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ABSTRACT

RANDOM QUOTIENTS OF HYPERBOLIC GROUPS AND PROPERTY (T)

by

Prayagdeep Parija

The University of Wisconsin–Milwaukee, 2023
Under the Supervision of Professor Chris Hruska

What does a typical quotient of a group look like? Gromov looked at the density model of

quotients of free groups. The density parameter d measures the rate of exponential growth of

the number of relators compared to the size of the Cayley ball. Using this model, he proved

that for d < 1/2, the typical quotient of a free group is non-elementary hyperbolic. Ollivier

extended Gromov’s result to show that for d < 1/2, the typical quotient of many hyperbolic

groups is also non-elementary hyperbolic.

Żuk and Kotowski–Kotowski proved that for d > 1/3, a typical quotient of a free group

has Property (T). We show that (in a closely related density model) for 1/3 < d < 1/2, the

typical quotient of a large class of hyperbolic groups is non-elementary hyperbolic and has

Property (T). This provides an answer to a question of Gromov (and Ollivier).
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1 INTRODUCTION

1.1 Background and Motivation

A major goal of group theory is to understand the quotients of a group. A fundamental

question is what does a “random” quotient of a group look like? What properties does it

have?

A widely studied, large class of groups in geometric group theory are hyperbolic groups.

These are groups whose Cayley graphs are (in an appropriate sense) negatively curved. A

hyperbolic group is non-elementary if it doesn’t have finite index cyclic subgroups. Free

groups are the simplest example of such groups.

A natural question to ask is whether hyperbolicity is robust:

Question 1. Is a random quotient of a non-elementary hyperbolic group, non-elementary

hyperbolic?

In [Gro93] Gromov introduced the density model of quotients of free groups. Let Bℓ be

the Cayley ball of length ℓ of a free group Fn. Let R be a random choice of |Bℓ|d elements

from Bℓ. The parameter d is called density. The resulting quotients Fn/⟨⟨R⟩⟩ are called

random groups. More precisely, this is a random quotient of a free group at density d, and

length ℓ. A random quotient of Fn is said to have a certain property with overwhelming

probability (w.o.p) at density d if as ℓ → ∞ the proportion of quotients having the property

→ 1. Gromov showed that for any d < 1/2 a random quotient of Fn is non-elementary

hyperbolic.

The success of the density model owes itself to the fact that different properties show up

at different densities. One such property is Kazhdan’s Property (T), a rigidity property for

groups that plays an important role in many different areas of mathematics and computer

science. For a long time, it was surprisingly difficult to find examples of groups having
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Property (T). Keeping in mind that hyperbolic groups are in abundance, Gromov asked in

[Gro87]:

Question 2. Does a random quotient of a non-elementary hyperbolic group have Property

(T)?

Żuk and Kotowski–Kotowski showed that a random quotient of a free group has Property

(T) for density d > 1/3. Combining this result with Gromov’s non-elementarity result for

d < 1/2 we have:

Theorem 1.1 ([KK13],[Żuk03],[Gro93]). For density 1/3 < d < 1/2, a random quotient of

Fn has Property (T) and is non-elementary hyperbolic w.o.p.

The goal of this dissertation is to generalize this theorem to a large class of non-elementary

hyperbolic groups.

Ollivier in [Oll04] introduces a framework for proving analogous results for quotients of

any hyperbolic group and posed the following problem:

Problem 1 ([Oll05]). Does there exist a model for taking quotients of a non-elementary

hyperbolic group G such that a random quotient of G has Property (T) and is non-elementary

hyperbolic for 1/3 < d < 1/2 with overwhelming probability?

1.2 Statement of Main results

For a non-elementary hyperbolic group G with finite symmetric generating set A, we

introduce a new model of taking its random quotients called the frayed geodesic model.

We start with Lℓ−2, a set of geodesic words uniquely representing each element of the

Cayley Ball Bℓ−2. A frayed geodesic is a concatenation of a generator from A, a geodesic

from Lℓ−2 followed by another generator from A. Xℓ is the set of all frayed geodesics (these

words will induce a non-uniform measure on the Cayley Ball Bℓ). To get a member of the

2



frayed geodesic model at density d, we quotient G by a random choice of |Xℓ|d words from

Xℓ.

Informally, we say a non-elementary hyperbolic group is of large type if there are lots of

ways of extending any given geodesic.

Our main results are the following:

Theorem 1.2. A random quotient of a non-elementary hyperbolic group G in the frayed-

geodesic model has Property (T) for density d > 1/3 with overwhelming probability.

Theorem 1.3. A random quotient of a torsion-free non-elementary hyperbolic group G of

large type in the frayed-geodesic model is non-elementary hyperbolic for d < 1/2 for G with

overwhelming probability.

Actually, Theorem 1.3 is true for non-elementary hyperbolic groups of large type with

harmless torsion (See [Oll04] for the definition of harmless torsion).

Combining these two results give a partial solution to Problem 1.

Chapter 2 is devoted to proving Theorem 1.2 and Chapter 3 is devoted to proving The-

orem 1.3.
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2 RANDOM QUOTIENTS IN THE FRAYED-GEODESIC

MODEL HAVE PROPERTY (T)

2.1 Introduction

Kazhdan’s Property (T) was first introduced by Kazhdan to study lattices in Lie groups.

This property plays an important role in many other areas of mathematics and also computer

science. For example, groups with Property (T) were used by Margulis to give the first

explicit construction of families of expanders, graphs with good spectral properties which are

important in theoretical computer science. It was shown by Zuk ([Żuk03]) and Kotowski–

Kotowski ([KK13]) that for density d ∈ (1/3, 1), a random quotient of a free group has

Property (T) almost surely.

The goal of this chapter is to prove

Theorem. 1.2 A random quotient of a non-elementary hyperbolic group G in the frayed-

geodesic model has Property (T) for density d > 1/3 with overwhelming probability.

A similar result appears in [Ash22] independently of the results in this dissertation using a

different strategy and model of randomness. The proof of Theorem 1.2 builds off of the proof

of Property (T) in the case of free groups. The proof in [KK13] doesn’t directly generalize

from free groups to hyperbolic groups. We need to find a set of words in G that play the

role of positive words as in [KK13]. To attain this goal, we use the automatic structure of

hyperbolic groups and elements of Perron–Frobenius theory.

2.2 Preliminaries

We provide some preliminary definitions in this section.

Let Γ be a finitely generated group.
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Definition 2.1 (Property (T)). Γ has a Property (T) if every affine isometric action of Γ

on any real Hilbert space H has a fixed point.

We observe that Property (T) is preserved by quotients.

Remark. Let ϕ : Γ → H be an epimorphism. Any representation of H yields a representa-

tion of Γ, and fixed points for Γ must be fixed points for H.Then if Γ has Property (T), so

does H.

Definition 2.2 (Hyperbolic group). A geodesic space X is said to be δ-hyperbolic if it

satisfies the thin triangle condition, namely, if there is some δ such that any geodesic triangle

is contained within the δ–neighborhood of any two of its sides. A group G with generating

set A is said to be δ–hyperbolic if its Cayley graph is δ–hyperbolic.

We note that hyperbolic groups have exponential growth.

Lemma 2.3 ([Coo93]Cooernart’s theorem). Let G be a non-elementary hyperbolic group

with a finite generating set, A. Let B(ℓ) =
{
x ∈ G

∣∣ ∥x∥ ≤ ℓ
}
be the Cayley ball of radius

ℓ. Then, there exists a constant λ > 0 and constants c1, c2 > 0 such that for all ℓ

c1λ
ℓ ≤ B(ℓ) ≤ c2λ

ℓ (2.1)

Definition 2.4 (Growth rate of a group). For a non-elementary hyperbolic group G, the

number quantity λ in the above lemma is known as its growth rate.

2.3 Probability Lemmas

Lemma 2.5 (Intersection of high probability events is high probability). Let Ωn be a sequence

of sample spaces. Let An, Bn ⊂ Ωn be sequences of events such that limn→∞ Pn(An) = 1 and

limn→∞ Pn(Bn) = 1. Then limn→∞ Pn(An ∩Bn) = 1.

