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ABSTRACT

CTE INDUCED PREMIUM PRINCIPLES

AND PROPERTIES

by

Linjiao Wu

The University of Wisconsin-Milwaukee, 2024
Under the Supervision of Professor Wei Wei and Professor Vytaras Brazauskas

The traditional pricing approach in the insurance industry assumes independence among

insureds, yet overlooks the complexities of interdependent risk profiles. This dissertation

addresses this limitation by proposing a premium pricing model tailored for managing de-

pendent risks, drawing inspiration from conditional tail expectation (CTE) theory. In our

model, each individual insured’s premium is contingent upon the collective loss surpassing a

predefined threshold.

To validate the e�cacy of our model, we introduce several key properties to ensure fairness

and stability in premium determination among insured individuals, including diversification

and monotonicity. Diversification ensures that adding one policyholder to the insured group

does not unjustly increase the premiums of others, while monotonicity ensures that others’

premiums do not increase due to the increased riskiness of individual policyholders.

We analyze these properties under various distributional assumptions, such as normal, ex-

ponential, and Pareto distributions. By establishing the explicit CTE-induced premium and

conducting comprehensive parameter analyses and simulations, we investigate the pricing

dynamics under di↵erent scenarios, demonstrating the robustness and e�cacy of our model.

In conclusion, this study emphasizes the importance of integrating nuanced risk dependencies

into insurance pricing models. Our proposed model, rooted in conditional tail expectation

theory, not only enhances risk management capabilities but also facilitates more equitable

premium determination, thereby enhancing the resilience and stability of the insurance sec-

tor. This research lays the groundwork for broader adoption in various real-world applica-

tions.
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Chapter 1

Introduction

1.1 Background and Motivation

In today’s insurance industry, the occurrence of dependent risks is becoming increasingly

widespread, underscoring the necessity of establishing a robust premium pricing framework

to manage such risks. One prominent example of a dependent risk is the escalating threat

of cyberattacks. According to a 2022 report on the website of the IT security software

provider Check Point, the frequency of attacks peaked at 92 per week per organization

globally by the end of 2021—a 50% increase compared to 2020. These attacks manifest in

various forms such as ransomware attacks, identity theft, and data breaches. Importantly,

victims of cyberattacks often share similar organizational traits or vulnerabilities, leading to

positive dependency among the risks they face. According to a 2024 report on the website

of the digital insurance brokerage Embroker, financial losses—including extortion demands

and legal fees from ensuing lawsuits—are expected to grow at a rate of 15% yearly and reach

an estimated 10.5 trillion dollars annually by 2025.

Another category of dependent risks is natural disasters. Events like tornadoes and floods

typically result in collective losses for individuals residing in a↵ected areas, leading to ge-

ographical perspective interdependence. Due to the di�culty of catastrophic forecasts and

the complexity of disaster-related loss validation, not only the direct asset losses but also the

subsequent reconstruction costs, decreased consumption, and the weakened capital markets

together contribute to the underdevelopment of the insurance market according to Kusuma
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et al. (2019). The previous statement sheds light on the challenges of insuring dependent

risks from sociological and economic perspectives. Acknowledging that diverse disciplines

o↵er distinct lenses to analyze real-world phenomena, a mathematical expression of the di�-

culty will be the deficiency of the tools to e↵ectively mitigate insolvency risk under dependent

risk assumptions.

Before discussing the challenges of managing insolvency risk under dependent risk assump-

tions, it is crucial to clarify the definition of insolvency risk and why traditional insurance

premium pricing frameworks have been able to address it under independent risk assump-

tions. Insolvency risk refers to the possibility that a company may be unable to meet its

payment obligations. In the insurance industry, it signifies the possibility that an insurance

company cannot cover losses with the collected premiums. According to Loss Data Ana-

lytics, an open text authored by the Actuarial Community, this concept can be formalized

using the following accounting formula:

premium = loss + expense + underwriting profit.

Setting aside insurance company expenses, insolvency risk can be interpreted as the prob-

ability that the expected loss exceeds the expected premium. Assuming a loss X with

distribution function F (X), and given a premium on this loss, the insolvency risk is rep-

resented by P(X > E(X)), according to Young (2014). Insurers have always prioritized

limiting insolvency risk when determining premium pricing.

When pricing a portfolio under independent risk assumptions, consisting of n lossesX1, ..., Xn,

the total premium is the sum of premiums from all policyholders. The insolvency risk then

becomes P(
Pn

i=1 Xi > E[
Pn

i=1 Xi]). According to the law of large numbers, as the portfolio

size increases, this probability becomes less uncertain. Moreover, by the central limit the-

orem, E[
Pn

i=1 Xi] becomes more predictable as n increases. Overall, insolvency risk can be

e↵ectively managed under independent risk assumptions.

However, the scenario changes significantly under dependent risk assumptions. An extreme

example is a portfolio consisting of identical losses, n ⇤X. In this situation, insolvency risk

retains its original definition, and managing it does not benefit from the law of large numbers

and central limit theorem, potentially resulting in failure.

