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ABSTRACT

AN OPTIMAL DECAY ESTIMATION OF THE SOLUTION TO THE AIRY
EQUATION

by
Ashley Scherf

The University of Wisconsin-Milwaukee, 2023
Under the Supervision of Dr. Lijing Sun of Mathematics

In this thesis, we investigate the initial value problem to the Airy equation

∂tu+ ∂3
xu = 0 (0.1)

u(0, x) = f(x). (0.2)

We found the optimal decay estimate of the solution to the initial value problem (1)− (2). The

main tool we used is Fourier analysis and oscillatory integrals.
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1 Introduction

Dispersive partial differential equations have been the topic of intensive studies for centuries, start-
ing from the classical physics and going widely beyond. These equations serve to model various
vibrating media such as waves on string, in liquids or in air. The most familiar problems in which
dispersive effects appear are the classical problems of water wave descriptions. One of the most
famous equations is the Korteweg–de Vries (KdV) equation derived to model the propagation of
low amplitude long water waves in a shallow canal. Nowadays many versions and higher order
generalizations of the KdV equation are of use in different areas including hydrodynamics, plasma
physics, electrodynamics, in studies of electromagnetic and acoustic waves, waves in elastic media,
turbulence, traffic flows, mass transport and others. Another common dispersive partial differen-
tial equation (PDE) is the Airy equation. The Airy equation is the solution to the time-dependent
Schrodinger’s equation and has applications in many fields such as physics, quantum mechanics and
probability. In the field of probability the Airy equation is connected to Chernoff’s distribution.
Some everyday applications of the Airy equation are electromagnetism, the propagation of light,
and calculating the amplitude of polarized rainbows. One of the most common applications is in
fluid dynamics but more specifically the study of waves or the movement of water. The behavior
of waves and the amplitude of rainbows both require finding the asymptotic approximation of the
Airy equation. [1] An approximation is needed because the function cannot be evaluated using
traditional techniques. We wish to find the optimal approximation solution of the Airy equation.

In the present paper we consider the Airy equation

∂tu+ ∂3xu = 0 (t, x) ∈ (0,∞)× R (1.1)

u(0, x) = f(x) x ∈ R. (1.2)

Initial value problem (1.1)-(1.2) was treated in [2], namely, the asymptotic behavior was
analyzed for the rescaled solutions under weakly dependent stationary initial data.

The purpose of the thesis is to find the best decay rate of the solution to the initial value
problem (1)− (2). Our result is

Theorem 1.1. Assume that u(t, x) is a solution to

∂tu+ ∂3xu = 0 (t, x) ∈ (0,∞)× R (1.3)

u(0, x) = f(x) x ∈ R, (1.4)

and f ∈ Lp(R) where 1 ≤ p ≤ ∞ we have

∥u(t, ·)∥Lq ≲ t−α(p)∥f(x)∥Lp ,

where α(p) = | 13 − 2
3p | and

1
p +

1
q = 1.

Notation: We will use A ≲ B or A = O(B) to denote the estimate A ≤ CB where C > 0 is some
absolute constant. If the constant C depends on a list of parameters L we will write A ≲L B or
A = OL(B).

We will also define the differential operator D by Df(t) = 1
iϕ′(t)

df
dt , such that DNf(t) = 1

iϕ′(t)
dNf
dtN

.
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The thesis is organized as follows. In section 2, we provide some preliminaries. In section 3 we give
the proof of the main results. In section 4, we give my future research plan.

2 Preliminaries

Definition 2.1. Let f(x) ∈ L1. The Fourier Transform of a function f(x) is defined by

F{f(ω)} = f̂(ω) =

∫ ∞

−∞
f(x)e−iωxdx.

The result is a function of ω or a frequency. f̂(ω) gives how much power f(x) contains at a
frequency ω.[4]

Definition 2.2. The Inverse Fourier Transform is as follows.

F−1{f̂(ω)} = 1
2π

∫ ∞

−∞
f̂(ω)eiωxdω = f(x).

The properties of the Fourier transform.
1. F

[
dn

dxn f(x)
]
= (iω)nf̂(ω).

