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ABSTRACT 
 

PINPOINTING THE COGNITIVE STRUCTURE OF THE CPT-3: A CASE FOR 
DISTRIBUTION APPROPRIATE STATISTICAL METHODS 

 
by 
 

Chandler J. Zolliecoffer 
 

The University of Wisconsin-Milwaukee, 2023 
Under the Supervision of Professor David C. Osmon 

 
 

The present study used the CPT-3 as a model to illustrate the complementary use of distribution-

appropriate statistical methods to analyze non-normally distributed empirical datasets. Study 

results reaffirmed that while group-level analysis (e.g., via traditional parametric group-level 

analysis or distribution-appropriate group-level analysis procedures) offers insights into 

performance of the group in aggregate, it is oftentimes inappropriate to presume that patterns 

reflected by the group are, necessarily, applicable to a smaller subset of respondents. Thus, 

understanding how subgroups within the population navigate and approach a given task can have 

direct implications for more personalized/individualized assessment and treatment, especially in 

clinical and research contexts. Although results of the investigation are largely supportive of 

study hypotheses, the study is not without limitation; perhaps most notable is the smaller sample 

size. Thus, replicating the investigation’s significant findings with a larger dataset would prove 

prudent—especially as the field of neuropsychology moves toward more consistent use of non-

normally-distributed computerized reaction time tasks.  
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 Continuous performance tests (CPTs) have long been regarded as important 

neuropsychological instruments that are highly sensitive to brain dysfunction, but their construct 

validity has been elusive. First developed by Rosvold and colleagues (1956), different versions 

of CPTs have been designed and used profitably across varying populations (Riccio et al., 2002). 

Notably, prior investigations have implicated CPTs to be useful in assessing attention and 

executive function with involvement of various cortical, subcortical, and functional systems 

especially involving the right hemisphere (Riccio et al., 2002). Notably, there have been myriad 

attempts since its development to characterize cognitive aspects of CPTs, including constructs 

such as: sustained, focused, selective, and shifting attention, in addition to inhibition, 

hyperactivity/impulsivity, processing speed, and vigilance, among others. The present 

investigation narrows the scope of this vast literature using the Conners Continuous Performance 

test, third edition (CPT-3; Conners, 2014) as its instrument of interest. 

Pinpointing the construct validity of the CPT-3 remains complex; this is due largely to 

the ambiguity surrounding the conceptualization of attention and its component parts (e.g., 

Neumann, 1996). Yet, it is crucial to better understand this complexity as CPT tasks are among 

the most widely used neuropsychological assessment measures and the second most frequently 

used instruments in the areas of attention, concentration, and working memory (Rabin et al., 

2016). Moreover, CPTs have been demonstrated to differentiate clinical groups which can be 

helpful for differential diagnosis of attention-based conditions. Thus, clarifying the cognitive 

structure of the CPT-3 has significant clinical implications.  

Still, although identification of the cognitive constructs deemed important for 

interpretation of CPT-3 results is critical, equally expository is the ability to precisely measure 

the extent to which such constructs contribute to an individual’s performance on the task; and 
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further, which constructs are most important in accounting for performance at both the group- 

and individual-level of explanation. The present investigation, thus, presents a case for the 

inclusion of parameterized elementary cognitive tasks (ECTs) given their ability to precisely 

measure cognitive speed and executive functions––the most fundamental aspects of CPT 

performance. Importantly, reaction time (RT) has a positive relationship with task complexity 

and therefore, by consequence, bits of information––a concept borrowed from the information 

theory literature. In this way, the amount of time needed to make a choice is both measurable and 

predictable (Schmitz & Wilhelm, 2016). And while ECTs represent many of the simple iterations 

of bit-tasks (e.g., simple and 2-choice RT tasks) extant within the literature, other, more complex 

versions, such as the executively-mediated RT tasks proposed by Miyake et al. (2000), exist too. 

Accordingly, the construct validity of the CPT-3 can be assessed relative to precisely 

parameterized simple and complex bit-tasks. It then becomes possible to more definitively and 

systematically draw conclusions about which cognitive constructs, such as mental speed or 

executive functioning (EF), operate on any given score or factor at the group-level of analysis, 

and by any given respondent at the individual-level of analysis. These ideas will be further 

explicated in the sections below. 

Employing task-appropriate analysis methods are an important next consideration. 

Moreover, to best elucidate the cognitive constructs that underlie the CPT-3, the methodological 

processes employed must be sound. At its root, the CPT is a mental speed task––one that hinges 

on RT. As almost all mental speed tasks have marked non-normal (i.e., right-skewed) 

distributions (Luce, 1986), analyses using these data ought take such psychometric properties 

into account. As an initial step, the empirical distribution of the CPT-3 dependent variables must 

be properly fit so as to select statistical tests appropriate for the empirical distribution’s shape. 
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Using appropriate statistical techniques to address these methodological issues ultimately 

strengthens the certainty with which one can draw conclusions from the data. In addition to using 

distribution-appropriate statistics, the present investigation acknowledges that using group-level 

effects to better understand the construct validity of the CPT-3 on the whole is only a first step to 

data-appropriate analysis methodology. A second, equally important, step is to examine 

individual-difference effects that operate at the respondent-level of performance. These effects 

are important to elucidate as CPT tasks are complex and are, therefore, subject to strategy-based 

performance. That is, while a given respondent might use one strategy in performing a task; 

another might use a different strategy. For example, on a complex measure like the Stop Signal 

test, one individual may have a high response threshold, preferring to delay a response until 

certain their answer is correct. In contrast, another person may emphasize responding in a speedy 

fashion. In the case of the first individual, inhibition may prove the contributing factor that 

explains performance while mental speed might be more important in explaining the second 

person’s performance. As a result of these differences in task approach, the cognitive constructs 

underlying task performance may differ across persons, making group-level analysis of the CPT-

3 construct validity applicable for the group in aggregate, but inapplicable for any given 

individual. Consequently, a complete picture of CPT-3 construct validity only reveals itself when 

both group-level and individual-level results are taken into account (Leclaire et al., 2020).   

Taken together, the present investigation has three specific aims: (1) to identify the 

cognitive constructs underlying the CPT-3; (2) to measure the relative contribution of the 

identified cognitive constructs on each factor of the CPT-3 at the group-level of analysis; and (3) 

to examine the construct validity of the CPT-3 using distribution-appropriate statistical methods 

to analyze RT data at the individual-level of analysis. Accordingly, the approach for the present 
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study follows two broad themes, namely: first, the cognitive structure of the CPT-3 can be 

profitably investigated using two general cognitive rubrics, executive functioning (EF) and 

mental speed; and second, mental speed tasks have non-normal right-skewed distributions, 

ultimately constraining which statistical techniques ought to be used to analyze RT data. Thus, 

using predominately late-adolescent and adult ADHD neuropsychology literature, the present 

study examines the cognitive constructs that underlie the CPT-3 and demonstrates the 

importance of using distribution-appropriate statistical methods to do so.  

Aim 1: Cognitive Constructs of the CPT 

CPT-3 Factors 

Information about the cognitive abilities underlying the CPT-3 has been best summarized 

using factor analytic methods (Conners, 2014). Across the literature, four to five factors emerge 

most consistently including: focused attention, hyperactivity/impulsivity, sustained attention, 

vigilance, and change in control (see Conners, 2014; Egeland & Kovlik-Gran, 2008; Halperin et 

al., 1991). These factors are based on 13 outcome scores––many of which prove redundant; 

accordingly, interpretation of task performance is often challenging. Perhaps most striking, 

however, is the dearth of construct validity research within the field. To this end, although extant 

factor-analytic studies have identified which CPT-3 outcome scores hang together to form 

distinct factors, exactly what these factors represent remains yet to be fully realized. Still, it is 

instructive to review that which has been promulgated about the CPT-3 and its factors. 

Accordingly, delineated below is a brief summary of each factor as captured by the current state 

of the literature.  

Focused Attention. The focus factor capture’s one’s ability to screen out task-irrelevant 

stimuli while directing attentional resources toward a given task (Mirsky et al., 1999).  This 
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factor is often identified as necessary for engagement in other types of attention (e.g., sustained 

attention, vigilance) as respondents must first successfully focus attention in order for it to lapse 

(Egeland & Kovalik-Gran, 2008; Van der Meere, 2002). With regard to CPT-3 test performance, 

those low on focus, and, thus, high on inattention, will demonstrate reduced hit rate accuracy, 

marked variability in hit reaction time (HRT), and increased omissions and perseverations 

(Egeland & Kovalik-Gran, 2008). Only when inattentive performance is consistently 

demonstrated across the entirety of the CPT task would a pure deficit in focused attention be 

considered. In such cases, inattention is correlated with time-on-task and inter-stimulus interval 

(ISI; Egeland & Kovalik-Gran, 2008).  

Hyperactivity/Impulsivity. Egeland and Kovalik-Gran (2008) demonstrate that the 

hyperactivity-impulsivity factor encompasses commission errors, decreased (i.e., fast) RT, and 

indiscriminate response style. Moreover, although perseverations load onto this factor, they load 

more strongly onto the focus factor highlighting sensitivity vs. specificity considerations. That is, 

while sensitive to potential impairment, perseverations cannot be used as a specific index of 

performance despite being identified as a measure of impulsivity in the Conners CPT-II manual. 