While individual perspective premium pricing may falter under dependent risk assumptions,
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it is important to note that insolvency can still be e↵ectively managed by shifting our ap-

proach to the problem from pricing premiums individually to pricing premiums for groups.

This pricing framework operates akin to the portfolio percentile premium principle, a concept

originating from the field of life contingencies and long practiced (Dickson et al., 2019).

In actuarial sciences, the percentile is often referred to as the Value-at-Risk (VaR). For a

portfolio comprising n individual losses X1, ..., Xn, the aggregate loss is defined as:

S =
nX

i=1

Xi

The formal definition of VaR is given by:

V aR↵[S] = inf{x : P{S  x} � ↵}

In this context, the symbol ↵ represents a predetermined level of risk, guarantee that the

insolvency probability is controlled under the level of 1�↵. The value of ↵ is always close to

1, such as 0.9 or 0.95. Throughout this dissertation, we will refer to the portfolio percentile

premium as VaR premium to di↵erentiate it from its application in the life contingency

field. The calculation of the VaR premium hinges upon the assumption of independent risks

and the prediction of aggregate loss through the application of the central limit theorem.

The main distinction is that the VaR premium establishes a specified probability 1 � ↵ of

the aggregate loss and subsequently determines the premium using the inverse cumulative

distribution function.

A more conservative alternative to the VaR premium is the Tail Value-at-Risk (TVaR)

premium, defined as follows:

TV aR↵[S] =
1

1� ↵

Z 1

↵

V aR�(S)d� =
1

1� ↵

Z 1

F�1(↵)

sf(s)ds

Under the same risk level ↵, the TVaR premium demands a higher amount, making this pric-

ing framework a safer option than VaR. When the risk variable is assumed to be continuous,

TVaR is equivalent to Conditional Tail Expectation (CTE), defined as:

CTE↵[S] = E[S|S > V aR↵[S]] (1.1)

3



The focus of this dissertation is on CTE premium, which represents the variable’s expectation

given that it exceeds a certain percentile. When the variable represents losses, CTE signifies

the average of the worst-case scenarios. This premium principle plays a crucial role in

managing insolvency risk under the assumption of risk interdependence, primarily due to

two advantages: the higher premium amount requirement and the coherent property. The

latter provides the foundation of the CTE premium allocation and will be discussed in detail

in the next section.

After determining the group premium, the subsequent consideration involves the fair and

e�cient allocation of premiums to each policyholder. Drawing inspiration from capital allo-

cation principles (Dhaene et al., 2012), insurers aim to allocate premiums within a portfolio

proportionally to each policyholder’s risk level. In this context, the total risk capital (K)

represents the sum of all individual risk capitals (K1, ..., Kn) in the portfolio. The primary

objective is to ensure that the total capital (K) is allocated among policyholders (K1, ..., Kn)

in a manner that satisfies the full allocation requirement:

nX

i=1

Ki = K

Various allocation principles exist, with the proportional allocation principle being the most

general. It is defined as follows:

Ki =
KPn

j=1 ⇢[Xj]
⇢[Xi], i = 1, ..., n.

Here, ⇢ represents the chosen risk measure, and Ki denotes the capital allocation to each unit

i. Di↵erent allocation principles arise from selecting distinct risk measures. Some well-known

examples include:

• The Conditional Tail Expectation (CTE) allocation principle, which closely relates to

this paper. CTE, akin to TVaR premium, follows a similar structure:

Ki =
K

CTE↵[S]
E[Xi|S > F�1

S (1� ↵)] (1.2)

This rule acknowledges risk interdependence, where units with higher expected losses

are allocated greater premiums, particularly in situations where total loss is high.
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• The covariance allocation principle also considers dependence, formulated as:

Ki =
K

V ar[S]
Cov[Xi, S]

Insurers with risk highly correlated with the aggregate risk will necessitate larger pre-

miums.

Additionally, the haircut and quantile allocation principles utilize VaR and quantiles as

risk measures, respectively. However, these methods may underestimate the e↵ects of in-

terdependence between risks, potentially leading to allocated capitals exceeding standalone

capitals.

The premium pricing framework proposed in this paper combines the TVaR group premium

and the CTE allocation principle.

1.2 Desirable Properties of Multivariate Premium Prin-

ciple

As discussed in the previous section, premium allocation is closely tied to the underlying risk

measure, with the risk measure often serving as the basis for the premium principle itself. In

this section, we draw upon insights from the premium allocation literature (Dhaene et al.,

2012 and Wei et.al., 2023) to explore the desirable properties of the premium principle.