2. A convolution of two functions is defined by

f(x) ∗ h(x) =
∫ ∞

−∞
f(τ)h(x− τ)dτ.

Then, the Fourier Transform of the convolution is F{f(x) ∗ h(x)} = f̂(ω)ĥ(ω).

3. Plancherel Theorem. If f ∈ L1 ∩ L2; then f̂ ∈ L2; and F|
(
L1 ∩ L2

)
extends uniquely to

a unitary isomorphism on L2. [3]

We also need the properties of the oscillatory integral defined by

I(λ) =

∫ b

a

eiλϕ(ω)ψ(ω)dω.

Theorem 2.3. Principle of non-stationary phase. Let ψ ∈ C∞(R) have compact support in (a, b)
(so that in particular ψ(a) = ψ(b) = 0) and suppose that the phase ϕ ∈ C∞ satisfies ϕ′(t) ̸= 0 for
all t ∈ [a, b]. We claim that in this case the integral Iψ(λ) decreases very fast in λ, in particular

Proposition 2.4. (Principle of non-stationary phase). Let ψ, ϕ be as above, that is ψ ∈ C∞
c ((a, b))

and ϕ ∈ C∞ is such that ϕ′ = 0 on all of [a, b]. Then for every, N > 0 we have |Iψ(λ)| ≲N,ψ,ϕ |λ|−N .

Corollary 2.5. Let ψ ∈ C1 and let the phase ϕ satisfy |ϕ(k)| > 1 in (a, b) for some k ≥ 1 (if k = 1,
assume additionally that ϕ′ is monotonic). Then the inequality

|Iψ(λ)| ≤ C ′
[
|ψ(b)|+

∫ b
a
|ψ′(t)|dt

]
|λ|− 1

k holds, with C ′
k > 0 an absolute constant depending only

on k.
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Theorem 2.6. The Riesz - Thorin Interpolation Theorem. Suppose that (X,M,µ) and (Y,N, ν)
are measure spaces and p0, p1, q0, q1 ∈ [1,∞]. If q0 = q1 = ∞, suppose also that ν is semifinite. For
0 < n < 1, define pn and qn by 1

pn
= 1−n

p0
+ n

p1
and 1

qn
= 1−n

q0
+ n

q1
.

If T is a linear map from Lp0(µ) + Lp1(µ) into Lq0(ν) + Lq1(ν) such that ||Tf ||q0 ≤ M0||f ||p0
for f ∈ Lp0(µ) and ||Tf ||q1 ≤ M1||f ||p1 for f ∈ Lp1(µ), then ||Tf ||qn ≤ M1−n

0 Mn
1 ||f ||pn for

f ∈ Lpn(µ), 0 < n < 1. [3]

3 Proof of Main Theorem

The Airy equation is the dispersive partial differential equation,

∂tu+ ∂3xu = 0 (t, x) ∈ (0,∞)× R (3.1)

u(0, x) = f(x) x ∈ R. (3.2)

Solving the initial value problem we have the following,

f̂(ut) = −f̂(uxxx) (3.3)

d

dt
û = iω3û (3.4)

d

dt
û(t, ω) = iω3û(t, ω) (3.5)

dû(t, ω)

û(t, ω)
= iω3dt (3.6)∫ t

0

1

û(t, ω)
dû(t, ω) =

∫ t

0

iω3dt (3.7)

ln(û(t, ω))|t0 = iω3t|t0 (3.8)

ln(û(t, ω))− ln(û(0, ω)) = iω3t (3.9)

eln(û(t,ω)) = eln(û(0,ω))eiω
3t (3.10)

û(t, ω) = eiω
3t(û(0, ω)) (3.11)

û(t, ω) = eiω
3tf̂(ω) (3.12)

Now apply the inverse Fourier transform,u(t, x) =

∫
eiω

3tf̂(ω)eiωxdω (3.13)

=

∫
eiω

3t+iωxf̂(ω)dω (3.14)

=

∫
ei(ω

3t+ωx)f̂(ω)dω (3.15)

By taking a Fourier transform in the spatial variable x, it is not hard to see that the solution to
the Airy equation can be written formally as the convolution

u(t, x) = 1
2π

∫
f(y) 1

t
1
3
Ai
(
x−y
t
1
3

)
dy,

where Ai(x) denotes the Airy function

3



Ai(x) :=
∫
R e

i(ω3+xω)dω,

which is clearly an oscillatory integral (provided the integral exists!). Hence, integration by parts
will not be sufficient to estimate the solution.

