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ABSTRACT

A STUDY OF MACHINE LEARNING TECHNIQUES FOR

DYNAMICAL SYSTEM PREDICTION

by

Rishi Pawar

The University of Wisconsin-Milwaukee, 2022
Under the Supervision of Professor Dexuan Xie

Dynamical Systems are ubiquitous in mathematics and science and have been used to

model many important application problems such as population dynamics, fluid flow, and

control systems. However, some of them are challenging to construct from the traditional

mathematical techniques. To combat such problems, various machine learning techniques

exist that attempt to use collected data to form predictions that can approximate the dy-

namical system of interest. This thesis will study some basic machine learning techniques

for predicting system dynamics from the data generated by test systems. In particular,

the methods of Dynamic Mode Decomposition (DMD), Sparse Identification of Nonlin-

ear Dynamics (SINDy), Singular Value Decomposition (SVD), and Deep Neural Network

(DNN) regression will be studied. Such techniques provide alternatives to determine the

dynamics of a system of interest without needing to resort to the computationally expen-

sive elementary methods. From numerically testing a few linear and nonlinear systems of

ordinary differential equations, it was observed that the methods of DMD and SVD could

approximate linear systems effectively but performed poorly against nonlinear systems.

The approach of DNN regression proved effective for both linear and nonlinear dynamical

systems.
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Chapter 1

Introduction

A dynamical system is usually defined as a system that changes in time. Dynamical sys-

tems have been widely used to model population dynamics, orbit trajectories, fluid flow,

control systems, etc. One primary type of dynamical system is a system of differential

equations. These differential equations can be ordinary differential equations (ODEs) or

partial differential equations (PDEs). This thesis will focus on first-order autonomous

systems of ODEs that have the following appearance:


d~x(t)
dt

= f(~x) for t > t0

~x(t0) = ~x0,

(1.1)

where ~x(t) is an n-dimensional vector function of time t; d~x
dt

is the first derivative of ~x(t),

meaning that the first time derivative of every component of ~x(t) is taken; f(~x) is an

n-dimensional vector function of ~x(t); and ~x0 denotes an initial value of ~x at the starting

time t0. The above ODE system is autonomous, since the vector function f(~x) depends

on ~x only. The ODE system is non-autonomous, if f depends on time t as well, i.e.

f(~x, t) [6]. We can usually set t0 = 0 as this will not alter the underlying dynamics,

rather shift our window in time. For simplicity in writing, we will adopt this convention

in future exploration. The problem posed in (1.1) is commonly referred to as an initial

value problem (IVP)[6].

When each component of f is a linear function of ~x, we get a linear dynamical system
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of the form:


d~x(t)
dt

= A~x(t) for t > 0,

~x(0) = ~x0,

(1.2)

where A is a constant matrix of order n× n, i.e. A ∈ Rn×n and f(~x) = A~x.

In real life problems, dynamical systems of interest that need to be solved often have

unknown f(~x) or A and must be hypothesized and predicted approximately through

collected data and intuition. If this combination of data and intuition suggests that the

dynamical system is linear, then the solution to (1.2) will be a linear combination of

exponential functions, whose coefficients are determined by the initial condition ~x0. The

difficulty in solving (1.2) is dependent on the system’s number of variables. In most

cases, these dynamical systems are nonlinear and nonlinear techniques are needed to

determine their solutions. Since nonlinear techniques are often developed based on linear

approximations, techniques for solving the linear system (1.2) can be valuable [2].

Modern techniques of optimization and machine learning have been used to determine

the formulations of dynamical systems, which can then be solved through a variety of

numerical solutions. The reason for the success of machine learning in the prediction of

dynamics for given systems comes from the ability of machine learning to use collected

data to learn patterns within the data to generate an approximation function that mini-

mizes some loss criteria [2]. Generally, a trained model that exhibits low loss both over

training and validation data is a successfully developed model.

This thesis will describe several procedures to use data generated from test systems

to make predictions about these systems. In particular, the methods of Singular Value

Decomposition (SVD), Dynamic Mode Decomposition (DMD), Sparse Identification of

Nonlinear Dynamics (SINDy), and Machine Learning regression will be studied. For

clarity, their studies are presented in Chapters 3, 4, 5, and 6 respectively, along with

some results we observed during the numerical tests we conducted using these methods.
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Chapter 2

Elementary Theory and Analytical

Solution Techniques

2.1 Basic Theory

2.1.1 Existence and Uniqueness of Solutions

Let fi and xi denote the i-th component of vectors f and ~x, respectively. We assume that

a system of the form (1.1) satisfies the hypotheses of an existence and uniqueness theorem

given in [10] for f(~x, t): “If f is continuous and all of its partial derivatives ∂fi/∂xj for

i, j = 1, . . . , n are continuous in ~x for some open connected set D ⊂ Rn, then for ~x0 ∈ D,

(1.1) has a solution ~x(t) over some time interval, and the solution is unique.” Clearly,

system (1.2) will possess a unique solution.

2.1.2 Trajectories of Solution Curves

For initial value problems of the form (1.2), the solutions of these problems are continuous

functions in time that trace out trajectories in Rn. A given initial condition will generate a

unique trajectory through the phase space Rn; in particular, this implies that 2 different

initial conditions will generate 2 different solution curves that will never intersect. If

these solution curves were to intersect, then an initial condition starting at the point

of intersection would generate 2 different trajectories which is not permitted [10]. For
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homogeneous linear systems such as (1.2), the origin represents a fixed point, a point

whose derivative is the zero vector ~0. Fixed points are of interest since they are points

that the solution trajectories will either converge to, diverge away from, or orbit around.

The behaviors of solutions around a given fixed point are determined by the eigenvalues

of the matrix A in (1.2). If all eigenvalues λ have Re(λ) < 0, Re(λ) refers to the real part

of λ, then all solution trajectories will converge to the origin along the direction of the

eigenvector of the largest magnitude eigenvalue. If at least 1 eigenvalue has Re(λ) > 0,

then solution trajectories whose initial conditions are not asymptotically close to the

eigenvectors with Re(λ) < 0 will diverge along the direction of the eigenvector with

Re(λ) > 0. The previous analysis provides insight to the general behavior of solution

curves for a given linear system.

The same analysis can be used to provide insights to the behavior of solution curves

near fixed points of nonlinear systems via linear approximation by the Jacobian matrix.

Determining the eigenvalues of the Jacobian matrix evaluated at the fixed point will give

the local behavior of solution trajectories [10].

Example of a Globally Stable System

Consider the following system:

dx
dt

= −23/5x− 6y − 24/5z,

dy
dt

= 2x+ y + 2z,

dz
dt

= 6/5x+ 2y + 3/5z,

(2.1)

which can be written in the form of (1.2) with

~x =


x

y

z

 A =


−23/5 −6 −24/5

2 1 2

6/5 2 3/5

 .

The matrix A of this system has eigenvalues −1,−1 − 2i, and −1 + 2i and their

associated eigenvectors (−1,−1, 2)T , (3,−1+i,−1)T , and (3,−1−i,−1)T . Here i =
√
−1,
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since all the real parts of the eigenvalues are negative, all solution curves will converge to

a fixed point at t = 0, (0, 0, 0). Since we know the eigenvalues and eigenvectors, we can

claim that the solution of (2.1) will have the form

~x(t) = c1e
−t


−1

−1

2

+ c2e
(−1−2i)t


3

−1 + i

−1

+ c3e
(−1+2i)t


3

−1− i

−1


With Euler’s formula eiθ = cos θ+ i sin θ, we can rewrite the second and third exponential

terms as

e(−1−2i)t = e−t(cos2t− isin2t),

e(−1+2i)t = e−t(cos2t+ isin2t).

Combining with their respective vectors and constants, we get real and imaginary portions

for each vector

c2e
−t


3cos2t

−cos2t+ sin2t

−cos2t

+ c2ie
−t


−3sin2t

sin2t+ cos2t

sin2t

 ,

c3e
−t


3cos2t

−cos2t+ sin2t

−cos2t

+ c3ie
−t


3sin2t

−sin2t− cos2t

−sin2t

 .

We can combine the real parts and imaginary parts to get

(c2 + c3)e−t


3cos2t

−cos2t+ sin2t

−cos2t

+ (c2 − c3)ie−t


3sin2t

−sin2t− cos2t

−sin2t

 .

We set c′2 = c2 + c3 and c′3 = i(c2 − c3). Since our solutions must exist in R3, coefficients

c′2 and c′3 will be real numbers and our transformed equation will have the following
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appearance

~x(t) = c1e
−t


−1

−1

2

+ c′2e
−t


3cos(2t)

−cos(2t) + sin(2t)

−cos(2t)

+ c′3e
−t


−3sin(2t)

sin(2t) + cos(2t)

sin(2t)

 (2.2)

where c1, c
′
2, c
′
3 are determined by the initial condition.

Fundamentally, the imaginary portions of the eigenvalues will cause trajectories to

exhibit spiral-like behavior. Four sample trajectories are displayed in Figure (2.1). We

generated trajectories by using an ODE solver (scipy.integrate.odeint) from the SCIPY

library, where a random initial condition was selected from the closed cube [−20, 20]3, a

time interval was set as [0, 5] with a time stepsize of 0.001 [8]. From the figure, it is clear

that each trajectory asymptotically converges to the origin.

Figure 2.1: Top left image has an initial condition of (-19, -9, 17) and a final position of
(-0.046, -0.012, 0.087). Top Right image has an initial condition of (-15, -19, -18) and
a final position of (0.208, 0.115, -0.224). Bottom left image has an initial condition of
(-1, 1, -7) and final position of (0.003, 0.075, -0.051). Bottom right image has an initial
condition of (7, -10, -15) and final position of (-0.141, 0.217, -0.039).
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2.2 Spectral Decomposition

When n = 1, the system (1.2) becomes a scale equation,


dx(t)
dt

= ax(t) for t > 0,

x(0) = x0,

(2.3)

whose solution is given by

x(t) = x0e
at (2.4)

However, when n > 1, it is difficult to get an expression of the analytical solution

x(t) of (1.2). Even so, it has been known that system (1.2) can be decoupled to n scalar

differential equations, greatly simplifying the study of (1.2) theoretically and numerically.

This decoupling process is commonly referred to as a spectral decomposition. It is this

spectral decomposition that makes a linear system of (1.2) particularly valuable in the

dynamical model development. Hence, we give it a detailed description.

Motivated by the solution (2.4) of (2.3), we take an ansatz about the solution function

of (1.2), an ansatz in the form ~x(t) = eλt~v, where λ is a constant scalar and ~v is a constant

vector. We then can get that

~̇x = λeλt~v and A~x = Aeλt~v

⇒ λ~v = A~v

(2.5)

This is significant because it is indicating that in order for eλt~v to be a solution, λ and ~v

must satisfy (2.5), which is an eigenvalue problem. That is λ and ~v must be an eigenvalue

and an eigenvector pair of matrix A.

Suppose that A has n eigenpairs (eigenvalues λi and their associated eigenvectors ~vi),

going back to the original problem (1.2), our solution vector ~x(t) will be of the form

~x(t) =
n∑
i=1

cie
λit~vi, (2.6)

7



where ci is the i− th constant to be determined by the initial condition ~x(0) = ~x0.

While the above solution technique works, it is very expensive computationally. This

means that for an extremely large matrix the above spectral decomposition is not feasible

to implement. Hence, more computationally efficient methods for solving (1.2) been

developed over the years without computing the eigenvalues and eigenvectors of coefficient

matrix A.

As a brief detour, we next define matrices D and P by

D =



λ1

λ2

. . .

λn


P =

[
~v1 ~v2 · · · ~vn

]
, (2.7)

and the n× n matrix A as A = PDP−1. Then we can reformulate (1.2) as

(P−1~x)′ = D(P−1~x) (2.8)

Setting a new vector function, ~y by

~y = P−1~x (2.9)

we convert (2.8) into a simpler equivalent system,

~̇y = D~y (2.10)

Or n independent scalar equations

dyi
dt

= λiyi, i = 1, 2, . . . , n (2.11)

whose solution yi is given by yi(t) = cie
λit. Hence, by (2.9), the solution ~x(t) of (1.2)

is given as a linear combination of the components of ~y(t). The spectral decomposition

method is an interesting excursion; however, it is dependent on knowing the eigenvalues
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and eigenvectors of the matrix A, whose calculation can be very costly for large n. Hence,

it is not guaranteed to work in all instances.

From (2.9), it is evident that ~x = P~y; therefore, ~y must be determined to solve ~x. We

can get

~x(t) = P~y(t) =

[
~v1 ~v2 . . . ~vn

]


y1(t)

y2(t)

...

yn(t)


=

n∑
i=1

yi(t)~vi =



∑n
i=1 vi1yi(t)∑n
i=1 vi2yi(t)

...∑n
i=1 vinyi(t)


or

[
xj(t) =

n∑
i=1

vijyi(t), j = 1, 2, . . . , n

]

where we have denoted ~vi by ~vi =



vi1

vi2
...

vin


, for i = 1, 2, . . . , n

This shows that each component xj(t) of our solution vector ~x(t) will be a linear com-

bination of the solutions yi(t) of (2.11) with coefficients vij being the j-th component of

eigenvectors ~vi for i = 1, 2, . . . , n.

To illustrate the above method, we consider a simple system of (1.2) as follows: with

initial condition ~x0 and A.


dx1
dt

dx2
dt

dx3
dt

 =


1 2 1

2 3 0

1 0 3



x1

x2

x3

 , (2.12)

Where we have set A as a symmetric real constant matrix, i.e,

A =


1 2 1

2 3 0

1 0 3


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The matrix of (2.12) can be diagonalized as A = PDP−1 with

D =


3 0 0

0 2 +
√

6 0

0 0 2−
√

6

 and P =


0 −1 +

√
6 −1−

√
6

−1 2 2

2 1 1

 .