Let ⇢(X) denote the capital amount required to adequately hedge against a loss X. We

identify five desirable properties of the premium principle, and satisfying the last four leads

to the establishment of a coherent risk measure, as outlined below:

1. Translational invariance. For any X1, X2 with P[X1  x] = P[X2  x], ⇢[X1] = ⇢[X2].

2. Monotonicity. For any X1, X2, X1  X2 (almost surely) implies ⇢[X1]  ⇢[X2].

3. Positive homogeneity. For a > 0, ⇢[aX] = a⇢[X].

4. Translation invariance. For b 2 R, ⇢[X + b] = ⇢[X] + b.

5. Subadditivity. For any X1, X2, ⇢[X1 +X2]  ⇢[X1] + ⇢[X2].

The axioms listed above provide a foundation for understanding the desirable properties of
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premium allocation principles. When applied to the multivariate premium principle, denoted

by ~Xn = (X1, X2, ..., Xn) representing a portfolio of risks, and ⇡(Xi; ~Xn) representing the

premium of individual risk Xi in the group, these axioms ideally guide the development of

premium allocation principles. In this dissertation, we propose that insurers can ensure fair

and e�cient allocation of premiums across the portfolio by satisfying the following axioms:

1. Translational invariance. For any ~c 2 Rn, ⇡( ~Xn + ~c) = ⇡( ~Xn) + ~c.

2. Positive homogeneity. For any a > 0, ⇡(a ~Xn) = a⇡( ~Xn).

3. Diversification. Denote ~Xn = (X1, ..., Xn) and ~Xn+1 = (X1, ..., Xn, Xn+1),

⇡(Xi; ~Xn+1)  ⇡(Xi; ~Xn)

for any i = 1, ..., n.

4. Monotonicity. Denote ~X i
a = (X1, ..., Xi�1, aXi, Xi+1, ..., Xn) for some a > 0,

(a)
P

i 6=j ⇡(Xj; ~X i
a) + ⇡(aXi; ~X i

a) increases when a increases;

(b) ⇡(aXi; ~X i
a) increases when a increases;

(c) ⇡(Xj; ~X i
a) decreases when a increases for any j 6= i.

The first and second axioms express the transition of coherence from univariate risk measures

to multivariate assumptions. These axioms assert that when risks are uniformly increased

or scaled, the corresponding adjustments should be made to the premium amounts. This

uniform increase demands consistent adjustments to premiums, ensuring coherence between

risk and premium changes.

The third axiom, diversification, holds particular significance in group risk scenarios, as it

states that the addition of one insured to the portfolio will decrease the premiums of the

remaining risks. This phenomenon, defined as the diversification e↵ect in this thesis, o↵ers

benefits to both insurers and insured parties. From the insurer’s perspective, the diversifica-

tion e↵ect reduces the costs associated with business expansion and encourages participation

in broader markets, including emerging ones such as the cyber insurance market, character-

ized by a high degree of uncertainty. The presence of the diversification e↵ect in premium

allocation principles can facilitate the development of the cyber insurance industry into a

more mature and robust sector. From the insured’s perspective, the diversification e↵ect

ensures that policyholders are not penalized for the risks posed by other insured parties,
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thereby safeguarding their interests against the operational risks of insurance companies.

It is important to note the nuanced definition of the diversification e↵ect in the context of

premium allocation principles, which di↵ers from its interpretation in traditional capital al-

location frameworks. While in capital allocation, diversification entails allocating less capital

to an asset within a portfolio compared to its standalone allocation, the divergence arises

due to the distinct nature of insurance pricing and capital allocation problems.

The fourth axiom, monotonicity, indicates how individual policyholders should respond to

changes in another policyholder’s risk within the portfolio. Part (a) aligns with the pos-

itive homogeneity axiom, where an increase in one policyholder’s risk leads to an overall

increase in the total premium to reflect the heightened risk level. Similarly, part (b) ad-

heres to positive homogeneity by reflecting the individual policyholder’s increased risk in

their premium amount. Part (c) ensures that no policyholder faces a higher premium due

to another policyholder’s risk escalation, maintaining fairness in premium distribution. This

property encourages policyholders to manage their risk levels to secure lower premiums, as

adjustments are made individually without benefiting other policyholders. Consequently,

this mitigates moral hazard risks within insurance practices. Notably, the value of a encom-

passes all positive real numbers, naturally dividing into two parts: when a � 1, indicating

that no one will su↵er from others’ high-risk behaviors, and when 0 < a  1, implying that

no one will benefit from others’ low-risk behaviors.

1.3 Technical Tools

In this section, we will introduce the technical tools necessary for understanding the CTE-

induced premium pricing framework. Building upon the diversification and monotonicity

properties discussed in the previous section, we will present preliminary analysis results and

other tools to help us analyze these properties e↵ectively. Specifically, we will demonstrate

the subadditivity of CTE and its relationship to the diversification property. Additionally,

we will explore how partial derivatives can be used to observe the monotonicity property

in portfolios of size two. Finally, we will introduce the concept of conditionally pairwise

negative correlation, which will be instrumental in analyzing diversification properties in

future chapters.
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1.3.1 CTE-induced Premium Formula and Preliminary Results

The CTE-induced premium pricing framework is a fusion of the CTE group premium, as

described in (1.1), and the CTE allocation principle, as outlined in (1.2). By replacing the

total capital K in (1.2) with the group premium in (1.1), we can easily derive the individual

premium as the CTE of this single risk, conditioned on the group risk reaching a certain

predetermined risk level. We will continue to use the same notation introduced in the

previous section for consistency and clarity.

Definition 1.3.1. Denote the losses ~X = (X1, X2, ..., Xn) and the total loss S =
Pn

i=1 Xi.