Sustained Attention. Mirsky and colleagues (1999) posit that sustained attention reflects 

one’s ability to attend to task-relevant stimuli for an “appreciable interval” while responding to 

identified targets and inhibiting responses to non-targets. Perhaps most important, however, is 

that the sustained attention factor captures disruptions to one’s initial ability to focus attention 

(Egeland & Kovalik-Gran, 2008). Thus, block change, block change standard error (SE; scored 

in the CPT-II [Conners, 2002] but dropped in the CPT-3), and change in commission error scores 

are most commonly associated with this factor.  
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Vigilance. Although Mirsky and colleagues (1999) conceptualized vigilance and 

sustained attention to be one all-encompassing construct, Egeland and Kovalik-Gran (2008) 

distinguish the two. The latter two authors maintain that vigilance reflects one’s ability to keep 

attentional processes engaged even when there is a decrease in target stimuli. This process is 

associated with HRT ISI, and HRT ISI SE (also dropped in the CPT-3) scores.  

Change in Control. Finally, change in control evaluates process changes related to 

impulsivity and changes in mental control where commission errors that change as a function of 

time on task, and changes in RT over time both load onto this factor (Egeland & Kovalik-Gran, 

2008). In this way, respondents who are low on change in control gain control over time whereas 

those who are high on the factor demonstrate increased impulsivity over time (Egeland & 

Kovalik-Gran, 2008).  

Aim 2: Relative Contribution of Cognitive Constructs on CPT-3 Factors 

In their investigation, Egeland & Kovlik-Gran (2008) factor-analyzed CPT-2 protocols 

from a mixed clinical sample to determine if any of the task parameters hang together in a 

meaningful way; that is, in a way that evidences support for multidimensional cognitive 

constructs on the CPT-2. Results of the principal components analysis revealed the above-

mentioned five viable factors. Factor 1, Focus, explained approximately 23% of the variance 

where omissions, HRT standard error, variability, and perseverations were the salient factor 

loadings (see Method section for explanation of the CPT-2/CPT-3 scores). Factor 2, 

Hyperactivity-Impulsivity, explained approximately 15% of the variance where commissions, 

RT, and response style were the most salient factor loadings. Factor 3, Sustained Attention, 

explained approximately 14% of the variance where increased RT, and increased HRT 

variability as a function of time, in addition to increased omissions, proved the most salient 
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loadings. Factor 4, Vigilance, accounts for approximately 13% of the variance where the two ISI 

change measures were the most salient loadings. Notably, as described above, the authors draw a 

distinction between Sustained Attention and Vigilance. Where, traditionally the two have been 

thought to be tantamount to one another, Egeland & Kovlik-Gran (2008) hypothesize that 

differences in arousal and activation better characterize differences between vigilance and 

sustained attention, respectively. Where arousal is thought to be influenced by exposure to both 

target and non-target stimuli, activation is thought to be influenced by the performance of a 

motor act (Van de Meere, 2002).  

Finally, Factor 5, Change in Control, accounts for approximately 9% of the variance 

where change in commissions over time and, to a lesser degree, change in RT across blocks were 

the most salient loadings. Although the Sustained Attention factor and Change in Control factor 

measure process changes on the task, respondents high on the Sustained Attention factor make 

more inattentive errors where those high on Change in Control make more impulsive errors.  In 

this way, those low on the Change in Control factor gain mental control over time.  

Synthesis of Aim 1 and Aim 2: CPT Factors as Mental Speed and EF Components 

Mental Speed 

Given the speeded nature of the task, the CPT-3 cognitive structure must be logically 

examined from the standpoint of cognitive speed as measured by RT (Carroll, 1993). To 

accurately assess the complexity of cognitive speed, it is important to understand the construct 

across various difficulty levels within the broader context of neuropsychological assessment. The 

parameterization of speeded tasks makes this possible by providing a systematic framework 

through which the reader may understand the contributions of cognitive speed (RT) vs. cognitive 

power (EF) on task performance. This concept is further delimited below.  
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Parameterization. RT tasks have been demonstrated to be multifactorial in nature; see 

Carroll’s (1993) two broad speed factors and O’Connor and Burns’ (2003) four-factor model for 

a more detailed review. Thus, given the complexity of the construct, organizing RT tasks by 

difficulty proves increasingly important. The parameterization of RT tasks offers a formulaic 

approach to organizing tasks by difficulty. To better understand this process, we look to 

information theory (IT) and the idea of a bit of information. Within this literature, a bit represents 

the amount of information needed to reduce uncertainty by half (Shannon, 1949). It is through 

this unit of measurement that ECTs are evaluated (e.g., 0-bit, 1-bit, and 1-bit executive tasks, 

etc., as defined in the Method section). Hick (1952) proposed that RT ought to be considered a 

“function of the number of bits (log2 n) implied in the number of alternatives” (Carroll, 1993, p. 

479). In other words, Hick’s law contends that the more choices one has, the longer it will take 

the individual to reach a decision in a linearly dependent fashion. Thus, the difficulty of a RT 

task can be parameterized according to RT = a + b log2 (Roberts & Pallier, 2001). For example, 

in a simple RT task, there are no choices to be made as the subject simply responds as soon as 

the stimulus appears. However, in a 2-choice RT task, the subject must make a choice between 

pressing one of two buttons, depending upon whether the stimulus appears in one of two 

positions. As a result, a 2-choice RT is slightly longer than a simple RT. Research has shown that 

each additional choice a subject must make (i.e., 2, 3, 4 choices, etc.) adds approximately 25 ms 

to the RT above and beyond the simple RT task. As such, RT difficulty can be precisely 

determined, which becomes important in more complex RT tasks––especially those adding 

executive processing. For example, the Stroop task, Stop Signal, Navon’s Local/Global, and 

other tasks can be compared to simple mental speed tasks like the simple and 2-choice RT tasks 

in terms of their level of difficulty.  
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Executive Functioning 

The speeded nature of the CPT-3 is more easily understood while the executive nature of 

the task has been less readily investigated.  Like attention, EF has been thought to be a complex 

and difficult-to-define construct. The ill-defined nature of EF has resulted in a lack consensus 

about the true essence of the construct and the components that comprise it (Suchy, 2015). 

Models of EF have traditionally followed one of two orientations: unitary or multidimensional 

approaches (Suchy, 2015). Notably, most studies that directly compare the two theoretical 

models find greater support for a multidimensional conceptualization of EF (e.g., Cona et al., 

2013; Friedman et al., 2006; Lehto, 1996; Lerner & Lonigan, 2014; M.R. Miller et al., 2012; 

Tsuchida & Fellows, 2013; and Whitney et al., 2001) than a unitary approach, particularly 

among adult populations. The current study adopts Miyake’s multidimensional approach to EF 

as it has: (1) evolved out of a systematic program of work, and (2) details a manageable number 

of EF constructs that can be assessed within a set of mental speed tasks that lend themselves well 

to parameterization. 

Miyake and colleagues (2000; 2012). The shifting of mental sets, updating and 

monitoring of working memory-related processes and inhibition of dominant, automatic 

responses have long been hypothesized to be components of EF (Miyake et al., 2000). Therefore, 

it is important that the reader have a working definition of such terms and also a general 

understanding of how these executive functions are recruited within the CPT-3. 

EF Components and the CPT-3. Operational definitions of these executive functions are 

as follows: shifting, or “attention/task switching” encompasses shifting back and forth between 

mental sets, tasks, or operations; it requires that the respondent overcome interference presented 

by a task-irrelevant set, in favor of shifting to engagement with a task-relevant set (Miyake et al., 
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2000). Notably, Posner and Raichle (1994) argue that neural circuit involvement differs based on 

the shifting of visual attention (e.g., moving attention serially from number to number on the 

Trail Making Test- Part A) compared to more executively-mediated shifts (e.g., shifting mental 

set in go/no-go instructions, as in shifting from a go mental set on targets to a no-go mental set 

on non-targets on the CPT-3).  

Updating refers to the updating and monitoring of working memory representations often 

assumed to be instantiated in the prefrontal cortex brain regions. Specifically, updating and 

monitoring tasks require the respondent to actively store and manipulate task-relevant 

information in mind. In this way, items held in working memory are revised and replaced once 

the information is no longer relevant (Morris & Jones, 1990). Such processes may be implicated 

in the CPT-3 where varying ISIs between trials might require refreshing task set instructions on 

the longer intervals (i.e., ISI Block Change score on the CPT-3). Active working memory 

representations may also be implicated in the CPT task where no-go stimuli (letter ‘X’) occur 

rarely among frequent go targets, necessitating that the mental set (i.e., push the spacebar on all 

letters except 'X’) be refreshed in order to inhibit the more frequently occurring go response on 

infrequent no-go trials. 

Finally, inhibition encompasses the respondent’s ability to suppress dominant, automatic 

responses as is seen in the case of the color-word trials of the Stroop task where the more 

automatic ‘word’ response must be inhibited in favor of the less automatic ‘color’ response (e.g., 

saying the ink color RED upon seeing the ‘BLUE’ color-word target). Inhibition is likely 

required on the CPT-3 where infrequent non-targets (i.e., the letter ‘X’ stimuli) require the ability 

to suppress the strong go response tendency instantiated by the frequent target (i.e., all letters 

other than ‘X’) proportion. As a result, the task encourages impulsive responding to non-targets 
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as reflected in the CPT-3 commission error score. Note that it is not inconsistent to attribute both 

executive processes of working memory (as noted in the prior paragraph) and inhibition to the 

letter ‘X’ stimuli, as both processes can be operative in a response to such stimuli. In fact, this is 

exactly how individual differences can occur, making both the group- and individual-level 

analyses necessary.  

Aim 3: Distribution-Appropriate Statistics at the Group- and Individual-Level  

As the CPT-3 is, at its core, a mental speed task––one that is predicated on RT and 

engages higher order executive processes––evaluating its output in a clinically meaningful way 

proves of great import. Because it is RT-dependent, the task is presumed to have a positively-

skewed, non-normal distribution; this is true for most all RT tasks (Luce, 1986). Moreover, as 

the right tail of empirical RT distributions is reasonably long, Luce (1986) argues that this has a 

direct impact on the density function of the distribution, accounting for its skewness. Given the 

right-skewed nature of the empirical RT distribution, some posit that there is an exponential 

component to the variable’s distribution (e.g., McGill, 1963), highlighting the need to select 

analytic procedures that make sense with the data.  

