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ABSTRACT 

 

INVESTIGATING THE PHYTOTOXIC IMPACTS OF NEXT-

GENERATION LITHIATED COBALT OXIDE NANOMATERIALS 
by 

 

Eric Ostovich 

 

The University of Wisconsin-Milwaukee, 2023 

Under the Supervision of Professor Rebecca Klaper 

 

Lithium cobalt oxide nanosheets (LCO) are a type of next-generation transition metal oxide (TMO) 

nanomaterial and are one of the most commonly used cathode materials utilized in Li-ion batteries 

(LIB’s). With rapidly growing popularity of LIB’s as an energy storage technology, many 

consumer electronics and high-end electric vehicles have begun to incorporate these LIB’s into 

their design. And thus, the manufacturing rate of this nanomaterial has also skyrocketed to levels 

of environmental significance. However, despite its high levels of production, there is still little 

means for proper disposal of this nanomaterial, thus resulting in a highly probable environmental 

release. As LCO is a newer emerging contaminant of concern, we have only begun to study its 

potential environmental impacts. Recent studies have identified LCO as causing toxicity to 

eukaryotic organisms like Daphnia magna, Chironomus riparius, and Oncorhynchus mykiss, 

spanning a few trophic levels. However, there has yet to be any studies addressing the potential 

toxicity experienced by plant-type organisms. Thus, there is a major gap in our knowledge as to 

how LCO may impact ecological systems at the primary producing level, which is crucial for the 



iii 

 

proper structure and function of ecosystems. Additionally, we also have no data to suggest how 

environmental processes like photosynthesis will be impacted. 

This thesis addresses the phytotoxic impacts of LCO to Raphidocelis subcapitata, a freshwater 

microalga and model organism for environmental toxicology. In this work, different endpoints 

associated with physiological fitness, cellular phenotypes, and molecular interactions are 

investigated. Additionally, in order to predict the mechanism of action (MoA) through which LCO 

perturbs R. subcapitata, novel high-throughput phenotypic profiling (HTPP) methods were 

developed specifically for algal cells that employ multiplexed fluorescence cytochemistry coupled 

with high-content imaging (HCI). These HTPP methods were used to compare changes in the 

complex phenotypes of LCO-treated cells to that of compounds with known MoAs as a means to 

predict the phytotoxic MoA of LCO. The results of these investigations demonstrate impaired 

growth and net carbon biomass assimilation as physiological consequences of LCO exposure, 

while triggering an increase in chlorophyll and neutral lipid content. Furthermore, enhanced 

darkfield hyperspectral imaging revealed deposits of internalized LCO nanoparticles, thus 

suggesting the potential for LCO to directly interact with key subcellular components of R. 

subcapitata, as opposed to simply adhering to/covering the surface of the cells. Lastly, HTPP 

analyses revealed electron transport inhibition as the major phytotoxic MoA of LCO and 

demonstrated the irreversible oxidation of photosystem II (PSII) proteins, which are responsible 

for catalyzing the initial reaction of photosynthesis. Overall, these findings expand the mechanistic 

knowledge of LCO toxicity to plant-type organisms and the methods described in this work 

provide a novel framework for investigating chemical interactions within phycological entities. 
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Introduction 

LiCoO2 (LCO) is a type of rhombohedral shaped, transition metal oxide (TMO) material with 

intercalating layers of Li and CoO2.
1 This material was originally introduced by J. B. Goodenough 

in 1982 as a new cathode material for high energy density batteries,2 and has since become the 

most commonly used cathode material in rechargeable Li-

ion batteries (LIB).1 LCO is very attractive as a cathode 

material because of its desirable characteristics such as a 

having a high theoretical specific capacity, high theoretical 

volumetric capacity, low self-discharge, high discharge 

voltage, and good cycling performance.3 In recent years, 

however, nanoscale LCO has become preferred over its 

bulk counterpart due to its enhanced battery rate performance. This is because at the nanoscale, 

LCO has the advantage of having shorter Li-ion diffusion lengths compared to micron-sized 

particles, in which only ~50% of Li-ions can be used, thus improving the overall electronic 

transport.1,3 

Since LCO is one of the most popular battery cathode materials, it has been incorporated into many 

types of consumer electronics from cell phones and laptops to high-end electric vehicles. 

Furthermore, in efforts to improve battery life of LIB’s as we become more dependent on this 

technology, increasing amounts of this nanomaterial are continually added to newer battery packs 

as energy storage capacity is directly proportional to the mass of the battery material used 4. Both 

situations translate to LCO’s manufacturing rates rising to levels of environmental 

significance/concern. Specifically, in 2015, LCO was being produced at an annual rate of 79,000 

metric tons, which increased to an estimated annual rate of ∼200,000 tons in 2020, and is projected 

 

Figure 1: Transmission electron 

microscopy (TEM) Image of LCO. 
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to increase to an annual rate of ~380,000 tons by 2025.4 To 

put this into perspective, this means that by 2025, we will be 

producing more of this specific type of next-generation TMO 

nanomaterial yearly than the combined production of all other 

first generation TMO nanomaterials (TiO2, ZnO, SiO2, etc.) in 

the year 2010 (~318,100 tons).5 What makes this matter 

particularly concerning, however, is that there is little to no 

infrastructure for recycling or for properly disposing of LIB’s, 

nor is there any economic incentive to do so as it’s cheaper to just manufacture new materials.4 

For example, it’s currently estimated that less than 5% of all LIB’s are being recycled, with the 

rest ending up in landfills or being disposed of in other mean of un-sustainable storage.6 As such, 

this means that there is a high probability for LCO to be unintentionally released into the 

environment, thus posing an ecological risk. And what exacerbates this risk is that LCO contains 

high-valence metals with unique catalytic properties, high reactivity, and have known inherent 

toxicity.3,7 Thus, an important challenge we currently face is in understanding the environmental 

impacts that LCO has to a wide diversity of organisms in the environment. 

Recent studies have begun to evaluate the general toxicological impacts of LCO exposure. For 

example, in daphnids, LCO has been found to reduce survival, rates of reproduction, and induce a 

differential expression in stress related genes;8 in rainbow trout gill cells, LCO has been seen to 

impact cell viability and cause significant production of reactive oxygen species (ROS);9 and in 

chironomids, LCO has been reported to cause delays in growth and development, as well as hinder 

the process of heme synthesis.10 However, more interestingly, LCO has also been reported to cause 

a number of molecular-level impacts. For example, in daphnids, there have been reports of an 

 

Figure 2: Illustration of Li+ 

movement in LIB at nanoscale, 

adapted from Hamers, 2020. 
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overwhelming disruption to energy metabolism related genes;11 in rainbow trout gill cells, there 

have been similar reports of significant overrepresentation in energy metabolism related 

pathways;12 and in chironomids, LCO has been reported to participate in redox reactions and alter 

the redox state of and Fe-S proteins, which are important for electron transfer, especially in energy 

metabolism related pathways.13 These results are interesting because, at the molecular level, all 

three of these organisms are showing signs of impaired energy metabolism, and the significance 

of seeing this exact impairment in multiple organisms suggests that electron transport inhibition 

and energy starvation may be a unifying molecular level impact of LCO exposure across species. 

However, there are still many gaps in our knowledge that speak to the entirety of LCO’s 

environmental consequences. Firstly, there has yet to be any data on the general toxicological 

impacts of plant-type species, whose crucial role in sustaining ecosystem health includes driving 

nutrient cycles and energy flow. Secondly, while we have some data to suggest that LCO interferes 

with pathways like glycolysis and respiration in animal-type eukaryotic organisms, we have no 

understanding as to how LCO may impact other pathways in plant-type organisms that are also 

tied to environmental processes, like photosynthesis. Thirdly, given an exposure of LCO to plant-

type organisms, we have no data that extrapolate the molecular level interactions between the two, 

nor confirm any unifying molecular mechanisms of toxicity across plant-type and animal-type 

eukaryotic organisms. One model organisms that could potentially help fill in these knowledge 

gaps is Raphidocelis subcapitata. 
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R. subcapitata is a prevalent type of green microalgae 

found in freshwater ecosystems that, as a primary producer, 

is important for the overall health and sustainability of 

freshwater ecosystems. In terms of phytotoxicology, R. 

subcapitata is an excellent model organism to use as this 

particular organism happens to be an EPA established 

model for ecotoxicology14 and has been widely used as a 

bioindicator species for toxicological risk assessment studies. Furthermore, R. subcapitata is 

suitable for these studies due to its many desirable characteristics. For one, it has a high sensitivity 

to various contaminants (especially metals), making it a good bioindicator species in detecting 

toxicological impacts at low quantities. As such, it is considered a particularly important organism 

in studies pertaining to water quality and environmental assessments. Additionally, R. subcapitata 

has an exponentially high reproduction efficiency which allows large quantities of it to be grown 

in relatively short periods of time, thus making it a good organism to use when setting up large 

scale exposures with various treatments and multiple replicates. Lastly, this organism has good 

experimental reproducibility, which is ideal for the design of experiments with a high degree of 

reliability.  

 

 

 

 

Figure 3: Unicellular microalgae, 

Raphidocelis subcapitata. 
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Chapter 1.  

Physiological Impacts of Raphidocelis subcapitata in Response to Lithiated Cobalt Oxide 

Nanomaterials 

1.1. Abstract 

Complex metal oxide nanomaterials, like LiCoO2 (LCO) nanosheets, are among the most 

widespread classes of nanomaterials on the market. Their ubiquitous application in battery storage 

technology drives their production to rates of environmental significance without sufficient 

infrastructure for proper disposal/recycling, thus posing a risk to ecosystem health and 

sustainability. This chapter assesses the general toxicological impacts of LCO when exposed to 

Raphidocelis subcapitata; physiological endpoints relating to growth and energy production are 

considered. Algal growth inhibition was significantly increased at concentrations as low as 0.1 

µg·mL−1, while exhibiting an EC50 of 0.057 µg·mL−1. The average biovolume of cells were 

significantly  enlarged at 0.01 µg·mL−1, thus indicating increased instances of cell cycle arrest in 

LCO-treated cells. Additionally, LCO-treated cells produced significantly less carbon biomass 

while significantly overproducing neutral lipid content starting at 0.1 µg·mL−1, thus indicating 

interference with CO2 assimilation chemistry and/or carbon partitioning. However, the relative 

abundance of chlorophyll was significantly increased, likely to maximize light harvesting and 

compensate for photosynthetic interference. Cells that were treated with dissolved Li+/Co2+ ions 

did not significantly impact any of the endpoints tested, suggesting LCO phytotoxicity is mainly 

induced through nano-specific mechanisms rather than ion-specific. These results indicate that this 

type of nanomaterial can significantly impact the way this algae proliferates, as well as the way it 

produces and stores its energy, even at lower, sublethal, concentrations. Furthermore, impairments 

to crucial cellular pathways, like carbon assimilation, could potentially cause implications at the 
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ecosystem level. Thus, in future work, it will be important to characterize the molecular 

mechanisms of LCO at the nano-bio interface. 

 

1.2. Introduction 

As the field of nanotechnology continues to grow, and more consumer products start to incorporate 

nanomaterials into their design, understanding the environmental impacts of these nanomaterials 

is increasingly important. LiCoO2 (LCO), for example, is a type of complex metal oxide nanosheet 

used as a cathode material for lithium ion batteries,7 which is found in many consumer electronics 

and high-end vehicles.3 Increasing manufacturing rates, as well as a lack of infrastructure and 

economic incentive for recycling/disposal4,15 make LCO an emerging contaminant of concern. 

Since LCO contains high valence metals with unique catalytic properties, high reactivity, and 

known inherent toxicity, an accidental exposure of this type of nanomaterial could lead to many 

adverse outcomes.  

Recent studies have begun to evaluate the general toxicological impacts of LCO exposure. For 

example, in D. magna, LCO has been found to reduce survival, rates of reproduction, and induce 

a differential expression in stress related genes;8 in RTgill-W1 cells, LCO has been seen to impact 

cell viability and cause significant production of ROS;9 and in C. riparius, LCO has been reported 

to cause delays in growth and development, as well as hinder the process of heme synthesis.10 

However, more interestingly, LCO has also been reported to cause a number of molecular-level 

impacts. For example, in D. magna, there have been reports of an overwhelming disruption to 

energy metabolism related genes;11 in RTgill-W1 cells, there have been similar reports of 

significant overrepresentation in energy metabolism related pathways;12 and in C. riparius, LCO 

has been reported to participate in redox reactions and alter the redox state of and Fe-S proteins, 
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which are important for electron transfer, especially in energy metabolism related pathways.13 

These findings are interesting because, at the molecular level, all three of these organisms are 

showing signs of impaired energy metabolism, and the significance of seeing this exact impairment 

in multiple organisms suggests that disruptions to energy related pathways may be a unifying 

molecular level impact of LCO across species. However, there are still many gaps in our 

knowledge as to the entirety of LCO’s environmental consequences. Firstly, there has yet to be 

any data on the general toxicological impacts of algal species, whose crucial role in sustaining 

ecosystem health includes driving nutrient cycles and energy flow.16 Secondly, while we have 

some data to suggest that LCO interferes with pathways like glycolysis and respiration in animal-

type organisms, we have no understanding as to how LCO may impact other pathways in primary 

producing-type organisms that are also tied to environmental processes, like photosynthesis. 

The assimilation of CO2, by primary producers, is necessary to support all life on Earth as 

consumers in the environment rely on this net primary production of carbon biomass as a source 

of chemical energy. More specifically, phytoplankton account for about half of the total global 

primary productivity with marine phytoplankton fixing around 50000 Tg CO2 annually,17 and 

freshwater phytoplankton fixing around an estimated 133 Tg CO2 annually.18 As such, a decrease 

in the efficiency of phytoplankton primary productivity could consequentially alter ecosystem 

energy budgets.  

In this chapter, Raphidocelis subcapitata, a model algal bioindicator species,14 was exposed to 

LCO for 48 hours. Several physiological endpoints were recorded in order to assess several aspects 

of cell fitness. Given our current understanding of the toxicological and molecular level impacts 

of LCO in other organisms, we hypothesize that LCO may negatively impact facets of algal 

physiology related to growth and energy production. 
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1.3. Materials and Methods 

LCO Synthesis and Characterization.  

Sheet-like nanoparticles of LixCoO2 were synthesized using the techniques described in previous 

studies.19,20 Water with a resistivity 18.2 MΩ·cm-1 was used for each step during the synthesis. A 

(Co(OH)2) precursor was prepared using a precipitation reaction between LiOH and 

Co(NO3)2·6H2O. A 1 M Co(NO3)2·6H2O was added drop-by-drop to a 0.1 M solution of LiOH. 

The precipitate was isolated and washed with 3 repeated cycles of centrifugation for 5 min at 4696 

g as to isolate a pellet of particles, that was then resuspended in water. Next, the supernatant was 

removed after washing and the solid product was dried in a vacuum oven at 30 °C overnight. The 

Co(OH)2 precursor was then lithiated to form LixCoO2 by adding 0.20 g Co(OH)2 particles to a 

molten salt flux of 6:4 molar ratio of LiNO3:LiOH at 200 °C in a PTFE container equipped with 

magnetic stirring in a silicone oil bath. The particles were then heated and stirred in this molten 

salt flux for 30 min and the reaction was quenched with water. The precipitate was isolated and 

washed by 3 repeated cycles of centrifugation for 5 min at 4696 g to isolate a pellet of particles, 

which were then resuspended in water. Then the product was isolated from the supernatant and 

dried in a vacuum oven at 30 °C overnight.  