5



Proof. We have:

1 ≥ Pn(An ∪Bn) = Pn(An) + Pn(Bn) − Pn(An ∩Bn)

which implies Pn(An ∩Bn) ≥ Pn(An) + Pn(Bn) − 1

As n → ∞, Pn(An ∩Bn) limits to 1 by squeeze theorem.

Lemma 2.6 (induced uniformity). Let A and B be finite sets such that A ⊂ B. Let

X1, X2, ...XN be N elements chosen uniformly and independently from B.Let F be the event

that at least k of them were from A. Let Y1, Y2, · · ·Yk be the first k of the Xi’s that were

from A conditioned on the event F . Then, the random variables Y1, Y2, · · ·Yk are uniform

and independent choices on A.

Proof. Let a1, a2, ....ak be an arbitrary k-tuple from Ak. There are
(
N
k

)
choices for the

positioning i of the first k slots from A.

Let Ti be the number of N -tuples having the sequence a1, a2, ....ak as the first k slots from

A in the specific positioning i. The total number of N -tuple sequences having a1, a2, ....ak

as the first k elements from A is
∑

i Ti where i runs from 1 to
(
N
k

)
.

We observe that the calculation is the same for any k-tuple from A.

Lemma 2.7 (Picking from a subset). Let A ⊂ B, where A and B are finite sets. Further,

let there exists constants C1, C2 > 0 such that C1 ≤ |A|/|B| ≤ C2. Suppose X1, X2, X3, ...XN

be N pickings uniformly and independently from B(N <
√
n).

Then,

1. P (at least C1N/2 elements will be from A) ≥ 1− K
N

for some constant K (independent

of N).

2. Let Y1, Y2, Y3, ...YC1N/2 be the random variables representing the first C1N/2 elements

from A. Then, they are uniformly and independently distributed.

6



Proof. Let 1A be the indicator function for A. We have for the expectation E(1A) and

variance σ1A :

C1 ≤ E(1A) ≤ C2 which implies,

C2
1 − C2

2 ≤ σ1A = E[12
A] − (E[1A])2 ≤ C2

2 − C2
1 .

Let SN denote the number of items from A. Thus, SN = 1A.X1 + 1A.X2 + · · · 1A.XN . By

Chebyshev’s inequality, we have

1 −
σ12A

Nϵ2
≤ P (|SN

N
− E(1A)| ≤ ϵ|)

Taking ϵ = C1

2
we get,

1 −
σ12A

Nϵ2
≤ P (−C1

2
≤ SN

N
− E(1A) ≤ C1

2
)

≤ P (−C1

2
+ E(1A) ≤ SN

N
).

Which implies,

1 −
σ12A

Nϵ2
≤ P (C1 −

C1

2
≤ −C1

2
+ E(1A) ≤ SN

N
)

≤ P (
C1N

2
≤ SN) ≤ 1.

As, N → ∞, P → 1. (Since, ϵ, σ12A
are bounded quantities).

By, (1) we know that at least C1N/2 elements are known to be from A. Applying Lemma

3.2, for N and k = C1N/2 we see that every k tuple is equally likely, and hence the ran-

dom variables Y1, Y2, Y3, ...YC1N/2 representing the k tuple are uniformly and independently

distributed.

2.4 Triangular model and modifications

In this section, we will review the positive triangular model studied in [KK13] and show

that a presentation in a slightly modified triangular model has Property (T) for d > 1
3

as

well.

7



Definition 2.8 (positive word). Let Fm be a free group with a basis S
⋃

S−1.

A positive word uses elements only from S.

Definition 2.9 (positive triangular model). Fix d ∈ (0, 1). A presentation in the positive

triangular model M+(m, d) is given by Fm/⟨⟨R⟩⟩, where R is a m3d-tuple of relators, chosen

independently and uniformly from the set of positive words of length 3.

Definition 2.10 (with overwhelming probability). Fix d ∈ (0, 1). We say that a random

presentation in the positive triangular model has a property with overwhelming probability

if and only if we have

lim
m→∞

|presentations in M+(m, d) having the property|
|M+(m, d)|

= 1

Theorem 2.11 ([KK13], Theorem 3.14). A random presentation in the M+(m, d) for d > 1
3

has Property (T) with overwhelming probability.

First, we observe that all positive words except the ones with the same letter repeated

thrice have three equivalent cyclic permutations. We show below that choosing from these

relators gives us a similar theorem as Theorem 2.11, as the presentations do not change.

Definition 2.12 (3to1 positive words). A positive word of length 3 is 3to1 if it has 3 cyclic

permutations.

Remark. All positive words of length 3 except the ones with the same letter have 3 cyclic

permutations. So, the number of length 3, 3to1 positive words is m3 −m.

Definition 2.13 (3to1 triangular model). Fix d ∈ (0, 1). A presentation in the 3to1 trian-

gular model M+
3to1(m, d) is given by Fm/⟨⟨R⟩⟩, where R is a tuple of m3d relators, chosen

uniformly and independently from the set of 3to1 positive words.

Definition 2.14 (with overwhelming probability). Fix d ∈ (0, 1). We say that a random

presentation in the 3to1 triangular model has a property with overwhelming probability if

and only if we have

lim
m→∞

∣∣presentations in M+
3to1(m, d) having the property

∣∣∣∣M+
3to1(m, d)

∣∣ = 1

8



Lemma 2.15. A random presentation in M+(m, d) is from M+
3to1(m, d) for 1

3
< d < 2

3
with

overwhelming probability.

Proof. The number of presentations in the 3to1 triangular model is (m3−m)m
3d

.The number

of presentations in the positive triangular model was (m3)m
3d

.

Now, let

Lm =
(m3 −m)m

3d

(m3)m3d

Taking the log of both sides gives,

logLm = m3d log(1 −m−2) =
log(1 −m−2)

m−3d

Applying limits and simplifying we get,

lim
m→∞

logLm = lim
m→∞

−2

3d

1

m2−3d − 1
m3d

.

This goes to 0 for 1
3
< d < 2

3
. Thus, lim

m→∞
Lm = 1.

Lemma 2.16. A random presentation in M+
3to1(m, d) for 1

3
< d < 2

3
has Property (T) with

overwhelming probability.

Proof. Let Am be the set of presentations in M+(m, d) having Property (T). By Theorem

2.11, |Am|
/
|M+(m, d)| → 1. Let Bm be the set of presentations in M+(m, d) that are from

M+
3to1(m, d). By Lemma 2.15, |Bm|

|M+(m,d)| → 1. By Lemma 2.5, |Am∩Bm|
|M+(m,d)| → 1.

Now, the probability that a random presentation in M+
3to1(m, d) has Property (T) is

greater than |Am∩Bm|
|M+

3to1(m,d)| . We have,

lim
m→∞

|Am ∩Bm|
|M+

3to1(m, d)|
= lim

m→∞

|Am ∩Bm|
|M+(m, d)|

|M+(m, d)|
|M+

3to1(m, d)|

= lim
m→∞

|Am ∩Bm|
|M+(m, d)|

· lim
m→∞

|M+(m, d)|
|M+

3to1(m, d)|

= 1.

9



Now, we will define a preferred order on the positive relators of length 3 to pick only one

of the three permutations.

Let Fm be a free group with a basis S
⋃

S−1. Let s1 < s2 < s3 < · · · < sm be an order

on the set S.

Definition 2.17 (preferred positive word). A positive word of length 3 is preferred if it has

the following properties.

1. It is a 3to1 positive word.

2. If there are 3 distinct letters in the word, then the greatest index is at the end.

3. If there are 2 distinct letters in the word, then the following holds:

(a) The greatest index is at the end if the lower index is repeated.

(b) The greatest index is at the beginning and the end if the greatest index is repeated.

We will denote the set of preferred positive words by S3
pref .

Remark. For example, a2a1a2, a1a1a2 are preferred instead of a1a2a2, a1a2a1. Further, note

that |S3
pref | = (m3 −m)/3.

Now, we are ready to define the preferred positive triangular model which is the model

we will use later.

Definition 2.18 (preferred positive triangular model). Fix d ∈ (0, 1), A presentation in the

preferred positive triangular model M+
pref (m, d) is given by Fm/⟨⟨R⟩⟩ , where R is a tuple

of m3d relators, chosen uniformly and independently from S3
pref .

Theorem 2.19. A random presentation in M+
pref (m, d) for 1

3
< d < 1

2
has Property (T) with

overwhelming probability.