Parametric statistics, which assume a normal distribution, are still, however, commonly 

employed in the field of psychometric assessment when using RT tasks––despite traditional 

Gaussian (i.e., normal) analytic approaches, in many cases, rendering a poor fit of the empirical 

RT data (Balota & Yap, 2011). In the case of the CPT-3, outcome scores are artificially 

standardized into T-scores. In performing this contrived standardization, the data are made to 

adopt Gaussian properties despite their non-normal attributes. In the present study, we aim to 

highlight why this traditional method of analysis is unfavorable and instead offer an alternative 

approach––the use of raw RT data.  
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Notably, RT distributions provide information about an individual’s unique approach to 

completing the task, offering a richness to the data that is not well captured by traditional group-

level parametric analysis. That is, in traditional group-level analysis, data are averaged across the 

sample, effectively eliminating any opportunity to observe individual differences in the data and, 

ultimately, providing an incomplete picture of respondent performance.  Use of distribution-

appropriate statistical methods are, therefore, paramount for not only accurate interpretation of 

task performance, but also for discerning individual differences across respondent performance. 

Most often, RT distributions can be well characterized as an ex-Gaussian distribution defined by 

three parameters. The first parameter is mu––the average RT for the normal component of the 

ex-Gaussian distribution. It represents the ‘average’ time for an ‘efficient’ response. The second 

parameter is sigma; it is analogous to standard deviation in a Gaussian distribution and represents 

response variability of an efficient response. The third parameter is tau which represents the 

skewed proportion of the ex-Gaussian distribution that is made up of ‘inefficient’, very long RTs 

that result from grossly inattentive behavior and ‘loss of mental set’ on any given trial. See 

Appendix A for further explication of parameters. 

 Alternative methods to the traditional parametric analysis have been more readily 

integrated into the fields of experimental and cognitive psychology where they have been 

described in detail (e.g., Luce, 1986; Ratcliff, 1979; Ratcliff & Murdock, 1976). Moreover, 

support for the integration of such methods into clinical practice continues to mount (Osmon et 

al., 2018; Osmon et al., 2020). In order to adequately pinpoint the cognitive structure of the CPT-

3, the statistical methods selected for data analysis must retain their integrity in order to 

effectively interrogate the complexities of the task and identify which constructs are required for 

task completion (i.e., recruitment of mental speed and/or higher order executive processes).  
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Thus, the present study seeks to demonstrate the utility of distribution-appropriate 

methodologies at the group- and individual-level of analysis for non-normal distributions, as 

typified in RT data across the ADHD literature. To follow is a brief introduction to distribution-

appropriate group-and individual-level analysis by means as exemplified by Generalized 

Regression and Recursive Partitioning procedures, respectively.  

Generalized Regression 

 Traditional parametric statistics assume normality. As such, alternative methods are 

needed to effectively model group-level data that are not normally-distributed. Generalized 

regression (GR) is one such technique. This procedure has two advantages for the present study. 

First, several different non-normal response distributions can be applied to make a more 

predictive model when the criterion variable is non-normal, as is the case for CPT-3 variables. 

Second, by shrinking model coefficients toward zero, GR techniques, such as Elastic Net and 

Lasso, can be used when the number of predictors is high relative to the number of observations 

(SAS, 2021). Elastic Net and Lasso techniques are also useful when variables are collinear.   

Recursive Partitioning and Decision Tree Analysis 

 In contrast to GR, Recursive Partitioning procedures allow for the analysis of non-

normally distributed data at the individual, rather than group, level. To capture individual 

differences in performance, Recursive Partitioning procedure splits or partitions data on the basis 

of relationships between predictors and response values generating what is termed a decision tree 

(as in Figure 2; SAS, 2021). 

Decision trees are comprised of nodes and branches, where nodes represent a choice 

resulting in two mutually exclusive subsets and branches represent outcomes originating from a 

node (Song & Lu, 2015). The node is chosen based upon brute force determination of which 
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predictor variable and its corresponding value best separates the sample into two groups 

maximally different in value on the criterion variable. A decision tree grows in size with the aim 

of increasing the predictiveness of the model at each branch (Yildirim, 2020). Branching ends 

when the Akaike’s Information Criterion reaches a minimum, signaling that further branching is 

no longer parsimonious.  

Predictive Modeling Limitations and Corrections 

 Predictive modeling techniques offer many advantages, particularly with regard to non-

normally distributed data. However, as with any statistical method, they are not without 

limitation. Perhaps most recognizable: among predictive modeling techniques, hypotheses are 

not a priori, but rather a posteriori. As such, these modeling techniques can overcapitalize on 

chance variance in the sample, posing a threat to replicability of the results. To account for this, 

the present study uses a k-fold cross-validation resampling procedure. This procedure is 

performed to evaluate model fit such that the data are divided into k subsets where each subset 

produces an R2 value for comparison to the original R2 value.  

Study Aims and Hypotheses 

In accordance with the above review of the literature, we designed a study to (1) 

replicate the factors underlying the CPT-3. Namely, we predicted that exploratory factor 

analysis (EFA) of the CPT-3 would replicate the Focus, Hyperactivity/Impulsivity, and 

Vigilance factors identified by Egeland and Kovalik-Gran (2008) in their factor analysis of the 

Conners CPT-II. As some ancillary scores that load onto their latter two factors were removed 

from the CPT-3, we did not expect them to fall out of the EFA. 

A second aim of the study endeavored to (2) measure the relative contribution of the 

identified cognitive constructs on each CPT-3 factor. As no precedent literature existed, to our 
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knowledge, to inform specific hypotheses, this aim was necessarily exploratory. Still, some 

general expectations were able to be specified. First, as the Egeland and Kovalik-Gran (2008) 

Focus factor centers around RT variability, it is plausible that ECT RT variability would prove 

important in predicting the Focus factor of the CPT-3. Second, as HRT and Commission errors 

load onto the authors’ Hyperactivity/Impulsivity factor, it is possible that scores reflecting 

impulsivity or poor inhibition could predict this factor; such scores could include the Stop-Signal 

SSD, the Modified Stroop task (i.e.., Stroop Negative Priming), and the 2-bit (i.e., 1-bit 

executive) task. Third, as the CPT-3 task includes both mental speed and executive function 

abilities, it was expected that both ECT and executively-loaded Miyake tasks from the current 

predictor variables relate to the CPT-3. 

Finally, the third aim of the study (3) sought to examine the construct validity of the 

CPT-3 using distribution-appropriate statistical methods (i.e., recursive partitioning with 

specified decision tree parameters) to analyze RT data at the individual-level of analysis. 

Therefore, we predicted that recursive partitioning with specified decision tree parameters would 

explain more variance than the GR results as it is likely that subgroups of individuals would 

perform differently than the group as a whole (Osmon et al., 2020). Thus, individual 

performance differences were expected to be better captured under a protocol sensitive to such 

differences (Osmon et al., 2020). Specifically, we hypothesized that the first branch of the 

decision tree would replicate the best GR predictor on each of the CPT-3 factors. Although we 

expected other variables to elicit branching, to our knowledge, no precedent literature existed at 

the time to inform how these variables would branch, rendering specific predictions moot.   
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Method 

Participants 

Participants were a mixed sample of n = 73 undergraduate students (ages 18-63; Mage = 

25.52, SD = 9.58; 39 female) from a large public university in Milwaukee, WI. Participants were 

recruited from a larger pool of self-referred individuals seeking evaluation for learning disorder 

(LD) and ADHD at a University learning disability clinic. The sample comprised participants 

with the following diagnoses: ADHD (n = 16), LD (n = 28), psychiatric (n = 15), missing (n = 9) 

and no warranted diagnosis, (n = 5). Participants consented to inclusion in research activities at 

the time of the clinical evaluation. Approval for collection of these clinical data to be included in 

future research studies was granted by the University’s Institutional Review Board. Participants 

selected for inclusion in the study passed all effort subtests of the Medical Symptom Validity 

Test (Green, 2004) and completed a large battery of intellectual, achievement, 

neuropsychological, personality, and experimental tasks.  

Instruments 

Elementary Cognitive Tasks (ECTs) 

 Elementary cognitive tasks comprise four 120-trial RT tasks parametrically-scaled in 

difficulty. The bit methodology is comprehensively described in Jensen (2006, p. 27), but, in 

effect, consists of scaling RT tasks on the basis of how many bits of information are required to 

complete the task. As earlier referenced, a bit, in information theory, represents the amount of 

information needed to reduce uncertainty by half (Shannon, 1948). 

0-bit. As is true of all simple RT tasks, the one used in this study (i.e., 0-bit) requires zero 

bits of information to make a response, as there is no uncertainty. That is, upon immediate 

presentation of the stimulus (i.e., large black dot) on the screen, the participant is to push the 
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designated response key (i.e., space bar). In this way, there is only one clear response. We may 

use this same scaling framework to understand choice RT tasks.  

1-bit. In a 2-choice RT task (i.e., 1-bit), a single bit of information is required to arrive at 

the appropriate response. In this task, a large black dot appears on either the right or left side of 

the screen and the participant must decide which of two response keys to press (i.e., right or left 

key), effectively requiring a single decision to reduce uncertainty by half.  Notably, all four ECT 

tasks in the proposed study have the same stimulus array where a large black dot appears on 

either the right or left side of the computer screen. In this way, variability between tasks is 

limited to differences in task instructions. 

