

25.34*

*** 

4.72*

* 

𝑇

=4 

6.28***

* 

27.30

**** 

9.10***

* 

26.75

**** 

5.42*

** 

9.42***

* 

7.80*

*** 

𝑇

=5 

31.38*

*** 

30.43

**** 

30.43*

*** 

32.01

**** 

9.65*

*** 

31.80*

*** 

11.86

**** 

𝑇

=6 

6.89***

* 

7.58*

*** 

9.88***

* 

6.28*

*** 

7.89*

*** 

9.42***

* 

6.51*

*** 

𝑇

=7 

30.89*

*** 

6.68*

*** 

8.82***

* 

9.06*

*** 

5.96*

** 

29.93*

*** 

6.92*

*** 

𝑇

=8 

40.61*

*** 

10.74

**** 

40.74*

*** 

19.00

**** 

11.29

**** 

16.52*

*** 

16.52

**** 

𝑛

= 

30 

𝑇

=1 
4.41* 

26.49

**** 

24.28*

*** 

5.22*

** 

22.47

**** 

24.38*

*** 

4.72*

* 

𝑇

=2 

57.99*

*** 

65.67

**** 

55.69*

*** 

22.85

**** 

58.57

**** 

53.77*

*** 

20.36

**** 
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𝑇

=3 

21.06*

*** 

5.51*

** 

20.42*

*** 

6.24*

*** 
4.34* 

24.94*

*** 

6.87*

*** 

𝑇

=4 

26.55*

*** 

26.77

**** 

30.94*

*** 

6.25*

*** 

6.36*

*** 

29.52*

*** 

7.35*

*** 

𝑇

=5 

11.15*

*** 

30.54

**** 

26.53*

*** 

8.02*

*** 

8.69*

*** 

27.42*

*** 

9.70*

*** 

𝑇

=6 

21.19*

*** 

5.88*

** 

26.71*

*** 

23.77

**** 

26.44

**** 

20.92*

*** 

5.61*

** 

𝑇

=7 

26.08*

*** 

4.93*

* 

23.67*

*** 

27.94

**** 

25.75

**** 

24.65*

*** 

6.68*

*** 

𝑇

=8 

26.26*

*** 

8.41*

*** 

27.47*

*** 

28.38

**** 

7.20*

*** 

27.27*

*** 

7.50*

*** 

**** p < 0.001; *** p < 0.01; ** p < 0.05; * p < 0.1. 

 

Appendix F: Tukey-Kramer Test (t and p) of RMGL with Full Modalities vs RMGL with 

Reduced Modalities. (Essay 2) 

Ablated Set of 

Modalities 

 

-FI 9.95**** 

-EA 6.43**** 

-ET 7.26**** 

-TC  8.09**** 

-EC 4.77**** 

**** p < 0.001 

Appendix G: Tukey-Kramer Test Result (t and p) of RMGL vs Ablated Variants. (Essay 2) 

Ablated Variant  

Without feature-wise 

interaction 

6.35***

* 

Without modality-wise 

interaction 

40.39*

*** 

Without temporal interaction 15.24*

*** 

**** p < 0.001 
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