The premium for Xi, based on its contribution to CTE↵(S), is defined as

⇡(X1; ~X) = E[Xi|S � V aR↵(S)] (1.3)

The CTE premium allocation principle satisfies the full allocation requirement and pro-

portional allocation principle. Translational invariance and positive homogeneity are also

demonstrated through straightforward manipulations applied to ~X, thereby confirming its

adherence to these properties.

We have obtained some preliminary results while investigating the conditions necessary to

satisfy the diversification and monotonicity properties within the specific pricing framework

outlined in (1.3). We initiate this exploration by analyzing a portfolio comprising only two

insured parties.

Proposition 1.3.2. Let X and Y be any two random variables. It holds that

⇡(X; (X, Y ))  ⇡(X;X)

Proof. By the subadditivity of CTE, we have

⇡((X + Y ); (X, Y ))  ⇡(X;X) + ⇡(Y ;Y ) (1.4)

8



Note that ⇡(Y ; (X, Y )) � ⇡(Y ;Y ). Rearranging (1.4), we have:

⇡((X + Y ); (X, Y ))� ⇡(Y ;Y )  ⇡(X;X)

⇡(X; (X, Y )) + ⇡(Y ; (X, Y ))� ⇡(Y ;Y )  ⇡(X;X)

⇡(X; (X, Y ))  ⇡(X;X)

The diversification property can be observed if expanding the assumption to a portfolio with

size greater than two.

Corollary 1.3.3. Let ~Xn = (X1, ..., Xn) be a random vector. For any i = 1, ..., n, it holds

that

⇡(Xi; ~Xn)  ⇡(Xi;Xi)

Proof. By setting Xi = X and
P

j 6=i Xj = Y , it is a direct result from Proposition 1.3.2.

The challenge in satisfying the diversification property arises when the group size increases

from n to n + 1. While numerical examples may provide insight into this phenomenon,

constructing a rigorous algebraic proof remains an ongoing task.

One significant challenge in analyzing both diversification and monotonicity properties lies in

the absence of explicit formulas, as defined in (1.3), which are essential for direct comparison.

To address this challenge, we employ an approach that involves transforming the comparison

between CTE premiums into a comparison between covariances by taking the derivative of

the CTE with respect to the percentile.

Proposition 1.3.4. Assume random vector (X, Y ) has a joint density function, E[X2] < 1,

and E[Y 2] < 1. Denote W↵ = X + aY , a > 0. Then

1.
d

da
V aR↵[W↵] = E[Y |W↵ = V aR↵[W↵]],

2.
d

da
CTE↵[W↵] = E[Y |W↵ > V aR↵[W↵],

3.
d

da
E[X|W↵ = V aR↵[W↵]] =

fW↵(V aR↵[W↵])

1� ↵
V ar[X|W↵ = V aR↵[W↵]],

4.
d

da
E[Y |W↵ > V aR↵[W↵]] =

fW↵(V aR↵[W↵])

1� ↵
Cov[X, Y |W↵ = V aR↵[W↵]].
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Proof. The first three outcomes can be established through direct di↵erentiation. The com-

prehensive proof of the fourth outcome is provided below. For simplicity, let us denote

V aR↵[W↵] = qW↵
↵ , and the double integral inside CTE as a “joint-expectation” as follows:

E[Y, {W↵ > qW↵
↵ }] =

Z 1

�1

Z 1

qW↵
↵ �ay

yf(x, y) dx dy. (1.5)

By using this notation, the CTE expression can be written as:

E[Y |Wa > V aR↵[Wa]] =
1

1� ↵
E[Y, {Wa > qWa

↵ }] (1.6)

Di↵erentiating (1.5) with respect to a yields:

d

da
E[Y, {W↵ > qW↵

↵ }] =
Z 1

�1

✓
� d

da
qW↵
↵ + y

◆�
qW↵
↵ � ay

�
f(qWa

↵ � ay, y) dy.

Here, d
daq

Wa
↵ = E[Y |Wa = qWa

↵ ]. Also
f(qWa

↵ � ay, y)

fWa(qWa
↵ )

= fY |Wa(y), which is the conditional

density function of Y given Wa = qWa
↵ . Consequently, we have:

d

da
E[Y, {Wa > qWa

↵ }] = �fWa(q
Wa
↵ )

Z 1

�1

✓
d

da
qWa
↵ � y

◆�
qWa
↵ � ay

�
fY |Wa(y) dy

= �fWa(q
Wa
↵ )E

⇥
(E[Y |Wa = qWa

↵ ]� Y )(qWa
↵ � aY ) |Wa = qWa

↵

⇤

= fWa(q
Wa
↵ )E

⇥
(Y � E[Y |Wa = qWa

↵ ])(X |Wa = qWa
↵ )
⇤

= fWa(q
Wa
↵ )Cov[X, Y |Wa = V aR↵[Wa]].

This completes the proof of the di↵erentiation of (1.6) with respect to a, and thus, the proof

of (4).

Similar with Proposition 1.3.4, the correlation between monotonicty property and covariance

can be derived when expanding the portfolio with size greater than two.