The solutions of (2.10) for this example can be found analytically in the expression

~y =


y1(t)

y2(t)

y3(t)

 =


c1e

3t

c2e
(2+
√

6)t

c3e
(2−
√

6)t

 .

Using ~x = P~y, we then get the solution ~x of (2.12) as shown below:

~x =


x1(t)

x2(t)

x3(t)

 = P~y =


0 −1 +

√
6 −1−

√
6

−1 2 2

2 1 1




c1e
3t

c2e
(2+
√

6)t

c3e
(2−
√

6)t



= c1e
3t


0

−1

2

+ c2e
(2+
√

6)t


−1 +

√
6

2

1

+ c3e
(2−
√

6)t


−1−

√
6

2

1


The coefficients c1, c2, c3 are determined from the initial condition ~x(0) = ~x0. Setting

t = 0 in the above system, we get


x1(0)

x2(0)

x3(0)

 =


0 −1 +

√
6 −1−

√
6

−1 2 2

2 1 1



c1

c2

c3


The above linear system can be solved for the coefficients c1, c2, and c3 easily (e.g. by

the Gaussian elimination method). Despite this analysis, most systems of interest are

nonlinear and numerical approaches must be used to either determine an approximate

solution or determine a formulation for the dynamics.
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Chapter 3

Singular Value Decomposition

Singular Value Decomposition (SVD) is a factorization of a matrix Am×n, as follows:

A = UΣV ∗, (3.1)

where U and V are unitary matrices of orders m × m and n × n, respectively, Σ is

a diagonal matrix of m × n with ordered singular values, and ∗ operator refers to the

conjugate transpose.

Suppose we want to determine the dynamics of an autonomous dynamical system of

the form of (1.1) just from collected state and derivative data, then we may use SVD to

determine the parameters of our dynamical system with some degree of accuracy. If the

dynamical system is linear, then we will be able to correctly determine the parameters of

the dynamical system. For a nonlinear system, we will be able to determine parameters

that best linearly approximate the dynamics of the system over the observed time win-

dow. The length of the time window depends on how strong the nonlinearity affects the

dynamics of the system.
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3.1 Linear Case

If our dynamical system is linear and autonomous, then it will have the form of eq (1.2);

d~x

dt
= A~x

Suppose we make m observations of ~x and d~x
dt

and collect these observations into the

transposes of matrices X and Ẋ, in the fashion of equation (5.1), then the i-th column of

XT and Ẋ
T

will represent ~xi and d~xi
dt

at ti respectively. Both matrices XT and Ẋ
T

will

be order n×m. The above problem can be reformulated as

Ẋ
T

= AXT (3.2)

The parameter matrix A maps every column vector ~x of XT to its respective derivative

vector d~x
dt

in matrix Ẋ
T

.

Calculating the SVD of XT and multiplying the pseudo-inverse of XT to the left hand

side of (3.2) will yield an analytic expression for A.

A = Ẋ
T
V Σ−1U∗ (3.3)

Since matrices U and V are unitary, their inverses are their transposes. The matrix Σ−1

will be an m×n matrix whose non-zero entries along the diagonal will contain reciprocal

singular values.

The construction of (3.3) is analytically correct, and executable for low dimensional

data. For very high dimensional data, (3.3) is prone to numerical inaccuracies due to

round off and truncation errors from the many multiplications that occur while performing

the matrix product. A more numerically accurate approach is to use the reduced order

SVD instead of the full SVD. The reduced order SVD will use the first r singular values

of matrix Σ and the first r singular vectors from matrices U and V .

In most cases, the data matrix XT will be a matrix of Rn×m and one of the dimensions

will much larger than the other (either m << n or n << m). With this in mind, we
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can claim that the rank of our data matrix XT will be at most N = min(m,n). We

can further reduce the order of our data matrix based off the magnitude of the singular

values. If the magnitudes of the first r singular values are much greater than that of

the remaining N − r, then we can create a reduced order SVD utilizing only the first r

singular values and associated r singular vectors from matrices U and V . The formulation

of equation (3.3) becomes

A ≈ Ẋ
T
Ṽ Σ̃−1Ũ∗ = Â, (3.4)

where Ũm×r, Σ̃r×r, Ṽ
∗
r×n, and Â is the low rank SVD approximation to A. This partic-

ular approach is beneficial since it reduces the number of multiplications performed and

consequently reduces the impact of rounding and truncation errors. For the sample tests

performed, the reduced order SVD approach yielded the exact same solution as the full

order SVD approach.

The reduced order technique was applied to a test dynamical system and the derived

parameter matrix Â closely approximated the original dynamical system matrix A.

The dynamical system tested had the form

dx
dt

= −12x+ 12y − 3z

dy
dt

= −4x− 2y − z
dz
dt

= −2x+ 4y + 3z

⇐⇒


dx

dy

dz

 =


−12 12 −3

−4 −2 −1

−2 4 3



x

y

z

 (3.5)

We generated data by creating a linear derivative function that took in the inputs of

(x, y, z) and returns the associated derivative vector at that location of (x, y, z). Looking

over the time interval T = [0, 1] with a timestep of 0.01 and initial condition (−8, 8, 27),

we used scipy’s integrate function to generate the phase trajectory for a particle with the

given initial data [8]. The integrate function will move us to the next spatial point and

we will calculate the derivative at that location. By this method, we created a collection

of ordered spatial points and their associated derivatives. As before, matrix XT will

contain all spatial column vectors (x, y, z)T and for our scenario will have the dimensions

of 3 × 100. Matrix Ẋ
T

will have the same dimensions. The phase space trajectory of

system (3.5) is given in Figure (3.1).
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Figure 3.1: The figure on the left shows the trajectory data XT ; clearly the trajectory of
(3.5) with the chosen initial condition diverges. The figure on the right shows the path

of Ẋ
T

; clearly the derivative vector of each point (x, y, z)T increases in magnitude.

The objective was to recover the matrix of (3.5) just from the collected data matrices

XT and Ẋ
T

. Applying the formulation of (3.2) with (3.4), we get

A3×3 ≈ Ẋ
T

3×100Ṽ
∗

100×3Σ̃−1
3×3Ũ3×3 = Â3×3

For our given data, the rank of our data matrix XT is 3, so we can form a reduced

order model utilizing the 3 singular values and associated 3 singular vectors from matrices

U and V . From this construction, the predicted parameter matrix A was determined to

be

Â =


−12. 12. −3.

−4. −2. −1.

−2. 4. 3.

 ≈

−12 12 −3

−4 −2 −1

−2 4 3


Clearly, the derived parameter matrix is nearly identical to the original matrix of (3.5).

To further test the efficacy of this method, we evaluated the average error of the ob-

servations from Ẋ
T

and the approximated observations generated from the product of our

derived parameter matrix and the corresponding position from XT , i.e. Â~x. Explicitly,

error =

∥∥∥∥d~xdt − Â~x
∥∥∥∥
F

The average error over our 100 observations was determined to be approximately

1.56×10−12 with a maximum error of approximately 5.63×10−12. From this test, we can
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definitively say that the reduced order SVD approach can be used to effectively determine

the dynamics of a linear dynamical system. However, for a dynamical system which is

nonlinear, the efficacy of SVD is dependent heavily on the time interval that is used, the

initial value, and the nature of the nonlinear system itself.

3.2 Nonlinear Case

If our dynamical system is nonlinear but autonomous, we will not be able to represent it

as a matrix vector product. However, some useful insights can be gained from attempting

to apply the linear technique of SVD to nonlinear data.

3.2.1 Weakly Nonlinear System

The first nonlinear system we shall test is system (4.13) for reference,


dx

dy

dz

 =


1x− 1y + 3z

−4xy − z

−2x+ 4y − 3z

 ; (3.6)

however, we will additionally impose the initial condition (−1, 1, 1) and use scipy’s in-

tegrate method to generate positional and derivative data. For the chosen initial value,

system (3.6) represents a “weakly” nonlinear system; a system that is nonlinear but

bounded for subset time intervals less than 5. The summary data is listed in Table (3.1).

To calculate the “error” of derived Â matrix, we simply take the 2-norm of the differ-

ence of approximated derivative data (product of approximation matrix Â with position

~x) with the actual derivative data. Explicitly,

error =

∥∥∥∥Â~x− d~x

dt

∥∥∥∥
2

for ~x = (x1, x2, . . . , xn)T

||~x||2 =
√
x2

1 + x2
2 + . . .+ x2

n

(3.7)
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Nonlinear Coefficient -4 with initial condition (-1,1,1)

Time Interval Step

Size

Min Error Max Error Avg Error

[0,5] 0.001 1.1096e-05 3.1070 0.6286

[0,5] 0.01 4.2718e-05 3.1116 0.6314

[0,5] 0.1 0.0004 3.0650 0.7000

[0,1] 0.001 0.0021 2.2024 1.3155

[0,1] 0.01 0.0195 2.1971 1.3184

[0,1] 0.1 0.0148 2.1502 1.3069

[0,0.5] 0.001 0.0015 0.7385 0.2260

[0,0.5] 0.01 0.0015 0.6344 0.2220

[0,0.5] 0.1 0.0731 0.2328 0.1647

[0,0.25] 0.001 0.0005 0.1749 0.0480

[0,0.25] 0.01 0.0004 0.1584 0.0507

Table 3.1: For weakly nonlinear system (3.6), the errors are reasonably restrained for all
time intervals.

The average error is the average of all the norms from collected data. We can graph-

ically evaluate the performance of this linear approximation method in Figure (3.2).

From Figure (3.2), we can see that for times less than 0.5 seconds the trajectories

generated by the SVD approximated derivative closely match the original trajectories.

Beyond 0.5 seconds, the trajectories diverge significantly and one must either re-linearize

the system and use a new initial condition or utilize a different method.

Since this system is “weakly” nonlinear for the chosen initial value and coefficients of

terms, the error is reasonably restrained. Furthermore, the derived parameter matrix Â

tended to match perfectly the coefficients of the linear terms of the dynamical system.

For example, data collected over the time interval T = [0, 1] with a time step of 0.001
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Figure 3.2: The graphs on the left show the trajectories (x, y, z)T from initial condition
(−1, 1, 1), while the graphs on the right show the derivative trajectories for each point.
The blue paths represent the original data while the orange paths represent the SVD
approximation (0.25, 0.5, 1, 5 from top to bottom).
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yielded the following parameter matrix

Â0.001 =


1 −1 3

−0.08945121 6.69785451 −5.92855664

−2 4 −3


Clearly, the coefficients for the linear terms perfectly match those from the original sys-

tem. This behavior was observed throughout all tested dynamical systems that possessed

at least 1 nonlinear equation. As another observation, parameter matrices that were based

off data from the same time interval, e.g. T = [0, 1], all had similar parameter values for

the nonlinear equation row. For the time interval T = [0, 1] we partitioned the interval

with step sizes of 0.001, 0.01, and 0.1. Below are the parameter matrices for the step

sizes of 0.01 and 0.1.

Â0.01 =


1 −1 3

−0.07148221 6.77724583 −5.98834744

−2 4 −3



Â0.1 =


1 −1 3

0.14406132 7.63729844 −6.64345672

−2 4 −3


This behavior is expected since the SVD approximation attempts to minimize the least

squares error between the input and output. Decreasing the step size increases the number

of points needed minimize the least squares error so it won’t change the values of the

parameters needed to minimize the system.

Given the relatively restrained error for each tested interval and step size length, it

is feasible to use a reduced order SVD approximation to roughly estimate the dynamics

for a weakly nonlinear system. This observation is expected but there is some utility in

witnessing it first hand.

An item of interest would be to consider the effectiveness of the SVD approximation

applied to a stronger nonlinear system.
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3.2.2 Lorenz System

For personal interest, we shall explore how the SVD approximation fares in attempting

to approximate the dynamics for the famous chaotic Lorenz System.

The Lorenz System is defined formally as


dx

dy

dz

 =


σ(y − x)

x(ρ− z)− y

xy − βz

→


10(y − x)

x(28− z)− y

xy − 8/3z

 (3.8)

For the chosen parameter values of σ, ρ, and β the Lorenz system will exhibit chaotic

behavior [10]. Even though the Lorenz system is chaotic, it is still a bounded system.

The chaotic nature comes from estimating the long term trajectory of a given initial

condition. Chaotic systems are sensitive to initial conditions and 2 initial conditions that

are separated by a distance of ε will have completely disparate trajectories after a certain

period of time [10]. The error has the potential to accumulate and degrade any long term

prediction attempts.

From Table (3.2), it is clear that the SVD approximation method to determine the

dynamics of the Lorenz System is highly ineffective for most time intervals. Only for a

time interval of T = [0, 0.05] can we obtain errors which are reliably under 1. Given how

minimal this time interval is, the SVD approach is definitely not ideal for the task. We

can more definitively see how ineffective the SVD approximation is for the Lorenz system

in Figure (3.3). Clearly, these graphs show that linear approximations to the Lorenz

system are mostly ineffective in approximating the dynamics. Only under an extremely

small time window is a linear approximation valid.