Proof. Using Tietze transformations from the presentations in M+
3to1(m, d) to change ev-

ery relator to the preferred permutation gives us isomorphic maps from presentations in

M+
3to1(m, d) to M+

pref (m, d), so having/not having Property (T) is preserved.

10



A presentation in M+
pref (m, d) has exactly 3m3d

preimages inM+
3to1(m, d). In M+

3to1(m, d),

the number of total presentations is the sum of the number of Property (T) presentations

and the number of non-Property (T) presentations. Let N = m3 − m and let um be the

share of presentations having Property (T) in M+
3to1(m, d).

Dividing throughout by 3m3d
we get in M+

pref (m, d)

µmN
m3d

3m3d +
(1 − µm)Nm3d

3m3d =
Nm3d

3m3d .

Hence, share of presentations in M+
pref (m, d) having Property (T) equals

µmN
m3d

3m3d

3m3d

Nm3d = µm.

And, we know µm goes to 1 as m → ∞ by Lemma 2.16. This concludes the proof.

2.5 General Property (T) theorem

We will map the preferred triangular model to a group G to get Property (T) quotients.

First, as a warm-up, we map the positive triangular model:

Theorem 2.20. Fix d > 1
3
. Let G be an infinite group with finite generating set A such that

e /∈ A and |A| = n. Let {Wm′}∞m′=1 be a sequence of sets of words of G with

• |Wm′| = m′.

• Wm′ ∩ A = ∅ for m′ large enough.

Let m = m′ + n. If R′ is a m3d-tuple of relators chosen uniformly and independently from

(Wm′ ∪ A)3, then G/⟨⟨R′⟩⟩ has Property (T) with overwhelming probability.

Proof. Let A = {a1, a2, · · · an}. Choose an enumeration wi ∈ Wm′ .

We define a ϕ : Fm → G by

ϕ(si) =


wi, for i = 1 to m′

ai−m′ , for i = m′ + 1 to m

.

11



We see that ϕ|S : S → Wm′ ∪A is a bijection and hence ϕ|S3 → (Wm′ ∪A)3 is a bijection.

Hence, ϕ|S3 induces a uniform measure on the words in (Wm′ ∪A)3. Thus, for every uniform

and independent choice R from S3, R′ := ϕ(R) is also a uniform and independent choice

from (Wm′ ∪ A)3 and vice versa. We have :

1 1

⟨⟨R⟩⟩ ⟨⟨R′⟩⟩

Fm G

Fm

/
⟨⟨R⟩⟩ G

/
⟨⟨R′⟩⟩

1 1

f

ϕ

ϕ̄

Further, ϕ is a surjection and as above induces a surjection ϕ̄ from Fm/⟨⟨R⟩⟩ to G/⟨⟨R′⟩⟩.

Since, Property (T) is preserved by surjective homomorphism and as Fm/⟨⟨R⟩⟩ has Property

(T) with overwhelming probability, so does G/⟨⟨R′⟩⟩.

Definition 2.21 (preferred images). Let ϕ be as in the above proof with domain the set of

preferred positive words S3
pref . The set of preferred images, denoted by (Wm′ ∪A)3pref is the

image of S3
pref under ϕ.

Theorem 2.22. Fix d > 1
3
. Let G be an infinite group with finite generating set A such that

e /∈ A and |A| = n. Let {Wm′}∞m′=1 be a sequence of sets of words of G such that

• |Wm′| = m′.

• Wm′ ∩ A = ϕ, for m′ large enough.

Let m = m′ + n. If R′ is a m3d-tuple of relators chosen uniformly and independently from

(Wm′ ∪ A)3pref , then G/⟨⟨R′⟩⟩ has Property (T) with overwhelming probability.

Proof. The same as above with the observation that ϕ|S3
pref

→ (Wm′∪A)3pref is a bijection.
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2.6 Good words

In the proof that a random quotient of a free group has Property (T) in [KK13], the

set of positive words of Fn plays a crucial role. Now, we will describe a sequence of sets

{Wm′}∞m′=1 for any non-elementary hyperbolic group G that behaves like the set of positive

words, as in [KK13].

Proposition 2.23. Let G be a non-elementary hyperbolic group with a finite (symmetric)

generating set A. Let λ be the growth rate of G in the generating set A. Then there exists a

set of words W ⊂ A∗ with the following properties:

1. W is closed under concatenation.

2. The evaluation map: W → G mapping a word w to an element w̄ is injective, and the

sequence obtained by evaluating a word letter by letter is a geodesic.

3. There exist constants C ′′
1 , C

′′
2 > 0 and h ∈ N such that,

C ′′
1λ

rh ≤ |Wrh| ≤ C ′′
2λ

rh for all r ∈ N

where, Wrh = {w ∈ W | |w| = rh}.

Proof. Given G as above. Fix a total order on A.

A geodesic word w representing a group element G is shortlex geodesic if it is lexico-

graphically first (in the ordering induced by the total order on A). We will denote the set of

all shortlex geodesic words by L. Note, the evaluation map L → G is bijective.

Canon showed that L is a regular language. See [Cal13] for details.

Choose Γ a finite state automaton accepting L without redundant vertices. Perron–

Frobenius theory implies that there exists a strongly connected subgraph Γ′ of Γ whose

Perron-Frobenius eigenvalue is equal to that of Γ. (See, for instance, Theorem 3.3, [DFW19]).

This eigenvalue is equal to the growth rate λ of G (see, for instance, Corollary 3.7, [DFW19]).

Take any vertex v∗ in Γ′. Let W be the set of all loops of Γ′ based at v∗.

13



Then, let ℓ1, ℓ2 be loops based at v∗, then ℓ1ℓ2 is also a loop based at v∗. This shows that

W is closed under concatenation.

Consider L′ = {γlδ | l ∈ W} ⊂ L, where γ is a fixed path from the start to v∗ and δ is

a fixed path from v∗ to an accept state. It follows that W is a subset of L as subwords of

shortlex words are also shortlex. Since L → G is bijective, W → G is injective.

Now, let Wrh = {all loops based at v∗ of length exactly rh}. We have C ′′
1 > 0 and a

h ∈ N such that, |Wrh| > C ′′
1λ

rh. For a proof, see step 2 in proof of Proposition 3.5,

[DFW19].

Concatenating words from W (along with the generators) in the preferred order gives us

the set of good words. The preferred order ensures that the generators show up only in the

end.

Definition 2.24 (set of good words). Fix ℓ and let h be as in Proposition 2.23. Dividing

ℓ by 3h we get ℓ = q(3h) + r for a q and a r such that 0 ≤ r < 3h. We will call the set

(Wqh ∪ A)3pref good words of parameter ℓ. We will denote this set by X∆
ℓ .

We note below that the set of good words of parameter ℓ has the same growth rate λ as

the Cayley ball of radius ℓ. This fact will be used in the next section.

Lemma 2.25. There exist constants C ′
1, C

′
2 > 0 such that

C ′
1λ

ℓ ≤ |X∆
ℓ | ≤ C ′

2λ
ℓ for all ℓ ∈ N.

Proof. Let |A| = n. Now, for big enough ℓ, we have Wqh ∩ A = ∅. Hence, for such ℓ,

C ′′
1λ

qh + n ≤ |Wqh ∪ A| ≤ C ′′
2λ

qh + n with C ′′
1 , C

′′
2 as in Proposition 2.23.

We can find constants a, b > 0 such that

aλq(3h) ≤ |(Wqh ∪ A)3pref | ≤ bλq(3h)

14



Indeed, if we let m = |Wqh ∪ A| , then |(Wqh ∪ A)3pref | = (m3 −m)/3.

Further, observe that

m3

3
≥ m3 −m

3
=

m(m− 1)(m + 1)

3
≥ (m− 1)3

3
.

Now from the definition, it follows that q(3h) = l − r, where r < 3h.

Definition 2.26 (Intermediary model). Fix a parameter d ∈ (0, 1). Let X∆
ℓ be the set of

good words as above. A presentation in the intermediary model G ∆(G,X∆
ℓ , d) is given by

G/⟨⟨R′⟩⟩ where R′ is a
∣∣X∆

ℓ

∣∣d-tuple chosen uniformly and independently from X∆
ℓ .