1-bit Executive (i.e., 2-bit). The final two parametrically-scaled RT tasks, complex 

choice (i.e.,1-bit executive) and cognitive control (i.e., 2-bit executive), have a different quality 

about them. These tasks are much harder in the sense that participants must maintain an “internal 

rule” to arrive at the correct response. Given their relative difficulty and the cognitive efforts 

needed to complete them, these tasks are thought to be executively mediated resulting in 

significantly longer RTs than the aforementioned 0- and 1-bit tasks. Specifically, on the 1-bit 

executive task, the appropriate response is opposite that of where the stimulus is presented on the 

computer screen. For example, if the stimulus appears on left side of the screen, the participant 

should push the right arrow key, following task instruction parameters. Notably, one bit of 

information is required to complete this task such that, upon presentation of the stimulus on the 

right side of computer screen, uncertainty about the appropriate response is reduced by half.  

Importantly, however, the cognitive operation requires an opposite side mental set response 

implicating inhibition of the prepotent same side response stereotype. It is this cognitive 

manipulation that highlights the executive component of the task. Moreover, this task is 
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analogous to the anti-saccade task identified by Miyake & Friedman (2012) as an inhibition 

factor task. Notably, in the present study, the 1-bit Executive task is labeled “2-bit” for clarity. 

2-bit Executive (i.e., 3-bit). The cognitive control task (i.e., 2-bit executive) is harder yet 

as it requires two bits of information to solve. Upon arriving at a response decision (i.e., same or 

opposite side key response) as in the 1-bit executive task, participants must alternate each 

subsequent response between a “same-side/ opposite-side” rule for the 2-bit executive task. In 

this way if the participant provided a same-side response on trial n, then an opposite-side 

response is indicated on trial n+1. One bit of information is required to determine which is the 

same vs. opposite side of the stimulus, and another bit is needed to ensure the participant 

maintains response set in order to respond accurately (same or opposite side) on the subsequent 

trial. Again, in the present study, the 2-bit Executive task is labeled “3-bit” for clarity. 

As outlined above, the parameterization of the bit tasks included in the proposed study 

allow for the precise measurement of each cognitive construct. Notably, the non-executive 

simple and choice RT tasks scale linearly in mental speed (approximately 25 ms/bit, depending 

upon the task and population [Jensen, 2006, p. 53- see slope in the equation of Figure 3.3]), 

while the harder, executively-mediated RT tasks scale nonlinearly. This nonlinear increase in 

speed is presumably related to the executive nature of the more difficult tasks.  

Miyake Factor Tasks 

Miyake tasks have been well-documented in the literature to measure various aspects of 

EF including: inhibition, updating/monitoring, and shifting. The current study includes measures 

that assess each factor including: modified Stroop (i.e., Stroop Negative-Priming) and Stop-It 

task (inhibition), Keep Track and N-back tasks (updating/monitoring), and Navon’s Local-Global 

and Flanker tasks (shifting). Each task is further described below. 
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Inhibition 

Modified Stroop. The modified Stroop task (i.e., Stroop Negative-Priming) is a 

computerized version of the classic Stroop paradigm (Golden, 1978; Stroop, 1935)). In this 

version of the task, a stimulus is presented on the screen, one at a time, and remains until the 

participant makes a response. On the word-reading block of the task, color-words (i.e., red, blue, 

or green) appear in black ink across 50 trials. Participants are to select the response key (i.e.., red 

= left arrow, blue = down arrow, green = right arrow) that corresponds with the appropriate 

color-word. As in the Golden Stroop task, the color block follows the word-reading block. In this 

50-trial block, asterisks are presented to the participants in red, blue, or green font colors. 

Participants are to then select the response key that corresponds with the appropriate stimulus 

color.  

The color-word condition incorporates negative, positive, and neutral prime trials. 

Negatively primed trials occur when the inhibited response for trial n becomes the correct 

response for trial n + 1. For example, if in trial n the word ‘blue’ is displayed on the screen in red 

ink (blue is inhibited; red is the response), for negative priming to take place, the word (e.g., 

green) on trial n + 1 must be displayed in blue ink (green is inhibited; blue is the response). 

Because the response of the n + 1 trial was previously inhibited, RT for negatively primed trials 

are considered to be more executively-mediated and are expected to result in slower RTs. By 

contrast, positively primed trials occur when the same correct response is indicated across two 

consecutive trials. For example, if on trial n the word ‘blue’ is displayed on the screen in red ink 

(blue is inhibited; red is the response), in order for positive priming to take place, the word on 

trial n + 1 (e.g., green) must be displayed in red ink, too. As this response was just recently 

activated on trial n, it is expected that trial n + 1 would result in faster RTs. Across the color-
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word condition, there are 18 negatively primed trials, 18 positively primed trials, and 36 neutral 

trials. Neutral trials occur before priming trials in order to ready the participant for the next 

priming trial and are the only trials to display color-words in red, blue or green font color. All 

priming trials displayed the word ‘yellow’ in an ink color consistent with the desired priming 

color for that trial. In using the modified priming Stroop, detection of inhibition sensitivity is 

better assessed. 

Stop-It. The Stop-It task is an independent computerized measure of the stop-signal 

paradigm that evaluates response inhibition and impulse control (Verbruggen et al., 2008). 

Specifically, the task assesses the type of inhibition required to stop an already activated 

stereotyped motor action that typically occurs during a go task. This type of inhibition is 

different from the type of inhibition observed on the traditional paper-and-pencil Stroop 

paradigm where a more preferred stereotype (i.e., reading a word) must be inhibited in favor of a 

less preferred response (i.e., naming the ink). The Stop-It task is comprised of two 64-trial 

blocks. Across each trial, participants are presented with a stimulus in the center of the computer 

screen (i.e., square or circle) at which point participants must select the key that corresponds to 

the presented stimulus (i.e., ‘z’ for square or ‘/’ for circle) as quickly and as accurately as 

possible. The stimulus remains on the screen until a response is made or until 1250ms have 

elapsed. Stop-signal trials occur 25% of the time. During such trials, a 75ms 750 Hz tone will 

sound following stimulus onset signaling that participants should inhibit their motor response. 

Presentation of the tone on the first stop-signal trial will occur 250ms following display of the 

stimulus. Subsequent stop-signal delays (SSDs) will adjust based on performance; if successful 

inhibition of the motor response occurs on trial n, then SSD will increase by 50ms on stop-signal 

trial n + 1. In this way, successful inhibition of the response results in the stop-signal tone 
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playing further away from the initial presentation of the stimulus making it more difficult to 

inhibit a motor response. By contrast, if inhibition of the motor response on trial n is 

unsuccessful, then SSD will decrease by 50ms on the n +1 stop-signal trial resulting in the stop-

signal tone playing closer to the initial presentation of the stimulus making it easier to inhibit a 

motor response (Verbruggen et al., 2008). In modulating the SSD, the SSD RT is identified at 

which the participants will inhibit their response 50% of the time. The stop signal RT is obtained 

by subtracting the SSD from the average RT on no-signal trials. This metric provides an estimate 

of how long it takes the participant to inhibit a response. 

Updating/Monitoring 

Keep Track. The Keep Track task used in the current study is adapted from Yntema 

(1963) and measures one’s ability to update working memory representations. This is achieved 

by attending to task-relevant information (monitoring) while also disregarding task-irrelevant 

information once deemed no longer appropriate (updating). Participants are first presented with 

six possible categories at the bottom of a computer screen including: animals, colors, 

countries, distances, metals, and relatives. Fifteen words comprising 2-3 exemplars from each 

category are then presented in random order at a rate of 1500ms/stimulus while the target 

categories remain at the bottom of the screen. Participants are tasked with recalling the last word 

presented from each of the target categories (n = 4) for any given trial. Participants must then 

record their responses at the end of the trial where percentage correct serves as the index of 

performance. For instance, if color were one of the target categories and the participants first saw 

“green”, and later “blue” with no other color words presented later still, then the participant 

ought record “blue” at the end of the trial. To ensure comprehension of the task, participants are 
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first shown all six categories and all of the exemplars from each category. Participants then 

complete a single trial run with three categories for practice.  

N-Back. The proposed study also incorporates an N-back task (Kirchner, 1958) to assess 

updating and monitoring abilities. On the task participants are presented with a sequence of 

letters one at a time. Participants must decide if the current stimulus is the same or different from 

the one presented n (i.e., 0, 1, 2, or 3) trials ago by making a button-press response that 

corresponds to the appropriate choice (i.e., ‘N’ for same as n trials ago or ‘M’ for different as n 

trials ago) where, again, percentage of correct responses serves as the index of performance.  

Shifting 

Local-Global. Shifting represents one’s ability to effectively shift between tasks, 

operations, and/or mental sets (Monsell, 1996). The Local-Global task originally developed by 

Navon (1977) is used to measure shifting using RT and percentage correct at both the local and 

global levels. In this task, large ‘S’ and ‘H’ letters are composed of small ‘s’ and ‘h’ letters with 

blocked trials of selective attention to the local and the global perceptual levels. Participants are 

expected to respond to either large or small letters on any given trial, ignoring the other type per 

instruction parameters. Trials include an equal number of congruent stimuli (e.g., a large ‘S’ 

made up of small ‘s’ letters) and incongruent stimuli (e.g., a large ‘S’ made up of small ‘h’ 

letters). Participants complete three 36-trial blocks where local letters are the target stimuli on 

the first and third blocks and are global letters are the target stimuli on the second block. 

Flanker. Originally developed by Eriksen and Eriksen (1974), the Flanker task is a 

measure of attentional switching. It is comprised of two 20-trial blocks wherein participants are 

presented with five arrows displayed in the center of the screen. Participants must respond 

appropriately to the middle stimulus “flanked” by either congruent or incongruent stimuli. That 
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is, participants must select the corresponding key on the computer using the index finger of their 

dominant hand. RT and percentage correct serve, again, as the index of performance. 