We can clearly see that for the same time steps, the validation error is not significantly

different from the error gained from the difference between our approximated X and Ẋ
T

.
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Lorenz System with initial condition (-8,8,27)

Time Interval Step

Size

Min Error Max Error Avg Error

[0,5] 0.001 26.1846 288.0060 79.2740

[0,5] 0.01 26.2378 288.1263 79.4930

[0,5] 0.1 27.3909 277.2806 80.8556

[0,1] 0.001 8.4580 90.6518 41.3511

[0,1] 0.01 8.8085 91.0210 41.5148

[0,1] 0.1 10.6996 86.9428 40.5739

[0,0.5] 0.001 1.5038 66.8803 32.3721

[0,0.5] 0.01 2.4573 59.6190 31.9170

[0,0.5] 0.1 17.0482 43.0236 26.8837

[0,0.1] 0.001 0.0481 16.8108 3.7319

[0,0.1] 0.01 0.2063 11.5841 4.9308

[0,0.05] 0.001 0.0198 1.4916 0.4655

[0,0.05] 0.01 0.1370 0.4737 0.3017

Table 3.2: The SVD approach works best for very small time intervals.

3.3 Striving for more accuracy

It is evident from the chosen examples that the linearity of the SVD approximation

hinders its ability to accurately determine the dynamics of a typical nonlinear system.

The condition that the dynamical system is “weakly” nonlinear is circumstantial since

the system can have stable and unstable manifolds that alter the trajectories of initial

conditions living on or between these manifolds [10]. If one were to successfully utilize

the SVD approach s/he would need to “relinearize” the system, or calculate a new SVD

approximation over each spatial interval, thus yielding a piecewise linear function. How-

ever, having the SVD method operate successfully on an arbitrary nonlinear dynamical

system, without heavy alteration, is circumstantial and more sophisticated techniques

are required to determine the dynamics of a system simply from collected data.
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Figure 3.3: The graphs on the left show the trajectories (x, y, z)T from initial condition
(−8, 8, 27), while the graphs on the right show the derivative trajectories for each point.
The blue paths represent the original data while the orange paths represent the SVD
approximation (0.05, 0.1, 0.5, 1 from top to bottom).
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Chapter 4

Dynamic Mode Decomposition

4.1 Background

Dynamic Mode Decomposition (DMD) is now introduced as a method to try to under-

stand the dynamics of a system. This algorithm was first proposed by mathematician

Peter Schmid in 2008 to analyze fluid dynamics. The algorithm descibed below is based

off of Schimd’s design along with Kutz and Brunton’s formulation [9] [2].

To use this method, we do not require knowledge of the underlying dynamics. Suppose

we observe a given system and collect n-dimensional data over a time interval [0, T ]. We

discretize the time interval into m+1 subintervals of equal length by t0 < t1 < t2 < . . . <

tm < tm+1 = T , where ti = iτ with time step τ = T
m+1

. Thus we have m+ 2 vectors ~x(ti)

for i = 0, 1, 2, . . . ,m,m+ 1.

~x(ti) =



x1(ti)

x2(ti)

...

xn(ti)


For simplicity, we denote the jth component of vector ~x(ti) as xij for j = 1, 2, . . . , n

and i = 0, 1, 2, . . . ,m,m + 1. We organize these m + 2 vectors into ordered pairs

{(~x(tk), ~x(tk+1)}mk=0 for k = 0, 1, 2, . . . ,m. It is clear that each ordered pair indicates
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1 time step forward by ~x(t). For convenience, we set t′k = tk + τ ,

~x(tk) =



x1(tk)

x2(tk)

...

xn(tk)


, ~x(t′k) =



x1(tk + τ)

x2(tk + τ)

...

xn(tk + τ)


. (4.1)

We then organize these vectors as two matrices:

Xn×m =

[
~x(t0) ~x(t1) . . . ~x(tm)

]
, X′n×m =

[
~x(t1) ~x(t2) . . . ~x(tm+1)

]
(4.2)

We further make the assumption that there exists a linear mapping A that maps input

vector ~x(ti) to output vector ~x(ti+1) such that

~x(ti+1) = A~x(ti)

If there does not exist an A that exactly relates all vectors ~x(ti) to ~x(ti+1) for all time

values ti, we instead strive for an A whose multiplication with ~x(ti) approximates ~x(ti+1)

for all time values ti,

~x(ti+1) ≈ A~x(ti)

that is valid for all ti values. Over a sufficiently small time step τ , we can assume that

the linear operator A can closely relate the input and output vectors, according to what

Brunton and Kutz claim in [2] that, “if the system is nonlinear but slowly varying, a

multiple scale argument can permit the assumption of a linear tangent approximation”.

From the data matrices X and X′ of (4.2), the best fit operator A can be found as

A = X′X† (4.3)

in the sense of minimizing the loss function

L(A) =
1

2
||X′ − AX||2F , (4.4)
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where || · ||F is the Frobenius norm (squared norm) and X† is the Moore-Penrose pseudo-

inverse of X, which can be defined as

X† = X∗(XX∗)−1. (4.5)

where ∗ operation is the complex conjugate transpose operator.

We give a proof of the best fit formula (4.3) as follows:

Let aij denote the (i, j) entry of A for i, j = 1, 2, . . . , n. We can express A as

A =



~a1
T

~a2
T

...

~an
T


where ~ai

T represents the i-th row of matrix A, i.e.

~ai
T =

[
ai1 ai2 . . . a1n

]
.

This way, we can construct a loss function in terms of the i-th row of matrix A as

L(~ai
T ) =

1

2
‖~aiTX−X′Ri

‖2
F ,

where X′Ri
refers to the i-th row of matrix X′. Taking the partial derivative of L(~ai

T )

with respect to parameter aik yields the following expression

∂L(~ai
T )

∂aik
=

m∑
j=1

(~ai
T~xj − x′ij)xkj,

where ~xj is the j-th column vector of matrix X, x′ij is the entry of matrix X′ located

at the (i,j) position, and xkj is the entry of matrix X located at the (k,j) position. The

term ~ai
T~xj represents the inner product taken between the vectors ~ai

T and ~xj. Using this
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derivative formula, the gradient vector of L(~ai
T ) can be written as

∇L(~ai
T ) =

[∑m
j=1(~ai

T~xj − x′ij)x1j

∑m
j=1(~ai

T~xj − x′ij)x2j . . .
∑m

j=1(~ai
T~xj − x′ij)xnj

]
1×n

Combining all the above gradient row vectors for i = 1, 2, . . . , n together into a matrix,

we obtain

∇L(A) =


∑m

j=1(~a1
T~xj − x′1j)x1j

∑m
j=1(~a1

T~xj − x′1j)x2j . . .
∑m

j=1(~a1
T~xj − x′1j)xnj

...
. . .

...∑m
j=1( ~an

T~xj − x′nj)x1j

∑m
j=1( ~an

T~xj − x′nj)x2j . . .
∑m

j=1( ~an
T~xj − x′nj)xnj


n×n

This formulation can be rewritten into

∇L(A) = (AX−X′)XT

Setting ∇L(A) to be the zero matrix 0n×n, we can explicitly solve this for A to get the

matrix equation.

A = X′XT (XXT )−1 = X′X†

This completes the proof of (4.3). Therefore, the matrix A of (4.3) that minimizes

the loss function of (4.4).

We can further show that this formulation of the pseudo-inverse is equivalent to that

involving the SVD. If we let X = UΣV T , then

XT (XXT )−1 = (UΣV T )T (UΣV T (UΣV T )T )−1

= V ΣTUT (UΣV TV ΣTUT )−1

= V ΣTUT (UΣΣTUT )−1

= V ΣTUTU(ΣT )−1Σ−1UT

= V Σ−1UT .

For most practical purposes, using the SVD to obtain the pseudo-inverse is preferable
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since it avoids the expensive operation of taking the inverse of a matrix.

4.2 DMD Algorithm

Let r be the rank of the data matrix X. The algorithm has the following steps:

1. Compute the reduced order Singular Value Decomposition (SVD) of X

X = ŨΣ̃Ṽ ∗, (4.6)

where the ∗ operation refers to the complex conjugate transpose; Ũ and Ṽ are

orthogonal matrices of orders n× r and m× r respectively satisfying the relations

Ũn×rŨ
∗
r×n = In×n, Ũ

∗
r×nŨn×r = Ir×r, Ṽm×rṼ

∗
r×m = Im×m, Ṽ

∗
r×mṼm×r = Ir×r; and Σ̃ is

a diagonal matrix of order r × r that collects the r nonzero singular values of X.

2. Compute reduced matrix Ã

We start with the original problem

X′ = AX

Combined with (4.6),

X′ = AŨΣ̃Ṽ ∗

Ũ∗X′ = Ũ∗AŨΣ̃Ṽ ∗

Ũ∗X′Ṽ Σ−1 = Ũ∗AŨ.

Set Ã = Ũ∗AŨ implies that

Ã = Ũ∗X′Ṽ Σ−1 (4.7)

Reduced matrix Ã is of order r× r and has the same nonzero eigenvalues as matrix

A. The construction Ũ∗AŨ is a similarity transformation into the lower rank space

Ũ [2].
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3. Extract eigenvalues and eigenvectors of Ã

Since matrix Ã is of order r × r, its dimensions are much smaller than that of A

and diagonalization is feasible.

Ã = ΦΛΦ−1 (4.8)

Λ possesses the eigenvalues of Ã that are equivalent to those of A. The columns of

Φ correspond to the eigenvectors of Ã. Both Λ and Φ are of order r × r.

4. Reconstruct the eigenvectors of A

The eigenvalues of Ã and A are equivalent;

Ã = ΦΛΦ−1

Ũ∗AŨ = ΦΛΦ−1

A = ŨΦΛΦ−1Ũ∗

From the above, A has the same eigenvalues as Ã with eigenvectors ŨΦ. We define

Ψ = ŨΦ (4.9)

where the columns of Ψn×r are the eigenvectors of A. The eigenvectors Ψ are called

the DMD modes.

4.3 DMD Expansion

Since the eigenvalues and eigenvectors of our system have been determined, we can per-

form data-driven spectral decomposition to determine the system’s state at time tk.

~xk =
r∑
j=1

~ψjλ
k
j cj = ΨΛk~c (4.10)
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where ~ψj are the DMD modes, λj is the corresponding DMD eigenvalues, and cj is the

mode amplitude. From (4.10), ~c can be calculated as

~c = Ψ†~x0 (4.11)

where Ψ† is the pseudo-inverse of Ψ. The spectral decomposition introduced in (4.10)

can be written in continuous time with the introduction of continuous eigenvalues ω =

log(λ)/τ :

~x(t) =
r∑
j=1

~ψje
ωjtcj = ΨeΩt~c (4.12)

where Ω is a diagonal matrix with eigenvalues ωj and eΩt is the matrix exponential of a

diagonal matrix Ωt; taking the exponential of a diagonal matrix is equivalent to applying

the exponential function to each diagonal entry thus yielding another diagonal matrix [2]

[6].

4.4 Simple Tests Involving DMD

To see the efficacy of the DMD algorithm, we shall perform some numerical tests using

two simple systems.

4.4.1 Linear System

The first system we shall observe is system (2.1) with a randomly chosen initial condition

of (15, 0, 19). For reference, system (2.1) is


dx
dt

dy
dt

dz
dt

 =


−23/5 −6 −24/5

2 1 2

6/5 2 3/5



x

y

z

 .
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Equation (2.2) gives the form of the analytical solution and using the provided initial

condition, we determine the coefficients as


15

0

9

 =


−1 3 0

−1 −1 1

2 −1 0



c1

c′2

c′3

⇒

c1

c′2

c′3

 =


72
5

49
5

121
5

 .

Therefore the analytical solution to the above IVP is

~x(t) =
72

5
e−t


−1

−1

2

+
49

5
e−t


3cos(2t)

−cos(2t) + sin(2t)

−cos(2t)

+
121

5
e−t


−3sin(2t)

sin(2t) + cos(2t)

sin(2t)

 .

We shall observe system (2.1) over the time interval T = [0, 5] with a stepsize of 0.001

and the chosen initial condition. Using scipy’s odeint function, we generate trajectory

data and utilize some initial proportion p of the data to generate the DMD modes and

the latter proportion 1− p to evaluate the forecasting capability [8]. For example, if we

use 50% of the collected data for the DMD algorithm, that means the other 50% of the

remaining data was unused for the DMD algorithm. DMD forecasting uses the last point

of the initial 50% of data as an initial condition to generate a prediction trajectory that

will then be compared to the unused data to check the accuracy of the method. Results

are displayed in Table (4.1). From the collected results, it is clear that for a linear system,

DMD yields highly accurate forecasts. Even a small proportion of data can be used to

forecast a very accurate trajectory. Figure (4.1) visually displays the accuracy of DMD

forecasting applied to a linear system.
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DMD Interpolation and Extrapolation with (2.1)

% of Data Inter/Extra Min Error Max Error Avg Error

0.8 Inter 0.0000e+00 1.5862e-10 6.8819e-11

0.2 Extra 0.0000e+00 5.0594e-12 3.1475e-12

0.5 Inter 0.0000e+00 6.7626e-11 3.2271e-11

0.5 Extra 0.0000e+00 8.3779e-12 4.7948e-12

0.1 Inter 0.0000e+00 1.2024e-11 6.8062e-12

0.9 Extra 0.0000e+00 6.9282e-10 2.5006e-10

0.01 Inter 0.0000e+00 4.3226e-12 1.5700e-12

0.99 Extra 0.0000e+00 2.0162e-07 7.3534e-08

0.001 Inter 0.0000e+00 9.3133e-13 4.6419e-13

0.999 Extra 0.0000e+00 1.0135e-04 4.7785e-05

Table 4.1: Inter and Extra mean interpolation and extrapolation of the data. Inter means
row percentage of data was used for the DMD algorithm and forecasting from the initial
value is equivalent to interpolation of that data. Extra means the remaining proportion
of data was checked with the DMD forecasting.