Applying the general Property (T) theorem to the set of good words gives us Property

(T) in the Intermediary model.

Theorem 2.27 (Property (T) in the Intermediary model). Fix d > 1
3
. A presentation in

the intermediary model G ∆(G,X∆
ℓ , d) has Property (T) with overwhelming probability.

Proof. Apply Theorem 2.22 to the sequence of sets {Wqh}, where Wqh are as described

above.

2.7 Proof of Theorem 1.2

Let G be a non-elementary hyperbolic group with the generating set A. Let Bℓ be a set

of geodesic words in A of length less than or equal to ℓ of G, which uniquely represent the

group elements in the Cayley ball of length ℓ. We define a large set of words, of which the

good words defined in the previous section are a large subset.

Definition 2.28 (frayed-geodesics). A frayed geodesic of word length ℓ is a word of the form

aba′, where b is a geodesic from Bℓ of length exactly l − 2, a, a′ are generators. The set Xℓ

of frayed-geodesics of word length less than or equal to ℓ = {aba′ | a, a′ ∈ A, b ∈ Bℓ−2}.

We observe that the set of frayed geodesics contains the set of good words as a density-one

subset and that it grows at the same rate as the Cayley ball.

15



Lemma 2.29. 1. There exist constants K1, K2 > 0 such that

K1λ
l ≤ |Xℓ| ≤ K2λ

l for all l ∈ N,

where λ is the growth rate of the group G.

2. X∆
ℓ ⊂ Xℓ and there exist constants C1, C2 > 0 such that C1 ≤ |X∆

ℓ |/|Xℓ| ≤ C2, ∀l ∈ N.

Proof. By [Coo93] , there exists c1, c2 > 0 such that c1λ
l ≤ |Bℓ−2| ≤ c2λ

l. Let |A| = n, we

have |Xl| = |A||Bℓ−2||A|. We also note that Bℓ ⊂ Xℓ.

Fix ℓ large enough. Let x ∈ X∆
ℓ . If x is a concatenation of three (shortlex) geodesics,

then x ∈ Xℓ as B3qh ⊂ Xℓ. Else, if x is a word of the form b1b2a
′ where b1, b2 are (shortlex)

words of length qh, then we observe that b1b2 can be read as a(b′1b2) for some generator a

where b′1b2 is also a shortlex word (as subwords of shortlex words are shortlex). Therefore,

we get constants C1, C2 by Lemma 2.25 and (1) above.

Definition 2.30 (frayed-geodesic model). Fix a parameter d ∈ (0, 1).Choose a length ℓ.Let

Xℓ be as above. A presentation in the frayed-density model G (G,Xℓ, d) is given by G/⟨⟨R⟩⟩,

where R is a tuple of ⌊|Xℓ|d⌋ relators chosen uniformly and independently from Xℓ.

Definition 2.31 (with overwhelming probability). Fix G and d. We say that a random

presentation in the frayed density model has a property with overwhelming probability if

and only if we have

lim
ℓ→∞

|presentations in G (G,Xℓ, d) having the property|
|G (G,Xℓ, d)|

= 1

Theorem 2.32. Fix density d > 1
3
. A random presentation in the frayed geodesic model

G (G,Xℓ, d) has Property (T) with overwhelming probability.

Proof. Fix G, ℓ and 1/3 < d < 1/2. Let R be a tuple of ⌊|Xℓ|d⌋ relators chosen uniformly

and independently from Xℓ. Let Aℓ be the event that R contains at least a C1⌊|Xℓ|d⌋/2

large subtuple of good words. We note that by Lemma 2.29 and Lemma 2.3, Pℓ(Aℓ) → 1 as
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ℓ → ∞. Now, let us pick a d′ such that 1/3 < d′ < d. By Lemma 2.29 we have:

|X∆
ℓ |d′ ≤ C2|Xℓ|d

′ ≤ C1⌊|Xℓ|d⌋
2

for ℓ large enough. Thus, R will contain a |X∆
ℓ |d′-long subtuple R′ of good words with

probability Pℓ(Aℓ). Let Bℓ be the event that G/⟨⟨R′⟩⟩ has Property (T). Pℓ(Bℓ) → 1 by

Theorem 2.27.

Hence,

Pℓ(G/⟨⟨R⟩⟩ has Property (T)) ≥ Pℓ(Bℓ | Aℓ) =
Pℓ(Bℓ ∩ Aℓ)

Pℓ(Aℓ)

which goes to 1 by Lemma 2.5.
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3 RANDOM QUOTIENTS IN THE FRAYED-GEODESIC

MODEL ARE NON-ELEMENTARY HYPERBOLIC

3.1 Introduction

The question of whether a random quotient of a hyperbolic group is non-elementary

hyperbolic was studied by Ollivier in [Oll04]. He proves in [Oll04], a general theorem that

deals with random quotients by any type of word. However, depending on the type of words

used (reduced words, plain words, geodesic words etc.) , we are going to have a “phase shift”

β ≥ 0. For example, a random quotient of a hyperbolic group by reduced words (as in the

case of free groups) will be trivial for d ∈ (1/2 − β, 1) for a β strictly positive. In order to

calculate β for various types of words, a set of axioms are laid out in [Oll04]. A proof is

provided showing that β = 0 for the case of geodesic words representing uniquely elements

of the Cayley sphere.

The goal of this chapter is to prove

Theorem. 1.3 A random quotient of a torsion-free non-elementary hyperbolic group G of

large type in the frayed- geodesic model is non-elementary hyperbolic for d < 1/2 for G with

overwhelming probability.

The proof follows the proof sketch provided by Ollivier in [Oll04] for the case of the

Cayley Sphere. In doing so we fill in the technical details gaps in the proof of the sphere

model of Ollivier using new ideas.

3.2 Preliminaries

In this section, we collect some properties of non-elementary hyperbolic groups of large

type.
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Lemma 3.1 ([Coo93], Cooernaert’s theorem). Let G be a non-elementary hyperbolic group.

Let B(s) = {x ∈ G | ||x|| ≤ s} be the Cayley ball of radius s. We have, for all s ,constants

C1, C2 > 0 and λ > 0 such that

C1e
λs ≤ B(s) ≤ C2e

λs

Definition 3.2 (Growth rate). We will call the constant λ in the above Lemma as the

growth rate of the group G.

Let L be a set of unique geodesic representatives of the group elements of G with a

generating set A.

Definition 3.3 (Cone of a geodesic). For w ∈ L, the cone of w, C(w) is defined as C(w) =

{g ∈ L | ||gw|| = ||g|| + ||w||}.

According to Lemma 2.3 in [GTT18] cones may be of large type or small type.

Lemma 3.4 (see Lemma 2.3, [GTT18]). Let G be a hyperbolic group with growth rate λ.

There exists C1, C2 > 0 such that for all r

C1e
λr ≤ |C(w) ∩ S(e, r)| ≤ C2e

λr (3.1)

or there exists c > 0 and λ1 < λ such that

|C(w) ∩ S(e, r)| ≤ ceλ1r (3.2)

where S(e, r) be the set of all elements in G at distance r from e.

Definition 3.5 (Groups of large type). A hyperbolic group G with a generating set A is

said to be of large type if every cone is of the first type as in the above lemma.

Example 3.6. Free groups, closed surface groups with the standard generating set, groups

with infinitely many ends. See [HMM18] for a discussion.
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Remark. It is not known if every hyperbolic group is of large type with respect to some

generating set.

In the next lemma, we note that the number of geodesics with a given subword in a fixed

position is large.

Lemma 3.7. Let G be a non-elementary hyperbolic group of large type. Let w ∈ L and a p1

positive integer be given. Let B = {g ∈ L of norm r | there exists g1, g
′
1 ∈ L such that g =

g1wg
′
1 where ||g1wg′1|| = ||g1|| + ||w|| + ||g′1|| and ||g1|| = p1}. We have,

C2
1e

λ(r−||w||) < |B|.