The particles, digested in aqua regia, were analyzed using inductively coupled plasma – optical 

emission spectroscopy (ICP-OES) to yield a Li:Co ratio of 0.92:1. Surface area measurements, 

determined by nitrogen physisorption, yielded a surface area value of 125 m2·g−1. Powder X-Ray 

Diffraction yielded patterns consistent with previously published work which could be indexed to 

the R3̅m space group (found in supplementary information). Individual LCO particles were 

imaged and sized using a FEI Tecnai T12 transition electron microscope where only particles 

completely captured in the image were measured. Thickness was measured of particles that 
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appeared very dark as this means they were viewed edge-on. Length of particles were measured if 

clearly defined endpoints were visible and if it could reasonably be assumed that it was a single 

particle as opposed to an aggregate. Dynamic light scattering (DLS) and zeta potential 

measurements of LCO suspensions in algae media (found in supplementary information) were 

obtained with a Zetasizer Nano ZS Size Analyzer from Malvern Panalytical. 

Algal Cell Culture. 

A stock culture of R. subcapitata was inoculated at 1×105 Cells·mL-1, was cultured in a complete 

media comprised of Bold Modified Basal Medium (Sigma, B5282) and 18 M water. Cells were 

illuminated with a full spectrum T8 light bulb at a continuous timescale. The stock solution was 

aerated with an aquarium air pump. 

Exposure Setup. 

This exposure was done to assess the impacts of LCO on R. subcapitata after 48 hours of exposure. 

Algae were exposed to one of four LCO concentrations or untreated control (0 µg·mL−1, 0.01 

µg·mL−1, 0.1 µg·mL−1, 1 µg·mL−1, & 10 µg·mL−1 LCO), an ion control that contained the 

concentration of lithium and cobalt ions that would be present in the algae media containing 10 

µg·mL−1 of LCO after 48 hours, and a dark control that was deprived of any light.  In each 

treatment, done in quadruplicates, cells were seeded from the stock culture, after cells were 

growing exponentially, at 7×105 cells·mL−1 in T-25 flasks. A stock suspension of LCO was 

constituted in the algal complete media at 100 µg·mL−1. This suspension was sonicated for 25 

minutes before the addition to respective samples to break up any aggregated nanoparticles. 

Additionally, an ion solution made from LiOH and CoCl2·H2O, also constituted in complete 

media, was made at 10X the concentration of ion dissolution of 10 µg·mL−1 of LCO after 48 hours. 
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Dissolution of these particles was previously assessed using ICP-MS, where Li+ was found to have 

a dissolution of 1024 µg·L−1 and Co2+ 239 µg·L−1.10 For each treatment, complete media, LCO 

suspension, or 10X ion solution was added to 45 mL of cell suspension at a final volume of 50 

mL. The samples were placed under full spectrum illumination at a photon flux of 70 µE·m−2 ·s−1, 

with the exception of the dark control samples, which were deprived of any light. At the conclusion 

of the exposure, the algal cells were spun down at 12000 x g for 7 minutes, and the media was 

aspirated. An additional vacuum centrifugation step was done to remove all moisture from the 

algae cell pellets that were used for elemental analysis. 

Growth Inhibition. 

Growth inhibition was measured as a first-line indicator of a toxicological response, as well as to 

determine the sensitivity of the algal cells to LCO.21 Before pelleting the algae samples, the cell 

concentration in each sample was determined by using optical density (OD) with an Agilent 

BioTek Synergy H4 Hybrid Microplate Reader at λ=680 nm. An OD680 was used since this 

microalgae absorbs light best at this wavelength. The absorptivity coefficient (found in 

supplementary information) was determined by plotting known concentrations of algae, 

determined with hemocytometry, against their respective absorbances. A 109 µL aliquot of each 

cell sample was placed in a well of a glass bottom 384 well plate (Cellvis, P384W-1.5H-N), which 

had a liquid height of 1 cm. Control samples were blanked with a solution of algae media while 

treated samples were blanked with an associated nanoparticle/ion control in order to account for 

the amount of light absorbance/scattering caused by the presence of LCO/ions in the medium. 

These nanoparticle/ion controls consisted of a suspension of LCO/Li+ & Co2+ ions constituted in 

algae media that emulated the respective concentration of LCO/ions present in each treatment. Cell 
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concentration values at T0 and T48 were used to calculate growth rates and growth inhibition per 

OECD guidelines 21 as seen below, respectively: 

µ𝑖−𝑗 =  
ln 𝑋𝑗−ln 𝑋𝑖

𝑡𝑗− 𝑡𝑖
 (𝑑𝑎𝑦−1) ……………….……….……….(1) 

where µ𝑖−𝑗 represents the is the average specific growth rate from time i to j, 𝑋𝑖 is the cell 

concentration at time i, and 𝑋𝑗 is the cell concentration at time j; 

%𝐼𝑟 =  
𝜇𝐶−𝜇𝑇

𝜇𝐶
 × 100 ……….…………………………...(2) 

where %𝐼𝑟 represents the percent inhibition in average specific growth rate, 𝜇𝐶 is the mean value 

for average specific growth rate (µ) in the control group, and 𝜇𝑇 is the average specific growth rate 

for the treatment replicate. An EC50 value, based on the growth inhibition data, was statistically 

determined with a three-parameter log-logistic model using the drc package in R.22 

Biovolume. 

Biovolume, which can be described as the volumetric space occupied by an algal cell, is a 

morphological trait that was used as a simple measurement of phenotypic change to the cell. 

Alterations to the biovolume of microalgae can have an impact on its functional properties like 

access to nutrients and light, velocity of sinking, and tolerance to grazing,23 however, in the case 

of R. subcapitata, it can also be an indication of disruption to cell cycle progression.24 Cell samples 

from each treatment were imaged with an EVOS™ XL Core Imaging System, equipped with an 

EVOS™ 40X LWD achromatic phase contrast objective. Cell images were processed in ImageJ 

to estimate single cell dimensions using methods described by.25 Biovolumes of individual algal 

cells were calculated as described by26 with the assumption that R. subcapitata is generally shaped 

like a sickle-shaped cylinder27 per the following equation: 
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𝑉 =  
𝜋

6
· 𝑙 · 𝑤2…………………..………………….. (3) 

where 𝑉 represents the biovolume of the cell, 𝑙 is the length of the cell, and 𝑤 is the transapical 

width of the cell. At least 100 cells were analyzed from each independent sample and were 

averaged, and then the average values for all independent samples were averaged by treatment to 

obtain the average biovolume value. 

Elemental Analysis. 

Dried algae pellet samples were accurately weighed into small tin cups on a microbalance. Sample 

filled tin cups were crushed into small spheres that could be inserted into the elemental analyzer’s 

(EA) auto sampler. Samples dropped, one at a time, from the rotating auto sampler into the 

combustion column where they were converted into simple gases (e.g. CO2, H2, N2). Unwanted 

materials such as halogens, sulfur, phosphorus, NOx, and excess oxygen from combustion were 

removed with Cu, CrO3, CoO, Mg(Cl4)2, and NaOH reagents in the oxidation/reduction chamber. 

From there, elements were separated by gas chromatography (GC) with a helium carrier gas before 

passing by a thermal conductivity detector.  

Post run analyses started by investigating the retention time (RT) of each sample. The RT is the 

amount of time in decimal minutes between sample injection and chromatogram peak. Because 

the EA uses GC, the RT is directly related to the molecular weight (MW) of the simple gas, which 

in this case was used to estimate the amount of carbon present in each algae sample. Acetanilide 

standards were used to construct a calibration curve. 

Net production of Carbon Biomass. 

The total amount of carbon in each sample was calculated using the carbon peak areas measured 

by the EA and in reference to the acetanilide standard curve. Then the amount of carbon per cell 
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was calculated by dividing the amount carbon in the sample by the number of cells from the pellets 

present in each respective sample. The net production of carbon biomass per cell for each sample 

was then calculated using the following equation: 

𝑁𝐶𝑃 = (
𝑀𝑎𝑠𝑠 𝐶𝑆𝑎𝑚𝑝𝑙𝑒

#𝑐𝑒𝑙𝑙𝑠𝑆𝑎𝑚𝑝𝑙𝑒
) −  𝑥̄(

𝑀𝑎𝑠𝑠 𝐶𝐷𝑎𝑟𝑘

#𝑐𝑒𝑙𝑙𝑠𝐷𝑎𝑟𝑘
) …………..…..…………(4) 

Where 𝑁𝐶𝑃 represents net carbon biomass produced per cell, 𝑀𝑎𝑠𝑠 𝐶𝑆𝑎𝑚𝑝𝑙𝑒 is the mass of carbon 

in any given sample, #𝑐𝑒𝑙𝑙𝑠𝑆𝑎𝑚𝑝𝑙𝑒 represents the number of cells in any given sample determined 

through OD, 𝑀𝑎𝑠𝑠 𝐶𝐷𝑎𝑟𝑘 is the mass of carbon specifically in the dark controls, and #𝑐𝑒𝑙𝑙𝑠𝐷𝑎𝑟𝑘 

is the number of cells specifically in the dark controls. The mass of carbon per cell for each sample 

was subtracted by the average mass of carbon per cell from the dark controls, as they theoretically 

should not have produced any carbon biomass without a light source or dissolved organic carbon 

supplemented in the medium, thus yielding a net production in carbon biomass per cell value for 

each sample. NCP values were then further normalized to the average biovolume in each sample 

as a means to correct for changes in cell size.  

Neutral Lipid Content. 

Neutral lipid content was measured as an additional stress response since these lipid droplets tend 

to accumulate downstream of certain stressors and/or nutrient depravation in microalgae and can 

be indicative of impairments to energy metabolism.28 To assay for neutral lipid content, cells were 

stained post exposure with BODIPY™ 505/515, which selectively binds to neutral lipids. 1×106 

cell aliquots were obtained from each sample and transferred to sterile microcentrifuge tubes, 

where additional algal complete media was added at a final volume of 1 mL. BODIPY™ was then 

added to each sample at a final concentration of 5 µM, including a no-cell control with only 

complete media, whereafter samples were incubated in darkness at room temperature for 15 
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minutes. 100 mL aliquots were transferred to a glass bottom 384 well plate (Cellvis, P384W-1.5H-

N) and fluorescence measurements were then taken on an Agilent BioTek Synergy H4 Hybrid 

Microplate Reader at an excitation and emission wavelength of 470/20 nm and 540/20 nm, 

respectively. Relative lipid content was calculated by taking the difference of the average no-cell 

control and respective sample RFU values and then normalizing to the corrected non-treated cell 

control RFU values. Additionally, cells were also imaged with an EVOS™ M7000 Imaging 

System to visualize the lipid droplets as a qualitative assessment of neutral lipid content. 

Single-Cell Chlorophyll Fluorescence Microscopy. 

100 µL aliquots from each sample were plated in to a well of a glass bottom 384 well plate (Cellvis, 

P384W-1.5H-N) and spun gently at 600RPM for 1 minute to concentrate cells at the bottom of the 

well. Cells were then dark adapted for 30 min before imaging with an ImageXpress Micro XLS 

High-Content Screening System. For image acquisition, cells were visualized using a Cy 5 filter 

(ex/em: 628/692), thereby exciting chlorophyll molecules, and a 60X Plan Fluor 0.85 NA objective 

(Molecular Devices, 1-6300-0414); 16 sites per well were acquired. For representative cell figures, 

images were also acquired with a 100X CFI L PLAN EPI CC 0.85 NA objective (Molecular 

Devices, 1-6300-0419) for better resolution. After acquiring images, bioimage analysis was 

conducted with CellProfiler [v4.2.1]29 for segmenting images and measuring the respective 

fluorescence intensities of individual cells. The average “mean_cell_intensity” values from each 

treatment were used to represent the relative abundance of chlorophyll content. 

Enhanced Dark-Field Hyperspectral Imaging. 

To confirm cellular uptake of LCO, algal samples were analyzed using the CytoViva Enhanced 

Darkfield Hyperspectral System, which uses patented darkfield optics to generate high contrast, 
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high signal-to-noise ratio images. These images were scanned via the CytoViva HSI system using 

a spectrograph that captures the entire field of view in which each pixel of the image contains 

hyperspectral data from 400-1000nm. Samples were placed on a glass slide and imaged with a 

100x oil immersion objective. A reference spectral library for LCO was created by collecting 

spectral data from a suspension of LCO and then searching algal samples that had been exposed 

to 1 µg·mL−1 LCO. The spectral analysis was done using the ENVI software to identify the 

presence of LCO particles associated with the algal cells, and the Spectral Angel Mapping 

algorithm was used to show the presence of the particles. 

Statistical Analysis. 

Statistical analyses were performed using R Studio.30,31 A Shapiro-Wilk test was performed to 

determine whether the respective data sets were normally distributed, and a One-Way ANOVA 

with a Tukey post-hoc test was used to compare the means of normally distributed data. A non-

parametric Kruskal-Wallis test with a Dunn’s post-hoc test was used to compare the means of non-

normally distributed data. In each case, a 95% confidence interval was used to determine 

significant differences within a data set. Additionally, to compare growth inhibition results to 

biovolume results, a Pearson coefficient was constructed using R Studio. 

 

1.4. Results and Discussion 

LCO Characterization. 

LCO is a type of complex metal oxide nanomaterial with a sheet-like morphology comprised of 

intercalating layers of lithium and cobalt oxide. TEM sizing of single LCO particles suggests an 

average thickness and length of 5.54 ± 2.01 nm and 39.63 ± 17.35 nm, respectively (Figure 1). 
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The zeta-potential values for LCO suspended in algal complete media indicate that this 

nanomaterial is highly negatively charged at higher concentrations like 1 µg·mL−1 (−22.73 mV) 

and 10 µg·mL−1 (−30.33 mV), while becoming much less negatively charged at lower 

concentrations like 0.1 µg·mL−1 (-10.07 mV) and 0.01 µg·mL−1 (-2.01 mV). These results suggest 

that there’s an increasing degree of repulsion between LCO nanoparticles with increasing 

concentrations,32 and since electrostatic repulsion is one of the primary sources of nanomaterial 

stability in aqueous media, this would indicate that LCO, in theory, is increasingly stable at higher 

concentrations when suspended in the complete media and therefore less prone to forming 

aggregates at those concentrations.33 However, in practicality, this isn’t necessarily the case as 

visible aggregates can be seen in treatments as low as 1 µg·mL−1 post exposure, which indicates a 

lack of stability. Furthermore, it’s worth noting that in other types of exposure media like MHRW, 

LCO also tends to aggregate and settle as well, thus lacking stability in suspension.10 
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Growth Inhibition and Biovolume.  

The level of growth inhibition experienced by LCO-treated cells increased in a dose dependent 

manner, with significantly higher levels of growth inhibition in comparison to the control at 

concentrations as low as 0.1 µg·mL−1 (Figure 4a). This is a first-line indicator that LCO induces 

a toxicological stress response on these algal cells that either causes a decrease in cellular 

proliferation or an increase in cell death. Furthermore, based on the growth inhibition data, the 

EC50 was calculated to be around 0.057 µg·mL−1. In the control, cells had an average biovolume 

of about 22 µm3, which is consistent with what’s reported in the literature for normal biovolumes 

of this cell type.26 However, the average biovolume seems to also increase in a dose dependent 

manner with significant increases to cell size at concentrations as low as 0.01 µg·mL−1 (Figure 

4b). These larger biovolumes, while only a direct measurement of cell morphology, may indicate 

 

Figure 4: Algal growth and biovolume. (a.) Algal growth inhibition and (b.) average biovolume 

in response to varying concentrations of LCO after 48 hours of exposure. Significant 

differences were determined using a one-way ANOVA with a Tukey post-hoc for multiple 

comparisons; columns with different letters differ significantly (p<0.05). Error bars represent 

SEM. (c.) Simplified diagram of interrupted R. subcapitata cell cycle when exposed to LCO. 