Attention Tasks 

 CPT-III. The CPT-3 is a commonly used computerized measure of attention that indexes 

performance across areas of inattention, impulsivity, sustained attention, and vigilance (Conners, 

2014). On this task, stimuli (i.e., letters) are presented in the center of the computer screen, one 

at a time. Participants are instructed to respond (i.e., push the spacebar) to all letters except ‘X’. 

How long the stimulus is displayed on the screen and the length of time between trials (i.e., inter-

stimulus interval [ISI] is intentionally variable so as to evaluate aspects of inattention, 

impulsivity, sustained attention, and vigilance. The following output scores are obtained upon 

completion of the 360-trial task administration: detectability (d’), omissions, commissions, 

perseverations, hit reaction time (HRT), HRT standard deviation (HRT SD), variability, HRT 

block change, omissions by block, commissions by block, HRT inter-stimulus interval change 

(HRT ISI change), omissions by ISI, and commissions by ISI.  

Procedure  

 As noted above, participants were a clinically-mixed sample of self-referred 

undergraduate students seeking evaluation for LD/ADHD at a university learning disability 

clinic. Clients were consented for participation in research activities at the time of clinical 

evaluation. Following the consenting process, the examiner read a standardized introduction 

script to the clients describing what to expect over the course of the full-day evaluation. Clients 

were oriented to the types of tests they would complete during the evaluation, and were 

encouraged to try their hardest to ensure valid, interpretable test data. The battery comprised a 

number of cognitive, achievement, neuropsychological, personality, and experimental tests. The 
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examiner facilitated administration of the tests (e.g., reading test instructions, providing feedback 

where appropriate, etc.). All tests were completed in a fixed order to control for order effects 

across research subjects. One scheduled 45-minute lunch break occurred approximately halfway 

through the evaluation; shorter unscheduled breaks were allowed between subtests. The treating 

clinical neuropsychologist completed a 30-60-minute clinical interview with the client near the 

session’s end. Upon completion of the evaluation, the examiner scored the tests and gave the 

results to the provider. A separate date for feedback was selected where the provider would relay 

the findings and recommendations to the client. After scheduling the feedback session, the client 

was then dismissed. In total, the clinical evaluation lasts approximately 8 hours.  

Data Analysis 

All data analysis was completed using JMP 15 Pro (SAS, 2019). To test the first aim of 

the study, the EFA used principal components analysis with orthogonal varimax rotation in order 

to obtain theoretically independent CPT-3 factors. The following CPT-3 variables were included 

in the model: Omissions, Commissions, HRT, HRT SE, Variability, Detectability (d’), 

Perseverations, HRT Block Change, and HRT ISI Change. The number of factors were preset at 

three. Only factors attaining eigenvalues of 1.00 or higher were retained (where Factor 3 was 

rounding up) and only factor loadings greater than .30 were considered significant loadings. 

Consistent with the Egeland and Kovalik-Gran (2008) variables included in this study, we 

expected to replicate the Focus, Hyperactivity/Impulsivity, and Vigilance factors.  

Hypotheses for the second aim were evaluated using generalized regression (GR). GR 

can select various response distributions to model empirical data that have a right-skew (e.g., 

LogNormal, Weibull, etc.); it also adds a penalty term which forces coefficients to zero for non-

contributory predictors. In the present study, a GR was run on each CPT-3 factor where the ECT 
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and Miyake variables described in the Instruments subsection above served as predictors. We 

expected that each CPT-3 factor would have a unique empirical distribution that was likely to be 

right-skewed in shape. As such, selection of an appropriate response distribution proved prudent 

in order to appropriately model the identified CPT-3 factor. Response distribution models were 

selected after analyzing each CPT-3 factor distribution. Adaptive elastic net version GR models 

were used in the present investigation as they include the penalty advantages of both ridge and 

lasso regression techniques. Moreover, their statistical properties are superior to the elastic net 

option. Contributing predictors were selected based not only upon their statistical significance 

(i.e., Wald χ2), but also based on their Variable Importance values which are analogous to beta 

coefficients in standard regression models. The success of the GR was judged based upon 

generalized R2 values, which are analogous to standard R2 values in multiple regression. The 

third hypothesis for aim 2 was assessed by evaluating whether both mental speed ECTs and 

Miyake EF scores contribute to predicting CPT-3 factors.  

Finally, recursive partitioning (RP) was used to examine the two hypotheses for Aim 3. 

First, the R2 values from the GR and RP analyses were compared across their respective analyses 

for each CPT-3 factor. We expected that RP would predict more variance than GR as participants 

were expected to differ in their approach to completing all factors CPT-3 task across. As a result 

of its complexity, we predicted several branches on both sides of the decision tree (‘good’ and 

‘bad’ performance on the CPT-3 factors), indicating substantial individual differences in 

performance across all factors of the CPT-3. Second, we expected that the GR would yield 

reliable and replicable results, which would be reflected in the most predictive variable for each 

CPT-3 factor as the first node in the respective RP. Absent precedent literature we had no 

predictions for subsequent nodes on any of the RP analyses. 
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Results 

Exploratory Factor Analysis 

Table 1 

Variance Explained 
 
Factor Eigenvalue Variance Percent Cum. 

% 
1 4.44 2.93 29.26 29.26 
2 2.44 2.59 26.86 55.12 
3 0.93 2.30 22.97 78.09 

 

Note. Results of the EFA yielded three distinct factors as identified by the above eigenvalues.  

Table 2 

Rotated Factor Loadings  
 
  
  
Variable 

Factor 1  Factor 2 Factor 3 

Variability     Focusa  H/I                H/Ia Inattention         Sustained 
Attentiona 

 

RT-SE  0.85b .843b   0.07 .265 0.43 .145 
Variability 0.79b .870b -0.17 .086 0.30 .133 
RT-Block 0.79 - -0.13 - 0.05 - 
RT ISI 0.69 .097 0.17 .021 0.18 .014 
Persev. Err. 0.38b .768b -0.49 .612 0.61 .019 
Omission Err. 0.36b .747b -0.37 .255 0.78 .224 
RT 0.34 .363 0.80c .760c 0.25 .049 
Resp. Style 0.21 .206 0.12 .688c 0.92 .089 
Commission Err. 0.16 .335 -0.90c -.804c 0.10 .048 
d’  -0.06 - 0.82 - -0.30 - 
Block Change SE - .162 N/A .047 N/A .842 
Block Change - .068 N/A - N/A .731 
∆ Omissions - -.137 N/A - N/A -.707 

 

Note. This table provides the rotated factor loadings for each factor alongside corresponding factors and factor loadings from 

Egeland and Kovalik-Gran (2008). Significant loadings are bolded. Variables from the present study reflect raw scores while 

Egeland and Kovalik-Gran reflect standardized T-scores. 

a Egeland and Kovalik-Gran (2008) Factors and rotated factor loadings; see Egeland and Kovalik-Gran (2008) Table 3.  

b Corresponding significant Factor 1 rotated factor loadings across studies  

c Corresponding significant Factor 2 rotated factor loadings across studies 
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Distributional Analyses 
 

A Lognormal distribution provided the best fit of the empirical distributions for the 

Variability and Hyperactivity/Impulsivity factors (AIC-c = 113.47 and 13.67, respectively). The 

Normal-2 Mixture distribution provided the best fit of the empirical distribution for the 

Inattention factor (AIC-c = 126.71). See Figure 1.  

 
Figure 1 

Distributions 
   Variability              H/I              Inattention 

   
Note.    Lognormal AICc = 133.47        Lognormal AICc = 136.67  Normal-2 Mixture AICc = 126.71 

Generalized Regression 

In order to identify the best predictors of the Variability, Hyperactivity/Impulsivity, and 

Inattention factors, respectively, three adaptive elastic net generalized regressions were 

performed. 

Variability 

An adaptive elastic net generalized regression with LogNormal response distribution 

model and AICc was performed yielding generalized R2 = 0.25. One of 30 variables were 

significant (i.e., 2-bit error) where Wald 𝜒2 (1, 69) = 29.92, p < 0.01. 

Hyperactivity/Impulsivity  

An adaptive elastic net generalized regression with LogNormal response distribution 

model and AICc was performed yielding generalized R2 = 0.67. Four of 30 variables were 
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significant (i.e., 2-bit mu, 3-bit error, 1-bit sigma, and Stroop NP-RT, in respective order). Wald 

𝜒2
2-bit mu

 (1, 69) = 12.55, p < 0.01. Variable Importance Main Effect 2-bit mu = 0.42. Wald 𝜒2
3-bit error

 

(1, 69) = 9.42, p < 0.01. Variable Importance Main Effect 3-bit error = 0.15. Wald 𝜒2
1-bit sigma

 (1, 69) 

= 12.27, p < 0.01. Variable Importance Main Effect 1-bit sigma = 0.12. Wald 𝜒2
Stroop NP-RT (1, 69) = 

8.02, p < 0.01. Variable Importance Main Effect Stroop NP-= 0.09. 

Inattention 

 An adaptive elastic net generalized regression with t(5) response distribution model and 

AIC-c was performed yielding Generalized R2 = 0.13. One of 30 variables were significant (i.e., 

1-bit tau) where Wald 𝜒2 (1, 69) = 6.15, p < 0.05. 

 
Decision Trees 

An RP procedure was used to evaluate which predictor variable and its corresponding 

value best separated a given sample (i.e., Variability, Hyperactivity/Impulsivity, or Inattention) 

into two groups maximally different in value on a criterion variable. Thirty variables were used 

as classifying predictors including: five ex-Gaussian parameters (i.e., Mu, sigma, tau, error, and 

coefficient of variation [CoV]) across all bit-tasks (i.e., 0-bit, 1-bit, 2-bit, and 3-bit), in addition 

to RT and accuracy parameters on the identified Miyake tasks. 
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Variability 
 
Table 3 
 
Variability Decision Tree Attributes 
 

R2 Num. of Splits AICc k-fold R2 
0.74 5 88.32 0.66 

 
Figure 2 
 
Variability Decision Tree 
 

 
 
Note. Decision Tree showing that Variability is first partitioned by 2-bit error, the criterion variable, where 8 errors represents the 

cut-off value. A lower 2-bit error score (<8 errors) is associated with less Variability (M = -0.33). A higher 2-bit error score (>8 

errors) is associated with greater Variability (M = 0.90). Variability is further partitioned by Global-RT, 3-bit error, and Flanker 

Task RT performance.  