Proposition 3.1. For x > 1 we have superpolynomial decay, that is for every N > 0 we have
|Ai(x)| ≲ |x|−N .

Proof. We wish to evaluate Ai(x) :=
∫
R e

i(ω3+xω)dω, since we are unable to evaluate this integral
on its own, we will make a substitution to help.
Let

φ(ω) +
∑
j∈N

ψj(ω) = 1.

Where φ is a C∞ bump function supported in [-2,2], with φ ≡ 1 on [-1,1].
Define ψ(ω) = φ(ω2 ) − φ(ω) and ψj(ω) = ψ(2−jω). Now to evaluate the integral we will take the
limit as n→ ∞ of ∫

ei(ω
3+xω)φ(ω)dω +

n∑
j=0

∫
ei(ω

3+xω)ψj(ω)dω

.
First, we will focus on

∫
ei(ω

3+xω)φ(ω)dω. Let λ = x
3
2 and ϕ(ω) = ω3 + ω.∫

ei(ω
3+xω)φ(ω)dω =

∫
x

1
2 ei(x

3
2 ϕ(ω))φ(ω)dω (3.16)

= x
1
2

[
−ieiλϕ(ω)φ(ω)

λϕ′(ω)
−
∫

1

λ
eiλϕ(ω)

(
φ′(ω)

ϕ′(ω)

)
+ Cdω

]
(3.17)

= x
1
2

(
1

x
3
2

)∫ ∣∣∣∣eiλϕ(ω)φ′(ω)

ϕ′(ω)
+ Cdω

∣∣∣∣ (3.18)

=
1

x

∫ ∣∣∣∣eiλϕ(ω)φ′(ω)

ϕ′(ω)
+ Cdω

∣∣∣∣ (3.19)

=
1

x

[
φ′(ω)

ϕ′(ω)

(
−ieiλϕ(ω)

λϕ′(ω)

)
−
∫ ∣∣∣∣ 1λieiλϕ(ω)D1

(
φ′(ω)

ϕ′(ω)

)
+ Cdω

∣∣∣∣]
(3.20)

=
1

x

(
1

x
3
2

)∫ ∣∣∣∣ 1λieiλϕ(ω)D1

(
φ′(ω)

ϕ′(ω)

)
dω

∣∣∣∣ (3.21)

... (3.22)

WLOG, apply this N times (3.23)

=
1

x

(
1

x
3
2

)N ∫ b

a

1

λ
ieiλϕ(ω)DN

(
φ′(ω)

ϕ′(ω)

)
dω (3.24)

≲ x−
3
2N (3.25)

We see that ϕ(N)(ω) is always nonzero and it is a continuous function. Since
∫ b
a

1
λ ie

iλϕ(ω)DN
(
ψ′(ω)
ϕ′(ω)

)
4



is continuous on a compact domain we know that it is bounded.
Next we will look at the second part,

∑n
j=0

∫
ei(ω

3+xω)ψj(ω)dω. First let’s take a look at the domains
of ψ0(ω) and ψ1(ω) so that we can extend it to ψj(ω) .

ψ0(ω) =

 0 |ω| ≤ 1
φ(ω2 )− φ(ω) 1 ≤ |ω| ≤ 4
0 |ω| ≥ 4

ψ1(ω) =

 0 |ω| ≤ 2
φ(ω2 )− φ(ω) 2 ≤ |ω| ≤ 8
0 |ω| ≥ 8

...

ψj(ω) =

 0 |ω| ≤ 2j

φ( ω
2j+1 )− φ( ω2j ) 2j ≤ |ω| ≤ 2j+2

0 |ω| ≥ 2j+2

We will start by evaluating from ψ0(ω) and extend to ψj(ω).