(d.) Pearson coefficient correlation between algal growth inhibition and average biovolume 

across four replicates. 
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a more serious issue in terms of cell health. R. subcapitata cells go through several stages of their 

cell cycle in which they increase in size, replicate their nuclei, and release multiple, smaller, 

daughter cells (Figure 4c). An increase in the average biovolume may indicate cell cycle 

interruption/arrest.24 This is because, for this type of algae, cells that have lost the ability to 

proliferate, or divide into multiple daughter cells, may still be able to increase in size and/or 

replicate their nuclei (depending on the cell cycle stage of arrest) as if they were going to 

proliferate, thus leading to an overall increased average biovolume observed in said populations.  

When comparing growth inhibition to biovolume, there’s an extremely high Pearson correlation 

between the level of growth inhibition experienced and the average size of algal cells, thus 

perpetuating the idea that LCO may impact cell cycle progression (Figure 4d). This makes sense 

as inhibitory effects on growth and cell cycle progression would go hand-in-hand. Increased levels 

of growth inhibition could potentially also be attributed to an increase in senescence, however, 

assays that directly measure cell death would be needed to validate this prospect. Interestingly, no 

significant differences in growth inhibition nor biovolume were observed in ion treated cells, this 

suggesting that LCO induced phytotoxicity is initiated through nano-specific mechanisms, rather 

than ion-specific mechanisms like in the bacterium, Shewanella oneidensis.34 

Net Carbon Biomass Production. 

Unlike growth inhibition and biovolume, the net production of carbon biomass per cell did not 

change with respect to concentration in a dose-dependent manner (Figure 5). Control cells 

obtained a net average production of 0.078 pg C·Cell-1·µm-3 after 2 days while LCO-treated cells, 

in comparison, had only produced roughly 50% less across the board with significant reductions 

at concentrations as low as 0.1 µg·mL−1. These results suggest that even at lower, sublethal, 

concentrations, LCO induces massive reductions to the net production of carbon biomass in these 
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cells. These reductions may result from an increased inactivation of photosynthetic machinery, 

thus leading to an overall decrease in CO2 assimilation;35 they may also result from an increase in 

glycolytic activity which has been reported in several other organisms in response to LCO 

exposure. 11,12,13 Even more likely, however, may be a combination of both as an imbalance 

between carbohydrate production and carbohydrate consumption. Either way, since entire food 

webs are dependent on primary producing organisms to drive nutrient cycles and energy flow in 

freshwater ecosystems,16 this is concerning as widespread contamination of LCO could possibly 

mean largescale restructuring of ecosystem dynamics and energy budgets.  

Neutral Lipid Content. 

Microalgae are known for their ability to produce large quantities of neutral lipids called 

Triacylglycerol, or TAG, and its biosynthesis is largely thought to serve as an energy storage, 

 

Figure 5: Net production of carbon biomass in response to varying concentrations of LCO after 

48 hours of exposure. Significant differences were determined using a one-way ANOVA with 

a Tukey post-hoc for multiple comparisons; columns with different letters differ significantly 

(p<0.05). Error bars represent SEM. 
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much like starch.36 Under optimal conditions, microalgae don’t actually produce very much TAG 

as it’s a less preferred form of carbon storage compared to starch, but when they’re subject to 

certain stressors and nutrient deprivation, it causes them to significantly increase their TAG 

content. Most notably, Chlamydomonas reinhardtii has been shown to significantly increase TAG 

production in response to nitrogen starvation.37 When exposed to these stressors, there ends up 

being a shift in their metabolism that favors the production and accumulation of TAG over starch, 

however, the reasoning behind this is not quite clear.38 Although, since fatty acids have a higher 

energy/mass ratio with a higher energy return upon fatty acid oxidation (almost 6.7 ATP 

equivalents per C) compared to glucose oxidation (about 5.3 ATP equivalents per C), TAG 

accumulation may be more beneficial in times of energy starvation/ATP deficiencies.36 TAG 

accumulation is also especially present in quiescent cells, which are cells that aren’t actively 

dividing, but their photochemistry is still active to some extent.39  

 

Figure 6: Neutral lipid content. (a.) Representative fluorescence micrograph of a control cell 

(top) and an LCO treated cell (bottom, 1 µg·mL−1). (b.) Relative neutral lipid content in 

response to varying concentrations of LCO after 48 hours of exposure. Significant differences 

were determined using a one-way ANOVA with a Tukey post-hoc for multiple comparisons; 

columns with different letters differ significantly (p<0.05). Error bars represent SEM. 
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As displayed in Figure 6a, a representative fluorescence micrograph depicts a control cell (top), 

containing a minimal amount TAG content, in comparison to an LCO-treated cell (bottom, 1 

µg·mL−1) which has produced a seemingly larger amount of TAG. Further validating this 

observation, the microplate assay results in Figure 6b roughly exhibit a positive correlation 

between LCO concentration and relative neutral lipid content. A significant peak production is 

seen at 1 µg·mL−1 of LCO with over a 100% increase in TAG content compared to the control. 

However, once again, no significant increase in TAG production was observed in ion treated cells. 

These results suggest that LCO exposure leads to a metabolic shift in these cells which favors the 

production and accumulation of TAG over starch, and thus may be indicative of an interference to 

their energy and central carbon metabolism.28 One factor leading to this increase in TAG 

production may be due to the presence of Co2+ in LCO. Other algal species like Chlorella vulgaris, 

for example, have been reported to increase their production of TAG when exposed to heavy 

metals like cobalt.38 Although, in this case, this would only be true for Co2+ in the nano form, as 

opposed to the ionic from. 

Single-Cell Chlorophyll Fluorescence Microscopy. 

High-content fluorescence imaging was first used to visually inspect LCO-induced changes to cell 

morphology. The morphology of LCO-treated cells (Figure 7c-d) appear larger in size compared 

to the control cell (Figure 7a), aligning with results in Figure 4b. LCO-treated cells also appear 

to have more of a “French croissant”-type shape (Figure 7d), similar to that of algae cells exposed 

to metolachlor, as described by Machado & Soares, 2020. Other 2D nanomaterials, like graphene-

oxide, have previously been reported to elicit mechanical disturbances to the cell by damaging the 

membrane with their sharp edges.40 However, when comparing the morphology of LCO-treated 

cells to that of the Carfentrazone-treated cell (Figure 7b), used as a positive control 
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for membrane damage,41 their morphologies appear quite different. While the LCO-treated cells 

look larger and brighter compared to the control, they still appear to uphold the structural integrity 

of their membrane. By contrast, the morphology of the membrane damaged positive control 

appears to have lost its structural integrity while displaying more of a “stringed pearls”-type shape. 

Furthermore, high-content fluorescence imaging and bioimage analysis were also employed to 

quantify the emitted fluorescence intensities of individual cells, which are proportional to the 

abundance of chlorophyll within those cells. LCO-treated cells appear to have higher fluorescence 

intensities, and thus increased chlorophyll content, relative to the control, with significant increases 

at 0.1 & 1 µg·mL−1 LCO (Figure 7e). This is contrary to other types of metal oxide nanomaterials 

which have been reported to decrease chlorophyll content.42 However,  in the event of 

 

Figure 7: Single-cell chlorophyll fluorescence. Representative fluorescence micrograph of (a.) 

a control cell, (b.) a Carfentrazone‐treated cell used as a positive control for membrane damage, 

and a lithiated cobalt oxide (LCO)–treated cell exposed to (c.)1 µgml−1 LCO and (d.)10 µgml−1 

LCO. (e.) Relative chlorophyll content in response to varying concentrations of LCO after 48 

h. Bars on boxplots represent treatment medians, while diamonds represent treatment averages. 

Significant differences were determined using a one‐way analysis of variance with a Tukey 

post hoc test for multiple comparisons; columns with different letters differ significantly (p< 

0.05). RFU = relative fluorescence unit. 
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photosynthetic inhibition, cells are likely to produce more chlorophyll to maximize light 

harvesting.43 

Enhanced Dark-Field Hyperspectral Imaging 

Enhanced dark-field microscopy coupled with hyperspectral imaging was employed to visualize 

the interactions of LCO particles with the algal cells. LCO deposits, visible as white pockets of 

scattered light, can be seen internalized within the LCO-treated cells (Figure 8f). These LCO 

deposits are only visible on the same Z-focal plane as the cells (i.e., not above or below) and are 

not seen on their outer perimeter, thus suggesting that LCO actually enters the cells rather than just 

adhering to the outer surface. No LCO deposits were identified within the control cells (Figure 

8c). A spectral reference library for LCO was constructed using a samples of LCO particles in 

algae media and samples of LCO-treated algae (Figure 8a). The spectral angle mapping algorithm 

identified pixels, mapped in red, that matched the LCO spectra, thus verifying the presence of LCO 

deposits in the LCO-treated algal cells (Figure 8g). As expected, these spectra were not identified 

in the control cells, and therefore no mappings were generated (Figure 8d). The mechanism of 

internalization is unclear, however the vesicular shape of the tightly packed LCO deposits (Figure 

8f) may suggest uptake through endocytosis. Yan et al., 2021 reported that the uptake of AIE 

functionalized Ag nanoparticles, with a similar zeta-potential and aggregational behavior to LCO, 

were mediated through clathrin-dependent endocytosis. 

Each of the parameters tested in this chapter are metabolically related to one another and can 

influence larger ecosystem outcomes. For example, the amount of net carbon biomass produced 

by individual cells will determine how much energy is available to sustain their routine cell 

maintenance. And should the cells become energy deficient, they may not be able to sustain energy 

intensive processes like cell division, thus causing them to enter a state of quiescence. Cells in this 
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Figure 8: Enhanced dark-field hyperspectral imaging of LCO-treated cells. (a.) Reference 

lithiated cobalt oxide (LCO) spectra library. Spectra generated by (b.) a control cell and (c.) an 

internalized LCO deposit from a cell exposed to 1 µgml−1 LCO. Representative darkfield 

micrograph of (d.) a control cell and (e.) a cell exposed to 1 µgml−1 LCO; the red arrow points 

to an internalized LCO deposit. Representation of the spectral angle mapping algorithm used 

to identify pixels matching the LCO spectral library in (f.) a control cell and (g.) a cell exposed 

to 1 µgml−1 LCO; pixels matching the LCO spectral library are mapped in red. 
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sort of state could foster larger biovolumes as they would’ve lost the ability to proliferate, and to 

accumulate neutral lipids like TAG due to a shift in their central carbon metabolism. Ultimately, 

this would also lead to a decline in phytoplankton communities. And then over time, with a 

reduction in the amount of carbon biomass being produced per cell, and with diminished 

phytoplankton availability in general, this could significantly alter ecosystem energy budgets.   

In this chapter, as hypothesized, facets of algal physiology related to growth and energy production 

were negatively impacted in response to LCO. Negative impacts to growth were exhibited by a 

significant increase in growth inhibition and biovolume, which indicates an increase in cell cycle 

disturbances. Negative impacts to energy production were exhibited by a significant decrease in 

the net production of carbon biomass, as well as a significant overproduction of TAG, which 

indicates interference with CO2 assimilation chemistry and/or carbon partitioning. Relative 

chlorophyll content, however, was significantly increased. While increased chlorophyll content 

could be considered an enhancement to photosynthesis, as argued by Zhang et al., 2021, this may 

be more indicative of a compensatory action to increase light harvesting in this case as the amount 

of carbon biomass was still negatively impacted. Interestingly, though, cells that were treated with 

dissolved Li+/Co2+ ion controls were not significantly impact in any of the endpoints tested, which  

suggests that LCO phytotoxicity is mediated through nano-specific mechanisms rather than ion-

specific. The reason for this is unclear, especially since engineered nanoparticles tend to behave 

unpredictably in complex biological media. However, with its unique physiochemical properties 

and high surface area-to-volume ratio, it’s possible that LCO could obtain certain surface 

modifications/protein coronas in its nano form that make it interact more favorably with cells in 

comparison to its ionic form.46  
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These responses clearly demonstrate the adverse impacts of LCO on the physiology of R. 

subcapitata and suggest a likely disruption of key metabolic processes relating to cell growth and 

energy production/metabolism. One possible mechanism that may initiate the observed 

toxicological responses is the likely ability of LCO to participate in redox reactions, especially 

with iron containing proteins, as it was determined in C. riparius.11 This could also be possible for 

algae as cellular uptake of LCO nanoparticles was observed with enhanced dark-field 

hyperspectral imaging.  

In study by Niemuth et al., 2019 found Chironomus riparius exposed to LCO had a  significantly 

decrease in the function of the iron-containing protein, hemoglobin. This was supported both 

quantitatively from green absorbance and qualitatively from the loss of their deep red color to a 

pale-yellow color (their natural red color is due to the presence of heme proteins). This is 

concerning as proteins with heme and iron-sulfur centers are important for the transfer of electrons 

in many essential life processes like respiration, and in the case of algae, photosynthesis as well.47 

One such protein with an iron-sulfur center involved in the process of photosynthesis is Ferredoxin. 

In a study done by Isabel and José Moura, they were able to use electron paramagnetic resonance 

to prove that in the Ferredoxin II protein from Desulfovibrio gigas, cobalt was able to be 

incorporated into the vacant site of the iron-sulfur cluster, thus reducing it to a CoFe3S4 cluster.48 

It’s possible that similar phenomena could be happening with the cobalt from the LCO, in which 

case causing a conformational change in those iron-sulfur proteins that change their overall 

chemistry. This could be especially harmful to the function of the iron-sulfur proteins involved in 

respiration and photosynthesis as they must remain in an oxidized state to be able to accept and 

transfer electrons in their respective electron transport chains, which is needed to produce ATP, as 

well as NADPH in photosynthesis. Since life is dependent on the movement of electrons, a short 
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in this biochemical circuit could reduce the efficiency of the cell’s ability to conduct life processes 

like photosynthesis, which would help explain the decreased net production of carbon biomass, as 

well as the increase in growth inhibition for LCO-treated cells.  

Heavy metal contaminants, in general, have been seen to inhibit primary productivity in aquatic 

environments.49 However, cobalt itself has been reported to decrease the growth of green algae at 

concentrations as low as 0.6 µg·mL−1.50,51,52 Additionally, cobalt has also been reported to decrease 

the amount of O2 evolution in green algae at certain concentrations, and has been seen to directly 

target PSII, meaning that cobalt can and does interfere with electron transport and photosynthetic 

efficiency.51,52 This further supports the idea that the cobalt from LCO could be an initiator for 

adverse outcomes observed in eukaryotic organisms that have been exposed to this type of 

nanomaterial.10 

Other 2D-nanomaterials like graphene-oxide, have been reported to have different, physical, 

mechanisms of toxicity relating to membrane damage, nutrient depletion, and by covering the 

surface of, and therefore shading, the cell.40 In terms of membrane damage and cell surface 

covering, these occurrences were proven to not be the case for LCO through microscopic 

observation. Fluorescence imaging showed a discrepancy between the morphology of LCO-treated 

cells and membrane damaged positive control cells, thus suggesting that LCO does not cause 

membrane damage. Additionally, enhanced dark-field hyperspectral imaging revealed that while 

cells were internalizing LCO nanoparticles, they were not simply adhering to/covering the surface 

of the cell.  This makes sense as the surface charge of LCO and cell membranes are electrostatically 

incompatible. For example, Kim et al., 2022 reported with QCM-D that negativley charged 

nanodots do not interact/adhere to negatively charged plant bio-surfaces due to electrostatic 

incompatibilities. But in terms of nutrient depletion, LCO has been reported to adsorb nutrients 
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like phosphate,20 which could, in theory, partially explain some of the disturbances. However, in 

cases of nutrient depletion, algae also typically undergo chlorosis as they are related to one 

another.54 Not only was this not the case for LCO-treated cells, but the opposite trend was actually 

observed, thus suggesting that nutrient depletion is not a major factor for LCO-induced toxicity in 

algae.  