Figure 4.1: The left figure shows the original trajectory of system (2.1)
with initial condition (15, 0, 19) and the orange trajectory of the right figure shows the
forecasting based off 0.1% collected data (blue portion).

4.4.2 Nonlinear System

The second system that we shall test is


dx
dt

dy
dt

dz
dt

 =


1x− 1y + 3z

−4xy − z

−2x+ 4y − 3z

 (4.13)
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This system is nonlinear and possesses 2 fixed points: (0, 0, 0) and (1/6, 1/18,−1/27).

We may use the previous eigenvalue analysis to predict local behavior around these fixed

points; however, global behavior cannot be completely determined from linear techniques

alone. To display the effect of the nonlinearity, the initial condition (85, 26, 31) will be

used. Using a time interval of [0, 5] with a step size of 0.001, IVP (4.13) has the graph

shown in Figure (4.2):

Figure 4.2: Starting at (85, 26, 31), the trajectory of (4.13) attempts to converge to
(0, 0, 0).

The same approach to determine the accuracy of DMD interpolation and extrapolation

is used. Table (4.2) shows the accuracy of DMD applied to a nonlinear system. The graphs

of the actual and predicted trajectories provide additional insights to Table (4.2). Clearly,

the DMD algorithm is incapable of correctly forecasting the sudden deflection near the

origin as either the interpolation or extrapolation max error becomes large, indicating

that it is trying to anticipate the sudden nonlinearity near the origin.

From Figure (4.3), it is clear that the DMD algorithm can accurately forecast nonlinear

data over some small interval of time, or sections of data that are sufficiently linear in

nature. It is possible to use DMD to forecast the system’s state over this time period

before “relinearizing” the system, or applying the DMD algorithm over the remaining data

[2]. It should also be noted that DMD is a linear method, meaning that the presence
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DMD Interpolation and Extrapolation with (4.13)

% of Data Inter/Extra Min Error Max Error Avg Error

0.8 Inter 0.0000e+00 2.1862e+01 1.2439e+00

0.2 Extra 0.0000e+00 6.3759e-03 5.2481e-03

0.5 Inter 0.0000e+00 2.1862e+01 1.9807e+00

0.5 Extra 0.0000e+00 2.0307e-02 1.0952e-02

0.1 Inter 0.0000e+00 2.1859e+01 8.3088e+00

0.9 Extra 0.0000e+00 3.9059e-01 6.9740e-02

0.05 Inter 0.0000e+00 7.7144e-01 1.7747e-01

0.95 Extra 0.0000e+00 2.2665e+01 7.8364e-01

0.01 Inter 0.0000e+00 1.7524e-03 6.3641e-04

0.99 Extra 0.0000e+00 2.2760e+01 7.6988e-01

0.001 Inter 0.0000e+00 9.5924e-04 5.0409e-04

0.999 Extra 0.0000e+00 2.2754e+01 7.6140e-01

Table 4.2: In Figure (4.2), when the trajectory approaches the origin, it suddenly deflects
away from the origin before returning to it. This uptick is what causes the large errors
in the rows of this table. In essence, DMD cannot correctly model the sudden deflection.

of nonlinearities in the data will severely cripple the efficacy of the algorithm as seen in

Figure (4.4) where the DMD scheme must use the data from the nonlinear portion of the

trajectory data. To treat nonlinear systems, we now turn to a newer algorithm known

as the Sparse Identification of Nonlinear Dynamics (SINDy), which boasts the capability

to determine the formulation of a dynamical system with nonlinearities, simply from

gathered data.
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Figure 4.3: The above graph comes from using 0.1% of the data. The blue trajectory
is the original data. The orange trajectory is an interpolation of the data used for the
DMD algorithm; it overlaps the blue data with high accuracy. The green trajectory is
the DMD extrapolation predicting unused data. The transition from the orange curve
to the blue curve indicates the beginning of the DMD extrapolation. For a certain time,
the green and blue trajectories are nearly indistinguishable.

Figure 4.4: The above graph comes from using 10% of the data. Using this amount of
data includes the deflection near the origin, thus significantly altering the DMD modes
and degrading the effectiveness of the DMD algorithm’s to forecast.
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Chapter 5

Sparse Identification of Nonlinear

Dynamics

5.1 Background

Sparse Identification of Nonlinear Dynamics (SINDy) is introduced as a method to de-

termine the dynamics of nonlinear systems.

We collect data in a fashion similar to that described in Section (4.1). In addition to

collected data ~x(ti), we also collect derivative data ~̇x(ti); if derivative data is not available,

it can be approximated via finite differences. The data is collected into the two matrices

X =

[
~x(t0) ~x(t1) . . . ~x(tm)

]T
Ẋ =

[
~̇x(t0) ~̇x(t1) . . . ~̇x(tm)

]T (5.1)

Explicitly matrix X will have the following appearance:

X =



x1(t0) x2(t0) . . . xn(t0)

x1(t1) x2(t1) . . . xn(t1)

...
...

. . .
...

x1(tm) x2(tm) . . . xn(tm)


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with Ẋ defined analogously. It should be noted that each column of X describes the

evolution of one dynamical variable in time, while the rows describe the state of the

system at time ti.

For the given system (1.1), we will make the assumption that each of the governing

equations of f(~x) involve only a few active terms, i.e. the right hand side functions are

sparse for each equation. The goal is to create a linear model from a family of functions

of collected data X and to determine the coefficients of active terms in the model. The

benefit of such a sparse construction is interpretability as well as the idea that the sparsest

(aka the simplest) representation of a system is usually the correct one, i.e. the principle

of Occam’s Razor. The construction can be summarized as

Ẋ = Θ(X)Ξ (5.2)

where the columns of matrix Θ(X)m×l are functions of data X and matrix Ξl×n has

columns of sparse vectors ~ξ ∈ Rl whose entries are coefficients to the terms appearing

in each component function of f(~x). The dimension l refers to the number of different

functions we decide to use to populate matrix Θ(X).

Our matrix of candidate nonlinear functions Θ(X) is constructed based off data X

and may have appearance

Θ(X) =

[
1 X X2 . . . Xd . . . sin(X) . . .

]
(5.3)

The submatrix Xd refers to the construction of d-th degree polynomials based off our

observations X. For example, if we record 3 variables x, y, z from our system, and we

want to append submatrix X2 into our matrix Θ(X), X2 will have the appearance

X2 =



x(t0)2 x(t0)y(t0) x(t0)z(t0) y(t0)2 y(t0)z(t0) z(t0)2

x(t1)2 x(t1)y(t1) x(t1)z(t1) y(t1)2 y(t1)z(t1) z(t1)2

...
...

...

x(tm)2 x(tm)y(tm) x(tm)z(tm) y(tm)2 y(tm)z(tm) z(tm)2


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In accordance with a parsimonious model, we want matrix Ξ to be as sparse as possible.

Therefore, we attempt to minimize the output from the following objective function

L(~ξk) = ||Ẋk −Θ(X)~ξk||2 + λ||~ξk||1 (5.4)

where ~ξk is the kth column of matrix Ξ, Ẋk is the k-th column of Ẋ, and λ is a sparsity

promoting parameter. The inclusion of the one norm || · ||1 defined for ~x ∈ Rn as

||~x||1 = |x1|+ |x2|+ . . .+ |xn|

ensures sparsity of vector ~ξk. Sparse regression algorithms such as LASSO or sequential

thresholded least-squares may be used to determine this vector ~ξk [2].

We can place vectors ~ξk into a dynamical system of the form

f(~x)ki = ẋki = Θ(~xi)~ξk

In the above, ẋki is the k-th component of ~̇x evaluated at time ti and Θ(~xi) is a row vector

of symbolic functions of ~xi, representing the ti row of matrix Θ(X).

5.2 Schematic Explanation

To display how SINDy might be used, we consider the Lorenz system


ẋ = σ(y − x) = −σx+ σy

ẏ = x(ρ− z)− y = ρx− y − xz

ż = xy − βz = xy − βz

(5.5)
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If we take m+1 time points of observation, our data matrix X and derivative matrix Ẋ

will have the forms

X =



x(t0) y(t0) z(t0)

x(t1) y(t1) z(t1)

...

x(tm) y(tm) z(tm)


m×3

Ẋ =



ẋ(t0) ẏ(t0) ż(t0)

ẋ(t1) ẏ(t1) ż(t1)

...

ẋ(tm) ẏ(tm) ż(tm)


m×3

Adopting the form of eq (5.2) we can explicitly write our system as



ẋ(t0) ẏ(t0) ż(t0)

ẋ(t1) ẏ(t1) ż(t1)

...

ẋ(tm) ẏ(tm) ż(tm)


m×3

=



1 x(t0) y(t0) z(t0) x(t0)2 x(t0)y(t0) . . . z(t0)5

1 x(t1) y(t1) z(t1) x(t1)2 x(t1)y(t1) . . . z(t1)5

...
...

...
...

...
...

. . .
...

1 x(tm) y(tm) z(tm) x(tm)2 x(tm)y(tm) . . . z(tm)5


m×l



0 0 0

−σ ρ 0

σ −1 0

0 0 −β
...

0 0 0


l×3

If the kth column of the Ξ matrix is multiplied with Θ(X), we will end up with a vector

of dimension m× 1 that is algebraically equivalent to the kth column of Ẋ.

5.2.1 Final Remarks regarding SINDy

Setting the parameter λ is a balancing act of sorts and the ideal value for parameter λ

is often determined through experimentation. Increasing the magnitude of λ sparsifies

the solution for ~ξk while decreasing the magnitude of λ increases the number of active

variables in ~ξk. The SINDy algorithm can be reduced to DMD if we only allow Θ(X)

to contain linear terms and we set parameter λ to 0 in (5.4). SINDy as an algorithm
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has had significant success in identifying the coefficients of nonlinear functions in various

dynamical systems. SINDy has even been extended to determine the terms of partial

differential equations in the modified algorithm PDE-FIND. Despite the massive success

SINDy has experienced, there are still challenges that must be overcome before SINDy is

fully perfected. Some challenges that SINDy must contend with are the choice of variables

for data collection, the choice of functions to populate Θ(X), and the amount and quality

of data collected [2].
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Chapter 6

Deep Neural Network Regression

6.1 Elementary Machine Learning Theory

Machine Learning with Deep Neural Networks (DNNs) is at its core a regression problem.

From a correctly labeled dataset called training data, the objective of machine learning

regression is to determine a function that approximates the function that generates the

training data as well as forecasts unseen data with relative accuracy. The criteria for

an appropriate function is the minimization of a loss function based off the parameters

in the machine learning model. The neural network approach to machine learning has

been used in various regression problems ranging from simple linear regression of a few

variables to image classification for images with hundreds to thousands of variables. In

regression problems, the data used to find appropriate values for the parameters of the

model is called training data.

For a given observation ~xj, we assign a label to this observation in form ~yj. This label

~yj can have various forms, ranging from a scalar value to a vector value. We hope to

approximate a function f that relates ~xj to ~yj, i.e. ~yj = f(~xj). In classification problems,

~yj is usually a scalar referring to the index of some labeling scheme. In regression prob-

lems, ~yj can be a vector representing the vector output for vector input ~xj. We combine

the input and output data into ordered pairs of the form (~xj, ~yj). We next collect these

ordered pairs into a set called the training data, labeled as D. This data will be used to
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train our DNN. In addition to our training data D, we also create a validation dataset

V containing ordered pairs that are not in our training set D. We use these points to

determine the accuracy of our trained model. Our DNN is essentially a function with

a set of parameters Θ with each θ ∈ Θ initialized randomly. Through training, these

parameters θ are adjusted so that they can relate the inputs and outputs of D as closely

as possible. The DNN model can essentially be denoted as a function of the form g(~x; Θ),

with the eventual goal that ~yj ≈ g(~xj; Θ) optimally. We get this optimal approximation

by attempting to minimize the error of some loss function L(Θ) based off adjusting the

parameters values θ. This optimal collection of parameters θ can be labeled as Θ∗ and

has the following property that

Θ∗ = argminΘ L(Θ) (6.1)

An explicit example of a loss function can be

L(Θ) =
1

m

m∑
j=1

‖g(~xj; Θ)− ~yj‖2
2

Common techniques to optimize the parameters θ involve gradient descent and modifica-

tions of gradient descent [7]. Once we have trained our model we calculate the loss over

the validation dataset, as usual lower validation loss means a more successfully trained

model.

To leverage the power of DNNs to predict the dynamics of test systems, we shall use

Pytorch implementations [7]. We will consider some dynamical systems to test the mettle

of simple perceptron (feed forward) schemes.
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6.2 Linear System

The first system we shall discuss is a linear system. Our system will have the following

form
dx
dt

= −4x+ 4y − 3z

dy
dt

= −4x− 2y − z
dz
dt

= −2x+ 4y + 3z

⇐⇒


dx

dy

dz

 =


−4 4 −3

−4 −2 −1

−2 4 3



x

y

z

 (6.2)

The above system is linear and our initial objective in utilizing machine learning will

be to determine if the optimized parameters of our network converge to the values in

the parameter matrix of (6.2). For this purpose, we shall create a simple network that

possesses no hidden layers.

The input will be a 1×3 vector representing our positional vector (x, y, z), followed by

a 3× 3 matrix with an added bias vector of dimension 1× 3, leading to the output vector

of size 1× 3 representing the derivative vector (dx, dy, dz). Structurally the network has

the following appearance

[x, y, z]→ [x, y, z]×


a1 a2 a3

a4 a5 a6

a7 a8 a9


T

+ [b1, b2, b3]→ [dx, dy, dz] (6.3)

In (6.3) our parameter matrix is transposed when multiplying the row vector [x, y, z].