∫ 4

1

x
1
2 eiλϕ(ω)ψ0(ω)dω = x

1
2

∫ 4

1

eiλϕ(ω)ψ0(ω)dω (3.26)

= x
1
2

[
−ieiλϕ(ω)ψ0(ω)

λϕ′(ω)
|41 −

∫ 4

1

1

λ
ieiλϕ(ω)

(
ψ′
0(ω)

ϕ′(ω)

)
dω

]
(3.27)

= x
1
2

(
1

x
3
2

)∫ 4

1

ieiλϕ(ω)
ψ′
0(ω)

ϕ′(ω)
dω (3.28)

=
1

x

∫ 4

1

∣∣∣∣eiλϕ(ω)ψ′
0(ω)

ϕ′(ω)
dω

∣∣∣∣ (3.29)

=
1

x

∫ 4

1

∣∣∣∣ 1λeiλϕ(ω)D1

(
ψ′
0(ω)

ϕ′(ω)

)
dω

∣∣∣∣ (3.30)

=
1

x

(
1

x
3
2

)∫ 4

1

∣∣∣∣eiλϕ(ω)D1

(
ψ′
0(ω)

ϕ′(ω)

)
dω

∣∣∣∣ (3.31)

... (3.32)

WLOG, apply this N times (3.33)

=
1

x

(
1

x
3
2

)N ∫ 4

1

∣∣∣∣eiλϕ(ω)DN

(
ψ′
0(ω)

ϕ′(ω)

)
dω

∣∣∣∣ (3.34)

≲ x−
3
2N (3.35)

∫ 8

2

x
1
2 eiλϕ(ω)ψ1(ω)dω = x

1
2

∫ 8

2

eiλϕ(ω)ψ1(ω)dω (3.36)
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= x
1
2

[
−ieiλϕ(ω)ψ1(ω)

λϕ′(ω)
|82 −

∫ 8

2

1

λ
ieiλϕ(ω)

(
ψ′
1(ω)

ϕ′(ω)

)
dω

]
(3.37)

= x
1
2

(
1

x
3
2

)∫ 8

2

ieiλϕ(ω)
ψ′
1(ω)

ϕ′(ω)
dω (3.38)

=
1

x

∫ 8

2

∣∣∣∣eiλϕ(ω)ψ′
1(ω)

ϕ′(ω)
dω

∣∣∣∣ (3.39)

=
1

x

∫ 8

2

∣∣∣∣ 1λeiλϕ(ω)D1

(
ψ′
1(ω)

ϕ′(ω)

)
dω

∣∣∣∣ (3.40)

=
1

x

(
1

x
3
2

)∫ 8

2

∣∣∣∣eiλϕ(ω)D1

(
ψ′
1(ω)

ϕ′(ω)

)
dω

∣∣∣∣ (3.41)

... (3.42)

WLOG, apply this N times (3.43)

=
1

x

(
1

x
3
2

)N ∫ 8

2

∣∣∣∣eiλϕ(ω)DN

(
ψ′
1(ω)

ϕ′(ω)

)
dω

∣∣∣∣ (3.44)

≲ x−
3
2N (3.45)

∫ 2j+2

2j
x

1
2 eiλϕ(ω)ψj(ω)dω = x

1
2

∫ 2j+2

2j
x

1
2 eiλϕ(ω)ψj(ω)dω (3.46)

= x
1
2

[
−ieiλϕ(ω)ψj(ω)

λϕ′(ω)
|2

j+2

2j +

∫ 2j+2

2j

1

λ
ieiλϕ(ω)

(
ψ′
j(ω)

ϕ′(ω)

)
dω

]
(3.47)

= x
1
2

(
1

x
3
2

)∫ 2j+2

2j

∣∣∣∣ieiλϕ(ω)(ψ′
j(ω)

ϕ′(ω)

)
dω

∣∣∣∣ (3.48)

=
1

x

∫ 2j+2

2j

∣∣∣∣ieiλϕ(ω)(ψ′
j(ω)