Overall, this chapter demonstrates that LCO significantly alters different aspects of R. subcapitata 

physiology even at lower, sub lethal, concentrations, and therefore may also likely pose a risk to 

other types of phytoplankton as well. Most concerning is LCO’s impact to algal growth and net 

primary productivity, which could have several ecologically related implications. Primarily, 

altering the efficiency of phytoplankton productivity could impact the sustainability of freshwater 

ecosystems. Thus, widespread contamination of LCO to freshwater ecosystems would likely limit 

the amount of nutrients and chemical energy needed to support all life in those systems by 

decreasing the density of phytoplankton communities and their associated productivity at the 

cellular level.  
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Chapter 2.  

Using a novel multiplexed algal cytological imaging (MACI) assay and machine learning to 

characterize complex phenotypes in plant-type organisms. 

2.1. Abstract 

High-throughput phenotypic profiling assays, popular for their ability to characterize alternations 

in single-cell morphological feature data, have been useful in recent years at predicting cellular 

targets and mechanisms of action (MoAs) for different chemicals and novel drugs. However, this 

approach has not been extensively used in environmental toxicology due to the lack of studies and 

established methods for performing this kind of assay in environmentally relevant species. In this 

chapter, methods were developed for a multiplexed cytological imaging (MACI) assay, based on 

the subcellular structures that are unique to microalgae, like Raphidocelis subcapitata. Several 

different herbicides and antibiotics with unique MoAs were exposed to R. subcapitata cells and 

MACI was used to characterize cellular impacts by measuring subtle changes in their 

morphological features, including metrics of area, shape, quantity, fluorescence intensity, and 

granularity of individual subcellular components. This study demonstrates that MACI offers a 

quick and effective framework for characterizing complex phenotypic responses to environmental 

chemicals that can be used for determining their MoAs and identifying their cellular targets in 

plant-type organisms.  

 

2.2. Introduction 

With increasing quantities and classes of contaminants, including engineered nanomaterials, 

introduced into commerce and therefore found in the environment, there is a call for more rapid 
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techniques for evaluating their potential hazards in a quick and efficient manner. Specifically, there 

is a need for more nontargeted, high-throughput profiling assays that can characterize biological 

activity, identify potency thresholds, and predict mechanisms of action (MoAs).55 In recent years, 

morphological/phenotypic profiling has been shown to provide rich sources of data for 

interrogating biochemical perturbations as the morphology of a cell is extremely sensitive and 

strongly influenced by factors such as metabolism, genetic state, and environmental cues.56 

Additionally, it has been shown that specific biological perturbations deliver specific phenotypic 

profiles, and therefore any subset of morphological features that deviate from that of healthy cells 

can serve as a fingerprint to characterize biological activity.57 Furthermore, when comparing the 

fingerprint of cells treated with novel compounds to that of cells treated with compounds with 

previously established MoAs, the probable MoA of these novel compounds can then be 

identified.58 

Common high-throughput phenotypic profiling assays, like the Cell Painting Assay59, involve the 

use of multiplexed fluorescence cytochemistry to visualize multiple subcellular structures within 

a cell and high-content imaging to take hundreds of snapshots of their morphology in an automated 

and consistent manner. These image data can then be converted into quantitative data by using 

bioimage analysis to extract hundreds of morphological features at the resolution of a single cell. 

These morphological features include metrics related to cell size, shape, fluorescence intensity, 

texture, granularity, and even spatial relationships between organelles which all represent subtle 

unbiased descriptors of the phenotypic state. Currently, high-throughput phenotypic profiling 

assays are used most often in the context of drug discovery and disease models. For example, 

Hughes et al. (2020) used Cell Painting to screen 19,555 compounds and profile the phenotypic 

response across several esophageal adenocarcinoma cell lines. In doing so, this study successfully 
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identified novel drug targets, MoAs, and pharmacological classes that targeted that specific type 

of cancer. However, this kind of assay may also have applications in other fields like eco- and 

environmental toxicology.  

Recently, the Unites States Environmental Protection Agency (USEPA) has begun to use high-

throughput phenotypic profiling for the screening and hazard identification of environmental 

chemicals, however, only human-derived cell models are still largely being used for this 

purpose.57,61 While human-derived cell models provide the advantage of proven characterization 

and predictive power, they may not accurately represent phenotypic responses in environmentally 

relevant species, like plants and algae, whose cells are biologically distinct from animal cells. For 

example, DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea), or Diuron, has been reported to 

cause DNA damage in certain types of human cancer cell lines62 but  in plants and algae targets 

photosystem II (PSII) proteins.63 Furthermore, human cell lines may not accurately represent 

environmentally safe exposure levels for certain compounds, like ZnO nanoparticles, that are 

relatively benign to humans,64 but acutely toxic to algal species at low concentrations.65 Thus, cell 

models which are more environmentally relevant should be considered. In particular, Raphidocelis 

subcapitata, a prevalent type of freshwater green algae and an environmentally relevant organism, 

is a good candidate model to use for high-throughput phenotypic profiling as it is a USEPA 

established model for environmental toxicology14 and an important bioindicator species for 

assessing/monitoring water quality.66 Additionally, its strictly unicellular nature makes it 

beneficial for image-based assays in terms of downstream bioimage segmentation, which may be 

more difficult to do for other common microalgae like Chlamydomonas spp., Chlorella spp., and 

Scenedesmus spp. that tend to form colonies or coenobia under stress.67,68  
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Here we describe a multiplexed algal cytological imaging (MACI) assay for the phenotypic 

profiling of environmental chemicals, based on three subcellular structures that are important for 

the architecture of R. subcapitata cells: the chloroplast, nuclei, and lipid droplets. Each of these 

subcellular structures represent a different aspect of algal physiology and can be used to 

characterize complex phenotypes and predict phytotoxic mechanisms of action. For example, the 

chloroplast is an important subcellular compartment for conducting photosynthesis, and features 

related to chloroplast fluorescence can be used to describe relative levels of chlorophyll content 

between treatments, and can even be used to calculate the quantum yield of PSII.69 Nuclei play a 

crucial role in regulating gene expression and facilitating cellular division, and features related to 

the number on nuclei per cell, as well as the relative amount of DNA content per nucleus, can be 

used to describe instances of cell cycle disruption/arrest.67,70 And lastly, lipid droplets, which are 

a collection of neutral lipids, often triacylglycerol (TAG), and serve as an alternative form of 

energy storage to starch, are often indicators of cell stress when accumulated in large quantities.39 

As a proof of concept, this study aims to assess the ability of the MACI assay to characterize and 

differentiate between cells which were exposed to various compounds with unique MoAs. The 

performance of this assay was evaluated by testing a small reference set of herbicides and 

antibiotics, which have been previously annotated, and preforming a hierarchical clustering 

analysis of their phenotypic fingerprints. Additionally, a convolutional neural network (CNN) 

machine learning model was trained off of a small subset of cell image data in order to predict 

compound-specific perturbances. We propose that the MACI assay is a quick and effective way to 

characterize complex phenotypes and predict interactions with environmentally relevant chemicals 

in plant-type species. 
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2.3. Materials and Methods 

Algal Cell Culture. 

A stock culture of R. subcapitata, inoculated at 1×105 Cells·mL-1, was grown in a 1 L Erlenmeyer 

flask and cultured in OECD 201 media 21. Cells were illuminated continuously with a full spectrum 

T8 light bulb at a photon flux of 70 µE·m-2·s-1. The stock culture was mixed with an orbital shaker 

at a speed of 111 rpm. 

Exposure Setup. 

Eight different reference chemicals with unique established MoAs (described in Table 1),  were 

exposed to cells for 24 hours at either 0 (control), 0.1, 1, or 10 µM.  

Table 1: Reference Chemicals with Known MoAs 

Chemical Mechanism of Action Abbreviation References 

Aclonifen Carotenoid Biosynthesis Inhibition CBI 71 

Carfentrazone Membrane Disruption MD 41 

DCMU PSII Photochemistry Inhibition PPI 72 

Glufosinate N2 Metabolism Inhibition NMI 73 

H2O2 Oxidative Stress OS 74 

Metolachlor Very-Long-Chain Fatty Acid Synthesis Inhibition VLCFASI 24 

MSMA OP Uncoupler/e- Transport Inhibition OPU/e-TI 75 

Zeocin DNA Damage DD 76 

 

Each chemical was solubilized in either OECD 201 medium or 100% EtOH depending on its 

polarity, and sonicated for 30 minutes to prepare a primary 1000 µM stock. A secondary 100 µM 

stock solution was then prepared for each chemical by preforming a serial dilution from their 

respective primary stock solution into OECD 201 media. While cells were growing exponentially, 

900 µL aliquots of algal stock culture were seeded into individual 1.5 mL microcentrifuge tubes. 
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For each treatment, done in quintuplicate, the respective secondary stock solution and/or OECD 

201 medium was added to each 900 µL cell suspension at a final volume of 1 mL. Resulting EtOH 

content in final exposure samples (≤ 1%) had a negligible effect on cell morphology 

(Supplementary Figure S4). The samples were then placed under full spectrum illumination, with 

tube lids open, at a photon flux of 70 µE·m−2 ·s−1 for 24 hours. 24 hours was chosen for the 

exposure duration as this timepoint has been shown to better delineate initial phenotypic impacts,61 

however, longer timepoints can also be chosen depending on the purpose of the exposure. 

Multiplexed Algal Cytological Imaging (MACI) Assay. 

At the conclusion of the exposure, 905 µL aliquots from each sample were transferred to sterile 

1.5 mL microcentrifuge tubes. Commercially available fluorescent probes and glutaraldehyde 

were used to stain and fix multiple subcellular compartments of the algal cells. The chloroplast is 

auto fluorescent due to the presence of chlorophyll, and thus did not require a fluorescent probe, 

but NucBlue (Thermo Fisher, R37605) was used to label nuclei and BODIPY 505/515 (Thermo 

Fisher, D3921) was used to stain neutral lipid droplets, as seen in Figure 9. Reagent quantities, 

listed in Table 2, were added to each cell suspension at a final reaction volume of 1 mL.  

 

 

Figure 9: The MACI assay as seen in a Raphidocelis subcapitata cell. Representative 

fluorescence micrograph where each column represents a different fluorescently labeled 

subcellular compartment visualized by the MACI assay.  
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Table 2: Reagent Quantities for 1 mL Reactions 

Reaction 

Component Quantity 

Final 

Concentration 

Cell Suspension 905 µL N/A 

NucBlue 2 Drops (~84 µL) N/A 

BODIPY 505/515 1 µL 5 µM 

Glutaraldehyde 10 µL 0.025% - 0.25% 

Total 1 mL N/A 

 

After adding reagents, all reactions should be incubated for at least 1 hour, or overnight, at 4 °C to 

minimize enzymatic degradation and maintain the integrity of the subcellular structures. Cells can 

also be stored at 4 °C for as long as one week when fixed with higher concentrations of 

glutaraldehyde (~0.25%) for maximum recovery (Shapiro et al., 2001). Alternatively, for live cell 

imaging, all reagents, excluding glutaraldehyde, should be added, and reactions should be 

incubated in the dark at room temperature for 15-30 minutes. After incubating reactions, cells were 

centrifuged at 4000 x g for 5 min, washed 2x with 1X Phosphate Buffered Saline (PBS), and 

resuspended in PBS. Cells from each sample were loaded into a well of a glass bottom 384 well 

plate (Cellvis, P384W-1.5H-N) at a seeding density of ~2 ×103 cells·mm−2 for optimal distribution 

of cells across the well surface. After loading cells, the well plate was then spun gently at 600RPM 

for 1 minute to concentrate cells at the bottom of the well. Alternatively, loaded well plates can 

also be set aside for 30-60 minutes at room temperature to allow cells to settle before imaging. 

Images were acquired at 9 sites per well with an ImageXpress Micro XLS High-Content Screening 

System with a 60X Plan Fluor 0.85 NA air immersion objective (Molecular Devices, 1-6300-

0414), using the fluorescent channels described in Table 3.  
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Table 3: MACI Fluorescence Cytochemistry parameters 

Organelle Stain Channel Excitation (nm) Emission (nm) 

Chloroplast Auto Fluorescent Cy5 628/40 692/40 

Lipid Droplets BODIPY 505/515 GFP 472/30 520/35 

Nuclei NucBlue DAPI 377/50 447/60 

 

To enhance image contrast and resolution, the digital confocal feature was used during image 

acquisition. For representative cell images with higher resolution, some images were also acquired 

with a 100X CFI L PLAN EPI CC 0.85 NA air immersion objective (Molecular Devices, 1-6300-

0419).  

Bioimage Analysis. 

After acquiring images, any image analysis software can be used to extract quantitative data from 

the images. In this study, CellProfiler,29 an open-source modular bioimage analysis software, was 

used for image pre-processing, object segmentation, and morphological feature extraction at the 

resolution of individual cells. The pipeline identifies the chloroplast from the Cy5 channel, which 

spans most of the cell area of R. subcapitata, to help aid a segmentation algorithm in identifying 

individual cells, or regions of interest (ROI). These ROI are then used as a mask to identify which 

subcellular structures belong to which cell. This pipeline extracts 450 unique morphological 

features per cell related to area, shape, intensity, and granularity of each subcellular structure, 

which is then exported to a local SQLite database file. Data tables were extracted from the SQLite 

database file using the RSQLite package in R.78  
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Phenotypic Profiling - Fingerprint Analysis. 

Phenotypic response data was analyzed using a general phenotypic profiling workflow (Figure 

10). Data was firstly processed by aggregating single-cell morphological feature measurements to 

per-image and then per-well values, which was done by taking the cell and image means, 

respectively. Secondly, well data from each compound and dose were then normalized to the non-

treated cell control by computing a Z-score: 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑥−µ𝑐𝑡𝑟𝑙

𝜎𝑐𝑡𝑟𝑙
……………………………..………(5) 

where 𝑥 is the feature value, µ𝑐𝑡𝑟𝑙 is the mean feature value of the control, and 𝜎𝑐𝑡𝑟𝑙 is the standard 

deviation of the feature value of the control. In order to verify whether each reference compound 

elicited a change to the entire phenotypic profile of treated cells and to characterize compound-

specific phenotypic changes, a partial least squares-discriminant analysis (PLS-DA) was 

 

Figure 10: Phenotypic profiling workflow. General overview of the steps taken to conduct 

phenotypic profiling using image-based data. After perturbing and staining the algae cells, they 

are seeded into a 384-glass bottom well plate for high-content imaging. A CellProfiler pipeline 

(or a pipeline from any image analysis software) is used to convert the image data into 

quantitative data at the resolution of a single cell. Phenotypic fingerprints are then generated by 

calculating z-scores, and analyzed by reducing data dimensionality and/or preforming a 

clustering analysis. 
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performed  in R using the mixOmics package.79 Before feeding phenotypic response data into the 

PLS-DA models, an ANOVA was performed across all features for each refence chemical to 

remove any non-informative features with little variance (p-values > 0.05). Lastly, factor analysis 

was used to further reduce the dimensionality of phenotypic data vectors, and the fingerprints were 

subsequently compared to one another using hierarchical clustering based on Pearson correlation 

in R.  

Phenotypic Profiling - Convolutional Neural Networks. 

In addition to fingerprint analysis, a CNN was also trained on a small subset of reference 

compound treated cells (~10.5%) using the classifier module on CellProfiler Analyst (Ver 3.0).80 

A separate bin was created for each reference chemical and the non-treated cell control in the 

classifier module, where around 1000 randomly fetched cells from each treatment were placed in 

each respective bin (Figure 12). After training the CNN, it was used to score the entire experiment 

by classifying individual cells into predicted mechanistic classes, and computing enrichment 

scores for each sample as the logit area under the receiver operating characteristic curve. An 

ANOVA and a Tukey post-hoc test was used to evaluate the significance of predicted mechanistic 

class enrichments for each treatment. 

Statistical Analysis. 