Proposition 1.3.5. Assume (X1, ..., Xn) has a joint density function, with E[X2
i ] < 1,

i = 1, 2, ..., n. Consider random vector (a1X1, .., anXn) with a1 � 0 for i = 1, ..., n. Denote

Sa =
Pn

i=1 aiX1, qSa
↵ = V aR↵[Sa], and denote by fSa(s) the density function of Sa. It holds

that, for each i = 1, ..., n,
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1.
@

@ai
(

nX

k=1

⇡(akXk)) = E[Xi|Sa � qSa
↵ ],

2.
@

@ai
⇡(aiXi) = E[Xi|Sa > qSa

↵ ] +
aifSa(q

Sa
↵ )

1� ↵
V ar[Xi|Sa = qSa

↵ ],

3.
@

@ai
⇡(ajXj) =

ajfSa(q
Sa
↵ )

1� ↵
Cov[Xi, Xj|Sa = qSa

↵ ], for i 6= j.

Proof. A direct derivation from Proposition 1.3.4, (2), (3), and (4).

The third result from Proposition 1.3.5 provides us with the relationship between the value

of covariance and the satisfaction of the monotonicity property. If the covariance between

Xi and Xj is negative, then the monotonicity property is automatically satisfied. However,

the question arises when the covariance is positive. In the future chapters, we will explore

the dynamics between covariance and the satisfaction of the monotonicity property under

specific loss distribution assumptions.

1.3.2 Conditionally Pairwise Negative Correlation

In this subsection, we introduce the concept of Conditionally Pairwise Negative Correlation

(CPNC). Given the significance of covariance in our investigations, CPNC provides a specific

definition to describe negative correlation under certain assumptions. This concept will play

a crucial role in our subsequent discussions and analyses.

Definition 1.3.6. A random vector (Y1, ..., Yn) is said to be conditionally pairwise negative

correlated (CPNC) if

Cov[Yi, Yj|S = s]  0

for any i 6= j and any s.

The concept of CPNC can be demonstrated by considering a bivariate random vector such

as (Y1, Y2):

Cov[Y1, Y2|Y1 + Y2 = s] = Cov[Y1, S � Y1|Y1 + Y2 = s]

= Cov[Y1, S|Y1 + Y2 = s]� Cov[Y1, Y1|Y1 + Y2 = s]

= Cov[Y1, S|S = s]� V ar[Y1|Y1 + Y2 = s]
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= �V ar[Y1|Y1 + Y2 = s]  0

Here, we use the fact that Cov[Y1, S|S = s] = 0 because S is a constant given the condition.

However, the relationship becomes uncertain in the trivariate case. For instance, consider

the random vector (Y1, Y2, Y3) with Y1 = Y2. In this case, (Y1, Y2, Y3) is not CPNC because:

Cov[Y1, Y2|S = s] = V ar[Y1|S = s] � 0

The demonstration above provides valuable insights into analyzing the conditions required

to achieve the monotonicity property and the role of covariance between policyholders. One

straightforward scenario arises within the same bivariate random vector setting.

Lemma 1.3.7. For a bivariate random vector (Y1, Y2), if the conditional expectation E[Y1|Y2 =

y2] is decreasing as y2 increases, then Cov[Y1, Y2]  0 for any constant s.

Proof. For simplicity, define g(y2) = E[Y1|Y2 = y2] for any value y2, by the law of total

expectation,

E[Y1Y2] = E[E[Y1Y2|Y2 = y2]] = E[y2 · E[Y1|Y2 = y2]] = E[y2 · g(y2)]

To compute the covariance,

Cov[Y1, Y2] = E[Y1Y2]� E[Y1]E[Y2]

= E[y2 · g(y2)]� E[E[Y1] · Y2]

= E[y2 · (g(y2)� E[Y1])]

Note that E[g(Y2)] = E[E[Y1|Y2]] = E[Y1], implying that there exists y0 such that g(y0) =

E[Y1]. If we assume that g(y2) is decreasing as y2 increases, we have y2 � y0 � 0 and

g(y2)� g(y0)  0. After multiplication:

(y2 � y0)(g(y2)� g(y0))  0

y2(g(y2)� g(y0))� y0(g(y2)� g(y0))  0

12



y2(g(y2)� g(y0))  y0(g(y2)� g(y0))

E[y2(g(y2)� g(y0))]  E[y0(g(y2)� g(y0))]

E[y2(g(y2)� E[Y1]]  y0E[g(y2)� g(y0)]

Cov[Y1, Y2]  y0E[E[Y1|Y2 = y2]� E[Y1]]

Cov[Y1, Y2]  y0[E[Y1]� E[Y1]]

Cov[Y1, Y2]  0

Thus, if E[Y1|Y2 = y2] decreases as y2 increases, then Cov(Y1, Y2) is negative.