Proof. We want to estimate the number of geodesics of length r such that w arises as a

subword at position p1. By Lemma 3.4, we get the following.

|B| ≥ |{g1 | g1w is a geodesic} ∩ {g′1 | (g1w)g′1 is a geodesic }|

≥ |{g1 | g1 ∈ C(w−1) ∩ S(e, p1)}| × |{g′1 | g′1 ∈ C(g1w) ∩ S(e, r − p1 − ||w||)

≥ C1e
λp1 .C1e

λ(r−p1−||w||)

3.3 Probability Lemmas

We state some probability lemmas that will be used in later sections. The reader may

skip ahead to later sections and come back if these need to be recalled.

Lemma 3.8. Let Ω1,Ω2 be two discrete probability spaces. Let C be an event in the product

space, Ω1 × Ω2. Then there exists an event A ⊂ Ω1 and for every a ∈ A, events Ba ⊂ Ω2

such that C = ∪a∈A(Ba × {a}). We have PrΩ1×Ω2(C) =
∑

a∈A PrΩ2(Ba). Further, if there

exists K such that PrΩ2(Ba) ≤ K for all Ba, then:

PrΩ1×Ω2(C) ≤ KPrΩ1(A)

.
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Proof. The proof is left to the reader.

Lemma 3.9 ([Ros76], Markov’s Inequality). If Z is a random variable that takes only non-

negative values, then

P (Z ≥ 1) ≤ E[Z]

3.4 Reduction of the frayed ball to the frayed annulus

In this section, we show that with overwhelming probability the relators we chose for

quotients in the frayed geodesic model are from a frayed annulus that we define below.

Definition 3.10 (frayed annulus model). Fix a parameter d ∈ (0, 1).Choose a length ℓ. Let

Xannℓ
be the set of frayed geodesics of word length ∈ ( ℓ

2
, ℓ). A presentation in the frayed-

annulus model G (G,Xannℓ
, d) is given by G/⟨⟨R⟩⟩, where R is a tuple of ⌊|Xℓ|d⌋ relators

chosen uniformly and independently from Xannℓ
.

Lemma 3.11. For 1
3
< d < 1

2
a random presentation in the frayed geodesic model is from

the frayed annulus model with overwhelming probability.

Proof. Fix, d ∈ (1
3
, 1
2
). Let G/⟨⟨R⟩⟩ be a presentation in the frayed-annulus model G (G,Xannℓ

, d).

Let, Z= Number of relators of length k in R.

Then,

E[Z] = ⌊|Xℓ|d⌋ · P ( one word is of length k)

≤ Kd
2λ

ℓd(
K2λ

k

K1λl
) for some K1, K2

= Kλk−ℓ(1−d) for some K(K1, K2, d).

Here K1, K2 are as in Lemma 2.29.

The exponent will be positive if , k > ℓ(1− d) > ℓ
2
. By Markov’s inequality, P (Z > 1) ≤

E[Z]. So, with overwhelming probability, R does not contain frayed geodesics of length less

than or equal to l
2
.
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Definition 3.12 (with overwhelming probability). Fix G and d. We say that a random

presentation in the frayed density model has a property with overwhelming probability if

and only if we have

lim
ℓ→∞

|presentations in G (G,Xannℓ
, d) having the property|

|G (G,Xannℓ
, d)|

= 1

We will prove in section 3.6 that a random presentation in the frayed annulus model is

non- elementary hyperbolic with overwhelming probability, which is enough to prove that a

random presentation in the frayed ball model is non-elementary hyperbolic with overwhelm-

ing probability.

3.5 Analysis of random geodesic segments

In this section, we will study the properties of random geodesic segments. We will use

the results in this section to prove our main theorems in the later sections.

Let G be a non-elementary hyperbolic group. We note the following geometric lemma

based on hyperbolicity.

Lemma 3.13. There exists a constant K such that for all positive integers s, for all positive

real L, and for all x ∈ G

P ((x−1|X≤s) ≥ L) ≤ Ke−λL (3.3)

where X≤s is a random variable on Ω≤s = {x ∈ G| ||x|| ≤ s} and (x−1|X≤s)e is the Gromov

product based at identity.

Proof. Let K = C2

C1
eλδ, we claim that this is the required constant. Indeed, choose s, L, x.

If s < L or if ||x|| < L, then there is no X≤s such that (x−1|X≤s) ≥ L and the upper

bound holds.

If s > L and ||x|| ≥ L, there exists a y at a distance L from e on the geodesic joining e

to x. If (x−1|X≤s) ≥ L, then let y′ be another element on the geodesic joining e to X≤s such

that d(y, y′) < δ. Such a y′ exists as G is hyperbolic.
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Hence, we have d(y,X≤s) ≤ d(y, y′) + d(y′, X≤s) ≤ δ + ||X≤s|| − L. So,

P ((x−1|X≤l) ≥ L) ≤ P (d(y,X≤l) ≤ ||X≤l|| − L + δ)

=
|B(||X≤s|| − L + δ)|

|B(s)|

≤ |B(s− L + δ)|
|B(s)|

≤ C2e
λ(s−L+δ)

C1eλs

= e−λLC2e
λδ

C1

Here C1, C2, λ are as in Lemma 3.2.

Next, we use the above lemma to study the multiplication of a fixed group element by

a random geodesic word. We conclude that the probability to get at most L amount of

cancellation is low.

Lemma 3.14. There exists a constant K such that for all s, for any positive real L, and for

any x ∈ G

P (||xX≤s|| ≤ ||x−1|| + ||X≤s|| − L) ≤ Ke
−λ
2

L (3.4)

P (||X≤sx|| ≤ ||x−1|| + ||X≤s|| − L) ≤ Ke
−λ
2

L (3.5)

where X≤s is a random variable on Ω≤s = {x ∈ G| ||x|| ≤ s}.

Proof. Let K be as in Lemma 3.13. Choose s ≥ K, L and x ∈ G.

Applying Lemma 3.13 to L, we get

P (x−1|X≤s) ≥ L) ≤ Ke−λL

=⇒ P (
1

2
(||x−1|| + ||X≤s|| − ||xX≤s|| ≥ L) ≤ Ke−λL

=⇒ P (||x−1|| + ||X≤s|| − ||xX≤s|| ≥ 2L) ≤ Ke−λL

=⇒ P (||xX≤s|| ≤ ||x−1|| + ||X≤s|| − 2L) ≤ Ke−λL
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This finishes the proof of the first inequality.

Notice that ||x−1X−1
≤s || = ||(X≤sx)−1|| = ||X≤sx||. To get the second inequality, we

replace x by x−1 and X≤s by X−1
≤s in the first inequality.

We now prove an analogous result involving multiplication by random geodesic segment

Lemma 3.15 (variable length segments). For any positive integer k, there exists a constant

K(k) such that for all k-tuples S = (s1, s2, . . . , sk), for any L, and for any x ∈ G, we have

P (||XSx|| ≤ ||x|| +
k∑

i=1

||Yi|| − L) ≤ K(k) · Lk−1 · e
−λ
2

L (3.6)

where XS = {(Y1, Y2, ....Yk)} is a random variable on Ω≤S = {(x1.x2, ..xk) ∈ G| ||xi|| ≤ si}.

Also, for any positive integer k′, there exists a constant K(k′) such that for all k′-tuples

S ′ = (s′1, s
′
2, ..s

′
k′), for any L and for any x ∈ G we have

P (||xXS′|| ≤ ||x|| +
k′∑
i=1

||Y ′
i || − L) ≤ K(k′) · Lk′−1 · e

−λ
2

L (3.7)

where XS′ = {(Y ′
1 , Y

′
2 , ....Y

′
k)} is a random variable on Ω≤S′ = {(x′

1, x
′
2, ..x

′
k) ∈ G| ||x′

i|| ≤ s′i}.

Further, for positive integers k, k′, there exists a constant K(k, k′) such that for all k-

tuples S and k′-tuples S ′, we have for any L and for any x ∈ G

PXS×XS′ (||XSxXS′|| ≤ ||x|| + (
k∑

i=1

||Yi||) + (
k′∑
i=1

||Y ′
i ||) − L) ≤ K(k, k′) · Lk+k′−1 · e

−λ
2

L

(3.8)

where XS, XS′ are as before.

Proof. We proceed via induction on k. The base case is: there exists K(1) such that, for all

s, for all L, for all x ∈ G

P (||X≤sx|| ≤ ||x−1|| + ||X≤s|| − L) ≤ K(1)e
−λ
2

L.