All statistical analyses were performed using R Studio 30,31. A Shapiro-Wilk test was used to verify 

normal distribution and a One-Way ANOVA was used to compare variance among group means, 

while a Tukey post-hoc test was used for multiple comparisons. In each analysis, significant 

differences were determined with a 95% confidence interval. 
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2.4. Results and Discussion 

Different data-analysis strategies can be implemented in the downstream analysis of image-based 

phenotypic profiling.  

Typically, the main goal for interpreting phenotypic profiles is to understand the structure of data 

relationships, which can be done through the visualization, clustering, and classification of high-

dimensional data.81 Several methods exist for the visualization of high-dimensional data, with 

principal component analysis (PCA) as one of the most popular methods. PCA is an unsupervised 

learning and dimensionality reduction analysis that maximizes the variance of projections onto 

orthogonal components, which can be useful for identifying similarities and patterns in datasets.79 

Another useful method for visualizing high-dimensional data is the partial least squares-

discriminant analysis (PLS-DA), which, unlike the PCA, is a supervised learning and 

dimensionality reduction analysis that maximizes the covariance between predictor variables and 

class labels.82 PLS-DA can be useful in the goal of characterizing phenotypic responses with the 

added advantage of ranking predictor variable importance in projections. Hierarchical clustering 

is another useful analysis that reveals patterns in the data which is computed through a similarity 

matrix containing similarity values between each sample.81 Several popular similarity 

measurements can be used for clustering, such as cosine similarity or Euclidean distance, however 

many labs will perform clustering analyses based on Pearson correlation coefficients as they allow 

for the clustering of pairs, which can be helpful if some compounds elicit the same morphological 

changes, but to different degrees.58 These clustering analyses can be useful for separating complex 

phenotypes and inferring like MoA’s through grouping like responses together. Lastly, 

classification analyses can also be useful for identifying the MoA of novel chemicals by  

transferring class labels from reference data to unknown data points.81 Recent advancements have 
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been made in image-based classification with the use of machine-learning algorithms, like 

convolutional neural networks (CNN). CNNs are powerful as they can predict MoA of unknown 

chemicals or detect which known chemicals were exposed to cells through a concatenation of 

layers that are trained to reweight and transform data from raw images.83 

Complex changes in phenotypes of cells upon chemical exposure can be defined using MACI. 

After perturbing cells with respective reference chemicals and conducting MACI, a CellProfiler 

pipeline was used to convert the high-content image data into quantitative data. From these data 

450 unique, unbiased, morphological features were extracted at the resolution of a single cell, 

which were used to generate phenotypic fingerprints of molecular interaction. In order to verify 

whether each reference chemical elicited a significant change to cell morphology, we characterized 

the cellular responses to each reference chemical, individually, by comparing changes in their 

complex phenotypic profiles with increasing concentration. This was done with a PLS-DA, which 

is a supervised machine learning algorithm that projects multidimensional datasets onto two-

dimensional planes in order to predict responses between groups. Based on the PLS-DA response 

plots (Figure 11), each chemical treatment displays a significant separation between response 

groups, thereby indicating that each reference chemical does elicit a significant, and measurable, 

change to cell morphology after 24 hours. Variable importance in projection (VIP) scores were 

also extracted from each PLS-DA response plot (Supplementary Table S2). VIP scores indicate 

the features, or predictors, which are most influential in driving the separation between response 

groups and can, therefore, help characterize groups of phenotypic markers that are unique to 

chemicals with specific MoAs. In this case, predictors with VIP scores above 1.0 were considered 

most important. 
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Based on the top 10 VIP scores for each PLS-DA model, response groups of each reference 

chemical were delineated with a distinct combination of phenotypic markers, thus indicating that 

MACI can be used to characterize compound-specific interactions. For example, exposure to 

Aclonifen, a carotenoid biosynthesis inhibitor,71 was most distinguishable by changes in nuclear 

shape features while exposure to Metolachlor, a very-long-chain fatty acid synthesis inhibitor,24 

was most distinguishable by changes in features related to lipid droplet granularity. There were 

also some phenotypic markers that overlapped for certain chemicals. For example, cells treated 

with H2O2 and Zeocin, a DNA damaging agent,76 both garnered the same top three chloroplast 



42 

 

 

Figure 11: Phenotypic responses to reference chemicals. A partial least squares-discriminant 

analysis (PLS-DA) response plot for each reference chemical graphically describes the change 

across complex morphological feature data with increasing concentration; ellipses represent 

95% confidence intervals and p-values represent ANOVA statistics across the 1st latent variable 

between response groups. 
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normalized moment features. However, the VIP ranking order of these phenotypic markers, as 

well as the overall combination of markers, were still distinct between chemical profiles. 

Therefore, when using phenotypic profiling for predicting chemical MoAs, the entire profile, 

rather than the individual features, should be considered. 

Impacts of chemicals can be separated using MACI through hierarchically clustering phenotypic 

fingerprints. 

The ability of MACI to delineate subtle changes in complex phenotypes of chemical-specific 

perturbance was evaluated, firstly, by comparing the phenotypic fingerprints of each chemical 

treatment to one another. For this purpose, the 10 µM data was used as this was the concentration 

that caused the largest change in morphology, compared to the control, for most of the reference 

chemicals after 24 hours. After constructing the phenotypic fingerprints, an ANOVA was used to 

identify individual features that carry little information, which were removed from the analysis 

given a  p-value > 0.05. Additionally, factor analysis was used to further reduce the dimensionality 

of the phenotypic data vectors down to 7 eigen features/factors in order to minimize redundant 

measurements adding noise while still preserving the variance within the dataset, as suggested by 

Young et al., 2008. The optimal number of factors was determined with a non-graphical Cattell’s 

scree test. 

The phenotypic fingerprints across all replicates for each reference chemical were hierarchically 

clustered based on their Pearson correlation coefficient in relation to one another (Figure 12). The 

hierarchical clustering analysis was able to identify 8 separate clusters (Figure 12j.). All of the 

clusters grouped individual replicates of the same chemical treatment together, thus indicating high 

correlation across replicates and reproducibility in cell-chemical interactions. However, some 

treatments were slightly less robust than others. For example, samples treated with Glufosinate 
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and Aclonifen had less correlation between replicates within their respective clusters in 

comparison to other chemical treatments, however, their overall correlations were still 

considerably high. Interestingly, some correlations between clusters could also been seen. For 

example, Carfentrazone and H2O2 clusters exhibited fairly high similarity to one another. This is 

not all that surprising, though, due to the similarity in the way each of these chemicals interact 

with algal cells and the stark visual similarities between their MACI labeling patterns (Figure 12d. 

and 12g., respectively). Additionally, DCMU and MSMA clusters, whose MoAs are both related 

to electron transport inhibition,72,75 bore some slight similarity to one another. The Glufosinate and 

Aclonifen clusters were also slightly similar to one another, which is interesting as their MoAs 

aren’t associated with one another, but may indicate some underlying similarities either in the way 

 

Figure 12: Phenotypic responses of reference chemicals compared to one another. (a.-i.) MACI 

labeling patterns in nine different treatment groups; (a.) Healthy Cells, (b.) Zeocin, (c.) 

Metolachlor, (d.) Carfentrazone, (e.) MSMA, (f.) Glufosinate, (g.) H2O2, (h.) DCMU, and (i.) 

Aclonifen treated cells. (j) Pearson correlation matrix across unique phenotypic responses. 

Chemical-treated samples are hierarchically clustered based on their Pearson coefficient in 

relation to the other chemical-treated samples; dendrograms and boxes represent individual 

clusters. 

 



45 

 

they interact with algal cells and/or in their initial downstream impacts. However, despite all of 

these intertreatment similarities, MACI was still sensitive to the subtle differences in their 

phenotypic responses, thus suggesting that this assay can be used to successfully predict 

compound-specific perturbations and discriminate between chemicals with unique MoAs. 

Chemical MoAs can be identified based on phenotypic response using convolutional neural 

networks. 

In addition to hierarchical clustering analysis, we also took a deep learning approach to analyze 

complex phenotypes and delineate chemicals by their MoA, using convolutional neural networks. 

CNNs are a type of artificial neural network, which are most notable for the way they process 

image data similarly to the visual cortex of the human brain.85 

In CellProfiler Analyst, a CNN was trained on a small subset of randomly fetched cells from each 

treatment (~10.5% of cells from the entire experiment) using 50x50 neurons per layer. Based on 

the confusion matrix (Figure 13), the CNN model had some difficulty distinguishing certain 

mechanistic classes from one another, such as cells with membrane disruption vs DNA damage or 

cells with inhibited N2 metabolism vs inhibited very-long-chain fatty acid synthesis. However, the 

CNN model was still able to predict the correct mechanistic class across training cells with 

moderately good classification at an accuracy of 75.07%. Once trained, the CNN model was used 

to score each cell in the experiment, based on its individual phenotype, with a predicted 

mechanistic class, and then calculate enrichment scores for each sample. 
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Despite some confusion in the discrimination of mechanistic classes, the CNN model was still able 

to classify each treatment with the correct MoA. This is visualized in the heatmap of enrichment 

scores (Figure 14) where each treatment was significantly enriched in the appropriate mechanistic 

class. Based on these results, the deep learning approach reinforced the ability of MACI to separate 

chemicals by MoA. However, both deep learning and hierarchical clustering analyses proved to 

be robust and sensitive to subtle changes in complex phenotypes.  

 

Figure 13: Convolutional neural network construction. A small subset of randomly fetched 

cells in each treatment are fed into a convolutional neural network model. Based on the training 

data, this CNN model yields a classification accuracy of 75.07% at correctly classifying cells 

by their true mechanistic class. 
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Complex phenotypic profiles are more efficient at predicting mechanisms of action rather than 

single interpretable features. 

A majority of the morphological features used for phenotypic profiling are not interpretable on 

their own. Zernike moments, for example, measure specific aspects of an object’s radial 

distribution,86 and when multiple Zernike moments across multiple orders are combined together, 

 

Figure 14: Phenotypic enrichment score heatmap. The CNN model classifies each cell across 

the entire experiment with a predicted mechanistic class based on its phenotype. Enrichment 

scores for each mechanistic class are calculated in each sample. Heatmap values represent 

average treatment enrichment scores; white colored numbers represent significantly enriched 

mechanistic classes for respective treatments. 
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they become powerful mathematical descriptors of that object’s shape. Although they can be useful 

for reconstructing patterns and for detecting subtle changes in cell shape,87 individual Zernike 

moments, by themselves, do not hold much intrinsic nor biological meaning. However, there are 

a select few of morphological features that do hold some biological relevance, such as those related 

to the intensity and quantity of fluorescence signals, which we can use to elucidate interesting 

biological phenomena. For example, measurements of integrated intensity, which is the sum of 

pixel intensity values over a ROI,88 directly correlate to the number fluorophores in that ROI, and 

thus directly or indirectly measure relative levels of target biomolecular content. This kind of 

measurement has been used for analyzing endpoints related to changes in protein content89 and for 

determining cell cycle stages based on the relative abundance of DNA content.90,91 Another useful 

metric is quantifying the number of fluorescent objects within a single cell. For example, 

measuring the number of intracellular vesicles has been used to study endpoints related to the 

cellular uptake of micro/nano plastic particles92 and for analyzing the intracellular trafficking of 

certain proteins.93 In regard to R. subcapitata, three features that have relevance to algal physiology 

are the number of nuclei/cell, and the chloroplast and lipid droplet integrated intensities, which are 

related to chlorophyll and TAG content, respectively (Supplementary Table S3). 

Often the phenotypic measurements that scientists are most interested in analyzing, such as the 

above-mentioned features, are not always the best predictors for characterizing the MoA of 

different compounds due to their lack of specificity. For example, 4 out of 8 treatments 

significantly increased chlorophyll content, while 4 out of 8 treatments also significantly increased 

the average number of nuclei/cell, in some cases to similar magnitudes while following similar 

trends to one another. TAG content was only significantly increased in Metolachlor treated cells, 

but most treatments did not elicit a significant change in TAG content. Furthermore, when using 
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these three features in a hierarchical clustering analysis, based on Pearson correlation, the analysis 

was not sensitive enough to discriminate between chemical-specific perturbance (Supplementary 

Figure S5), as compared to the previous hierarchal clustering analysis using the entire profile 

(Figure 11). Ultimately, when conducting high-content phenotypic profiling, it is advised to 

evaluate changes in the entire profile, rather than changes in individual or select morphological 

features alone, as they do not hold enough information that can directly be linked to a specific 

MoA58. 

Applications of MACI and its advantages. 

As the use of high-throughput phenotypic profiling assays become more popular, the MACI assay, 

in particular, could have several applications in different areas of research. Firstly, in the context 

of ecotoxicological research, MACI could be used to study the potential impacts of emerging 

contaminants and environmental chemicals on aquatic ecosystems by characterizing their cellular 

targets and identifying their phytotoxic MoAs. This could be especially useful if used alongside 

the Cell Painting assay with other environmentally relevant models like drosophila and rainbow 

trout gill cell lines to make cross-species comparisons that span multiple trophic levels. 

Additionally, in the context of environmental risk assessment, MACI could also be used to help 

prioritize which emerging contaminants and environmental chemicals require further evaluation. 

Secondly, MACI could be used as an in vitro model to drive developments in herbicide and 

agrochemical discovery. Green microalgae cells, like R. subcapitata, bear several similarities to 

the mesophyll cells of higher order terrestrial plants in terms of the cellular components/ 

constituents they contain, the environmental processes they carry out, and the evolutionarily 

conserved pathways and molecules they utilize.94,95 Furthermore, since many herbicides and 

agrochemicals are delivered to plants via foliar application, MACI could be used for identifying 
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cellular targets and determining MoAs of novel herbicides and agrochemicals. However, this 

technique may not be as useful for soil-based herbicides and agrochemicals.  

Currently several high-throughput screening assays exist in addition to high-throughput 

phenotypic profiling, such as high-throughput transcriptomics and high-throughput proteomics. 

While both of these assays provide a rich molecular level understanding of chemical interactions, 

they can be extremely time-consuming, costly, and computationally expensive. In comparison, 

MACI, as an image-based profiling assay, provides the advantage of low cost and high speed, 

while still retaining a capacity for in-depth characterization and classification.96,97 Additionally, 

assays which measure the differential expression of transcripts and proteins rely heavily on well-

established annotations for those transcripts and proteins. This is an issue for most environmentally 

relevant organisms, like R. subcapitata, which have not been annotated to the extent with which 

human disease models have.98  However, another advantage of MACI, and other image-based 

profiling assays, is that they only require comparisons to a library of reference chemicals with 

established MoAs in order to derive meaning from the phenotypic response of novel or unstudied 

chemicals58. Lastly, MACI provides the advantage of greater experimental precision as each 

individual cell, of which there can be up to 100,000’s-1,000,000’s in any given experiment, serves 

as an independent, technical measurement, thereby, also limiting the impact of measurement 

error.99 Overall, based on the results described in this study, and the inherent advantages of this 

assay, MACI provides a quick and effective framework for characterizing complex phenotypes 

and compound-specific interactions which is suitable for predicting chemical MoAs in plant-type 

organisms. 
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Chapter 3.  

Predicting the phytotoxic mechanism of action of LiCoO2 nanosheets using a novel 

multiplexed algal cytological imaging (MACI) assay and machine learning. 