Variability. Five splits yielded an optimum prediction value (AIC-c = 88.32). Overall, 

the model yielded R2 = 0.74 and RASE = 0.51. A k-fold cross-validation analysis revealed 8% 
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shrinkage in the R2 value. Four variables contributed to the classification including: 2-bit error, 

Global-RT, 3-bit error, and Flanker Task RT.  

Variability is first partitioned by 2-bit error, where 8 errors represents the cut-off value 

(~79th percentile; M= 5 errors; Median = 3 errors)). Greater Variability (M = 0.90) is associated 

with a higher 2-bit error score (>8 errors). This groups is further partitioned by Global-RT where 

554 ms represents the cut-off value (~51st percentile; M= 601ms; Median = 551ms). A slower 

Global-RT score (>554 ms) is associated with even greater Variability (M = 1.71). By contrast, a 

faster Global-RT score (<554) is associated with less Variability (M = -0.06). 

Although Variability is most elevated when 2-bit errors are greater, the data reveal 

gradations in performance even when 2-bit errors are fewer. In this way, when 2-bit error score is 

< 8, the sample is again partitioned by Global-RT, however, now, with a cut-off value of 480.2 

(~23rd percentile). A slower Global-RT score (>480.2 ms) is associated with greater Variability 

(M = -0.12) relative to a faster Global-RT score (<480.2 ms) which is associated with less 

Variability (M = -1.04).  

The sample is partitioned again by 3-bit error where 14 errors represents the cut-off value 

(75th percentile; M = 11 errors; Median = 4 errors;). A higher 3-bit error score (>14 errors) is 

associated with greater Variability (M = 0.40) relative to a lower 3-bit error score (<14 errors) 

which is associated with less Variability.  

The final split of the data is partitioned by Flanker Task RT where 725.68 ms represents 

the cut-off value (~81st percentile; M = 581ms; Median = 562 ms). A faster Flanker Task RT 

(<725.68) is associated with greater Variability (M = -0.23) relative to a slower Flanker Task RT 

(> 725.68) which is associated with less Variability (M = -0.79). 
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Hyperactivity/Impulsivity 

Table 4 

H/I Decision Tree Attributes 

R2 Num. of Splits AICc k-fold R2 
0.65 6 104.90 0.56 

 
 
Figure 3 
 
H/I Decision Tree 
 

 
 
Note. Decision Tree showing that H/I performance is first partitioned by 2-bit mu, the criterion variable, where 283.06 errors 

represents the cut-off value. A faster 2-bit mu score (<283.06 ms) is associated with decreased H/I (M = -0.38). A slower 2-bit 

mu score (>283.06 ms) is associated with increased H/I (M = 0.76). H/I is further partitioned by 1-bit sigma, 1-bit error, 0-bit 

CoV, and 0-bit mu scores.  

Hyperactivity/Impulsivity. Six splits yielded an optimum prediction value (AIC-c = 

104.90). Overall, the model yielded R2 = 0.65 and RASE = 0.59. A k-fold cross-validation 
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analysis revealed 10% shrinkage in the R2 value. Six variables contributed to the classification 

including: 2-bit mu, 0-bit sigma, 1-bit sigma, 1-bit error, 0-bit CoV, and 0-bit mu. 

Hyperactivity/Impulsivity is first partitioned by 2-bit mu, where 283.06 ms represents the 

cut-off value (~51st percentile; M = 287ms; Median = 281ms). Increased H/I (M = 0.76)) is 

associated with a slower 2-bit mu score (>283.06 ms). This group is further partitioned by 0-bit 

sigma where 34.52 ms represents the cut-off value (~63rd percentile; M = 34ms; Median = 28ms; 

75th percentile = 41ms). A slower 0-bit sigma score (>34.52ms) is associated with even greater 

H/I (M = 1.33). By contrast, a faster 0-bit sigma score (<34.52ms) is associated with less H/I (M 

= -0.06). 

Although H/I is most elevated when 2-bit mu performance is slower, the data reveal 

gradations in performance even when 2-bit mu performance is faster. When 2-bit mu score is < 

283.06 ms, H/I is decreased (M = -0.89) relative to when the 2-bit mu score is >283.06ms, (M = 

0.76). The sample is further partitioned by 1-bit sigma where 45.83 ms represents the cut-off 

value (~69th percentile; M = 38ms; Median = 34ms). A slower 1-bit sigma score (>45.83 ms) is 

associated with decreased H/I (M = -0.89) relative to a faster 1-bit sigma score (<45.83 ms) 

which is associated with increased H/I (M = -0.03).  

When 1-bit sigma scores are faster (<45.83 ms), the sample is partitioned even further. It 

is first partitioned by 0-bit CoV, where 25.75 represents the cut-off value (~43rd percentile; M = 

33ms; Median = 28ms). A slower 0-bit CoV score (>25.75ms) is associated with decreased H/I 

(M = -0.50) whereas a faster 0-bit CoV score (<25.75ms) is associated with increased H/I (M = 

0.31). The final split of the data is partitioned by 0-bit mu where 217.98 ms represents the cut-off 

value (~29th percentile; M = 236ms; Median = 227ms). A slower 0-bit mu score (>217.98 ms) is 
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associated with decreased H/I (M = -0.04) relative to a faster 0-bit mu score (> 218.98 ms) which 

is associated with increased H/I (M = 0.61). 

Inattention 
 
Table 5 

Inattention Decision Tree Attributes 

R2 Num. of Splits AICc k-fold R2 
0.44 4 120.89 0.34 

 

Figure 4 

Inattention Decision Tree 

 
 
Note. Decision Tree showing that Inattention is first portioned by 0-bit tau, the criterion variable, where 102.78 ms represents the 

cut-off value. A faster  0-bit tau score (<102.78 ms) is associated with decreased Inattention (M = -0.30). A slower 0-bit tau score 

(>102.78 ms) is associated with increased Inattention (M = 0.89). Inattention is further partitioned by 0-bit Mu, Global accuracy, 

and 3-but Mu performance. 
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Inattention. Four spits yielded an optimum prediction value (AIC-c = 120.89). Overall, 

the model yielded R2 = 0.44 and RASE = 0.74. A k-fold cross-validation analysis revealed 10% 

shrinkage in the R2 value. Four variables contributed to the classification including: 0-bit tau, 0-

bit mu, Global-acc, and 3-bit mu.  

Inattention is first partitioned by 0-bit tau, where 102.78 ms represents the cut-off value 

(~76th percentile). Increased Inattention (M = 0.89) is associated with a slower 0-bit tau score 

(>102.78 ms). By contrast, a faster 0-bit tau score (<102.78 ms) is associated with decreased 

Inattention (M = -0.30). 

Although Inattention is most elevated when 0-bit tau performance is slower, the data 

reveal gradations in performance even when 0-bit tau performance is faster. In this way, when 0-

bit tau score is <102.78, the sample is again partitioned by 0-bit mu with a cut-off value of 

220.54 (~36th percentile). A slower 0-bit mu score (>220.54 ms) is associated with increased 

Inattention (M = 0.01) relative to a faster 0-bit mu score (<220.54.2 ms). A final split for this 

portion of the sample is partitioned by Global-acc with a cut-off value of 95.8 where decreased 

Inattention (M = -0.95) is associated with a faster Global-acc score (<95.8). By contrast, a slower 

Global-acc score is associated with increased Inattention (M = -0.18).  

When 0-bit mu performance is slower (>220.54 ms), Inattention is increased (M = 0.01) 

relative to faster 0-bit mu performance (M = -0.60). A final split for this portion of the sample is 

partitioned by 3-bit mu with a cut-off value of 788.22 ms (~83rd percentile) where decreased 

Inattention (M = -0.24) is associated with a faster 3-bit mu score (<788.22 ms). By contrast, a 

slower 3-bit mu score (>788.22 ms) is associated with increased Inattention (M = 0.51).  
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 Discussion 

The present study examined the cognitive constructs that underlie the CPT-3 and presents 

a case for using distribution-appropriate statistical methods to do so. Specifically, the 

investigation evidenced clear results with respect to the study’s three main aims: (1) to identify 

the cognitive constructs underlying the CPT-3; (2) to measure the relative contribution of the 

identified cognitive constructs on each factor of the CPT-3 at the group-level of analysis; and (3) 

to examine the construct validity of the CPT-3 using distribution-appropriate statistical methods 

in order to analyze raw RT data at the individual-level of analysis. Overall, results of the 

investigation are largely supportive of the study hypotheses meriting support for the use of raw 

RT scores in place of transformed standardized scores when analyzing the CPT-3. In doing so, 

study findings revealed a more nuanced and complete picture not only of the cognitive structure 

of the CPT-3, but also of respondent performance at both the group- and individual-level of 

analysis. Where predictions are less well supported by the data, we offer up alternative 

explanations for observed discrepancies between hypotheses and the empirical findings. The 

subsequent sections provide an explication of the investigation results.  

Group-Level Analysis Discussion 

Factor Analysis 

In order to discern the cognitive constructs underlying the CPT-3, we performed an 

exploratory factor analysis, addressing the first aim of the study. From this analysis, three factors 

emerged: Variance, Hyperactivity/Impulsivity, and Inattention (see Table 2). In order to 

adequately compare results between studies, it is important to note the differences in variables 

used on the Conners CPT-II compared to those adopted by the more current iteration of the task. 