Lemma 3.14 gives us such a K(1) and hence the base case is true.
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We assume the induction hypodissertation: for a positive integer k − 1 there exists a

constant K(k− 1) such that for all (k− 1)-tuples Sk−1 = (s1, s2, ..sk−1) , for any L , for any

x ∈ G, we have the following.

P (||Xk−1
S x|| ≤ ||x|| +

k−1∑
i=1

||Yi|| − L) ≤ K(k − 1) · Lk−2 · e
−λ
2

L.

We now prove the statement for k. We claim that K(k) = K(k − 1) ×K(1). Indeed, let

Sk = (s1, s2, ..sk) be a k tuple. Choose a L and x ∈ G.

Let CL = {(Y1, Y2, . . . , Yk) | ||x(Y1Y2 · · ·Yk)|| ≤ ||x|| + ||Y1Y2 · · ·Yk|| − L}. For i ≤ L, we

define the event

Ci = {(Y1, Y2, . . . Yk−1) | ||x(Y1Y2 · · · , Yk−1)|| ≤ ||x|| +
k−1∑
j=1

||Yj|| − i, Yk ∈ Y}

where

Y := {Y | ||(xY1Y2 · · ·Yk−1)Y || ≤ ||x(Y1Y2 · · ·Yk−1)|| + ||Y || − (L− i)}

Now, CL ⊂
⋃

i≤L Ci. Also, Ci =
⋃

a∈A Ba × {a} by Lemma 3.8. We get by induction

hypodissertation

P (A) ≤ K(k − 1) · Lk−2 · e
−λ
2

i

and by the base case

P (Ba) ≤ K(1) · e
−λ
2

(L−i).

Hence, we have

P (CL) ≤ L ·K(k − 1) · Lk−2 · e
−λ
2

i ·K(1) · e
−λ
2

(L−i)

by Lemma 3.8.

The proof of inequality (3.7) is similar. To prove (3.8) we combine (3.6) and (3.7) using

Lemma 3.8.
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For our applications, we will have k and k′ such that
∑k

i=1 si ≤ ℓ,
∑k′

i=1 s
′
i ≤ ℓ, and L ≤ ℓ

for some given positive real number ℓ.

Lemma 3.16. For any ϵ > 0, and any positive integers k, k′, there exists a M̄(ϵ, k, k′) such

that for all S = (s1, . . . , sk) and S ′ = (s′1, . . . , s
′
k′) with (

∑k
i=1 si) + (

∑k′

i=1 s
′
i) > M̄(ϵ, k, k′),

we have for any L, for any x ∈ G

PXS×XS′ (||XSxXS′ || ≤ ||x|| + (
k∑

i=1

||Yi||) + (
k′∑
i=1

||Y ′
i ||) − L) ≤ e

−λ
2

Leϵ(
∑k

i=1 si)+(
∑k′

i=1 s
′
i) (3.9)

where XS = (Y1, Y2, . . . , Yk) is a random variable on Ω≤S = {(x1.x2, ..xk) ∈ G| ||xi|| ≤ si}

and XS′ = (Y ′
1 , Y

′
2 , . . . , Y

′
k) is a random variable on Ω≤S′ = {(x′

1, x
′
2, ..x

′
k) ∈ G| ||x′

i|| ≤ s′i}.

Proof. Given positive integers k, k′, by 3.15 we have

PXS×XS′ (||XSxXS′ || ≤ ||x|| + (
k∑

i=1

||Yi||) + (
k′∑
i=1

||Y ′
i ||) − L)

≤ K(k, k′) · Lk+k′−1 · e
−λ
2

L

≤ K(k, k′) · ℓk+k′−1 · e
−λ
2

L.

Given ϵ > 0 , we let M̄(ϵ, k, k′) be such that for (
∑k

i=1 si) + (
∑k′

i=1 s
′
i) > M̄

K(k, k′)ℓk+k′−1 ≤ eϵ((
∑k

i=1 si)+(
∑k′

i=1 s
′
i)).

This finishes the proof.

Lemma 3.17. There exists a γ3 such that for any ϵ > 0, and any two positive integers

k, k′, there exists a M̄(ϵ, k, k′), such that for any n : R+ → R+, for all S = (s1, . . . , sk) and

S ′ = (s′1, . . . , s
′
k′) with (

∑k
i=1 si) + (

∑k′

i=1 s
′
i) > M̄(ϵ, k, k′)

P (there exist u, |u| ≤ n(ℓ) | ||XSuX
′
S|| ≤ n(ℓ))

≤ eγ3n(ℓ)e
−λ
2

(
∑k

i=1 si)+(
∑k

i=1 s
′
i)eϵ((

∑k
i=1 si)+(

∑k
i=1 s

′
i)) for all ℓ (3.10)

Further, for any given C > 0

P (there exist u, |u| ≤ n(ℓ) | ||XSuX
′
S|| ≤ C log(ℓ))

≤ eγ4′n(ℓ)e
−λ
2

C log ℓe
−λ
2

(
∑k

i=1 si)+(
∑k

i=1 s
′
i)eϵ((

∑k
i=1 si)+(

∑k
i=1 s

′
i)) for all ℓ (3.11)
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where XS is a random variable on ΩS = {(x1, x2, . . . , xk) ∈ G| ||xi|| = si}, and XS′ is a

random variable on ΩS′ = {(x′
1, x

′
2, . . . , x

′
k) ∈ G| ||x′

i|| = s′i} respectively.

Proof. To prove the first inequality, fix u ≤ n(ℓ). Applying Lemma 3.16 to the case∑k
i=1 ||Yi|| =

∑k
i=1 si and

∑k′

i=1 ||Yi|| =
∑k′

i=1 s
′
i and L = ||u|| +

∑k
i=1 si +

∑k
i=1 s

′
i − n(ℓ), we

get

P (there exist u, |u| ≤ n(ℓ) | ||XSuX
′
S||n(ℓ))

≤
∑

choices of u

e
−λ
2

(||u||+
∑k

i=1 si+
∑k

i=1 s
′
i−n(ℓ))eϵ((

∑k
i=1 si)+(

∑k′
i=1 s

′
i))

≤ [(2m)n(ℓ)e−
λ
2
n(ℓ)]e

−λ
2

(
∑k

i=1 si)+(
∑k′

i=1 s
′
i))eϵ(

∑k
i=1 si)+(

∑k′
i=1 s

′
i)

Choosing an appropriate γ3 gives us the required upper bound.

The Proof of the 2nd inequality is similar with the only difference being we choose

L = ||u|| +
∑k

i=1 si +
∑k

i=1 s
′
i − C log(ℓ).

3.6 Olivier’s axioms for the frayed-annulus model

In this section, we describe the axioms laid out by Ollivier in [Oll04] for the case of

words in the frayed annulus Xannℓ
. We further prove that Xannℓ

satisfies these axioms with

the correct exponents, and hence the quotients in the frayed-annulus model will be non-

elementary hyperbolic with overwhelming probability.

3.6.1 Notation

By |w| we mean the length of the word, i.e., the number of letters in w. By, ||w|| we

mean norm, i.e., the smallest length of a word equal to w.

By, X we will mean a random word chosen from a specified sample space. For a,b ∈ [0, 1],

X[a;b] will mean the projection of the original word to its subword starting from (a|X|)-th

letter to the (a + b)|X|-th letter. Small cases of letters will mean specific instances of the

random variables.
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Ωs = {x ∈ G | ||x|| = s} would mean the sample of space of geodesics of length exactly

s for the specified s. We will use this notation inside the upcoming proofs.

3.6.2 Statement and proof of axiom 1 and axiom 2

Let G be a torsion-free non-elementary hyperbolic group of large type. Let Xannℓ
be the

set of words in its frayed annulus. The first axiom says that Xannℓ
should only contain words

of length roughly ℓ up to some constant factor.

Theorem 3.18 (Axiom 1). There is a constant κ1 such that for every ℓ, there are only words

of length between ℓ
κ1

and κ1ℓ in Xannℓ
.

Proof. Recall from the Lemma 3.10 that the lengths of words in Xannℓ
are in ( ℓ

2
, ℓ). We can

take κ1 = 2

The second axiom states that subwords of words in Xannℓ
probably do not represent short

elements of the group G.