3.1. Abstract 

Currently, there is a lack of knowledge of how complex metal oxide nanomaterials, like LiCoO2 

(LCO) nanosheets, interact with eukaryotic green algae. Previously, LCO was reported to cause a 

number of physiological impacts to R. subcapitata including endpoints related to growth, 

reproduction, pigment & lipid biosynthesis, and carbon biomass assimilation. Furthermore, LCO 

was proven to physically enter the cells, thus indicating the possibility for it to directly interact 

with key subcellular components. However, the mechanisms through which LCO interacts with 

these key subcellular components is still unknown. This chapter assesses the interactions of LCO 

at the biointerface of R. subcapitata using the novel multiplexed algal cytological imaging (MACI) 

assay, described in the previous chapter, and machine learning in order to predict the phytotoxic 

mechanism of action (MoA) of LCO. Algal cells were exposed to varying concentrations of LCO, 

and their phenotypic profiles were compared to that of cells treated with reference chemicals which 

had already established MoAs. Hierarchical clustering and machine learning analyses indicated 

photosynthetic electron transport to be the most probable phytotoxic MoA of LCO. Additionally, 
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single-cell chlorophyll fluorescence results demonstrated an increase in irreversibly oxidized 

photosystem II proteins. Lastly, LCO-treated cells were observed to have less nuclei/cell and less 

DNA content/nucleus when compared to non-treated cell controls.  

 

3.2. Introduction 

As the number of engineered nanomaterials found in the environment and commerce expands, 

understanding the breadth of their environmental consequences is a challenge we currently face. 

In particular, a class of nanomaterials we need more toxicological data on are complex metal oxide 

nanomaterials, like LiCoO2 (LCO) nanosheets due to their high volume of production and presence 

in commerce.4 LCO is one of the most commonly used cathode materials in rechargeable Li-ion 

batteries1 and can be found in a multitude of consumer electronics from computers and smart 

phones to high-end electric vehicles. As such, the annual production rate for LCO has skyrocketed 

to levels of environmental significance in recent years.4 What makes this matter particularly 

concerning, however, is that there is little to no infrastructure for recycling or for properly 

disposing of LIB’s, nor is there any economic incentive to do so as it is cheaper to simply 

manufacture new battery materials.4 For example, it is currently estimated that less than 5% of all 

LIB’s are being recycled, with the rest ending up in landfills or being disposed of in other mean of 

un-sustainable storage.6 As a result, this means that there is a high probability for LCO to be 

unintendedly released into the environment, thus posing an ecological risk. And what exacerbates 

this risk is that LCO contains high-valence metals with unique catalytic properties, high reactivity, 

and known inherent toxicity.7,3 Thus, understanding the impacts of LCO to a wide diversity of 

environmentally relevant organisms across multiple trophic levels is of paramount importance. 

Current research has been done to assess LCO’s toxicological impacts and mechanism of action 
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(MoA) in higher animal-type organisms. For example, Curtis et al., 2022 has reported LCO to 

cause a differential expression in electron transport and energy metabolism related genes across 

different fish and invertebrate species. Furthermore, Niemuth et al., 2020 has reported LCO to 

participate in redox reactions and alter the redox state of and Fe-S proteins, which are important 

for electron transport. However, our understanding of LCO’s impacts to plant-type organisms is 

still limited.  

In the first chapter, LCO was reported to cause a number of physiological impacts to Raphidocelis 

subcapitata, such as reduced growth, altered pigment biosynthesis, and impaired photosynthetic 

productivity.101 Furthermore, LCO nanoparticles were proven to physically enter the algal cells, 

thus implying that they undergo direct interactions with key subcellular compartments.101 

However, our understanding of the mechanisms governing these consequences is still unclear. 

Given that photosynthesis was impacted in algae and its reverse reaction, respiration, has also been 

reportedly impacted in higher animal species,100 it’s likely that they may experience similar 

mechanistic disturbances. For example, key photosynthetic proteins like photosystem II (PSII), 

which facilitate electron flow in chloroplasts, could be impacted.  

In order to assess the interactions of LCO at the biointerface of algal cells, a multiplexed algal 

cytological imaging (MACI) assay in combination with data mining and machine learning 

techniques can be used. MACI, as described in Chapter 2,  is a type of high-throughput phenotypic 

profiling assay which involves the use of fluorescence cytochemistry to visualize multiple 

subcellular structures within the cell, and automated high-content fluorescence imaging to take 

hundreds of snapshots of their morphology in a consistent manner. In general, high-content 

phenotypic profiling works off the principal that the morphology of a cell is very sensitive to 

environmental cues56 and that subtle, yet reproducible, alterations to subsets of morphological 
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features can be used as a framework to characterize compound-specific interactions and predict 

MoAs of novel compounds when comparing their phenotypic profiles to that of compounds with 

established MoAs.58 Additionally, image-based profiling assays provide the advantage of speed 

and cost effectiveness when compared to transcriptomic- and proteomic-based profiling 

assays.96,97 However, MACI, in the context of eco- and phytotoxicological research, provides an 

additional benefit compared to other mainstream high-throughput phenotypic profiling assays, like 

Cell Painting,59 in that it relies on the fluorescent labeling of subcellular structures that are unique 

to the architecture of algal cells which may more accurately characterize MoAs in plant-type 

species.  

In this chapter, R. subcapitata cells were exposed to LCO for 24 hours, and MACI was used to 

characterize subcellular changes in their phenotype with the goal of understanding LCO-algal 

interactions. Their phenotypic profile was also compared to several reference compounds with 

established MoAs to predict the phytotoxic MoA of LCO. These reference compounds were 

chosen to represent MoAs that have been reported for other nanomaterials like membrane 

disruption,40 DNA damage,102 and more. The similarities between LCO and reference compound 

profiles were evaluated using hierarchical clustering based on Euclidean distance. An additional 

deep learning convolutional neural network (CNN) approach was also used to characterize the 

MoA experienced in individual cells as a means to predict LCO’s phytotoxic MoA.  

 

3.3. Materials and Methods 

Algal Cell Culture. 
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A stock culture of R. subcapitata, inoculated at 1×105 Cells·mL-1, was grown in a 1 L Erlenmeyer 

flask and cultured in OECD 201 media 21. Cells were illuminated continuously with a full spectrum 

T8 light bulb at a photon flux of 70 µE·m-2·s-1. The stock culture was mixed with an orbital shaker 

at a speed of 111 rpm. 

Exposure Setup. 

This exposure was done to assess predict the phytotoxic MoA of LCO on R. subcapitata by 

comparing changes in the complex phenotype of LCO-treated cells to that of reference chemicals 

with established MoAs after 24 hours of exposure. An additional LCO exposure was done at 48 

hours to better evaluate physiological endpoints such as nucleation state. Algae were exposed to 

one of four LCO concentrations or untreated control (0 µg·mL−1, 0.01 µg·mL−1, 0.1 µg·mL−1, 1 

µg·mL−1, & 10 µg·mL−1 LCO), an ion control that contained the concentration of lithium and 

cobalt ions that would be present in the algae media containing 10 µg·mL−1 of LCO after 24 or 48 

hours, depending on the exposure duration.  In each treatment, 900 µL aliquots of algal stock 

culture were seeded into individual 1.5 mL microcentrifuge tubes after cells were growing 

exponentially. A stock suspension of LCO was constituted at 100 µg·mL−1 in OECD 201 media. 

For this study, the OECD 201 media was made to be deficient in EDTA in order to prevent the 

mitigation of any metal-induced stress. This suspension was sonicated for 25 minutes before the 

addition to respective samples to break up any aggregated nanoparticles. Additionally, an ion 

solution made from LiOH and CoCl2·H2O, also constituted the OECD 201 media, was made at 

10X the concentration of ion dissolution of 10 µg·mL−1 of LCO after 24 and 48 hours, depending 

on the exposure duration. For each treatment, OECD 201 media, LCO suspension, or 10X ion 

solution was added to each 900 µL cell suspension at a final volume of 1 mL. The samples were 

then placed under full spectrum illumination, with tube lids open, at a photon flux of 70 µE·m−2 
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·s−1 for 24 hours. The 24 hour exposure duration was chosen for MoA prediction as this timepoint 

has been shown to better delineate initial phenotypic impacts61, while the 48 hour exposure 

duration was chosen to examine physiological endpoints. 

Single-Cell Chlorophyll Fluorescence. 

At the conclusion of these exposures, a 50 µL aliquot from each sample was plated in to a well of 

a glass bottom 384 well plate (Cellvis, P384W-1.5H-N) and spun gently at 600RPM for 1 minute 

to concentrate cells at the bottom of the well. Cells were not stained nor fixed with glutaraldehyde 

for this assay as to prevent interference with raw fluorescence. Cells were then dark adapted for 

30 min to ensure PSII centers were in an open, or oxidized, state before imaging with an 

ImageXpress Micro XLS High-Content Screening System. For image acquisition, cells were 

visualized using a Cy 5 filter (ex/em: 628/692) in a manner similar to that of a PAM Fluorometer, 

such that cells are exposed to a low intensity light beam followed by a saturating light beam to 

measure the minimal (F0) and maximal (Fm) chlorophyll fluorescence, respectively (Figure 15) 

using the fluorescence cytochemistry parameters in Table 4. After acquiring images, bioimage 

analysis was used to measure the respective fluorescence intensities. Using the 

“mean_integrated_intensity” values for F0 and Fm, the variable fluorescence (Fv) and quantum 

efficiency of PSII (Fv/Fm) of individual cells were calculated using the  

following equation: 

𝐹𝑣

𝐹𝑚
  =  

𝐹𝑚−𝐹0

𝐹𝑚
  ……….………..……………………...(6) 
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Table 4: Single-Cell Chlorophyll Fluorescence Cytochemistry Parameters 

Intensity Channel Excitation (nm) Emission (nm) Exposure Time (nm) 

Minimal (F0) Cy 5 628/40 692/40 35 ms 

Maximal (Fm) Cy5 628/40 692/40 270 ms 

 

Multiplexed Algal Cytological Imaging (MACI) Assay. 

The MACI assay was carried out as using methods described in Chapter 2. At the conclusion of 

the exposure, 905 µL aliquots from each sample were transferred to sterile 1.5 mL microcentrifuge 

tubes. Commercially available fluorescent probes were used to stain nuclei and lipid droplets using 

NucBlue (Thermo Fisher, R37605) and BODIPY 505/515 (Thermo Fisher, D3921), respectively, 

and glutaraldehyde were used to fix the algal cells. Reagent quantities, listed in Table 2, were 

added to each cell suspension at a final reaction volume of 1 mL. After adding reagents, all 

reactions were incubated overnight, at 4 °C to minimize enzymatic degradation and maintain the 

integrity of the subcellular structures. After incubating reactions, cells were centrifuged at 4000 x 

 

Figure 15: Representative fluorescence micrograph of single cells at 

an F0 and Fm state, respectively. 
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g for 5 min, washed 2x with 1X Phosphate Buffered Saline (PBS), and resuspended in PBS. Cells 

from each sample were loaded into a well of a glass bottom 384 well plate (Cellvis, P384W-1.5H-

N) at a seeding density of ~2 ×103 cells·mm−2 for optimal distribution of cells across the well 

surface. After loading cells, the well plate was then spun gently at 600RPM for 1 minute to 

concentrate cells at the bottom of the well. Images were acquired at 9 sites per well with an 

ImageXpress Micro XLS High-Content Screening System with a 60X Plan Fluor 0.85 NA air 

immersion objective (Molecular Devices, 1-6300-0414), using the fluorescent channels described 

in Table 3. To enhance image contrast and resolution, the digital confocal feature was used during 

image acquisition. For representative cell images with higher resolution, some images were also 

acquired with a 100X CFI L PLAN EPI CC 0.85 NA air immersion objective (Molecular Devices, 

1-6300-0419).  

Bioimage Analysis. 

After acquiring images CellProfiler,29 was used for image pre-processing, object segmentation, 

and morphological feature extraction at the resolution of individual cells. Morphological features 

related to area, shape, intensity, and granularity of each subcellular structure were extracted, in 

addition to cytoplasmic intensity features to add more measurements for comparing the phenotypic 

profiles of LCO and reference chemical treatments, which were run on separate plates. These data 

were exported to a local SQLite database file and were then extracted using the RSQLite package 

in R.78  

Phenotypic Profiling - Fingerprint Analysis. 

Phenotypic response data was analyzed using the methods described in Chapter 2. The data was 

firstly processed by aggregating single-cell morphological feature measurements to per-image and 
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then per-well values, which was done by taking the cell and image means, respectively. Secondly, 

well data from each compound and dose were then normalized to the non-treated cell control by 

computing a Z-score. In order to verify whether LCO elicited a change to the entire phenotypic 

profile of treated cells, a partial least squares-discriminant analysis (PLS-DA) was performed  in 

R using the mixOmics package.79 Before feeding phenotypic response data into the PLS-DA 

models, an ANOVA was performed across all features for each refence chemical to remove any 

non-informative features with little variance (p-values > 0.05). Lastly, factor analysis was used to 

further reduce the dimensionality of phenotypic data vectors, and the fingerprints were 

subsequently compared to one another using hierarchical clustering based on Euclidean distance 

in R.  

Phenotypic Profiling - Convolutional Neural Networks. 

In addition to fingerprint analysis, a CNN was also trained on a small subset of reference 

compound treated cells (~9.3%) using the classifier module on CellProfiler Analyst (Ver 3.0).80 A 

separate bin was created for each reference chemical and the non-treated cell control in the 

classifier module, where around 1000 randomly fetched cells from each treatment were placed in 

each respective bin. For the non-treated cell control, cells form the reference chemical exposure  

and LCO exposure were both used to account for plate-to-plate and run-to-run variations. After 

training the CNN, it was used to score the entire experiment by classifying individual cells into 

predicted mechanistic classes, and computing enrichment scores for each sample as the logit area 

under the receiver operating characteristic curve. An ANOVA and a Tukey post-hoc test was used 

to evaluate the significance of predicted mechanistic class enrichments for each treatment. 
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Statistical Analysis. 

All statistical analyses were performed using R Studio 30,31. A Shapiro-Wilk test was used to verify 

normal distribution and a One-Way ANOVA was used to compare variance among group means, 

while a Tukey post-hoc test was used for multiple comparisons. In each analysis, significant 

differences were determined with a 95% confidence interval. 

 

3.4. Results and Discussion 

LCO significantly alters algal cell morphology after 24 hours. 

After exposing R. subcapitata with LCO for 24 hours, the cells were stained and imaged using the 

MACI protocol (Figure 16a). In the representative fluorescence micrograph, the LCO-treated cells 

appear to be larger compared to the control cell, and also appear to have distinct levels of 

chlorophyll, TAG, and DNA content, which visually support the claim that LCO has an impact on 

cell morphology. A CellProfiler pipeline was used to convert the high-content image data into 

quantitative data where 570 unique, unbiased, morphological features of individual cells were used 

to generate phenotypic fingerprints of molecular interaction. In order to quantitatively verify if 

LCO treatment significantly alters algal cell morphology, a PLS-DA was used to analyze subtle 

changes in the complex phenotypic profile of LCO-treated cells with increasing concentration. 

Based on the PLS-DA response plot (Figure 16b), LCO-treated cells display a significant 

separation between response groups, thereby indicating that LCO does elicit a significant, and 

measurable, change to cell morphology after 24 hours. Based on X-variate data, a significant  
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separation from the control group can be seen at starting at the 0.1 ug·mL-1 response group. Here, 

the ion control response group also exhibited a significant separation from the control group. 

However, the ion control response group, which represents the amount of Li+ and Co2+ ions 

released from 10 ug·mL-1 of LCO after 24 hours, was also significantly different form the 10 

ug·mL-1 response group. Interestingly, this data suggests that while the ions do have somewhat of 

an impact on cell morphology, they are separate from nano-specific impacts.  

Phenotypic profiles of LCO-treated cells compared to reference chemical-treated cells. 

In order to predict the phytotoxic MoA of LCO, the phenotypic profiles of LCO-treated cells were 

compared to reference chemical-treated cells with known MoAs. For this purpose, the 10 µM 

reference chemical data was compared to the 1 ug·mL-1 LCO data, which is around 10 µM of 

LCO, to compare responses of similar concentrations.  