ϕ′(ω)

)
dω

∣∣∣∣ (3.49)

=
1

x

∫ 2j+2

2j

∣∣∣∣ 1λieiλϕ(ω)D1

(
ψ′
j(ω)

ϕ′(ω)

)
dω

∣∣∣∣ , ψ′(ω) = 2−jψ(2−jω) (3.50)

=
1

x

(
1

x
3
2

)N ∫ 2j+2

2j

∣∣∣∣ieiλϕ(ω)DN

(
ψ′
j(ω)

ϕ′(ω)

)
dω

∣∣∣∣ (3.51)

... (3.52)

WLOG, apply this N times (3.53)

= x−
3
2N

∫ 2j+2

2j

∣∣∣∣ieiλϕ(ω)DN

(
ψ′
j(ω)

ϕ′(ω)

)
dω

∣∣∣∣ (3.54)

= x−
3
2N

∫ 2j+2

2j

∣∣∣∣∣ieiλϕ(ω)
(
DN (ψ′

j(ω))

DN (ϕ′(ω))

)
dω

∣∣∣∣∣ (3.55)

6



= x−
3
2N

∫ 2j+2

2j

∣∣∣∣∣ieiλϕ(ω)
(
(2−jk)ψ

(k)
j

(
2−jω

)
ω

DN (ϕ′(ω))

)∣∣∣∣∣ dω (3.56)

= x−
3
2N

∫ 2j+2

2j

∣∣∣∣∣
(

eiλϕ(ω)ω

DN (ϕ′(ω))

) N∑
k=0

(2−jk)ψ
(k)
j (2−jω)dω

∣∣∣∣∣ (3.57)

≲ x−
3
2N

∫ 2j+2

2j

∣∣∣∣ eiλϕ(ω)

DN (ϕ′(ω))
(1)dω

∣∣∣∣ (3.58)

We know
∑N
k=0(2

−jk)ψ
(k)
j (2−jω) ≲ 1 since 2−j is a geometric series that converges to 1 and

ψ
(k)
j (2−jω) is bounded because it is continuous on a compact domain.

Now apply Proposition 2.4 and we have

|Iψ(λ)| ≲N,ψ,ϕ |λ|−N ≲N,ψ,ϕ |x|− 3
2N .

Then for x > 1, we have |Iψ(ω)| ≲ min(1,|x|− 3
2N ) =⇒

∫
eiλϕ(ω)φ(ω)dω ≲ min(1,|x|− 3

2N ).

Proposition 3.2. For −1 ≤ x ≤ 1 we have |Ai(x)| ≲ 1.

Proof. We wish to show that for −1 ≤ x ≤ 1 we have

|Ai(x)| ≲ 1.

To do this we will follow a similar argument to the previous part. We need to evaluate

Ai(x) :=

∫
R
ei(ω

3+ωx)dω.

Since we are unable to evaluate this integral on it’s own, we will make a substitution to help.
Let

φ(ω) +
∑
j∈N

ψj(ω) = 1.

Where φ is a C∞ bump function supported in [-2,2], with φ ≡ 1 on [-1,1]. Define

ψ(ω) = φ(
ω

2
)− φ(ω)

and
ψj(ω) = ψ(2−jω).

Now to evaluate the integral we will take the limit as n→ ∞ of∫
ei(ω

3+xω)φ(ω)dω +

n∑
j=0

∫
ei(ω

3+xω)ψj(ω)dω.

7



First, we will focus on ∫
ei(ω

3+xω)φ(ω)dω.

Note: we will not be making a substitution for λ but

ϕ(ω) = ω3 + xω

which is different from the last part.