Theorem 3.19 (Axiom 2). Let X be a random word from the frayed annulus Ωannℓ
= {x| ℓ

2
<

|x| < ℓ, x a frayed geodesic}. . Then, there exist a constant κ2 such that for any ϵ > 0, ξ > 0,

there exists a natural number M(ϵ, ξ) such that for all a ∈ [0, 1], b ∈ [ξ, 1], for any t ≤ 1, we

have for all ℓ > M and for all r ∈ ( ℓ
2
, ℓ)

1. if a + b < 1, then for any w of length ar

P (||X[a;b]|| ≤ κ2(1 − t)|X[a;b]| | X[0;a] = w, |X| = r) ≤ e−
λ
2
t(br)eϵℓ

2. if a + b > 1, then for any w of length (1 − b)r

P (||X[a;b]|| ≤ κ2(1 − t)|X[a;b]| | X[a+b−1;a] = w, |X| = r) ≤ e−
λ
2
t(br)eϵℓ

Proof. We can take κ2 = 1
3

and given ϵ, ξ we will show that such an M(ϵ, ξ) exists. Choose

ℓ > M , a, b, t and a ℓ
2
< r < ℓ.
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Case 1 If a + b < 1, for any w we have br
2
< br − 2 ≤ ||X[a;b]|| ≤ 1−t

3
br. This inequality

is always false, and hence the probability is 0. So M = 1 would work.

Case 2 If a+ b > 1, pick a word w of length (1− b)r, then the the probability listed looks

like

P (A|B) =
P (A ∩B)

P (B)
=

|A ∩B|
|B|

.

Here, A = {x ∈ Ωr | ||x[a;b]|| ≤ 1
3
br(1 − t)} and B = {x ∈ Ωr | x[a+b−1;a] = w}.

We have that, w arises as a middle subword of the geodesic and

C2
1e

λ(br) ≤ |B|

by 3.7.

Now let b1, b2 be such that a + b1 = 1, b2 = b− b1. We observe that,

|A ∩B| ≤ |Ā|

Where Ā = {(x1, x2) ∈ Ωb1r × Ωb2r | ||x1x2|| ≤ 1
3
(br)(1 − t)}.

We get by combining the above two inequalities,

P (A|B) ≤ 1

C2
1

e−λ(br)|Ā|.

Now, by piecewise geodesic lemma, for ϵ′ := ϵ
2

there exists a M̄(ϵ′, ξ) such that

|Ā| ≤ e−
λ
2
t(br)eϵ

′(br)|Ωb1r × Ωb2r| ≤ C2
2e

−λ
2
t(br)eϵ

′(br)eλ(br) for r > M̄.

By combining the last two inequalities, we obtain

P (A|B) ≤ C2
2

C2
1

e−
λ
2
t(br)eϵ

′(br) ≤ C2
2

C2
1

e−
λ
2
t(br)eϵ

′l for r > M̄.

The last inequality hold because br ≤ l. Since ϵ′ = ϵ
2
, there exists M1 = M1(C1, C2, ϵ) such

that

C2
2

C2
1

eϵ
′ℓ ≤ eϵℓ for ℓ > M1.
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Let M := max{2M̄,M1}. Since M > 2M̄ , it follows that r > M̄ . Then combination of

the last two inequalities yields

P (A|B) ≤ e−
λ
2
t(br)eϵℓ for l ≥ M.

3.6.3 Statement and proof of axiom 3

Axiom 3 controls the probability that subwords of words in Xannℓ
are almost inverse in

the group. The subwords can also come from the same word. The proofs we provide in this

dissertation will be for geodesics, the proofs when they are frayed geodesics will be similar.

Theorem 3.20 (Axiom 3). Let X,X ′ be random words from the frayed annulus Ωannℓ
=

{x| ℓ
2
< |x| < ℓ, x a frayed geodesic}. Then, there exists a constant γ3 such that for any n :

R+ → R+, for any ϵ > 0, ξ > 0, there exists M(ϵ, ξ) such that for all a, a′ ∈ [0, 1], b, b′ ∈ [ξ, 1]

we have for all l > M and for all l
2
< r < l, l

2
< r′ < l

1. Case 1 :If a + b, a′ + b′ ≤ 1(No wrap around) for any w,w′ of lengths ar, a′r′

P (there exists u, v, |u|, |v| ≤ n(l)such that X[a;b]uX
′
[a′;b′]v = 1 |

X[0;a] = w,X ′
[0;a′] = w′, |X| = r, |X ′| = r′)

≤ eγ3n(ℓ).e−λ
(br+b′r′)

2 .eϵℓ

2. Case 2: If a+ b, a′ + b′ > 1 (2 wrap arounds) for any w,w′ of lengths (1− b)r, (1− b′)r′

P (there exists u, v, |u|, |v| ≤ n(l)such that X[a;b]uX
′
[a′;b′]v = 1 |

X[a+b−1;a] = w,X ′
[a′+b′−1;a′] = w′, |X| = r, |X ′| = r′)

≤ eγ3n(l).e−λ
(br+b′r′)

2 .eϵℓ
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3. Case 3: If a + b ≤ 1, a′ + b′ > 1 (1 wrap around) for any w of length ar, for any w′ of

length (1 − b)r′

P (there exists u, v, |u|, |v| ≤ n(l)such that X[a;b]uX[a′;b′]v = 1 |

X[0;a] = w,X ′
[a′+b′−1;a′] = w′, |X| = r, |X ′| = r′)

≤ eγ3n(l).e−λ
(br+b′r′)

2 .eϵℓ

Let X be a random word from the frayed annulus Ωannℓ
= {x| ℓ

2
< |x| < ℓ, x a frayed geodesic},

for all a, a′ ∈ [0, 1], b, b′ ∈ [ξ, 1] such that

1. Case 4: a ≤ a + b ≤ a′ ≤ a′ + b′ ≤ 1 (No wrap around in the same word) for any w

of length ar, for any w′ of length [a′ − (a + b)]r

P (there exists u, v, |u|, |v| ≤ n(l)such that X[a;b]uX[a′;b′]v = 1 |

X[0;a] = w,X[a+b;a′] = w′, |X| = r)

≤ eγ3n(l).e−λ
(br+b′r)

2 .eϵℓ

2. Case 5: a ≤ a + b ≤ a′ ≤ 1 < a′ + b′ (1 wrap around) for any w of length [a − (a′ +

b′ − 1)]r, for any w′ of length [a′ − (a + b)]r

P (there exists u, v, |u|, |v| ≤ n(l)such that X[a;b]uX[a′;b′]v = 1 |

X[0;a′+b′−1] = w,X[a+b;a′] = w′, |X| = r)

≤ eγ3n(l).e−λ
(br+b′r)

2 .eϵℓ

Proof. Given n, ϵ, ξ , we will show that such an γ3 and M(ϵ, ξ) exist. Pick l > M . Then let

r, r′ ∈ ( l
2
, l), pick a, a′ ∈ [0, 1], b, b′ ∈ [ξ, 1].

Case 1 : If a + b, a′ + b′ < 1, pick two words w,w′ of lengths ar, a′r′. Then, the

probabilities listed look like P (A|B). Now,

P (A|B) =
P (A ∩B)

P (B)
=

|A ∩B|
|B|
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Here,

A = {(x, x′) ∈ Ωr × Ωr′ | there exists u, v such that x[a;b]ux
′
[a′;b′]v = 1}

and

B = {(x, x′) ∈ Ωr × Ωr′ | x[0;a] = w, x[0;a′] = w′}.

Since w,w′ arise as initial subwords, we have

C1e
λ(1−a)r · C1e

λ(1−a′)r′ < |B|

by Lemma 3.7. Further, we claim the following.

|A ∩B| ≤ (C2e
λ(1−(a+b)r))(C2e

λ(1−(a′+b′)r′))|Ā|

where Ā = {(x1, x2) ∈ Ωbr × Ωb′r′ | there exists u, v such that x1ux2 = v−1}.

Indeed, define f : A ∩ B → Ā as f(x, x′) := (x[a;b], x[a′,b′]). Now, given (x1, x2) ∈ Ā,

consider |f−1((x1, x2))|, there is only one choice of attaching w,w′ but at most |S((1 − (a +

b)r)×S((1− (a′ +b′))r′)| ways of attaching the remaining subword to get back to an element

in A ∩B.