 

Figure 16: Phenotypic responses of algal cells when exposed to LCO. (a.) Representative 

fluorescence micrograph of MACI labeling patterns in treated and non-treated algal cells. (b.) 

A PLS-DA response plot graphically describes the change across complex morphological 

feature data with increasing concentration of LCO; ellipses represent 95% confidence intervals 

and p-values represent ANOVA statistics across the 1st latent variable between response groups. 
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After constructing the phenotypic fingerprints, an ANOVA was used to identify individual features 

that carry little information, which were removed from the analysis given a  p-value > 0.05. 

Additionally, factor analysis was used to further reduce the dimensionality of the phenotypic data 

vectors down to 7 eigen features/factors in order to minimize redundant measurements while 

preserving variance. The phenotypic fingerprints across all replicates for each reference chemical 

and LCO treatment were hierarchically clustered based on Euclidean distance (Figure 17). 

Euclidean distance is a data mining technique that measures how far apart two points are in a high-

dimensional feature space,81 and can be calculated as the square root of the sum of squares between 

two vectors.103  

 

The hierarchical clustering analysis was able to identify four main clusters. LCO-treated samples 

were clustered with DMCU and three of the MSMA-treated samples, thus indicating that their 

phenotypic profiles are most similar to one another. The MoAs of DMCU and MSMA are both 

 

Figure 17: Dendrogram of hierarchically clustered LCO treated samples compared to reference 

chemical threated samples. Branches represent relative Euclidean distances between samples 

and nearest neighboring samples indicate the most similar phenotypic profiles to one-another. 
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related to electron transport inhibition in the chloroplast and mitochondrion, respectively.72,75 

Based on the results of the hierarchical clustering analysis, we can deduce that the probable MoA 

of LCO is also likely related to electron transport inhibition. This would makes sense as LCO tends 

to target proteins and pathways that are involved in transport of electrons.13,100  

Predicting the MoA of individual LCO-treated cells using convolutional neural networks.  

In addition to the hierarchical clustering analysis, a convolutional neural network was also used to 

classify individual LCO-treated cells into mechanistic classes. In CellProfiler Analyst, a CNN was 

trained on a small subset of randomly fetched cells from each treatment (~9.3% of cells from the 

combined LCO and reference chemical exposures) using 50x50 neurons per layer. For the healthy 

cell class, the CNN was trained on cells form the non-treated cell controls of both the LCO and 

reference chemical exposures as a means to account for variations due to separate plates and 

separate runs. Based on the confusion matrix (Figure 18), the CNN model was slightly less 

accurate at predicting the true mechanistic classes of cells compared to the CNN model in Chapter 

2 (Figure 13), however it was still able to predict the correct mechanistic class across training cells 

with a moderately good classification accuracy of 73.82%. Once trained, the CNN model was used 

to score each cell in the LCO exposure, based on its individual phenotype, with a predicted 

mechanistic class, and then calculate enrichment scores for each sample. 
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The average enrichment scores for the LCO exposure are visualized in a heatmap (Figure 19)  

where values with asterisks (*) represent the mechanistic classes which are significantly enriched 

in each treatment when compared to the control. Based on these results, the CNN model predicted 

PSII photochemistry inhibition, or photosynthetic electron transport, as the most probable MoA of 

LCO with the highest and most significantly enriched scores. This was most notable in the 1 

µg·mL−1 and ion control treatments. These treatments also obtained high enrichment scores in the 

oxidative phosphorylation uncoupler/mitochondrial electron transport inhibition mechanistic 

class; however, the scores were not significantly different from the control due to larger deviations 

in the enrichment data. This data coincides with the hierarchical clustering data (Figure 17) in that 

electron transport inhibition in general appears to be the most probable phytotoxic MoA of LCO, 

but the CNN data suggests that this disturbance is more prevalent in the photosynthetic pathway.  

 

Figure 18: Convolutional neural network construction. A small subset of randomly fetched 

cells in each treatment from the reference chemical and LCO exposures were fed into a 

convolutional neural network model. Based on the training data, this CNN model yields a 

classification accuracy of 73.82% at correctly classifying cells by their true mechanistic class. 
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Part of the advantage of using a CNN classifier model for phenotypic profiling is the fact that it 

can identify rare objects,80 or smaller subpopulations of cells, in an otherwise heterogeneous cell 

population, that have distinct mechanistic classes that may go undetected with other phenotypic 

profiling methods that average across all cells. Interestingly, based off the enrichment data, there 

were also three other significantly enriched mechanistic classes found in much smaller 

subpopulations of cells. In the 1 µg·mL−1 treatment, the DNA damage and oxidative stress 

mechanistic classes were also significantly enriched. Additionally, in the 10 µg·mL−1 treatment, 

the oxidative stress and membrane disruption mechanistic classes were significantly enriched. 

These results may make sense as these mechanistic classes were only enriched in the highest 

 

Figure 19: Phenotypic enrichment score heatmap. The CNN model classifies each cell across 

the entire LCO exposure with a predicted mechanistic class based on its phenotype. Enrichment 

scores for each mechanistic class are calculated in each sample. Heatmap values represent 

average treatment enrichment scores; values with asterisks (*) represent significantly enriched 

mechanistic classes compared to the control. 
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concentrations of LCO, which are inherently more likely to have more cells undergoing a cytotoxic 

shock in which disturbances such as DNA damage, membrane disruption, and high levels of 

oxidative stress are experienced. However, it is important to reiterate here that the main MoA 

experienced by these cells is still largely photosynthetic electron transport inhibition as the other 

mechanistic classed were only indicated in a small percentage of cells. 

Chlorophyll fluorescence markers indicate that LCO alters the oxidation state of PSII proteins. 

Chlorophyll fluorescence is a non-invasive way to determine relative amounts of chlorophyll 

content in plant-type organisms and to assess the overall efficiency of photochemistry.104,105 

Several methods currently exist to make these sorts of measurements; Pulse Amplitude Modulation 

(PAM) fluorometers, for example,  are typically used to make these measurements in leaf tissue 

and algal cells. PAM’s work by, first, exposing the sample to a pulse of low intensity light to get 

the minimal fluorescence, as most of the energy will enter photochemistry and only a small portion 

will be re-emitted as fluorescence signal. This is then followed by a pulse of saturating light to get 

the maximal fluorescence, which at this point, the PSII reaction centers will already be reduced 

and thus most of the excited energy will be re-emitted as fluorescence signal. In general, the 

minimal fluorescence is comparable to the levels of chlorophyll present in leaf and algal 

samples.104 Furthermore, by taking the ratio of minimal and maximal fluorescence, the quantum 

efficiency of PSII can be calculated,106 which is a good indicator of photochemistry efficiency.107 

Here, this same concept was applied using high-content fluorescence microscopy for algal cells, 

and with this tool, the relative chlorophyll levels and quantum efficiencies of PSII evaluated for 

individual cells. 
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Figure 20a displays measurements of single-cell chlorophyll fluorescence after being exposed to 

LCO for 48 hours; each red dot represents an individual cell. LCO treated cells had exhibited 

significant increases in chlorophyll content compared to that of the control (Figure 20b), which 

coincide with the results in Chapter 1 (Figure 7e). A quantum efficiency of PSII around 0.7 is 

considered healthy and/or normal for eukaryotic algal cells,108,109  so based on the data in Figure 

20c, even LCO treated cells are still within a normal range. Interesting, however, LCO treated cells 

exhibited a significant decrease in the quantum efficiency of PSII, compared to the control, in 

somewhat of a dose-dependent manner. In the context of the PSII biochemistry, this data would 

 

Figure 20: LCO significantly alters markers of chlorophyll fluorescence. (a.) Representative 

montage micrograph of algal cells across all treatments at a state of minimal and maximal 

fluorescence after 48 hours of exposure to LCO; (b.) Relative chlorophyll content after 48 hours 

of exposure to LCO; (c.) Quantum efficiency of PSII. Diamonds on boxplots represent 

treatment means and significant differences were determined using a one-way ANOVA with a 

Tukey post-hoc test for multiple comparisons; columns with different letters differ significantly 

(p<0.05). 
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suggest that, in LCO treated cells, there is a higher fraction of damaged, or inactive, PSII reaction 

centers.110 This type of disturbance is typically due to the irreversible oxidation of the D1 and D2 

proteins in the PSII complex, usually following the production of O2
•− and OH• radicals.111 These 

results, coincide with the hierarchical clustering (Figure 17) and CNN (Figure 19) analyses which 

predicted photosynthetic electron transport inhibition as the main phytotoxic MoA of LCO. 

Additionally, these results could help explain the reductions in the net production of carbon 

biomass reported in Chapter 1 (Figure 5).  

LCO significantly impacts the nucleation state and DNA content after 48 hours. 

In eukaryotic cells, the nucleus in an important subcellular compartment which houses the genetic 

material of the organism and is responsible for regulating gene expression and facilitating cellular 

division. Most green algae contain a unique multiple fission reproductive pattern in which one 

mother cell can divide into several daughter cells, depending on the environmental cues.67 R. 

subcapitata, in particular, has the ability to divide into eight daughter cells,66 and measuring the 

number of nuclei per cell, as well as the relative amount of DNA content per nucleus, can be used 

to describe instances of cell cycle disruption/arrest.24, 67,70 After exposing cells to LCO for 48 

hours, cells were stained with NucBlue, in order to fluorescently label the DNA content within the 

algae. A CellProfiler pipeline was used the count the number of nuclei/cell, as well as measure the 

integrated intensity of each nuclei, which was taken as relative DNA content. On average, LCO-

treated sample contained a higher percentage of cells with only one nucleus when compared to the 

non-treated samples (Figure 21a). This affect increased in a dose-dependent manner, with 

significant differences from the control observed at 10 µg·mL−1 LCO and the ion control. The 

opposite trend was observed for cells with more than one nucleus (i.e. 2 & 4 nuclei), which also 

changed in a dose-dependent manner, with significant differences from the control observed at 10  
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µg·mL−1 LCO and the ion control. Looking only at the cells with one nucleus, LCO-treated cells 

had, on average, a lesser relative amount of DNA content when compared to the non-treated 

control cell (Figure 21b). This was also observed in a dose-dependent manner, but with significant 

differences from the control at 0.1µg·mL−1 LCO, 10 µg·mL−1 LCO, and the ion control. 

Interestingly, when assessing the Pearson correlation between the two trends, a strong negative 

correlation was observed (Figure 21c). Together, these results indicate that, on average, LCO-

treated cells exhibit an increased instance in the delay/arrest of cell cycle progression, specifically 

in the earlier stages of the cell cycle (stage 1/2) before first nuclear division.70 Based on these 

results, it may explain the instances of increased growth inhibition and biovolume reported in 

Chapter 1 (Figure 4a.-b.). In this case, it may be possible that LCO had an impact on 

nuclear/cellular division through the impairment of photosynthetic electron transport.112 These 

results are similar to that of DCMU treated cells, which, on average, had significantly less 

nuclei/cell when compared to non-treated control cells, and had appeared to have inhibited nuclear 

division (Supplementary Table 3). This would also be consistent with other photosynthetic 

organisms, like Euglena gracilis, in which similar impacts have been reported under impaired 

photosynthetic electron transport.112  

 

Figure 21: Nucleation state and relative DNA content in LCO-treated cells. (a.) Percentage of 

cells with 1, 2, or 4 nuclei after 48 hours of exposure to LCO; (b.) Relative DNA content of 

single nucleated cells; (c.) Pearson correlation between the percentage of single nucleated cells 

and their relative DNA content. Significant differences were determined using a one-way 

ANOVA with a Tukey post-hoc for multiple comparisons; columns with different letters differ 

significantly (p<0.05). Error bars represent SEM. 
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Conclusions 

Summary of work. 

This thesis aims to address the current gaps in our knowledge surrounding the toxicity of  LiCoO2 

nanosheets to plant-type organisms. In this work, the phytotoxic impacts of LCO to the freshwater 

microalga, Raphidocelis subcapitata, were addressed.  

The first chapter of this thesis addressed the general toxicological impacts of LCO, which were 

evaluated through analyzing different physiological endpoints relating to growth and energy 

production for algae cells. Following a LCO exposure lasting 48 hours, cells had exhibited a 

significant inhibition in growth at concentrations as low as 0.1 µg·mL−1, with an EC50 of 0.057 

µg·mL−1, in addition to exhibiting significantly enlarged biovolumes at concentrations as low as 

0.01 µg·mL−1. Furthermore, LCO-treated cells had produced significantly less carbon biomass, 

starting at 0.1 µg·mL−1, while significantly overproducing neutral lipid content, which is indicative 

of an interference with CO2 assimilation chemistry and/or carbon partitioning. Additionally, 

relative chlorophyll content was also significantly increased, which may have been a compensatory 

effort to maximize light harvesting under an impaired photosynthetic apparatus. Lastly, enhanced 

darkfield hyperspectral imaging revealed physically internalize LCO deposits, thereby indicating 

the potential for LCO to directly interact with key subcellular components.  
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The second chapter addressed the need for more nontargeted, high-throughput profiling assays that 

can characterize biological activity, identify potency thresholds, and predict mechanisms of action 

(MoAs) for plant-type organisms like R. subcapitata, especially in the context of studying 

nanoparticle interactions. While other high-throughput screening assays already exist, such as 

high-throughput transcriptomics and high-throughput proteomics, these techniques can be 

expensive and time consuming, while relying on well-established transcript/protein annotations, 

which are lacking for most algae. In this chapter, methods were developed for a multiplexed 

cytological imaging (MACI) assay, based on the subcellular structures that are unique to 

microalgae, like Raphidocelis subcapitata. Several different herbicides and antibiotics with unique 

MoAs were exposed to R. subcapitata cells and MACI was used to characterize their cellular 

impacts by measuring subtle changes in the morphological features of treated cells. This assay 

offers a quick and effective framework for characterizing complex phenotypic responses to 

environmental chemicals, and emerging contaminants like engineered nanomaterials, that can be 

used for determining their MoAs and identifying their cellular targets in plant-type organisms.  

In the third chapter, MACI and machine learning techniques were used to assess the interactions 

of LCO at the biointerface of R. subcapitata cells and to predict the phytotoxic MoA of LCO. 

Algal cells were exposed to varying concentrations of LCO, and their phenotypic profiles were 

compared to that of cells treated with reference chemicals with established MoAs. The described 

analyses predicted photosynthetic electron transport to be the most probable phytotoxic MoA of 

LCO, and single-cell chlorophyll fluorescence demonstrated an increase in irreversibly oxidized 

photosystem II proteins, thus fortifying the MACI assay prediction and coinciding with the 

impaired carbon biomass assimilation reported in the first chapter. Lastly, LCO-treated cells were 

observed to have less nuclei/cell and less DNA content/nucleus when compared to non-treated cell 
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controls, which suggests an interference with cell cycle progression and complementing the growth 

inhibition and biovolume data reported in the first chapter. 

Future directions. 

While the toxicity of LCO to microalgae has been investigated in this work, more research should 

be done to address the impacts of LCO on terrestrial plants. For example, Glycine max would be a 

good model to use for phytotoxicity. Firstly, it has historically been used as a terrestrial model for 

toxicology due to its desirable characteristics such as its ability to be grown in laboratory 

environments, having good reproducibility within and across testing facilities, and its sensitivity 

to many toxic compounds.113 Furthermore, G. max is also a very important crop that, as a 

leguminous plant, can fix atmospheric nitrogen through its microbial symbiotic relationship with 

the soil bacterium, rhizobium.114 This, in part, would give us more information to the impacts of 

LCO on other environmental processes like nitrogen fixation and nitrogen assimilation. But also, 

its worldwide scale of cultivation and its major source of nutritional value 

(protein/oils/carbohydrates) make it a relevant organism to study.115 Lastly, it would be useful to 

compare the impacts of LCO in R. subcapitata to G. max in order to verify elucidate any unifying 

mechanisms of phytotoxicity across species. 
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Appendix I : Supporting Information 

Chapter 1: Physiological Impacts of Raphidocelis subcapitata in Response to Lithiated Cobalt 

Oxide Nanomaterials. 