Such is the standard operation when working with Pytorch; Pytorch prefers to work

with row vectors rather than column vectors, in contrast some other machine learning

packages.

When evaluating the parameter matrix Â for (6.2), the model initialized had randomly

generated starting parameters from the interval [0, 1]. Below is an example of the starting

parameter matrix for Â.
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Âinitial =


−0.1954 −0.2129 −0.2127

−0.3678 0.4839 0.2818

−0.3923 0.3733 0.0726

 ~binitial =

[
−0.0593 0.1987 0.1889

]

For a correctly trained model, Â should be sufficiently close to the parameter matrix of

(6.2), with ~b = [0, 0, 0].

The loss function used was mean-squared error defined formally as

MSE =

∑n
i=1 ||~vei − ~vai||22

n
(6.4)

In the above formulation, ~vei represents the estimated i-th output vector, ~vai represents

the actual i-th output vector and || · ||22 represents the square of the Frobenius norm.

The ADAM optimizer was used with a learning rate of 10−3 [5][7]. The training

scheme will run the training model over a subset of the data (called a mini-batch) and

calculate the loss between the actual solution and the approximate solution. To minimize

the loss, the values of the training parameters will be modified according to the ADAM

optimizer algorithm. These updated weights will be used to approximate the solution

and the process is repeated. Over each epoch, the values of the parameters will converge

to those found in the matrix of (6.2). The following gives a sample for Â after successfully

training has occurred.

Âfinal =


−4.0000 4.0000 −3.0000

−4.0000 −2.0000 −1.0000

−2.0000 4.0000 3.0000

 ~bfinal =

[
−9.5381e− 06 5.0423e− 07 1.0266e− 05

]

To determine the parameters for (6.2), 2 approaches for data generation were taken.

The differing data generation methods were then trained on similar networks.
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6.2.1 Data Generation

1. Randomly Generated Points

Since our dynamical system is autonomous, there is no explicit time dependence in

the system, meaning only the input (x, y, z) is needed to determine the derivative

at that position. Therefore, our problem of determining the dynamics of system

(6.2) turns into a linear regression problem. Because order is irrelevant, we can

randomly generate some number of points, in this case 10000, find their mappings,

choose an appropriate batch size, and choose an appropriate number of epochs to

train our model over. Table (6.1) shows some results from changing the domain of

data, the mini-batch size and the approximate number of epochs before the training

loss is less then 10−6. When the training loss is at that magnitude, the estimated

parameter matrix Â has effectively converged to a close enough approximation to

the desired matrix in equation (6.2).

Randomly Generated Point Data

Data Domain
Batch

Size

No of Epochs for

training loss to be <

10−6

[0, 1]3 16 20

[0, 1]3 32 40

[0, 1]3 64 60

[0, 10]3 16 30

[0, 10]3 32 50

[0, 10]3 64 80

[0, 100]3 16 30

[0, 100]3 32 80

[0, 100]3 64 120

Table 6.1: Clearly as the domain of our points increases, the number of epochs required
for satisfactory training increases.
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From Table (6.1), it is clear that for randomly generated linear data, using bounded

data translates into fewer required epochs for convergence of the parameters of Â.

Similarly using a smaller batch size tended to require fewer epochs.

2. Randomly Generated Trajectories

In contrast, we also used sequential trajectories generated from random initial con-

ditions. Since we can control the time interval of observation and the number of

time intervals used, we adjusted the number of trajectories calculated for data to

ensure that we always uses 10000 datapoints for training; for example, for the time

interval T = [0, 1] with a stepsize of 0.001, we generated 10 trajectories to obtain

10000 datapoints. In another scenario if we use a time interval of [0, 0.5] with the

same time step of 0.001, then we generated 200 trajectories for data.

Randomly Generated Trajectory Data

Time Interval Data Domain
Batch

Size

Number of Epochs for

training loss to be <

10−6

[0,0.05] [0, 1]3 16 30

[0,0.05] [0, 1]3 32 60

[0,0.05] [0, 1]3 64 120

[0,0.1] [0, 10]3 16 50

[0,0.1] [0, 10]3 32 70

[0,0.1] [0, 10]3 64 120

[0,1] [0, 100]3 16 160

[0,1] [0, 100]3 32 270

[0,1] [0, 100]3 64 360

Table 6.2: From the above, trajectory data requires more epochs to minimize the loss

From Table (6.2), we can see that data that is bounded tends to require fewer

epochs for satisfactory training. Furthermore for our linear data, using a smaller

batch size tended to yield faster convergence.
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Fundamentally both data generation schemes are identical. Both schemes generate the

same family of points, but faster training is observed with randomly generated data.

The true distinction between the 2 schemes is the order of the points present in mini-

batches. For the randomly generated point data, there is no intrinsic ordering to the

data. 10000 random data points were linearly mapped to their corresponding 10000

derivative points. For the sequential trajectories, the initial conditions were randomly

generated but the trajectories based off those initial conditions were not. When training

the data, mini-batches of size 16, 32, and 64 were taken. What this means is that when

performing a linear regression task via a machine learning scheme, using unordered data

is more efficacious for faster training. There are a few possible explanations to why the

unordered data yields faster training:

1. Correlated structures, i.e. ordered trajectory data, may force the ML model to try

to enforce those correlated structures to all data, despite those structures being

specific only to the points on the trajectory. Uncorrelated structures, i.e. the

randomly generated points, have no initial structure so the ML model is free to

determine a correlated structure without any initial bias and may do so efficiently

on its own.

2. The way the ADAM optimizer works may work better for unordered data over

ordered data. The derivatives of data from an ordered trajectory will all have similar

numerical values since these points are all close to each other and the derivative

mapping is a continuous function. More significant optimization will occur if there

is some distinction in the values of the data in a given mini batch.

3. The representation of trajectory data points might require more decimal points to

properly represent, and a lack of proper representation leads to an accumulation of

truncation and rounding errors. Unordered data doesn’t suffer from this issue since

an accumulation of truncation or rounding error can’t occur with only 1 point.

The above issue is interesting in its own right and definitely warrants further investi-

gation as a potential future project.
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Although the problem just discussed is nothing more than linear regression, it is useful

to see first hand that a machine learning model will converge to the correct parameter

matrix for a judiciously created network and that the ordering of the data for batches

impacts the required number of epochs for satisfactory training. Now that we have shown

that a linear system can be correctly estimated via machine learning, we go to the task

of utilizing machine learning for a nonlinear system.

6.3 Nonlinear System Tests

We now attempt to create an approximation of the dynamics via machine learning with

the incorporation of activation functions and hidden layers. We shall test the previ-

ously discussed systems (3.6) and (3.8), with their corresponding initial conditions, using

different machine learning architectures.

The main distinction in architectures will be the number of hidden layers used in each

machine learning model. As usual, we require validation data to ensure that our models

are not overtraining and memorizing data. To this end, we shall generate validation data

over the same time interval but at a different time step. The validation data may have

some data points that are repeated from the training data, but overall the validation data

will have significantly more new unseen points.

6.3.1 Ordered vs Unordered Data

In the previous section, when training data for the linear dynamical system was collected it

could be collected as either randomly generated points or randomly generated trajectories

with their outputs. With regards to nonlinear data, a discernible advantage has been

observed in using unordered data points vs sequentially ordered trajectories. A small

sample test has been run using the same number of points operating on roughly the same

domain [0,1] and range [0,5]. The machine learning model had the structure of (6.6) with

matrices P1 and P2 of dimensions 108 × 3 and 3 × 108 respectively, corresponding bias

vectors ~b1 and ~b2 of dimensions 1× 108 and 1× 3 respectively, and activation function of
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Randomly Generated Point vs Trajectory Data

Type
Batch

Size
Min Error Max Error Avg Error

unordered 32 0.0002 0.0274 0.0041

ordered 32 0.0108 0.4191 0.1134

unordered 64 0.0015 0.0483 0.0076

ordered 64 0.0182 0.2876 0.0607

unordered 500 0.0007 0.2834 0.0358

ordered 500 0.0006 0.4498 0.0508

Table 6.3: Generally unordered data yields lower errors than ordered data

ReLU (Rectified Linear Unit), defined as

σ(x) =


0 x ≤ 0

x x > 0

(6.5)

The results for a small sample test are given in Table (6.3).

Clearly for smaller batch sizes, using unordered data yields lower errors. However, for

larger batch sizes the errors are comparable. Despite the apparent advantages to using

unordered data, we shall proceed with using ordered trajectory data for the following

reasons:

• In practical applications, trajectory data is usually acquired from observations and

the associated derivative data is calculated from the trajectory data, e.g finite dif-

ferences [2].

• The advantage of unordered data may be circumstantial as the dynamical systems

tested are autonomous and do not involve strongly nonlinear functions in time or

the phase space variables.

The observations regarding ordered and unordered data may warrant further exploration

for a future project.
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6.3.2 Model Structures

We shall observe fundamentally 3 types of model structures: models that have one, two,

or multiple hidden layers.

One Hidden Layer Structure

The model formed here will be a perceptron with 1 hidden layer. Schematically the model

will have the following appearance:

[x, y, z]→ σ1([x, y, z]×P T
1 +~b1)→ σ1([x, y, z]×P T

1 +~b1)×P T
2 +~b2 → [dx, dy, dz] (6.6)

where P1 is a matrix of dimensions n× 3, ~b1 a vector of Rn, σ1 : Rn → Rn is a nonlinear

activation function, P2 is a matrix of dimensions 3× n, and ~b2 is a vector of R3.

Due to the sheer number of possible models that can be generated, we restricted our

attention to models that only involve the nonlinear activation function ReLU (Rectified

Linear Unit) and we evaluated the validation error after training on 40 epochs.

After some preliminary tests over the time intervals T = [0, 0.05] and T = [0, 0.1]

using system (3.6), it was observed that letting n = 108 for the dimensions of matrices

P1 and P2 yields the lowest average validation error.

In the Table (6.4), the entry 3/n − n/3 in the column “Model Structure” refer to

matrix P1 of dimension 3 × n and matrix P2 of dimensions n × 3. Clearly from the

observed data, using a model structure of 3/108 − 108/3 yields the lowest error so to

summarize the derived results, the model structures of 3/108− 108/3 shall be shown for

the other time intervals tested.
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Error Comparison for Different Model Structures

Time Interval
Model Struc-

ture
Min Error Max Error Avg Error

[0,0.05] 3/4-4/3 0.0053 1.1725 0.2441

[0,0.05] 3/12-12/3 0.0067 0.3141 0.0848

[0,0.05] 3/36-36/3 0.0022 0.1840 0.0441

[0,0.05] 3/108-108/3 0.0023 0.0851 0.0251

[0,0.05] 3/324-324/3 0.0071 0.1958 0.0781

[0,0.1] 3/4-4/3 0.0023 1.0238 0.2627

[0,0.1] 3/12-12/3 0.0017 0.8314 0.1248

[0,0.1] 3/36-36/3 0.0031 0.2616 0.0406

[0,0.1] 3/108-108/3 0.0051 0.1734 0.0366

[0,0.1] 3/324-324/3 0.0032 0.1178 0.0371

Table 6.4: From the above, it is clear that certain orientations yield a lower average than
others.

Two Hidden Layer Structure

The model formed here will be a perceptron with 2 hidden layers. Schematically the

model will be similar to that of (6.6) with the following appearance:

[x, y, z]→ σ1([x, y, z]× P T
1 +~b1)→ σ2

(
σ1([x, y, z]× P T

1 +~b1)× P T
2 +~b2

)
→ σ2

(
σ1

(
[x, y, z]× P T

1 +~b1

)
× P T

2 +~b2

)
× P T

3 +~b3 → [dx, dy, dz]
(6.7)

where P1 is a matrix of dimensions n1 × 3, ~b1 a vector of Rn1 , σ1 : Rn1 → Rn1 is a

nonlinear activation function, P2 is a matrix of dimensions n2 × n1, and ~b2 is a vector of

Rn2 , σ2 : Rn2 → Rn2 , P3 is a matrix of dimensions 3× n2, and ~b3 is a vector of R3.

Since the number of possible models that can be generated is even larger than the

one hidden layer case, we restricted our attention to a few specially chosen orientations

(from extensive testing). Some preliminary testing over the interval [0, 0.05] for system

(3.6) was conducted and the data of Table (6.5) was collected.
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Error Comparison for Different Time Intervals

Model Structure Min Error Max Error Avg Error

3/4-4/12-12/3 0.1432 1.4570 0.5644

3/12-12/4-4/3 0.1487 1.4832 0.6552

3/12-12/36-36/3 0.0278 0.4257 0.1482

3/36-36/12-12/3 0.0041 0.2272 0.0780

3/36-36/108-108/3 0.0067 0.3327 0.0828

3/108-108/36-36/3 0.0181 0.2763 0.0753

3/108-108/324-324/3 0.0942 0.5059 0.2855

3/324-324/108-108/3 0.0870 0.3508 0.2051

3/108-108/108-108/3 0.0167 0.2234 0.0625

Table 6.5: From the data, it is clear that using more parameters tends to yield lower
errors.

From the testing shown in Table (6.5), it was observed that starting with many

parameters and reducing the number of parameters through the model tends to yield

lower average errors. After extensive testing, it was found that using 108 parameters was

effective in yielding lower errors. From Table (6.5), it appeared that the models with

structure 3/108-108/108-108/3 performed the best, so this orientation was used in our

testing.