Hence, by combining the above two inequalities we get,

P (A|B) ≤ C2
2

C2
1

eλ(−br)eλ(−b′r′)|Ā|

By the Lemma 3.17, we have:

|Ā| ≤ eγ3n(ℓ) · e−λ( br+b′r′
2

) · eϵ(br+b′r′) · |Ωbr × Ωb′r′|

≤ eγ3n(ℓ) · e−λ( br+b′r′
2

) · eϵ(br+b′r′) · C2e
λ(br) · C2e

λ(b′r′)

Hence, we get

P (A|B) ≤ eγ3n(ℓ)e−λ br+b′r′
2 eϵℓ

by combining the above two inequalities and choosing ℓ large enough to absorb the constants.
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Case 2 : If a + b, a′ + b′ > 1, pick two words w,w′ of length (1 − b)r, (1 − b′)r′. We have,

P (A|B) =
P (A ∩B)

P (B)
=

|A ∩B|
|B|

where A = {(x, x′) ∈ Ωr × Ωr′ | there exists u, v such that x[a;b]ux
′
[a′;b′]v = 1} and B =

{(x, x′) ∈ Ωr × Ωr′ | x[a+b−1;a] = w, x[a′+b′−1;a′] = w′}

Since w,w′ arise as middle subwords of geodesics, we have

C2
1e

λ(br).C2
1e

λ(b′r′) < |B|

by 3.7.

Further, we claim,

|A ∩B| ≤ |Ā|

where, Ā = {(x1, x2, x3, x4) ∈ Ω(1−a)r × Ω(a+b−1)r × Ω(1−a′)r′ × Ω(a′+b′−1)r′ |

there exists u, v such that x1x2ux3x4 = v−1}

Indeed, define f : A ∩B → Ā as follows

f(x, x′) = (x[a;1−a], x[0;a+b−1], x[a′;1−a′], x[0;a′+b′−1]).

We observe that f is injective: for any given (x1, x2, x3, x4) ∈ Ā there is at most one way of

getting back an element of A∩B (which is by concatenating the pieces involved with w,w′).

Combining the above two inequalities, we get

P (A|B) ≤ |Ā|
C2

1e
λ(br).C2

1e
λ(b′r′)

By piecewise geodesic lemma we have:

|Ā| ≤ eγ3n(ℓ)e−λ( br+b′r′
2

)eϵ(br+b′r′)C2
2e

λ(br)eλ(b
′r′)

Hence, we get

P (A|B) ≤ eγ3n(ℓ)e−λ br+b′r′
2 eϵℓ

by combining the above two inequalities and choosing ℓ large enough to absorb the constants.

The proofs of Case 3, Case 4 and Case 5 will be similar.

33



3.6.4 Statement and proof of Axiom 4’

Theorem 3.21 (Axiom 4’). There exists a constant γ4′ such that, for any n : R+ → R+, for

any C > 0, for any ϵ > 0, ξ > 0 there exists M(ϵ, ξ, C) such that for all a ∈ [0; 1], b ∈ [ξ, 1].

We have for all ℓ > M and for all ℓ
2
< r < ℓ

1. Case 1 (No wrap around): If a + b < 1 for any w of length ar

P (there exists u, |u| ≤ n(l) such that some cyclic permutation

x′ of X[a,b]u satisfies ||x′|| ≤ C log ℓ | X[0;a] = w, |X| = r)

≤ eγ4′n(l).e−λ
(br)
2 .eϵℓ

2. Case 2 (wrap around) : If a + b > 1 for any w of length ar

P (there exists u, |u| ≤ n(l) such that some cyclic permutation

x′ of X[a,b]u satisfies ||x′|| ≤ C log ℓ | X[a+b−1;a] = w, |X| = r)

≤ eγ4′n(l).e−λ
(br)
2 .eϵℓ

where X is a random variable on the frayed annulus Ωannℓ
= {x| ℓ

2
< |x| < ℓ, x is a frayed geodesic}

Proof. Given C, n, ϵ, ξ. The claim is that M(ϵ, ξ, C) exists. Pick l > M . Then let r ∈ ( l
2
, l)

Pick a ∈ [0, 1], b ∈ [ξ, 1]

Case 1 : If a + b < 1, pick a word w of length ar. We have

P (A|B) =
P (A ∩B)

P (B)
=

|A ∩B|
|B|

Here, A = {x ∈ Ωr | there exists u such that some cyclic permutation x′ of

x[a,b]u satisfies ||x′|| ≤ C log ℓ} and B = {x ∈ Ωr | x[0;a] = w}.

Since w arises as an initial subword of a geodesic, we have

C1e
λ(1−a)r < |B|
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by Lemma 3.7.

Further, we claim that

|A ∩B| ≤ (Number of ways to cut x[a;b])(C2e
λ(1−a)r))|Ā|

where Ā = {(x1, x2) ∈ Ωb1r × Ωb2r | ||x1ux2|| ≤ C log ℓ}.

This is true since for every x ∈ A ∩ B, there exists a piecewise geodesic formation such

that ||xb1ruxb2r|| ≤ C log ℓ with xb1rxb2r = x[a;b]((with initial fixed piece w attached to xb1r).

Since there will be a free length of (1−a)r there can be at max C2e
λ(1−a)r length r geodesics

with w as the initial subword that can result in such a piecewise geodesic formation.

Hence,

P (A|B) ≤ ℓ
C2

C1

eλ(−br)|Ā|

by combining the last two inequalities and noting that the maximum ways to cut is ℓ.

By the 3.17, we have:

|Ā| ≤ eγ4′n(ℓ)e−
λ
2
C log ℓe−λ(

b1r+b2r
2

)eϵ(b1r+b2r′)|Ωb1r × Ωb1r|

≤ eγ4′n(ℓ)e−
λ
2
C log ℓe−λ( br

2
)eϵ(br)C2

2e
λ(br)

Hence, we get

P (A|B) ≤ eγ4′n(ℓ)e−λ( br
2
)eϵℓ

by combining the above two inequalities and choosing ℓ large enough to absorb the constants

and polynomials.

Case 2 If a + b > 1 Pick a word w of length (1 − b)r. We have,

P (A|B) =
P (A ∩B)

P (B)
=

|A ∩B|
|B|

Here, A = {x ∈ Ωr | there exists u such that some cyclic permutation x′ of

x[a,b]u satisfies ||x′|| ≤ C log ℓ} and B = {x ∈ Ωr | x[a+b−1;a] = w}.
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Since w arises as a middle subword we have

C2
1e

λ(br) < |B|

by Lemma 3.7. Further, we claim that

|A ∩B| ≤ (Number of ways to cut x[a;b])|Ā|

where Ā = {(x1, x2, . . . xk) ∈ Ωs1×Ωs2 · · ·Ωsk | ||x1ux2|| ≤ C log ℓ} for some k and
∑k

i=1 si =

br.

We proceed as before in Case 1 to get the desired inequality.

Corollary 3.22. By a theorem of ollivier the quotients are non-elementary

36



REFERENCES

[Ash22] Calum J Ashcroft, Property (t) in random quotients of hyperbolic groups at den-
sities above 1/3, arXiv preprint arXiv:2202.12318 (2022).

[Cal13] Danny Calegari, The ergodic theory of hyperbolic groups, Contemp. Math 597
(2013), 15–52.

[Coo93] Michel Coornaert, Mesures de patterson-sullivan sur le bord d’un espace hyper-
bolique au sens de gromov, Pacific Journal of Mathematics 159 (1993), no. 2,
241–270.

[DFW19] François Dahmani, David Futer, and Daniel T Wise, Growth of quasiconvex sub-
groups, Mathematical Proceedings of the Cambridge Philosophical Society, vol.
167, Cambridge University Press, 2019, pp. 505–530.

[Gro87] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ.,
vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829

[Gro93] Mikhaıl Gromov, Asymptotic invariants of infinite groups, in “geometric group
theory”, vol. 2 (sussex, 1991), vol. 182 of lecture notes of lms, 1993.

[GTT18] Ilya Gekhtman, Samuel J. Taylor, and Giulio Tiozzo, Counting loxodromics for
hyperbolic actions, J. Topol. 11 (2018), no. 2, 379–419. MR 3789828
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