Supplementary Table S1: LCO DSL Characterization in Algal Complete Media 

[LCO] Z-Average (d.nm) ζ-Potential (mV) 
Electrophoretic 

Mobility (µm⋅cm⋅Vs-1) 

0.01 ug⋅mL-1 334.60 ± 59.57   -2.01 ± 0.37 -0.16 ± 0.03 

0.1 ug⋅mL-1 253.10 ± 28.98 -10.07 ± 1.29 -0.79 ± 0.10 

1 ug⋅mL-1 249.87 ± 11.86 -22.73 ± 1.73 -1.78 ± 0.14 

10 ug⋅mL-1 348.83 ± 5.59 -30.33 ± 0.24 -2.38 ± 0.02 

 

 

Supplementary Figure S1: (a.) XRD data from the LCO batch used in this exposure,  and (b.) 

XRD data from a previously synthesized batch of LCO, adapted from Laudadio et al. 2018. 
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Supplementary Figure S2: (a.) Spectral scanning of R. subcapitata,  and (b.) Cellular absorptivity 

at OD680. 

 

 

Supplementary Figure S3: (a.) Fluorescence micrograph of algal cells obtained with a 60x air 

objective,  and (b.) subplot of corresponding image segmentation done by CellProfiler; each 

colored spot corresponds to a specific cell on the fluorescence micrograph. 
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Chapter 2: Using a novel multiplexed algal cytological imaging (MACI) assay and machine 

learning to characterize complex phenotypes in plant-type organisms. 

Supplementary Table S2: VIP Scores of Reference Chemicals 

 

This table contains the top 10 variable importance in projection (VIP) scores for each reference 

chemical. VIP scores were extracted from the PLS-DA response plots of each reference chemical 

and indicate the unique features that are most influential in driving the separation between their 

response groups. 

 

Supplementary Table S3: Interpretable Features of Biological Relevance 

 

This table contains the average z-scores for several biologically relevant endpoints. Here, values 

represent the average number of standard deviations treatment populations are above or below the 

Feature VIP Feature VIP Feature VIP Feature VIP

Mean_Cell_Chplst_AreaShape_NormalizedMoment_3_0 1.31 Mean_Cell_Mean_Masked_LDs_Number_Object_Number 1.87 Mean_Cell_Nuclei_AreaShape_Zernike_5_1 1.45 Mean_Cell_Chplst_Granularity_1_Chplst_Corrected 1.51

Mean_Cell_Chplst_AreaShape_NormalizedMoment_3_2 1.29 Mean_Cell_Mean_Masked_Chplst_Number_Object_Number 1.86 Mean_Cell_Nuclei_AreaShape_NormalizedMoment_2_2 1.45 Mean_Cell_Chplst_AreaShape_MaximumRadius 1.50

Mean_Cell_Chplst_AreaShape_NormalizedMoment_1_2 1.26 Mean_Cell_Parent_Chplsts 1.86 Mean_Cell_Nuclei_AreaShape_Extent 1.44 Mean_Cell_Chplst_AreaShape_MeanRadius 1.50

Mean_Cell_Chplst_AreaShape_SpatialMoment_1_0 1.24 Mean_Cell_Chplst_Parent_Masked_Chplst 1.86 Mean_Cell_Nuclei_AreaShape_Zernike_3_1 1.44 Mean_Cell_Chplst_AreaShape_MedianRadius 1.49

Mean_Cell_Nuclei_Granularity_3_Nuc_Corrected 1.22 Mean_Cell_LDs_Parent_Masked_LDs 1.86 Mean_Cell_Nuclei_AreaShape_HuMoment_0 1.43 Mean_Cell_Nuclei_AreaShape_Eccentricity 1.48

Mean_Cell_Chplst_Granularity_3_Chplst_Corrected 1.21 Mean_Cell_LDs_AreaShape_NormalizedMoment_2_2 1.78 Mean_Cell_Nuclei_AreaShape_Zernike_0_0 1.42 Mean_Cell_Chplst_AreaShape_Area 1.47

Mean_Cell_LDs_Granularity_6_LD_Corrected 1.21 Mean_Cell_LDs_AreaShape_NormalizedMoment_2_0 1.63 Mean_Cell_Nuclei_AreaShape_HuMoment_1 1.41 Mean_Cell_Chplst_AreaShape_CentralMoment_0_0 1.47

Mean_Cell_Mean_Masked_Nuclei_Distance_Minimum_Cell 1.21 Mean_Cell_Chplst_AreaShape_NormalizedMoment_0_3 1.63 Mean_Cell_Nuclei_AreaShape_Eccentricity 1.38 Mean_Cell_Chplst_AreaShape_SpatialMoment_0_0 1.47

Mean_Cell_Chplst_AreaShape_CentralMoment_1_2 1.21 Mean_Cell_Chplst_AreaShape_NormalizedMoment_3_0 1.63 Mean_Cell_Nuclei_AreaShape_HuMoment_2 1.37 Mean_Cell_Chplst_AreaShape_EquivalentDiameter 1.47

Mean_Cell_Mean_Masked_Chplst_Number_Object_Number 1.20 Mean_Cell_LDs_AreaShape_Extent 1.58 Mean_Cell_Nuclei_AreaShape_HuMoment_3 1.36 Mean_Cell_Nuclei_Granularity_1_Nuc_Corrected 1.46

Feature VIP Feature VIP Feature VIP Feature VIP

Mean_Cell_LDs_Granularity_9_LD_Corrected 1.60 Mean_Cell_Chplst_AreaShape_NormalizedMoment_3_2 1.63 Mean_Cell_Chplst_AreaShape_Eccentricity 1.69 Mean_Cell_Chplst_AreaShape_MinorAxisLength 1.70

Mean_Cell_Nuclei_AreaShape_NormalizedMoment_3_0 1.55 Mean_Cell_Chplst_AreaShape_NormalizedMoment_1_2 1.62 Mean_Cell_Nuclei_AreaShape_CentralMoment_1_2 1.68 Mean_Cell_Chplst_AreaShape_InertiaTensorEigenvalues_1 1.67

Mean_Cell_LDs_Granularity_2_LD_Corrected 1.52 Mean_Cell_Chplst_AreaShape_NormalizedMoment_3_0 1.59 Mean_Cell_Nuclei_AreaShape_NormalizedMoment_1_2 1.67 Mean_Cell_Chplst_AreaShape_MinFeretDiameter 1.67

Mean_Cell_LDs_Granularity_7_LD_Corrected 1.52 Mean_Cell_LDs_Granularity_13_LD_Corrected 1.56 Mean_Cell_Chplst_AreaShape_MinorAxisLength 1.63 Mean_Cell_Chplst_AreaShape_Eccentricity 1.62

Mean_Cell_LDs_Granularity_6_LD_Corrected 1.50 Mean_Cell_Chplst_AreaShape_CentralMoment_1_2 1.54 Mean_Cell_Nuclei_AreaShape_NormalizedMoment_2_1 1.61 Mean_Cell_Chplst_AreaShape_NormalizedMoment_3_0 1.60

Mean_Cell_Mean_Masked_Chplst_Distance_Centroid_Cell 1.50 Mean_Cell_Chplst_Intensity_MinIntensity_Chplst_Corrected 1.53 Mean_Cell_Mean_Masked_Chplst_Number_Object_Number 1.56 Mean_Cell_Children_Masked_LDs_Count 1.57

Mean_Cell_LDs_Granularity_16_LD_Corrected 1.37 Mean_Cell_Nuclei_AreaShape_NormalizedMoment_3_0 1.51 Mean_Cell_Parent_Chplsts 1.56 Mean_Cell_Nuclei_AreaShape_CentralMoment_0_3 1.52

Mean_Cell_LDs_Granularity_8_LD_Corrected 1.37 Mean_Cell_LDs_Granularity_6_LD_Corrected 1.50 Mean_Cell_Chplst_Parent_Masked_Chplst 1.56 Mean_Cell_Chplst_AreaShape_NormalizedMoment_0_3 1.51

Mean_Cell_LDs_AreaShape_NormalizedMoment_2_0 1.35 Mean_Cell_Chplst_AreaShape_MeanRadius 1.43 Mean_Cell_Chplst_AreaShape_InertiaTensorEigenvalues_1 1.55 Mean_Cell_Nuclei_Granularity_7_Nuc_Corrected 1.50

Mean_Cell_Nuclei_AreaShape_CentralMoment_1_2 1.33 Mean_Cell_Chplst_AreaShape_MedianRadius 1.41 Mean_Cell_Chplst_AreaShape_Orientation 1.51 Mean_Cell_Chplst_AreaShape_CentralMoment_0_3 1.47

DCMU

MSMA

Zeocin

Metolcahlor

Carfentrazone

H2O2

Aclonifen

Glufosinate

Treatment Mechanism of Action

Ctrl Healthy Cells 0.00 0.00 0.00 0.00

Aclonifen Carotenoid Biosynthesis Inhibition 2.60 * 0.59 2.33 -0.65

Carfentrazone Membrane Disruption -3.56 * 10.61 * -1.01 -3.25

DCMU PSII Photochemistry Inhibition -0.07 -4.74 * -4.76 * -5.76

Glufosinate N2 Metabolism Inhibition 2.03 * 1.98 1.29 -3.10

H2O2 Oxidative Stress -6.34 * 14.01 * -1.93 -1.61

Metolachlor Long-Chain FA Synthesis Inhibition 0.96 * 8.36 * 9.01 * -0.26

MSMA OP Uncouplling/ e- Transport Inhibition 0.01 0.88 -4.54 * -5.42

Zeocin DNA Damage 1.12 * 4.93 * 1.30 -0.36

Chlorophyll Content Number of LDsTAG ContentNuclei/Cell
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mean control population. Significant differences were determined using a one‐way ANOVA with 

a Tukey post hoc test for multiple comparisons; asterisks (*) represent significant standard 

deviations from the mean control population (p<0.05). Chlorophyll is the most important 

constituent of photosynthesis and changes in its levels can be used to investigate plant/algae 

stress.104 Relative chlorophyll content can be analyzed through comparing the integrated intensities 

of chloroplast fluorescent signals. Many of the chemical treatments actually increased chlorophyll 

content after 24 hours at 10 µM, most notably in Aclonifen and Glufosinate treated cells. This is 

especially interesting for Aclonifen as its MoA is related to the inhibition of carotenoid synthesis, 

and has also been reported to impact chlorophyll synthesis as well.71 However, under these specific 

exposure conditions, the increase in chlorophyll content may be indicative of a protective measure 

to compensate for initial damages/stress.71 Conversely, H2O2 and Carfentrazone significantly 

decreased chlorophyll content under the same conditions, which does align with the literature. 

H2O2 stress, for example, has been reported to lead to the bleaching of chlorophyll.116 The MoA 

of Carfentrazone is related to the inhibition of protoporphyrinogen oxidase (PPO), which promotes 

the accumulation of protoporphyrin IX, causing damage to the cell membrane.41 However, PPO is 

also an important enzyme in the chlorophyll and heme biosynthesis pathways, and thus its 

inhibition coincides with lower chlorophyll.41 Interestingly, DCMU, which most directly inhibits 

photosynthesis by blocking electron flow at the D1 subunit of PSII,117 had no impact on 

chlorophyll content under the same conditions. 

Green algae typically undergo a multiple fission reproductive pattern in which one mother cell can 

divide into several daughter cells, depending on the environmental cues.67 For example, R. 

subcapitata has the ability to divide into eight daughter cells.66 Due to this unique phenomena, 

measuring the number of nuclei per cell can be used to study the impact of chemicals on cell cycle 
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progression.24 Depending on the temperature and light intensities used to grow algae cells, the 

duration of the cell cycle can take anywhere between 14 & 36 hours to complete.118 Additionally, 

depending on the type of stressor, impacts to cell cycle progression may also depend on the stage 

in which cells are exposed, as with DNA Damage.70 Therefore, longer, and multiple, timepoints 

should be considered when specifically studying a chemical’s impact on the cell cycle.  However, 

comparing the average nucleation state of treated cells to that of control cells after 24 hours may 

be useful in obtaining an idea of whether or not a chemical has the potential to interfere with cell 

cycle progression. While Aclonifen and Glufosinate treatments significantly increased chlorophyll 

content, they did not significantly impact the nucleation state. Conversely, DCMU treated cells, 

on average, had significantly less nuclei/cell, compared to control cells, thus suggesting that 

DCMU inhibits nuclear division. This is consistent with other photosynthetic organisms, like 

Euglena gracilis, in which similar impacts have been reported.112 On average, H2O2 and 

Carfentrazone treatments had the largest average number of nuclei per cell, which may be due to 

the role of reactive oxygen species (ROS) in cell signaling. For example, in algae, H2O2 has been 

reported to signal for programmed cell death, increase the number of nuclear replications within a 

cell cycle, and/or accelerate/delay the duration of the cell cycle progression, depending on which 

stage cells are exposed.119,120  Metolachlor also significantly increased the average number of 

nuclei/cell, which aligns with the literature.24 Zeocin, which causes DNA damage through 

promoting the double-stranded cleavage of DNA,76 also caused a significant increase in the 

average number of nuclei/cell, although to a lower extent. Per the literature, this may indicate that 

a majority of the cells had already passed their first commitment point in the cell cycle at the time 

of Zeocin application, thus allowing for one round of DNA replication and nuclear division.70 
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However, if longer, and more, timepoints were measured, it is possible that that an arrest/delay in 

cell cycle could be observed during the second round of DNA replication/nuclear division.70 

Green algae have the ability to accumulate large quantities of neutral lipids, namely triacylglycerol 

(TAG), which serve as a reservoir for energy storage.36 However, since starch is the preferred 

energy storage reservoir, algae typically only produce large quantities of TAG under certain types 

of stressful conditions. For example, when subjected to nitrogen starvation, Chlamydomonas 

reinhardtii has been reported to significantly increase TAG content.37 Some algae, like R. 

subcapitata, have also been reported to significantly increase TAG content under certain types of 

heavy meatal stress, such as nano cobalt.101 Under the exposure conditions, most of the treatments 

did not elicit a significant change in TAG content. Interestingly, this includes Glufosinate, which 

blocks the assimilation of nitrogen through the inhibition of glutamine synthetase.73 However, it 

may be possible the exposure duration was not long enough to cause nitrogen starvation. TAG 

content was only significantly increased in Metolachlor treated cells, which may be to due to the 

way it interferes with the elongation of fatty acids by inhibiting very-long-chain 3-oxoacyl-CoA 

synthase.24 As a result, this may force lipid metabolism into an acyl-CoA-dependent pathway 

where fatty acids are converted to TAG instead of membrane lipids.121 Conversely, MSMA and 

DCMU treatments significantly reduced TAG content. In both cases, this may be caused by 

deficiencies in intermediates, like acetyl-CoA, which are important precursors for TAG 

production.36 However, more research needs to be done to address the impacts of these chemicals 

on lipid metabolism.  
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Supplementary Figure S4: Phenotypic responses to ethanol (EtOH) concentrations. A partial 

least squares-discriminant analysis (PLS-DA) response plot describes the change across complex 

morphological feature data with increasing concentration; ellipses represent 95% confidence 

interval. 
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Supplementary Figure S5: Pearson correlation matrix based on minimal feature data. Chemical-

treated samples are hierarchically clustered by their Pearson coefficient in relation to the other 

chemical-treated samples, however only based on three features of biological relevance: 

chlorophyll content, the number of nuclei/cell, and TAG content. 

 

 

 


	Investigating the Phytotoxic Impacts of Next-Generation Lithiated Cobalt Oxide Nanomaterials
	Recommended Citation

	tmp.1697643004.pdf.iPdFM