Assuming Y1+Y2 = S, it is evident that E[Y1|Y2 = y2, S = s] decreases as y2 increases for any

value of s. By incorporating this observation into the lemma, we deduce that Cov(Y1, Y2|S =

s)  0 always holds under the bivariate risk assumption. This statement can be extended

to a multivariate case, such as a vector (Y1, Y2, ..., Yn) where
Pn

i=1 Yi = S, with n being any

positive integer greater than 2. In this case, we have:

E[Y1|Y2 = y2, S = s] = E[Y1|S � Y2 = s� y2]

Lemma 1.3.7 can be expanded to if E[Y1|S � Y2 = s � y2] increases as y2 decreases, then

Cov(Y1, Y2|S = s)  0. Therefore, according to Proposition 1.3.5 (3), the monotonicity

property has been satisfied.

In summary, in this section, we introduced the key CTE-induced premium pricing expression

(Equation 1.3). We then delved into the analysis of two desirable yet challenging proper-

ties: diversification and monotonicity. By proposing technical tools to quantify the triggering

conditions for these properties, we laid the groundwork for their exploration. The diversifica-

tion property will primarily be explored through numerical examples in subsequent chapters,

while for the monotonicity property, our focus will be on identifying conditions that render

the conditional expectation dependent on the covariance between the risks, with the total

risk predetermined.
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1.4 Thesis Organization

The remainder of the dissertation is structured as follows:

In Chapter 2, we delve into the CTE-induced formula under the assumption that the risk

vector follows a multivariate normal distribution. Leveraging formulas derived by Landsman

and Valdez (2003), we explore the conditions required to satisfy both the diversification and

monotonicity properties. Through specific examples, we demonstrate how these properties

manifest in practice.

Chapter 3 focuses on the CTE-induced formula when the risk vector follows a multivariate

exponential distribution. By incorporating covariance considerations, we introduce a novel

approach to pricing dependent risks.

In Chapter 4, we examine the CTE-induced formula for the case where the risk vector follows

a multivariate Pareto distribution. Despite challenges posed by the heavy-tailed nature of

the Pareto distribution, we present a stochastic representation and observe a fraction de-

composition formula. Our analysis prioritizes E[Xi|S = V aR↵(S)] over E[Xi|S > V aR↵(S)]

due to the distribution’s characteristics.

Finally, in Chapter 5, we summarize the key findings of this dissertation and outline future

research.
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Chapter 2

Normal Distribution

In this chapter, we will assume that the loss variable follows a normal distribution. This as-

sumption is primarily made because the normal distribution is well-studied in the literature,

allowing us to leverage prior research results, such as those by Landsman and Valdez (2003).

We will begin with a concise overview of the multivariate normal distribution setup, quote the

CTE-induced formula from the earlier study by Landsman and Valdez (2003), and investi-

gate the conditions necessary to satisfy both the diversification and monotonicity properties.

This will involve employing partial derivatives and subsequent algebraic manipulations to

clarify these relationships.

Despite the advantage of extensive research and analytical tractability, this assumption has

a notable drawback: a normally distributed random variable can take on negative values,

which is unrealistic for representing losses. However, we proceed with this assumption to

explore any potential insights that may arise from this theoretical framework.

2.1 Introduction

The expressions for Value-at-Risk and Tail Value-at-Risk for a general univariate normal

distribution, represented as X ⇠ N(µ, �2), were established by Landsman and Valdez (2003).

The notation “CTE” is used in place of “TCE” when referencing their work. For any random

variable X following a normal distribution with mean µ and variance �2, �(·) denotes the

15



probability density function of the standard normal distribution. Also,

V aR↵[X] = µ+ �V aR↵[Z]

CTE↵[X] = µ+ �CTE↵[Z] = µ+ �
�(V aR↵[Z]))

1� ↵

(2.1)

The expressions mentioned above can be derived through direct standardization. It’s note-

worthy that the CTE is obtained by adding the mean to the standard deviation evaluated

at the specified risk level. However, extending this to the multivariate normal distribution

poses additional challenges due to the presence of covariance. To address this, we will begin

with a review of the fundamental setup.

Definition 2.1.1. For multivariate normal distribution, ~X = (X1, ..., Xn) ⇠ MVN(~µ,⌃),

where µ = (E[X1], ..., E[Xn]) and

⌃ =

2

66666664

�2
1 ⇢12�1�2 ⇢1n�1�n

⇢12�1�2 �2
2 ⇢2n�2�n

...

⇢1n�1�n ⇢2n�2�n �2
n

3

77777775

is the covariance matrix.

Considering the distribution of the summation of n normally distributed random variables,

Sn =
Pn

i=1 Xi, will follow the distribution such that

Sn ⇠ N

 
nX

i=1

µi,
X

i,j

⇢ij�i�j

!

where ⇢ii = 1, for i = 1, 2, ..., n.

When analyzing the joint distribution of a single loss random variable Xi and the total

portfolio loss S, represented as (Xi, S), we observe that it conforms to a bivariate normal

distribution. This distribution is characterized by several parameters, including the means

of the individual loss variable and the total portfolio loss, the correlation between Xi and

S, the variance of Xi, and the covariance matrix of S. The notation for this distribution is

16



expressed as follows:

(Xi, S) ⇠ BV N

 
µi,

nX

i=1

µi;Corr(Xi, S), �
2
i ,
X

i,j

⇢ij�i�j

!

Here,
Pn

i=1 µi = µs, �2
s =

P
i,j ⇢ij�i�j.