Multiple Hidden Layer Structure

The model formed here will be a perceptron with multiple hidden layers. Schematically

the model will be similar to the previous 2 models. Since the model works off of repeated

composition and matrix multiplication, the most general model structure of an arbitrary

number of m hidden layers can be written as

[x, y, z]→ σ1([x, y, z]× P T
1 +~b1) = ~vn1

~vni−1
→ σi(~vni−1

× P T
i +~bi) = ~vni

2 ≤ i ≤ m− 1

~vnm → ~vnm × P T
m+1 +~bm+1 = [dx, dy, dz]

(6.8)
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where P1 is a matrix of dimensions n1 × 3, ~b1 a vector of Rn1 , σ1 : Rn1 → Rn1 is a

nonlinear activation function, Pi is a matrix of dimensions ni×ni−1, and ~bi is a vector of

Rni , σi : Rni → Rni , Pm+1 is a matrix of dimensions 3× nm, and ~bm+1 is a vector of R3.

As before, the number of possible models that can be generated is extensive and

is limited only by one’s imagination. To keep the data brief, several models of differing

lengths will be discussed with comparable dimensions for the matrices used in each hidden

layer. Similar to before, only ReLU will be used as the activation function. After some

preliminary testing on possible model structures, using system (3.6), the results of Table

(6.6) were generated.

Error Comparison for Different Model Structures over time interval [0, 5]

Model Structure Min Error Max Error Avg Error

3/80-80/70-70/20-20/3 0.0037 0.3802 0.0146

3/108-108/108-108/108-108/3 0.0001 0.3122 0.0129

3/36-36/81-81/108-108/3 0.0011 0.4022 0.0130

3/108-108/81-81/36-36/3 0.0011 0.4807 0.0186

3/81-81/81-81/81-81/3 0.0014 0.4489 0.0208

3/81-81/108-108/36-36/3 0.0007 0.3866 0.0165

Table 6.6: Errors for all model structures are comparable.

From Table (6.6), it is evident that there is no major difference in the average error

nor max error for each model structure. However, it is noted that for a model structure of

3/108−108/108−108/108−108/3 the max and min errors were both minimal. Therefore

this model structure shall be used as a template moving forward as it appears to offer

some advantage. Also for faster training only 20 epochs were used, since the use of

multiple hidden layers yields faster initial loss decrease. Next we needed to consider the

number of hidden layers to use. From the data in Table (6.6) and data from time interval

[0, 5], the number of hidden layers was altered and compared. Table (6.7) shows the error

comparisons.

Clearly from Table (6.7), using more hidden layers doesn’t confer any noticeable ad-
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Error Comparison for Different Model Structures over time interval [0, 5]

Model Structure Min Error Max Error Avg Error

3/108-108/108-108/108-108/108-108/3 0.0049 0.4447 0.0310

3/108-108/108-108/108-108/108-

108/108-108/3
0.0013 0.4722 0.0229

3/108-108/108-108/108-108/108-

108/108-108/108-108/3
0.0008 0.7351 0.0229

Table 6.7: The errors for all models are comparable. This indicates that using more layers
doesn’t automatically imply improved performance.

vantage in error reduction. Furthermore, training models with additional layers requires

longer training times. Therefore we limited the number of hidden layers in our models to

three.

6.3.3 System (3.6)

In Table (6.8), the time intervals may be different but the time step used for each test

was the same 0.001. To ensure fairness in testing, the number of initial conditions (and

in conjunction trajectories) was adjusted for each time interval so the total number of

data points, 100000, used for each case was the same. For the interval [0, 0.5] 2000 initial

conditions were used, for [0, 1] 1000 initial conditions, and for [0, 5] 20 initial conditions.

From the table, we can see that the average error was roughly the same magnitude for

each time interval tested with comparable min and max errors. The max errors may

be different but were roughly on the same order of magnitude. To further elucidate the

results, some sample derivative trajectories from each system are plotted as well in Figures

(6.1) and (6.2). From these figures a few items of interest can be noted. First, the machine

learning approximated functions are not guaranteed to be smooth. Noted in both figures,

several curves from machine learning models exhibit corners. This particular behavior

may be a result of using the ReLU activation function in each of the models. Second,

these functions have the capacity to accurately approximate the original function as
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seen with machine learning trajectories that nearly overlap the original trajectory, or are

sufficiently close in coverage. Conversely, these functions may offer inaccurate predictions

as seen with the last graph in Figure (6.2), where the one hidden layer model predicts

a completely different trajectory than that expected. Similarly, the two and multiple

hidden layer models also suffer from the same inability to accurately predict the true

derivative trajectory, but to a less severe degree.

Error Comparison for Different Time Intervals and Model Structures - System (3.6)

Time

Interval
Model Structure Min Error Max Error Avg Error

[0,0.05] 3/108-108/3 1.6618e-03 1.4064e-01 1.8990e-02

[0,0.05] 3/108-108/108-108/3 3.3701e-04 1.8499e-01 2.9528e-02

[0,0.05] 3/108-108/108-108/108-108/3 1.0012e-03 1.4359e-01 2.7069e-02

[0,0.1] 3/108-108/3 3.5771e-04 1.4197e-01 1.9836e-02

[0,0.1] 3/108-108/108-108/3 1.3430e-03 3.1058e-01 3.6738e-02

[0,0.1] 3/108-108/108-108/108-108/3 6.9223e-04 2.0114e-01 3.5606e-02

[0,0.5] 3/108-108/3 2.7378e-03 3.7421e-01 3.0936e-02

[0,0.5] 3/108-108/108-108/3 8.0196e-04 3.4968e-01 2.9785e-02

[0,0.5] 3/108-108/108-108/108-108/3 2.8385e-02 5.1729e-01 1.7679e-01

[0,1] 3/108-108/3 4.5775e-03 4.3106e-01 5.7347e-02

[0,1] 3/108-108/108-108/3 2.0558e-03 1.4166e-01 5.1877e-02

[0,1] 3/108-108/108-108/108-108/3 1.5813e-03 1.4832e-01 3.5908e-02

[0,5] 3/108-108/3 1.0278e-02 1.8477e+00 7.4068e-02

[0,5] 3/108-108/108-108/3 1.3500e-02 1.4278e+00 5.3442e-02

[0,5] 3/108-108/108-108/108-108/3 6.9037e-03 1.6664e+00 5.4890e-02

Table 6.8: For the most part, the errors for all model structures for data over the same
time interval are roughly the identical.
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Figure 6.1: The blue curve represents the original derivative trajectory, the orange curve
the one hidden layer model trajectory, the green curve the two hidden layer model tra-
jectory, and the red curve the multiple hidden layer model trajectory. The first row
represents sample trajectories from T = [0, 0.05], the second T = [0, 0.1], the third
T = [0, 0.5].

Clearly, the machine learning model was fairly successful in approximating the dynam-

ical system. For the model trained over the time interval T = [0, 5], training over more

epochs and using more data will ensure that the derivative approximation more closely

resembles the actual derivative values. As mentioned earlier, one noticeable observation

is that the machine learning model yields prediction curves that are less smooth in com-

parison to the actual derivatives, possibly indicating that the machine learning model is a
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Figure 6.2: The blue curve represents the original derivative trajectory, the orange curve
the one hidden layer model trajectory, the green curve the two hidden layer model tra-
jectory, and the red curve the multiple hidden layer model trajectory. The first row
represents sample trajectories from T = [0, 1] and the second T = [0, 5].

sort of piecewise continuous function. In comparison to the SVD approach, the machine

learning approach provided more accurate predictions for system (3.6).

6.3.4 System (3.8)

Table (6.9) contains the error results from using all model structures over all time intervals

for the Lorenz system. Figures (6.3) and (6.4) show more explicitly the graphs of the

derivative trajectories applied to validation data. From Table (6.9), it is clear that for

larger time windows, e.g. T = [0, 1] or T = [0, 5] using more hidden layers tends to

produce a more accurate approximation. Although the graphs of Figure (6.4) show little

to no distinction between the the actual and approximated derivative trajectories, the

maximum error of the one hidden layer model is nearly 30, 3 times that of the two hidden

layer and multiple hidden layer models. From both figures, one can hypothesize that

using additional hidden layers works well for highly nonlinear data. On the other hand,
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using fewer hidden layers works better for nonlinear data that can be accurately linearized

over some small time interval, while using many hidden layers over the same small time

interval is less effective to acquiring smaller error.

Error Comparison for Different Time Intervals System (3.8)

Time Inter-

val
Model Structure Min Error Max Error Avg Error

[0,0.05] 3/108-108/3 6.8786e-04 6.1174e-01 2.7316e-02

[0,0.05] 3/108-108/108-108/3 6.0730e-04 7.0845e-01 2.4936e-02

[0,0.05] 3/108-108/108-108/108-108/3 1.0024e-03 6.0059e-01 4.3093e-02

[0,0.1] 3/108-108/3 5.9290e-03 2.8324e-01 6.1054e-02

[0,0.1] 3/108-108/108-108/3 4.6000e-03 5.9648e-01 1.7455e-01

[0,0.1] 3/108-108/108-108/108-108/3 2.7247e-02 2.7493e+00 9.4708e-01

[0,0.5] 3/108-108/3 9.9410e-02 4.8581e+01 3.7499e+00

[0,0.5] 3/108-108/108-108/3 8.4056e-03 7.4880e+00 1.5430e+00

[0,0.5] 3/108-108/108-108/108-108/3 9.8506e-03 8.5082e+00 1.2265e+00

[0,1] 3/108-108/3 2.0307e-01 3.5834e+01 6.5673e+00

[0,1] 3/108-108/108-108/3 1.5797e-02 9.9434e+00 2.4526e+00

[0,1] 3/108-108/108-108/108-108/3 6.9705e-03 1.0636e+01 2.5399e+00

[0,5] 3/108-108/3 1.1902e-01 2.7290e+01 1.0883e+01

[0,5] 3/108-108/108-108/3 2.6615e-02 8.3476e+00 1.4967e+00

[0,5] 3/108-108/108-108/108-108/3 1.6468e-02 8.9901e+00 1.0596e+00

Table 6.9: From the table above, it is clear that for nearly linear or weakly nonlinear
data, using a model structure with fewer hidden layers is a method to achieve an accurate
prediction for
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Figure 6.3: The blue curve represents the original derivative trajectory, the orange curve
the one hidden layer model trajectory, the green curve the two hidden layer model tra-
jectory, and the red curve the multiple hidden layer model trajectory. The first row
represents sample trajectories from T = [0, 0.05], the second T = [0, 0.1], the third
T = [0, 0.5].

Despite the larger errors that are observed for larger time intervals, the error observed

through DNN regression is significantly smaller in magnitude than that observed from

the SVD approach.
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Figure 6.4: The blue curve represents the original derivative trajectory, the orange curve
the one hidden layer model trajectory, the green curve the two hidden layer model tra-
jectory, and the red curve the multiple hidden layer model trajectory. The first row
represents sample trajectories from T = [0, 1] and the second T = [0, 5].

6.4 Observations over DNN Regression

Utilizing DNN to determine the dynamics of various autonomous dynamical systems de-

volves to a simple regression problem. It has been noted that for the problem of regression,

using unordered randomly generated data points is more effective, in terms of faster loss

reduction within fewer epochs, than using trajectory data. There are a few possible hy-

potheses for this behavio: the machine learning program might be able to more efficiently

determine correlations by itself rather than use imposed ones, the ADAM optimizer might

have more efficient training (significant and faster loss reduction) when the mini-batch

data has some diversity, accumulation of rounding and truncation errors might be more

prevalent in the ordered data vs the unordered data. Another observation to note is that

for linear systems, the machine learning model will converge to the analytic solution.

This gives some meaningful assurance to the accuracy of machine learning optimization
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without the need for validation data. The last observation is that for bounded nonlinear

systems, machine learning regression will converge to an approximation of the nonlinear

system. It should be noted that the trait of being bounded is more important than being

chaotic, as the machine learning models were able to approximate the dynamics of the the

Lorenz system with a reasonable amount of accuracy. The only downside to the machine

learning approach is the fact that the internal workings are mostly unknowable. Attempt-

ing to write out the analytical expression of a machine learning model is a foolhardy task

as the composition of matrices and activation functions will yield an expression that lacks

much intuition. For small models with only a few parameters, it might be possible to

obtain a meaningful analytic expression, but for models that have thousands to millions

of parameters such an expression is nearly meaningless. This suggests that a way forward

with regards to DNN research is parameter reduction for interpretability as well as more

efficient training.
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Chapter 7

Conclusion

We have observed many different techniques to determine information regarding a dy-

namical system, ranging from the form of the dynamics to the forecasting of trajectories.

DMD is effectively a linear method that is valid only over sufficiently small time inter-

vals where linearization is possible; furthermore the assumption that the dynamics of a

system change linearly from one observation to the next is a strong condition that isn’t

usually upheld. SINDy is powerful but is limited in effectiveness due to the requirement

of choosing a family of basis functions, the number of which is limited only by one’s

imagination, combined with the need to pick the correct family of basis functions. In

addition, to use SINDy effectively one must use extremely high quality data and take

measurements of relevant quantities. SVD is a valid approach provided the system in

question is linear or the time window of observation is sufficiently small for a nonlinear

system. DNN regression provides a promising method to determining the dynamics of

collected data from a system, but the black box nature of a machine learning model make

it slightly unappealing to determine the underlying dynamics, although the point dynam-

ics can be interpolated with a high degree of accuracy. To fully take advantage of the

machine learning approach, one needs to understand the dynamics of machine learning

itself. Until this is done, the black box nature of machine learning will provide excellent

results without much consideration to why those results work.
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Appendix

Python Programs for the Numerical Tests

All of this code is written in Python 3 [11] and utilizes the program packages of Numpy

[4], Scipy, [8], PyTorch[7], and Adam Optimizer [5]. Some code is inspired by posts from

the following sources: [1], [2], [3].