As earlier described, block change, block change SE, changes in commissions, and HRT ISI SE, 
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though included on the CPT-II, were dropped in the CPT-3. Thus, the factors identified by the 

present study were, where appropriate, redefined and labeled in consideration of their significant 

rotated factor loadings. That raw scores were used in the EFA represent a second important 

consideration––the implications of which are further delimited below.  

Table 2 provides a visual representation of the rotated factor loadings common to each 

factor, as identified by the present study and those from Egeland and Kovalik-Gran (2008). As 

predicted, all four of the significant Egeland and Kovalik-Gran Factor 1 (Focus) variables loaded 

significantly onto the first factor (i.e., Variability) of the present study. Perhaps more interesting, 

however, is that these four significant variables loaded significantly onto the third factor (i.e., 

Inattention) of the present study, too. This finding suggests that the Egeland and Kovalik-Gran 

Focus factor is an inappropriate mixture of Variability and Inattention. The scores that underlie 

the collapsed factor reflect two related, but ultimately distinct constructs. In using raw RT scores, 

the present study is better able to tease apart these differences. That is, RT SE and variability 

scores reflect primary loadings on the Variability factor while perseverations and omission errors 

reflect secondary loadings. The inverse is true on the Inattention factor; that is, perseverations 

and omission errors reflect primary loadings while RT-SE and variability reflect secondary 

loadings. Thus, the evidence for use of raw RT scores to better parse nuances in the data is clear. 

Of the three significant Egeland and Kovalik-Gran (2008) Factor 2 variable loadings, two 

emerged as significant on the second factor of the present study. In this way, Fact 2 of the 

present study reproduced a factor characterized by hyperactivity and impulsivity lending further 

support to study hypotheses. By contrast, none of the three significant Egeland and Kovalik-Gran 

variables loaded significantly onto the third factor of the present study. This result is not 

surprising, however, as these three loadings constitute variables dropped from the CPT-3 (i.e., 
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Block Change SE, Block Change, and Change in Commissions). Thus, while the results do not 

replicate the Egeland and Kovalik Sustained Attention factor as predicted, this pattern of 

performance instead suggests the existence of a factor characterized by inattention, lending 

credence to the construct validity of the CPT-3 task. 

Generalized Regression 

After confirming the construct validity of the CPT-3, next evaluated were which 

distributions best fit the empirical data for each EFA-identified factor, in order to address the 

second aim of the investigation. As predicted, all of the data yielded non-linear, right-skewed 

empirical distributions with varying degrees of skewness. Specifically, the Variability and 

Hyperactivity/Impulsivity factors were best modeled by a Lognormal response distribution while 

a Normal-2 Mixture response distribution best captured the empirical distribution of the 

Inattention factor. Thus, as established at the outset of the investigation, GR analyses were used 

to effectively and appropriately model group-level CPT-3 data demonstrated to be non-normally 

distributed. Whereas each EFA-identified factor served as the criterion variable for each GR, 

ECT, ex-Gaussian parameters, and Miyake tasks served as the predictor variables. Adaptive 

elastic net penalties were selected to account for collinearity and for a greater number of 

predictor variables than observations. Notably, as the JMP 15 PRO (SAS, 2019) statistical 

package does not model Normal-2 Mixture response distributions, a t(5) response distribution 

was used to model group-level data on the Inattention GR as it represented the next best fit of the 

empirical data. 

Results of the GR models revealed the relative contribution of mental speed and EF 

cognitive constructs (i.e., ECTs, ex-Gaussian parameters, and Miyake tasks) on each factor. As 

no precedent literature was available to inform specific hypotheses about which predictor 
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variables would turn up significant, this aim of the investigation was exploratory. Though some 

general expectations were offered as plausible given our understanding of ECTs, ex-Gaussian 

parameters, and Miyake factor tasks, results of the analyses yielded nominal support for such 

expectations. Differences in factor composition for the current study compared to those observed 

in Egeland and Kovalik-Gran (2008) partially account for this observation.  

Given its prominence in the Egeland and Kovalik-Gran (2008) Focus factor, it was 

plausible for RT variability (i.e., sigma) on ECT tasks to be similarly important for predicting the 

first factor of the present investigation (i.e., Variability), for example. Instead, results of the 

Variability GR analysis found 2-bit error (i.e., 1-bit executive error) to be the only significant 

predictor of the 30 variables entered into the model, accounting for 25% of the observed 

variance. That is, the number of errors made on an easy executively-mediated task predicted one-

fourth of the variance observed on the Variability factor of the CPT-3, underscoring the 

modulating role of EF on Variability performance. 

By contrast, four of the 30 variables entered into the Hyperactivity/Impulsivity GR model 

were significant when the Hyperactivity/Impulsivity factor was selected as the criterion variable, 

accounting for just over two-thirds of the variance observed. These variables include: 2-bit mu 

(i.e., 1-bit EF mu), 3-bit error, (i.e., 2-bit EF error,)1-bit sigma, and Stroop NP-RT reflecting 

efficient RT responses on an easy executive task, number of errors on a difficult executive task, 

variability on a speeded task, and performance on an inhibition. Consistent with general 

expectations, these significant variables suggest that scores characterized by impulsivity and 

poor inhibition significantly inform performance on the Hyperactivity/Impulsivity factor.   

The final GR analysis found 1-bit tau to be the only significant predictor of the 30 

variables entered into the model where Inattention was selected as the criterion variable, 
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accounting for 13% of the observed variance. This finding suggests that inefficient RT responses 

due to grossly inattentive behavior (e.g., loss of mental set) on a speeded task are predictive of 

Inattention performance. Although neither a priori hypotheses nor general expectations were 

offered for this GR model, that an inattentive ex-Gaussian parameter is demonstrated to be 

important for predicting results of the Inattention GR is not unexpected.  

  Overall, results of the GR analyses provide insights into how the group behaves as a 

whole. And though group-level analyses are thought to ostensibly reflect general trends of the 

group in aggregate, it must be underscored that what is true for the average respondent is not 

unequivocally true for every respondent. Accordingly, recursive partitioning with decision tree 

predictive modeling techniques were recruited to address the third and final aim of the 

investigation which sought to clarify individual differences in performance at the respondent-

level, and provide a more nuanced perspective of the CPT-3 construct validity.  

Individual-Level Analysis Discussion 

While they offer an initial lens through which to evaluate data, group-level analyses can, 

at times, provide a reductive view of the empirical dataset. For this reason, we argued that such 

results would be better contextualized alongside outcomes of RP analyses that were expected to 

better evaluate individual differences in the empirical data. Specifically, as it was expected that 

subgroups of respondents would differ in their approach to completing the executively-mediated, 

speeded CPT-3 measure, individual-level RP analyses were expected to capture more nuance in 

the dataset and were, therefore, predicted to explain more variance than accounted for by group-

level GR analyses. Notably, the k-fold R-squared values were used for comparison to GR R-

squared values. Furthermore, we hypothesized that the first branch of each DT would replicate 

the most significant GR predictor variable identified across each CPT-3 factor. Finally, while it 
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was expected that other variables would elicit branching, as no precedent literature was available 

to inform subsequent partitioning beyond the initial criterion variable, no specific a priori 

predictions were made. Instead, it was expected that results of the current investigation would 

contribute to the literature in this way.  

Hyperactive/Impulsive RP 

As predicted, results of the RP analyses were, indeed, largely supportive of study 

hypotheses such that two of the three RP analyses (i.e., Variability and Inattention) explained 

greater variance than did their respective GR analysis correlates. Contrary to study predictions, 

however, the Hyperactivity/Impulsivity RP analysis accounted for less variance than its GR 

analogue. Nonetheless, despite this unexpected finding, this result, in fact, acts as an exemplar 

for the complementary use of RP alongside group-level analysis given its layered dissection of 

the Hyperactivity/Impulsivity factor. That is, where RP distinguishes between factor profiles 

highlighting variability in approach to task completion, GR appears to erroneously collapse these 

cognitively distinct subtypes into one unidirectional factor, consequently overestimating the 

variance explained by the four significant variables.  

Hyperactivity/Impulsivity DT Right Side 

To fully appreciate results of the Hyperactivity/Impulsivity RP analysis, it is important to 

consider that in its analysis, RP identifies two antagonistic Hyperactivity/Impulsivity subtypes, 

evidencing support for a factor that: 1) reflects bipolar directionality, and, 2) is further 

characterized by differing cognitive structures (see Figure 3). The factor is first partitioned by 2-

bit mu (i.e., 1-bit EF mu), a relatively easy executively-mediated, speeded RT task, replicating 

the most significant GR variable predictor, as predicted. The right side of the DT reflects 

outcomes of slower 2-bit mu performance such that slower ‘efficient’ RT responses are 
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associated with increased Hyperactivity/Impulsivity (i.e., the more hyperactive/impulsive 

subtype). It is not possible to definitively state, at this time, why slower ‘efficient’ RT responses 

are correlated with an increased Hyperactive/Impulsive presentation. To better elucidate this 

finding, further research is warranted. If called to speculate though, it is possible that respondents 

exhibiting a Hyperactive/Impulsive profile may respond slower than ‘normal’ on a relatively 

easy executively-mediated, speeded RT task because they are unable to recruit the required 

executive power to attend consistently to the task, ultimately resulting in slower RTs. Still, future 

investigations that are able to replicate these findings will prove important.  

The right side of the DT is partitioned once more by 0-bit sigma where more variable 

performance on the relatively easy speeded RT task demonstrates increased 

Hyperactivity/Impulsivity while less variable performance reflects decreased 

Hyperactivity/Impulsivity. In contrast to the first branch on this side of the DT, this result 

reflects findings consistent with what one might intuit––increased variability associated with 

increased Hyperactivity/Impulsivity.   