Since, ϕ(ω) = ω3 + xω we have ϕ′(ω) = 3ω2 + x hence a critical point exists at ω = −
√

|x|
3 for

−1 ≤ x ≤ 1. Since we have a critical point, when we evaluate the integral we cannot use integration
by parts, however we know that ei(ω

3+xω) is bounded and so is φ(ω). Hence, we have the following,∫ 2

−2

∣∣∣ei(ω3+xω)φ(ω)
∣∣∣ dω =

∫ 2

−2

∣∣∣ei(ω3+xω)
∣∣∣ |φ(ω)| dω (3.59)

≲ 1 (3.60)

Therefore,
∣∣∣ei(ω3+xω)

∣∣∣ < 1 and |φ(ω)| is bounded by some constant since it is continuous on a

compact set. Differentiating N times we have,

DN

(
φ′′(ω)

ϕ′(ω)

)
= DN

(
φ′′(ω)

3ω2 + x

)
where

∣∣∣DN
(
φ′′(ω)
3ω2+x

)∣∣∣ is continuous on [-2,2] when −1 ≤ x ≤ 1 hence it is bounded by some constant.

Therefore we have, ∫ 2

−2

∣∣∣∣eiϕ(ω)DN

(
φ′′(ω)

ϕ′(ω)

)∣∣∣∣ dω ≲ 1.

Next we will look at the second part,
∑n
j=0

∫
ei(ω

3+xω)ψj(ω)dω. By the previous part, we can

evaluate directly from the jthψ function. We have the following,

∑∫ 2j+2

2j
eiϕ(ω)ψj(ω)dω =

−ieiϕ(ω)ψj(ω)
ϕ′(ω)

|2
j+2

2j −
∫ 2j+2

2j
ieiϕ(ω)

ψ′
j(ω)

ϕ′(ω)
dω (3.61)

= 0−
∫ 2j+2

2j
ieiϕ(ω)

ψ′
j(ω)

ϕ′(ω)
dω (3.62)

... (3.63)

WLOG, applying this N times =

∫ 2j+2

2j
eiϕ(ω)DN

(
ψ′
j(ω)

ϕ′(ω)

)
dω (3.64)

=

∫ 2j+2

2j

eiϕ(ω)

DN (ϕ′(ω))

((
2−j
)k
ψ
(k)
j (2−jω)ω

)
dω (3.65)

=

∫ 2j+2

2j

eiϕ(ω)

DN (ϕ′(ω))

N∑
k=0

(
2−j
)k ∣∣∣ψ(k)

j (2−jω)
∣∣∣ dω (3.66)
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Since,
∑N
k=0

(
2−j
)k ∣∣∣ψ(k)

j (2−jω)
∣∣∣ ≲ 1, then∫ 2j+2

2j
eiϕ(ω)

DN (ϕ′(ω))

∑N
k=0

(
2−j
)k ∣∣∣ψ(k)

j (2−jω)
∣∣∣ dω ≲

∫ 2j+2

2j
eiϕ(ω)

DN (ϕ′(ω))
(1)dω.

Above we noted that
∣∣∣ei(ω3+xω)

∣∣∣ < 1. We also have 1
DN (ϕ′(ω))

which is continuous on [2j , 2j+2] when

−1 ≤ x ≤ 1 hence it is bounded by some constant.
Thus, we have

|Ai(x)| =
∫
ei(ω

3+xω)φ(ω)dω +

n∑
j=0

∫
ei(ω

3+xω)ψj(ω)dω (3.67)

=

∫ 2

−2

∣∣∣∣eiϕ(ω)DN

(
φ′′(ω)

ϕ′(ω)

)∣∣∣∣ dω (3.68)

+

∫ 2j+2

2j

eiϕ(ω)

DN (ϕ′(ω))

N∑
k=0

(
2−j
)k ∣∣∣ψ(k)

j (2−jω)
∣∣∣ dω (3.69)

≲
∫ 2

−2

∣∣∣∣eiϕ(ω)DN

(
φ′′(ω)

ϕ′(ω)

)∣∣∣∣ dω +

∫ 2j+2

2j

eiϕ(ω)

DN (ϕ′(ω))
dω (3.70)

Let C ∈ R be some constant. ≲ 1 ∗ C + 1 ∗ C (3.71)

≲ 1 (3.72)

Proposition 3.3. For x < −1 we have |Ai(x)| ≲ |x|− 1
4 .

Proof. We wish to show that for x < −1 we have

|Ai(x)| ≲ |x|− 1
4 .