Utilizing the formula established by Landsman and Valdez (2003), we can determine the

conditional expectation of risk Xi given that the total risk S is greater than a predetermind

value s. This expression reveals

E[Xi|S > s] = µi +
Cov(Xi, S)

�s
·

�( s�µs

�s
)

1� �( s�µs

�s
)

(2.2)

In the following section, we will integrate this formula into the premium pricing framework

proposed in Equation (1.3) and investigate the conditions under which desired properties

can be observed.

2.2 CTE Premiums

By refining the predetermined total loss value, denoted as s, to the (1� ↵)100% percentile

of the total loss within the conditional expectation outlined in (2.2), we unveil the premium

pricing formula proposed in (1.3). Notably, the definition of Conditional Tail Expectation

(CTE), as elucidated for a standard normal random variable in (2.1), enables the derivation

of CTE↵[Z] =
�(V aR↵[Z])

1�↵ . Substituting these expressions into the conditional expectation

yields the CTE-induced premium pricing formula defined in (1.3), under the assumption of

a normal distribution for all losses.

Proposition 2.2.1. When (X1, X2, ..., Xn) ⇠ MVN(~0;⌃), denote V ar[Xk] = �2
k, Cov[Xi, Xj] =

⇢ij�i�j, Sn = ⌃n
i=1Xi and Sn�j = Sn �Xj for any k,i,j. Then:

⇡(Xi) = E[Xi|Sn > V aR↵(Sn)] = µi +
Cov(Xi, Sn)p

V ar(Sn)
· CTE↵[Z] (2.3)

Proof. Substitute s with V aR↵(Sn) in (2.2).

A key distinction between (2.3) and (2.1) lies in the direct proportionality of the CTE-

17



induced premium to the covariance between Xi and Sn. A higher covariance leads to a higher

CTE premium, which aligns with the rationale behind premium allocation. When the loss

variable of a policyholder exhibits stronger correlation with the total loss, they bear greater

responsibility in the event of a loss and, therefore, are expected to pay a higher premium.

When comparing premium pricing frameworks across di↵erent policyholders, the primary

di↵erentiating factors are the individual mean and the covariance between the individual

loss and the total loss.

2.3 Examples

After deriving the explicit CTE-induced premium formula, our subsequent aim is to explore

the conditions necessary to observe specific desired properties. As noted in Proposition

1.3.5(3), the monotonicity property hinges on the covariance between the altered and unal-

tered loss random variables, under the condition that the total loss equals a predetermined

value. This particular covariance can be derived from (2.3) through algebraic transforma-

tions.

Proposition 2.3.1. Under the same setting as in Proposition 2.2.1, the following properties

hold:

1.
@

@�i
⇡(Xi) � 0

2.
@

@�j
⇡(Xi)  0

3. In addition, it follows from (2) that
Cov[Xi, Xj]

Cov[Xi, Sn]
 Cov[Xj, Sn]

V ar[Sn]
.

Proof. By the definition of multivariate normal distribution, we have:

Cov[Xi, Sn] =
nX

k=1

⇢ik�i�k = ⇢ii�
2
i +

X

k 6=i

⇢ik�i�k

V ar[Sn] = V ar[Xj +
X

k 6=j

Xk] = �2
j + V ar

"
X

k 6=j

Xk

#
+ 2

X

k 6=j

⇢jk�j�k
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Taking derivatives with respect to �j for the above terms, we find:

@

@�j
Cov[Xi, Sn] = ⇢ij�i =

Cov[Xi, Xj]

�j
(2.4)

@

@�j
V ar[Sn] = 2�j + 2

X

k 6=j

⇢jk�k =
2

�j

 
�2
j +

X

k 6=j

⇢jk�j�k

!
=

2

�j
· Cov[Xj, Sn] (2.5)

If the derivative of ⇡(Xi) with respect to �j is positive, then the derivative of ln(⇡(Xi)) is

also positive. Omitting µi and CTE↵[Z] in di↵erentiation due to their independence from

�j, we have:

@

@�j
ln ⇡(Xi) =

@
@�j

Cov[Xi, Sn]

Cov[Xi, S]
� 1

2
·

@
@�j

V ar[Sn]

V ar[Sn]

Substituting the earlier derivatives from (2.4) and (2.5), the desirable observation @
@�j

⇡(Xi)

can also be expressed as:
Cov[Xi, Xj]

Cov[Xi, Sn]
 Cov[Xj, Sn]

V ar[Sn]
(2.6)

We can now investigate whether the monotonicity property based on the precondition out-

lined in Proposition 2.3.1(2) is satisfied or not. This precondition depends on covariance

and variance. To clarify our conclusion, let’s consider a simple example involving three pol-

icyholders in the portfolio, each with identical standard deviations. In this case, the only

variable to consider is the correlation coe�cient.

Proposition 2.3.2. If S3 = X1 + X2 + X3 and the standard deviations are the same, and

the correlation coe�cient ⇢ij 
p
5� 1

2
for any i, j 2 {1, 2, 3},

then the inequality
Cov[Xi, Xj]

Cov[Xi, Sn]
 Cov[Xj, Sn]

V ar[Sn]
holds.