Hyperactivity/Impulsivity DT Left Side 

The left side of the Hyperactivity/Impulsivity DT reflects faster 2-bit mu performance 

where faster ‘efficient’ RT responses are associated with the decreased 

Hyperactivity/Impulsivity (i.e., the less Hyperactive/Impulsive subtype). Still, while 

Hyperactivity/Impulsivity is most elevated when 2-bit mu performance is slower (i.e., on the 

right side of the DT), the data reveal gradations in performance even when 2-bit mu performance 

is faster, as observed on the left side of the DT. This is further delineated below. 

Following the initial 2-bit mu branching, the left side of the DT is further partitioned by 

1-bit sigma, 1-bit error, 0-bit CoV, and 0-bit mu where decreased variability, fewer errors, and 
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faster ‘efficient’ RT responses on easy mental speed tasks suggest increased 

Hyperactivity/Impulsivity. This result is, is in direct opposition to the findings obtained on the 

right side of the DT adding further support for a cognitively distinct subtype of 

Hyperactivity/Impulsivity. Moreover, the inverse is true when the respondent is more variable, 

makes more errors, and has slower ‘efficient’ RT responses on easy mental speed tasks such that 

they are less Hyperactive/Impulsive, as defined by this second Hyperactivity/Impulsivity 

subtype. Again, further research is warranted to better contextualize these findings. What 

remains clear, however, is the RP analysis method sufficiently demonstrates its utility providing 

a method by which to systematically examine nuances in the empirical data.   

Variability RP 

Of the findings generated from the current investigation, perhaps most compelling is the 

contrast in variance explained by the Variability RP analysis compared to the amount explained 

by its GR correlate. The Variability GR accounts for 25% of the explained variance and 

identifies only one variable as important for predicting Variability performance (i.e., 2-bit error). 

By contrast, the analogous RP analysis accounts for a 41% more variance (k-fold R2 = 0.66). 

Consistent with study predictions, the Variability RP analysis also identifies 2-bit error as the 

criterion variable that separates the sample into two maximally different groups. Unlike the GR, 

however, the RP analysis recognizes other variables that contribute to, and ultimately help 

explain, more variance in the model.  

Variability DT Right Side 

A relatively easy speeded executive task, 2 bit-error performance reflects greater 

Variability when errors are higher, as one might expect. Partitioned further by Global-RT, a task 

that measures one’s ability to effectively shift between tasks, operations, and/or mental sets 
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(Monsell, 1996), slower performance on the task again reflects greater Variability while faster 

Global-RT scores are associated with less Variability. Again, these results fit well with our 

understanding of attention, executive functioning, RT, and Variability.  

Variability DT Left Side  

In contrast to the right side of the Variability DT, 2-bit error performance reflects 

decreased Variability when errors are lower, as observed on the left side of the DT. Still, as 

earlier demonstrated on the H/I factor, RP analysis makes plain gradations in performance. That 

is, even on the left side of the DT where 2-bit errors are fewer and Variability is less relative to 

the right side, subsequent branching on the left side of the DT, under a particular set of 

circumstances, reflects increased Variability. For example, the DT is again partitioned by 

Global-RT, though this time on the left. As on the right side of the DT, slower Global-RT scores 

reflect greater variability while fast Global-RT scores are associated with less Variability. The 

DT is next partitioned by 3-bit error (i.e., 2-bit EF)––a difficult, executively-mediated speeded 

RT task. When 3-bit errors are greater, Variability is greater while fewer 3-bit errors reflect less 

Variability. The DT is partitioned by one final variable: Flanker Task RT, a measure of 

attentional switching. Curiously, this result suggests that one’s ability to quickly switch attention 

between tasks, operations, or mental sets is associated with greater Variability despite another 

measure of attentional switching (i.e., fast Global RT) being associated with less Variability only 

two splits prior. Under certain conditions, it would therefore seem that quickly switching one’s 

attention between tasks, operations, mental sets or the like can leave one vulnerable to increased 

Variability. This is, perhaps, due to the respondent learning to anticipate an upcoming shift on 

the task. Again, results of the RP analysis offer insights about subsets of individuals in the 

dataset and how their performance may differ from the group as a whole.  
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Inattention RP 

As earlier reported, the Inattention RP analysis accounts for more variance (k-fold R2 = 

0.34) than explained by the group-level GR analysis (R2 = 0.13), consistent with study 

hypotheses. However, contrary to study predictions, the Inattention RP analysis does not identify 

the same criterion variable as generated by the GR analysis (i.e., 1-bit tau). Instead, the RP 

analysis identifies 0-bit tau as the variable that separates the sample into two maximally different 

groups. Thus, it is clear that ‘loss of mental set’ (i.e., inefficient RT responses) as measured by 

tau, is important for understanding the Inattention factor. Less clear, however, is why the RP 

analysis appears to place greater importance on the easier 0-bit tau task in comparison to the 1-

bit tau task. Perhaps, however, this discrepancy suggests that the Inattention factor is quite 

sensitive––to the extent that even very simple, elementary attentional processing skills are 

enough to adequately predict Inattentive performance on the CPT-3 task.  

Inattention DT Right and Left Sides 

As one might reasonably expect, slower 0-bit tau RT responses on the right side of the 

DT are associated with increased Inattention while faster 0-bit tau RT responses, as displayed on 

the left side of the DT, are associated with less Inattention. And while Inattention is most 

increased on the right side of the DT when 0-bit tau is slower, again, under the specified 

circumstances, the left side of the DT also reflects increased Inattention.  

Following 0-bit tau on the left, the DT is further split by 0-bit mu. When 0-bit mu is 

slower, Inattention is greater. That is, slower ‘efficient’ responses on easy speeded RT tasks are 

associated with increased Inattention. By contrast, faster 0-bit mu is associated with decreased 

Inattention. The sample is then subsequently partitioned by Global-acc where a slower score is 

associated with increased Inattention while a faster score is associated with less Inattention––
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again, falling within general expectations. Finally, following slower 0-bit mu performance, the 

sample is partitioned one final time by 3-bit mu where faster ‘efficient’ responses on a complex 

executively-mediated speeded RT task are associated with increased Inattention. By contrast, the 

inverse is true of slower ‘efficient’ responses on the same task such that they are associated with 

less Inattention. Results of this RP analysis demonstrate, one final time, that mental speed and 

executive functioning constitute the cognitive constructs underlying the CPT-3; moreover, more 

variance is accounted for in this close examination of individual subsets of performance 

compared to what can be explained at the group-level of analysis.  

Implications, Limitations, and Future Directions 

Using the CPT-3 as a model, the present study presents a case for the complementary––

and arguably urgent––use of distribution-appropriate statistical methods to analyze non-normally 

distributed empirical datasets. As reflected in results of the exploratory factor analysis, raw RT 

scores offer an opportunity for a nuanced, close examination of the empirical data providing 

insights about patterns of performance that could not otherwise be discerned by imposing a 

normal distribution on non-normally distributed scores.  

Moreover, results of the present study reaffirm that while group-level analysis by any 

method (e.g., traditional parametric group-level analysis or distribution-appropriate group-level 

analysis procedures) offers insights into performance of the group in aggregate, it is oftentimes 

inappropriate to presume that the patterns reflected by the group are, necessarily, applicable to a 

subset of respondents. Thus, understanding how subgroups within the population navigate and 

approach a given task can have direct implications for more personalized/individualized 

assessment and treatment, especially in clinical and research contexts. For example, although 

results of both the GR and RP analyses demonstrate support for mental speed and EF tasks as 
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cognitive underpinnings of the CPT-3, RP analyses more frequently account for greater 

explained variance while also identifying under what set of conditions each significant variable 

proves salient on each factor.  

Although results of the investigation are largely supportive of study hypotheses, the 

present study is not without limitation. Undoubtedly impacted by its smaller sample size, this 

limitation is perhaps most apparent. To confirm significant findings, it is warranted to invest in a 

larger dataset for future studies to ensure replicability. Still, while a larger sample size would 

certainly reify confidence in the observed results and help to clarify power-related queries, 

several steps to mitigate any spurious findings that could result in ambiguous conclusions have 

been taken. For example, the present study used an Adaptive Elastic Net generalized regression 

procedure given the unbalanced predictor to observation ratio. Moreover, as predictive modeling 

techniques can overcapitalize on chance variance, the present study used a k-fold cross-

validation resampling procedure to account for this. Future studies may consider running 

additional cross-validation procedures such as boosted tree analysis to ensure a convergence of 

evidence is achieved.  

 What’s more, although the parameterization of RT tasks provides a systematic approach 

to classifying bit tasks by difficulty, the integrated use of bit tasks within the neuropsychological 

and psychological literature, at this time, remains limited. For some, this fact may raise several 

questions. However, while there is little extant precedent literature upon which to reference 

within the general psychological literature base, bit theory is much more prevalent and readily 

integrated into the Information Theory literature base. Thus, in order to quell any uncertainty on 

behalf of the reader, it is important to adequately and sufficiently convey the theoretical rationale 

and utility of the bit system, as we have aimed to do in the present investigation.  
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Pursuant to findings of the present study, there is a clear case for the use distribution-

appropriate statistical methods in the context of non-normally-distributed empirical data. 

Accordingly, as the field of neuropsychology continues to move toward more frequent use of 

computerized tasks, evaluating RT effectively will, undoubtedly, become more critical. It would, 

therefore, prove prudent for the field to adopt a distribution-appropriate analysis framework 

moving forward.   
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APPENDIX 

Distributions Explained 

 
Appendix. The ex-Gaussian distribution is composed of a normal distribution and an exponential 

component. The normal component has mu (central tendency) and sigma (deviation) parameters 

while the exponential has a tau (mean and deviation combined) parameter. 
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