To do this we will follow a similar argument to the previous part. We need to evaluate

Ai(x) :=

∫
R
ei(ω

3+ωx)dω.

Since we are unable to evaluate this integral on it’s own, we will make a substitution to help.
Let

φ(ω) +
∑
j∈N

ψj(ω) = 1.

Where φ is a C∞ bump function supported in [-2,2], with φ ≡ 1 on [-1,1]. Define

ψ(ω) = φ(
ω

2
)− φ(ω)

and
ψj(ω) = ψ(2−jω).
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Now to evaluate the integral we will take the limit as n→ ∞ of∫
ei(ω

3+xω)φ(ω)dω +

n∑
j=0

∫
ei(ω

3+xω)ψj(ω)dω.

First we will take a look at
∫
ei(ω

3+xω)φ(ω)dω but since x < −1 we need to take the absolute value

of x so we have
∫
ei(ω

3+−|x|ω)φ(ω)dω. Then let λ = |x| 32 such that ϕ(ω) = ω3 − ω. We see that
ϕ′(ω) = 3ω − 1 so then critical points exists when ω = ± 1√

3
. Therefore we need to evaluate the

integral on an interval that does not include ω = ± 1√
3
. We will also split φ(ω) such that

φ(ω) = φ(100ω) + φ(ω)− φ(100ω).

∫
ei(ω

3+−|x|ω)φ(ω)dω =

∫ 2

−2

|x| 12 eiλϕ(ω)φ(ω)dω (3.73)

=

∫ 2

−2

|x| 12 eiλϕ(ω)(φ(100ω) + φ(ω)− φ(100ω))dω (3.74)

=

∫ 2

−2

|x| 12 eiλϕ(ω)φ(100ω)dω +

∫ 2

−2

|x| 12 eiλϕ(ω)φ(ω)− φ(100ω)dω (3.75)

= |x| 12
(∫ 2

−2

eiλϕ(ω)φ(100ω)dω +

∫ − 1
50

−2

eiλϕ(ω)φ(ω)− φ(100ω)dω

)
(3.76)

+ |x| 12
(∫ 2

1
50

eiλϕ(ω)φ(ω)− φ(100ω)dω

)
(3.77)

Since, no critical points lie in the following integral, |x| 12
∫ 2

−2
eiλϕ(ω)φ(100ω)dω we can use the

argument shown in the proof of Proposition 4.2 and conclude that

|x| 12
∫ 2

−2

eiλϕ(ω)φ(100ω)dω ≲ 1.

However, both
∫ − 1

50

−2
eiλϕ(ω)φ(ω)−φ(100ω)dω and

∫ 2
1
50
eiλϕ(ω)φ(ω)−φ(100ω)dω have critical points

so we cannot preform integration by parts and must use a corollary.
We apply Corollary 3.5 to each integral, we have

|Iφ(λ)| ≤ C ′
k

[
|φ
(
− 1

50

)
|+
∫ − 1

50

−2

|φ′(ω)|dω

]
|λ|− 1

k .

We have ϕ′′(ω) = 3 > 1, such that k = 2. Since φ′(ω) is bounded by some constant we have

|Iφ(λ)| ≤ C ′
k

[
|φ
(
− 1

50

)
|+
∫ − 1

50

−2

|φ′(ω)|dω

]
|λ|− 1

k (3.78)
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≤ C|λ|− 1
2 (3.79)

≤ C
(
|x| 32

)− 1
2

(3.80)

≤ C|x|− 3
4 (3.81)

The for the other integral we have

|Iφ(λ)| ≤ C ′
k

[
|φ (2) |+

∫ 2

1
50

|φ′(ω)|dω

]
|λ|− 1

k .