Dependencies

1 import numpy as np

2 from scipy import integrate

3 import torch

4 from torch import nn

5 import torch.utils.data as utils_data

6 from torch.autograd import Variable

7 from torch.utils.data import DataLoader

8 from torch import nn , optim

9 from mpl_toolkits import mplot3d

10 %matplotlib inline

11 import matplotlib.pyplot as plt

12 device = ’cuda’ if torch.cuda.is_available () else ’cpu’

13 print(f’Using {device} device ’)

Listing 7.1: Numpy, Scipy, Pytorch, and MatplotLib dependencies are needed. A GPU

is preferred when training, but is not necessary to run the code in this thesis.

Ch. 2.1.2 Trajectory and Data Generation for Linear Case

1 # Initialization of Data

2 dt = 0.001

3 T = 5

4 t = np.arange(dt,T+dt,dt) # vector of times [0.01 , 0.02, ... 5]

5 numint = int(T/dt) # number of steps to integrate over

6 t0 = 0

7 def linear_deriv(x_y_z , t0):# returns derivative for x, y, z input
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8 x, y, z = x_y_z

9 return [ -23/5*x - 6*y - 24/5*z, 2*x + y + 2*z, 6/5*x + 2*y + 3/5*z]

10 # actual test data

11 size = int(numint)

12 data = np.zeros([size ,3])

13 x00 = (-19, -9, 17) # randomly chosen initial condition

14 data = integrate.odeint(linear_deriv , x00 , t,rtol =10**( -12),atol

=10**( -12)*np.ones_like(x00))

15 # plot the data

16 fig = plt.figure ()

17 cx = plt.axes(projection=’3d’)

18 cx.scatter3D(data[:,0], data[:,1], data[:,2], cmap=’Greens ’);

Listing 7.2: This code block can be modified to generate data for any 3 dimensional

system by changing the derivative function.

3.1.1 SVD Applied to Linear Test Case

1 dt = 0.01 # time step

2 T = 1 # max time

3 t = np.arange(dt,T+dt,dt) # vector of times [0.01 , 0.02, ... 5]

4 x0 = (-8,8,27)

5 t0 = 0

6 numint = int(T/dt)

7 def linear_deriv(x_y_z , t0): # returns derivative for x, y, z input

8 x, y, z = x_y_z

9 return [-12*x + 12*y -3* z, -4*x -2*y -z, -2*x +4*y+3*z]

10 x = integrate.odeint(linear_deriv , x0, t,rtol =10**( -12) ,atol =10**( -12)*

np.ones_like(x0))

11 dx = np.zeros_like(x)

12 for j in range(len(t)):

13 dx[j,:] = linear_deriv(x[j,:] ,0)

14 U, S, Vt = scipy.linalg.svd(x)

15 Sc = np.diag(S) # create diagonal S matrix to take inverse of

16 r = 3 # rank of data matrix x

17 Uc = U[:,0:r] # rank 3 approximation
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18 S_inv = np.diag (1/S)

19 parameters4 = np.transpose(np.linalg.multi_dot ([np.transpose(Vt),S_inv ,

np.transpose(Uc),dx]))# parameters4 represents the SVD approximation

20 fig = plt.figure ()

21 cx = plt.axes(projection=’3d’)

22 cx.scatter3D(x[:,0], x[:,1], x[:,2], cmap=’Greens ’);

23 fig = plt.figure ()

24 cx = plt.axes(projection=’3d’)

25 cx.scatter3D(dx[:,0], dx[:,1], dx[:,2], cmap=’Greens ’);

Listing 7.3: The code of Listing (7.2) is applied here with some extensions.

3.2.1 SVD Applied to Weakly Nonlinear Test Case

1 # Parameters before collecting data

2 dt = 0.001 # 0.001, 0.1

3 T = 0.25 # 1, 0.5 0.25

4 t = np.arange(dt,T+dt,dt) # vector of times [0.01 , 0.02, ... 5]

5 alpha = -1

6 beta = -3

7 gamma = -4

8 delta = -2

9 x00 = (-1,1,1)

10 t0 = 0

11 def Nlinear_deriv1(x_y_z , t0 , alpha = alpha , beta = beta , gamma = gamma

, delta = delta): # returns derivative for x, y, z input

12 x, y, z = x_y_z

13 return [alpha * (y - x)-beta*z, x * y* gamma - z, delta*x - gamma*

y + beta * z]

14 # Trajectory generation

15 xnl1 = integrate.odeint(Nlinear_deriv1 , x00 , t,rtol =10**( -12),atol

=10**( -12)*np.ones_like(x00))

16 # Compute Derivative

17 dxnl1 = np.zeros_like(xnl1)

18 for j in range(len(t)):

19 dxnl1[j,:] = Nlinear_deriv1(xnl1[j,:],0,alpha ,beta ,gamma , delta)
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20 # SVD

21 Unl1 , Snl1 , Vnl1t = scipy.linalg.svd(xnl1)

22 Scnl1 = np.diag(Snl1) # create diagonal S matrix to take inverse of

23 r = 3

24 Ucnl1 = Unl1 [:,0:r] # U cut

25 S_invnl1 = np.diag (1/ Snl1)

26 solnl1 = np.transpose(np.linalg.multi_dot ([np.transpose(Vnl1t),S_invnl1

,np.transpose(Ucnl1),dxnl1 ])) # solution nonlinear system 1

27 Numpoints = int(T*(1/dt))

28 errlst = []

29 errsum = 0

30 for j in range(len(xnl1)):

31 diff = np.matmul(solnl1 ,xnl1[j]) - dxnl1[j]

32 diffsq = scipy.linalg.norm(diff)

33 errlst.append(diffsq)

34 errsum = errsum + diffsq

35 #print(’|’+ str(min(errlst))+ ’ | ’ + str(max(errlst)) + ’ | ’ + str(

errsum/Numpoints) + ’|’)

36 # Linear Approximation to the nonlinear system

37 a = solnl1 [1][0]

38 b = solnl1 [1][1]

39 c = solnl1 [1][2]

40 def Nlinear_deriv1app(x_y_z , t0): # returns derivative values for given

x, y, z input

41 x, y, z = x_y_z

42 return [x - y + 3*z, a*x +b*y + c*z, -2*x+4*y-3*z ]

43 # Trajectory generation

44 xnl1app = integrate.odeint(Nlinear_deriv1app , x00 , t,rtol =10**( -12),

atol =10**( -12)*np.ones_like(x00))

45 # Compute Derivative

46 dxnl1app = np.zeros_like(xnl1app)

47 for j in range(len(t)):

48 dxnl1app[j,:] = Nlinear_deriv1app(xnl1app[j,:],0)

49 # Plot the trajectories

50 fig = plt.figure ()
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51 cx = plt.axes(projection=’3d’)

52 cx.scatter3D(xnl1[:,0], xnl1[:,1], xnl1[:,2], cmap=’Greens ’);

53 cx.scatter3D(xnl1app [:,0], xnl1app [:,1], xnl1app [:,2], cmap=’Greens ’);

54 fig = plt.figure ()

55 cx = plt.axes(projection=’3d’)

56 cx.scatter3D(dxnl1[:,0], dxnl1[:,1], dxnl1[:,2], cmap=’Greens ’);

57 cx.scatter3D(dxnl1app [:,0], dxnl1app [:,1], dxnl1app [:,2],cmap=’Greens ’);

Listing 7.4: The code of Listing (7.3) is applied here with several modifications;

most importantly, the linear approximation is turned into a function to determine the

forecasting capacity of the SVD approximation. Then this approximation is compared to

the actual data.

3.2.2 SVD Applied to Lorenz System

1 dt = 0.001 # 0.1, 0.01

2 T = 1 # 0.05, 0.1, 0.5, 1, 5

3 beta = 8/3 # originally 8/3

4 sigma = 10 # originally 10

5 rho = 28 # originally 28

6 x0 = (-8,8,27)

7 # Functions for data creation

8 def lorenz_deriv(x_y_z , t0 , sigma=sigma , beta=beta , rho=rho): # returns

derivative values for given x, y, z input

9 x, y, z = x_y_z

10 return [sigma * (y - x), x * (rho - z) - y, x * y - beta * z]

11 x = integrate.odeint(lorenz_deriv , x0, t,rtol =10**( -12) ,atol =10**( -12)*

np.ones_like(x0))

Listing 7.5: Code is mostly the same as that in Listing (7.4), with differences in the time

intervals, parameter values, initial condition, derivative function, and function argument

for the integrate function.

4.4.1 DMD Interpolation and Extrapolation Linear Example
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1 dataT = np.transpose(data)

2 p = 0.001 # 0.8, 0.5, 0.1, 0.01 # proportion for use in DMD algorithm

3 train = int(p * numint) # number of data used for DMD

4 test = int((1-p)* numint) # number of data used to test forecasting

ability

5 dataTinit = dataT [:,:train]

6 dataTfin = dataT[:,train :]

7 def DMD(data , r): # data is input in n x m form , r = rank

8 ind = data [:,:-1] # in data

9 oud = data [:,1:] # out data

10 U, S, Vt = scipy.linalg.svd(ind) # svd decomposition

11 Smat = np.diag(S) # turn the tuple S into a diagonal matrix

12 S_inv = np.diag (1/S)

13 V = np.transpose(Vt)

14 Vc = V[:,:r]

15 Uc = U[:r,:]

16 Ut = np.transpose(Uc)

17 Atild = np.linalg.multi_dot ([Ut.conj(),oud , Vc.conj(), S_inv ]) #

determine reduced order A

18 eigval , eigvec = scipy.linalg.eig(Atild) # extract eigenstuff

eigvec and eigval are for Atild

19 phi = np.linalg.multi_dot ([oud , Vc.conj(), S_inv , eigvec ]) #

calculate eigenvectors of A

20 A = phi @ np.diag(eigval) @ np.linalg.pinv(phi) # matrix A

determined although it is possible to proceed with just phi and

eigval

21 return eigval , phi , A

22 eigval , phi , A = DMD(dataTinit ,3)

23 dmdforecast = np.zeros ((3,test -1)) # dmd forecasting

24 dmdinter = np.zeros ((3,train -1)) # dmd interpolation

25 b = np.linalg.pinv(phi)@dataTinit [:,0]

26 for i in range(1, train -1):

27 dmdinter[:,i] = np.real(np.linalg.multi_dot ([phi ,(np.diag(eigval))

**i, b])) # imaginary parts are insignificant

28 b2 = np.linalg.pinv(phi) @ dataTinit [:,-1]
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29 for i in range(1, test -1):

30 dmdforecast [:,i] = np.real(np.linalg.multi_dot ([phi ,(np.diag(eigval

))**i, b2])) # imaginary parts are insignificant

31 complen1 = train -1

32 errvec1 = np.zeros(complen1)

33 for i in range(1,complen1): # for entire interval len(errvec) = numint

-1

34 errvec1[i] = np.linalg.norm(dmdinter[:,i] - dataT[:,i])

35 # Calculation of Interpolation Error

36 min1 = ’{:0.4e}’.format(min(errvec1))

37 max1 = ’{:0.4e}’.format(max(errvec1))

38 avg1 = ’{:0.4e}’.format(sum(errvec1)/len(errvec1))

39 complen2 = test -1

40 errvec2 = np.zeros(complen2)

41 for j in range(1, complen2):

42 errvec2[j] = np.linalg.norm(dmdforecast [:,j] - dataT[:,j+complen1 ])

43 # Calculation of Forecasting Error

44 min2 = ’{:0.4e}’.format(min(errvec2))

45 max2 = ’{:0.4e}’.format(max(errvec2))

46 avg2 = ’{:0.4e}’.format(sum(errvec2)/len(errvec2))

47 # print(’|’+str(p)+’|Inter|’+min1+’|’+max1+’|’+avg1+’|’)

48 # print(’|’+str(round(1-p,2))+’|Extra|’+min2+’|’+max2+’|’+avg2+’|’)

49 # Plot the Original Data

50 fig = plt.figure ()

51 cx = plt.axes(projection=’3d’)

52 cx.scatter3D(data[:,0], data[:,1], data[:,2], cmap=’Greens ’);

53 # Plot the Interpolation and Forecasting Predictions Together

54 fig = plt.figure ()

55 bx = plt.axes(projection=’3d’)

56 bx.scatter3D(dataT[0,: train], dataT[1,: train],dataT[2,: train],cmap = ’

Blues ’)

57 bx.scatter3D(dmdforecast [0,1: test],dmdforecast [1,1: test],dmdforecast

[2,1: test], cmap = ’Blues’)

Listing 7.6: This block defines the DMD algorithm, applies it, and plots the interpolation

and forecasting capacity to the linear data generated in the previous code block.
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4.4.2 DMD Interpolation and Extrapolation Nonlinear Example

1 def Nlinear_deriv1(x_y_z , t0): # returns derivative for given x, y, z

2 x, y, z = x_y_z

3 return [-x+y+3*z, -4*x*y - z, -2*x + 4*y - 3*z] # weakly nonlinear

system

4 x00 = (85, 26, 31)

5 data = integrate.odeint(Nlinear_deriv1 , x00 , t,rtol =10**( -12),atol

=10**( -12)*np.ones_like(x00))

Listing 7.7: The codes of Listings (7.2) and (7.6) are applied here with the only differences

of changing the initial condition, the definition of the derivative function, and changing

the function input in the integrate function to this new function.