We have ϕ′′(ω) = 3 > 1, such that k = 2. Since φ′(ω) is bounded by some constant we have

|Iφ(λ)| ≤ C ′
k

[
|φ (2) |+

∫ 2

− 1
50

|φ′(ω)|dω

]
|λ|− 1

k (3.82)

≤ C|λ|− 1
2 (3.83)

≤ C
(
|x| 32

)− 1
2

(3.84)

≤ C|x|− 3
4 (3.85)

Then we have the following,∫
ei(ω

3+−|x|ω)φ(ω)dω =

∫
|x| 12 eiλϕ(ω)φ(ω)dω (3.86)

≤ |x| 12
(
C|x|− 3

4 + C|x|− 3
4

)
(3.87)

≲ |x|− 1
4 (3.88)

Now we will take a look at
n∑
j=0

∫
ei(ω

3−|x|ω)ψj(ω)dω.

The argument will follow as in the proof of proposition 4.2, since we the two critical points do not
lie in the domain [2j , 2j+2].

∑∫ 2j+2

2j
eiϕ(ω)ψj(ω)dω =

−ieiϕ(ω)ψj(ω)
ϕ′(ω)

|2
j+2

2j −
∫ 2j+2

2j
ieiϕ(ω)

ψ′
j(ω)

ϕ′(ω)
dω (3.89)

= 0−
∫ 2j+2

2j
ieiϕ(ω)

ψ′
j(ω)

ϕ′(ω)
dω (3.90)

... (3.91)

WLOG, applying this N times =

∫ 2j+2

2j
eiϕ(ω)DN

(
ψ′
j(ω)

ϕ′(ω)

)
dω (3.92)
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=

∫ 2j+2

2j)

eiϕ(ω)

DN (ϕ′(ω))

((
2−j
)k
ψ
(k)
j (2−jω)ω

)
dω (3.93)

=

∫ 2j+2

2j

eiϕ(ω)

DN (ϕ′(ω))

N∑
k=0

(
2−j
)k ∣∣∣ψ(k)

j (2−jω)
∣∣∣ dω (3.94)

Since,
∑N
k=0

(
2−j
)k ∣∣∣ψ(k)

j (2−jω)
∣∣∣ ≲ 1, then for x < −1 we have

∣∣∣ei(ω3+xω)
∣∣∣ < 1. We also have

1
DN (ϕ′(ω))

which is continuous on [2j , 2j+2] when x < −1 hence it is bounded by some constant and

contributes to ON

(
|x|− 3

2N
)
so it does not affect our estimate.

Therefore we have |Ai(x)| ≲ |x|− 1
4 , as desired.

Combine the proposition 3.1, proposition 3.2 and proposition 3.3, we can get the following lemma:

Lemma 3.4. ||u(·, t)||L∞(R,dx) ≲ |t|− 1
3 ||f ||L1(R)

Proof.

||u(t, x)||L∞ ≤ esssup
1

2π

∫
f(y)

1

t
1
3

Ai

(
x− y

t
1
3

)
dy (3.95)

≤ 1

t
1
3

(
1

2π

)∫ ∣∣∣∣f(y)Ai(x− y

t
1
3

)∣∣∣∣ dy (3.96)

≲ t−
1
3 ||f ||L1(R) (3.97)

When we apply Plancherel’s theorem, we also have the following lemma:

Lemma 3.5.
||u(t, x)||L2 ≲ ||f(x)||L2 .

Now to find the Lp estimate which is the optimal estimate, we will apply the Reisz-Thorin Theorem.
p0 = q0 = 2, p1 = 1, q1 = ∞,M0 = 1 and M1 = t−

1
3 . n = −1 + 2

p for 1 ≤ p ≤ 2.
We have the following,

||u(·, t)||Lq ≤ ||et∂
3
xu||Lp

(3.98)

≤ 11−n
(
t−

1
3

)n
||f ||Lp

(3.99)

≤
(
t−

1
3

)(−1+ 2
p ) ||f ||Lp (3.100)

≲
(
t−(−

1
3+

2
3p )
)
||f ||Lp , for 1 ≤ p ≤ 2 (3.101)

By the dual properties of the Lp spaces, the main theorem is proved.
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4 Future Research Plan

In the future, I am going to investigate the nonlinear Airy equation, namely

∂tu+ ∂3xu = F (u) (t, x) ∈ (0,∞)× R (4.1)

u(0, x) = f(x) x ∈ R, (4.2)

where F is a nonlinear function of u.
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