6.1 + 6.1.1 Linear System and Data Generation

1 # Parameters before collecting data - Simple Linear System Test

2 dt = 0.001 # 0.001 works

3 T = 1 # 0.5 works

4 numint = T/dt

5 t = np.arange(dt,T+dt,dt) # vector of times [0.01 , 0.02, ... 5]

6 alpha = 4

7 beta = 3

8 gamma = -4

9 delta = -2

10 numint = int(T/dt)

11 x0 = (-8,8,10)

12 t0 = 0

13 def linear_deriv(x_y_z , t0 , alpha = alpha , beta = beta , gamma = gamma ,

delta = delta): # returns derivative values for given x, y, z input

14 x, y, z = x_y_z

15 return [alpha * (y - x)-beta*z, x *gamma - z +delta*y, delta*x -

gamma*y + beta * z]

16 #Training Data generated by randomly selected initial conditions in

cube [0,1] x [0,1] x [0,1]

17 numpoints = 10000
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18 x_train = np.random.rand(numpoints ,3)

19 x_traintens = torch.tensor(x_train , device = device , dtype = torch.

float32)

20 y_train = np.zeros_like(x_train)

21 for j in range(numpoints):

22 y_train[j,:] = linear_deriv(x_train[j,:],0,alpha ,beta ,gamma , delta)

23 y_traintens = torch.tensor(y_train , device = device , dtype = torch.

float32)

24 batchsize = 16

25 training_samples = utils_data.TensorDataset(x_traintens , y_traintens)

26 data_loader = utils_data.DataLoader(training_samples , batch_size=

batchsize , shuffle=False)

27 # Trajectory generation training data

28 inicond = 100

29 initialconditions = np.random.rand(inicond ,3)

30 size = int(inicond*numint)

31 data = np.zeros([size ,3])

32 for i in range(inicond):

33 data[numint*i:numint *(i+1)] = integrate.odeint(linear_deriv ,

initialconditions[i], t,rtol =10**( -12) ,atol =10**( -12)*np.ones_like(

initialconditions[i]))

34 trainsize = int(1* size)

35 testsize = int(0* size)

36 datatens = torch.tensor(data , device = device , dtype = torch.float32)

37 x_traintens , x_testtens = torch.split(datatens ,[trainsize , testsize ])

38 outdata = np.zeros_like(data)

39 for i in range(size):

40 outdata[i,:] = linear_deriv(data[i,:],0,alpha ,beta ,gamma , delta)

41 outdatatens = torch.tensor(outdata , device = device , dtype = torch.

float32)

42 y_traintens , y_testtens = torch.split(outdatatens ,[trainsize , testsize

])

43 batchsize = numint

44 training_samples = utils_data.TensorDataset(x_traintens , y_traintens)

45 data_loader = utils_data.DataLoader(training_samples , batch_size=
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batchsize , shuffle=False)

46 model0 = torch.nn.Sequential(torch.nn.Linear(3, 3)).to(device)

47 print(list(model0.parameters ()))

48 criterion = nn.MSELoss ()

49 optimizer = optim.Adam(model0.parameters ())

50 model0.train ()

51 num_epochs = 40

52 loss_list = []

53 for epoch in range(num_epochs):

54 for batch_idx , (data , target) in enumerate(data_loader):

55 data , target = Variable(data), Variable(target)

56 optimizer.zero_grad ()

57 output = model0(data.float())

58 loss = criterion(output , target.float())

59 loss.backward ()

60 optimizer.step()

61 if epoch >2:

62 if batch_idx % 200 == 0:

63 loss_list.append(loss.item())

64 if batch_idx % 400 == 0:

65 print(’Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}’.

format(

66 epoch , batch_idx * len(data), len(data_loader.dataset),

67 100. * batch_idx / len(data_loader), loss.item()))

68 print(list(model0.parameters ()))

Listing 7.8: This code block contains code for simple machine learning scheme with no

hidden layers as well as data generation schemes.

6.2.3 One/Two/Multiple Hidden Layer Schemes for Weakly Nonlinear System

1 # Parameters before collecting data

2 dt = 0.001

3 T = 5 # 0.05, 0.1, 0.5, 1, 5

4 t = np.arange(dt,T+dt,dt) # vector of times [0.01 , 0.02, ... 5]

5 alpha = -1
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6 beta = -3

7 gamma = -4

8 delta = -2

9 numint = int(T/dt)

10 t0 = 0

11 # Functions for data creation (system is autonomous system of odes)

12 def Nlinear_deriv1(x_y_z , t0 , alpha = alpha , beta = beta , gamma = gamma

, delta = delta): # returns derivative values for given x, y, z

input

13 x, y, z = x_y_z

14 return [alpha * (y - x)-beta*z, x * y* gamma - z, delta*x - gamma*

y + beta * z]

15 # Trajectory generation training data

16 inicond = 20 # 2000, 1000, 200, 100, 20

17 initialconditions = np.random.rand(inicond ,3)

18 size = int(inicond*numint)

19 data = np.zeros([size ,3])

20 for i in range(inicond):

21 data[numint*i:numint *(i+1)] = integrate.odeint(Nlinear_deriv1 ,

initialconditions[i], t,rtol =10**( -12) ,atol =10**( -12)*np.ones_like(

initialconditions[i]))

22 trainsize = int (0.8* size)

23 testsize = int (0.2* size)

24 datatens = torch.tensor(data , device = device , dtype = torch.float32)

25 x_traintens , x_testtens = torch.split(datatens ,[trainsize , testsize ])

26 outdata = np.zeros_like(data)

27 for i in range(size):

28 outdata[i,:] = Nlinear_deriv1(data[i,:],0,alpha ,beta ,gamma , delta)

29 outdatatens = torch.tensor(outdata , device = device , dtype = torch.

float32)

30 y_traintens , y_testtens = torch.split(outdatatens ,[trainsize , testsize

])

31 batchsize = numint

32 training_samples = utils_data.TensorDataset(x_traintens , y_traintens)

33 data_loader = utils_data.DataLoader(training_samples , batch_size=
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batchsize , shuffle=False)

34 # Machine Learning Models

35 # 1 layer - 4, 12, 36, 108, 324

36 h1 = 108

37 plst1 = [h1]

38 model11 = torch.nn.Sequential(

39 torch.nn.Linear(3, h1),

40 torch.nn.ReLU(),

41 torch.nn.Linear(h1 , 3),

42 ).to(device)

43 # 2 layers - 36,12 108,36 108 ,108

44 l1, l2 = 108 ,108

45 plst2 = [l1 ,l2]

46 model12 = torch.nn.Sequential(

47 torch.nn.Linear(3, l1),

48 torch.nn.ReLU(),

49 torch.nn.Linear(l1 , l2),

50 torch.nn.ReLU(),

51 torch.nn.Linear(l2 , 3),

52 ).to(device)

53 # multiple Layers

54 #3: 36 ,81 ,108 108, 81, 36 81, 81, 81 81, 108, 36 108 ,108 ,108

55 #4: 108 ,108 ,108 ,108

56 #5: 108 ,108 ,108 ,108 ,108

57 #6: 108 ,108 ,108 ,108 ,108 ,108

58 l1, l2, l3 = 108 ,108 ,108

59 plst3 = [l1 ,l2 ,l3]

60 model1m = torch.nn.Sequential(

61 torch.nn.Linear(3, l1),

62 torch.nn.ReLU(),

63 torch.nn.Linear(l1 , l2),

64 torch.nn.ReLU(),

65 torch.nn.Linear(l2 , l3),

66 torch.nn.ReLU(),

67 torch.nn.Linear(l3 , 3)
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68 ).to(device)

69 criterion = nn.MSELoss ()

70 optimizer1 = optim.Adam(model11.parameters ())#, lr=1e-3, momentum =0.8)

71 model11.train()

72 optimizer2 = optim.Adam(model12.parameters ())#, lr=1e-3, momentum =0.8)

73 model12.train()

74 optimizerm = optim.Adam(model1m.parameters ())#, lr=1e-3, momentum =0.8)

75 model1m.train()

76 num_epochs = 40

77 loss_list = []

78 for epoch in range(num_epochs):

79 for batch_idx , (data , target) in enumerate(data_loader):

80 data , target = Variable(data), Variable(target)

81 optimizer1.zero_grad ()

82 optimizer2.zero_grad ()

83 optimizerm.zero_grad ()

84 output1 = model11(data.float())

85 output2 = model12(data.float())

86 outputm = model1m(data.float())

87 loss1 = criterion(output1 , target.float ())

88 loss1.backward ()

89 optimizer1.step()

90 loss2 = criterion(output2 , target.float ())

91 loss2.backward ()

92 optimizer2.step()

93 lossm = criterion(outputm , target.float ())

94 lossm.backward ()

95 optimizerm.step()

96 if epoch >2:

97 if batch_idx % 200 == 0:

98 loss_list.append(loss1.item())

99 loss_list.append(loss2.item())

100 loss_list.append(lossm.item())

101 if batch_idx % 400 == 0:

102 print(’Train Epoch: {} [{}/{} ({:.0f}%)]\ tLoss1: {:.8f}\
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tLoss2: {:.8f}\ tLossm: {:.8f}’.format(

103 epoch , batch_idx * len(data), len(data_loader.dataset),

104 100. * batch_idx / len(data_loader), loss1.item(),loss2.

item(),lossm.item()))

105 # Error Calculation for each model tested over the same validation data

106 errmat1 = model11(x_testtens)- y_testtens

107 errnorm1 = torch.norm(errmat1 , dim = 1)

108 minerr1 = ’{:0.4e}’.format(torch.min(errnorm1).item())

109 maxerr1 = ’{:0.4e}’.format(torch.max(errnorm1).item())

110 avgerr1 = ’{:0.4e}’.format (( torch.sum(errnorm1)/len(errnorm1)).item())

111 strucstr1 = ’3/’

112 for i in range(len(plst1)):

113 strucstr1 = strucstr1 + str(plst1[i])+ ’-’ +str(plst1[i]) + ’/’

114 strucstr1 = strucstr1 + ’3’

115 print(’|[0,’+str(T)+’]’+’|’+str(strucstr1)+’|’+str(minerr1)+’|’+str(

maxerr1)+’|’+str(avgerr1)+’|’)

116 errmat2 = model12(x_testtens)- y_testtens

117 errnorm2 = torch.norm(errmat2 , dim = 1)

118 minerr2 = ’{:0.4e}’.format(torch.min(errnorm2).item())

119 maxerr2 = ’{:0.4e}’.format(torch.max(errnorm2).item())

120 avgerr2 = ’{:0.4e}’.format (( torch.sum(errnorm2)/len(errnorm2)).item())

121 strucstr2 = ’3/’

122 for i in range(len(plst2)):

123 strucstr2 = strucstr2 + str(plst2[i])+ ’-’ +str(plst2[i]) + ’/’

124 strucstr2 = strucstr2 + ’3’

125 print(’|[0,’+str(T)+’]’+’|’+str(strucstr2)+’|’+str(minerr2)+’|’+str(

maxerr2)+’|’+str(avgerr2)+’|’)

126 errmatm = model1m(x_testtens)- y_testtens

127 errnormm = torch.norm(errmatm , dim = 1)

128 minerrm = ’{:0.4e}’.format(torch.min(errnormm).item())

129 maxerrm = ’{:0.4e}’.format(torch.max(errnormm).item())

130 avgerrm = ’{:0.4e}’.format (( torch.sum(errnormm)/len(errnormm)).item())

131 strucstrm = ’3/’

132 for i in range(len(plst3)):

133 strucstrm = strucstrm + str(plst3[i])+ ’-’ +str(plst3[i]) + ’/’
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134 strucstrm = strucstrm + ’3’

135 print(’|[0,’+str(T)+’]’+’|’+str(strucstrm)+’|’+str(minerrm)+’|’+str(

maxerrm)+’|’+str(avgerrm)+’|’)

136 y_pred1 = model11(x_testtens).cpu().detach ().numpy()

137 y_pred2 = model12(x_testtens).cpu().detach ().numpy()

138 y_predm = model1m(x_testtens).cpu().detach ().numpy()

139 y_test = y_testtens.cpu().detach ().numpy()

140 k = 4 # parameter allows us to choose the trajectory we observe

141 fig = plt.figure ()

142 ax = plt.axes(projection=’3d’)

143 # order: Blue , Orange , Green Red

144 ax.scatter3D(y_test[numint*k:numint *(k+1) ,0], y_test[numint*k:numint *(k

+1) ,1], y_test[numint*k:numint *(k+1) ,2], cmap=’Greens ’);

145 ax.scatter3D(y_pred1[numint*k:numint *(k+1) ,0], y_pred1[numint*k:numint

*(k+1) ,1], y_pred1[numint*k:numint *(k+1) ,2], cmap=’Greens ’);

146 ax.scatter3D(y_pred2[numint*k:numint *(k+1) ,0], y_pred2[numint*k:numint

*(k+1) ,1], y_pred2[numint*k:numint *(k+1) ,2], cmap=’Greens ’);

147 ax.scatter3D(y_predm[numint*k:numint *(k+1) ,0], y_predm[numint*k:numint

*(k+1) ,1], y_predm[numint*k:numint *(k+1) ,2], cmap=’Greens ’);

Listing 7.9: This code block contains the data generation and machine learning models

and training process for a weakly nonlinear system

6.2.4 One/Two/Multiple Hidden Layers Lorenz System

1 # Parameters before collecting data

2 beta = 8/3

3 sigma = 10

4 rho = 28

5 x0 = (-8,8,27)

6 def lorenz_deriv(x_y_z , t0 , sigma=sigma , beta=beta , rho=rho):

7 x, y, z = x_y_z

8 return [sigma * (y - x), x * (rho - z) - y, x * y - beta * z]

Listing 7.10: This code uses the same code as Listing (7.9) with the exception that initial

parameters, initial condition, and function are different.
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