Proof. Without loss of generality, assume i = 1 and j = 2, and S3 = X1 +X2 +X3. Then

the inequality defined in (2.6) becomes

Cov[X1, X2]

Cov[X1, S3]
 Cov[X2, S3]

V ar[S3]
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and therefore

Cov[X1, X2]V ar[S3]  Cov[X1, S]Cov[X2, S3]

Because we assume all the standard deviations of X1, X2 and X3 are the same, we can

assume it to be 1. Then:

⇢12(2⇢12 + 2⇢13 + 2⇢23 + 3)  (1 + ⇢12 + ⇢13)(1 + ⇢12 + ⇢23)

⇢212 + ⇢12⇢13 + ⇢12⇢23 + ⇢12  1 + ⇢23 + ⇢13 + ⇢13⇢23

⇢212 + ⇢12 + (⇢12 � 1)⇢13 + (⇢12 � 1)⇢23  1 + ⇢13⇢23

Define m = min{⇢13, ⇢23}. Because ⇢12 � 1 < 0, replacement of all such terms by m is an

amplication of the left hand side of the inequality. The minification of the right hand side

can also be achieved by replacing the ⇢13⇢23 by m2. Thus, the following steps can be justified:

⇢212 + ⇢12 +m(⇢12 � 1) +m(⇢12 � 1)  1 +m2

⇢212 + (2m+ 1)⇢12  (m+ 1)2

⇢12 
r
(m+ 1)2 + (m+

1

2
)2 � (m+

1

2
)

Define the function f such that f(m) =
q
(m+ 1)2 + (m+ 1

2)
2 � (m + 1

2), the function

reaches its minimum when f(0) =

r
1 +

1

4
� 1

2
=

p
5� 1

2
.

Thus, if we can control the correlation coe�cient such that ⇢12 
p
5�1
2 , the premium of

policyholder Xi would decrease as the standard deviation of the policyholder Xj increases,

satisfying the monotonicity property.

To expand the research to the case when n � 3, we define m = min{⇢ij}, M = max{⇢i,j} for

all i 6= j, and r =
m

M
. The inequality defined in (2.6) can be derived under the same logic

as the previous three random variable case:

1 + [(n� 2)(2r +
1

M
) + (n� 2)(n� 3)]  (

1

M
+ (n� 2)r)2

1 + 2(n� 2)r +
n� 2

M
+ (n� 2)(n� 3)  1

M2
+

2(n� 2)

M
r + (n� 2)2r2
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1

(n� 2)2
+

2r

n� 2
+

1

M(n� 2)
+

n� 3

n� 2
 1

M2(n� 2)2
+

2

M(n� 2)
r + r2

1

(n� 2)2
+

1

M(n� 2)
+

n� 3

n� 2
� 1

M2(n� 2)2
 r2 + 2

1�M

M(n� 2)
r

1

(n� 2)2
+

1

M(n� 2)
+

n� 3

n� 2
� 1

M2(n� 2)2
+ (

1�M

M(n� 2)
)2  (r +

1�M

M(n� 2)
)2

s
2M + n� 4

M(n� 2)2
+

n� 3

n� 2
� 1�M

M(n� 2)
 r

Now, let

g(n,M) =

s
2M + n� 4

M(n� 2)2
+

n� 3

n� 2
� 1�M

M(n� 2)
(2.7)

Then

@g(n,M)

@M
=

1

2
(
2M + n� 4

M(n� 2)2
+

n� 3

n� 2
)�

1
2 (

4� n

M2(n� 2)2
) +

1

M2(n� 2)

> 0

indicating that g(n,M) is increasing with M . Similarly:

@g(n,M)

@n
=

1

2
(
2M + n� 4

M(n� 2)2
+

n� 3

n� 2
)�

1
2 (
6� 4M � n

M(n� 2)3
) +

1

(n� 2)2
+

1�M

M(n� 2)2

> 0

indicating that g(n,M) is increasing with n. Combining these two results, we can con-

clude that the monotonicity property would be more di�cult to observe when the maximum

correlation coe�cient is large and the portfolio size is large.

The lower bound of r can always be calculated when the values of M and n are assumed.

Specifically, when M = 1, g(n,M) will always be 1, requiring the lower bound of r to be

1. However, this can only occur when all the correlation coe�cients are 1, indicating that

when all the policyholders in the portfolio are perfectly correlated, it is almost impossible to

satisfy the monotonicity property.

Alternatively, settingM = 1
2 updates the function g(n,M) as g(n,M) =

s
n(n� 3)

(n� 2)2
� 1

n� 2
.
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For instance, when n = 4, the minimum value of r is r = 1
2 ; when n = 5, the lower bound of

r would be r =

p
10

3
� 1

3
. This indicates that when the ratio between the highest and lowest

correlation coe�cients is controlled, as the portfolio size increases, it becomes more di�cult

to observe the monotonicity property.

The value of g(n,M) will determine the feasibility of the diversification property, and the

calculation is based on two variables. To examine some calculation results, we chose thresh-

olds of 0.25, 0.5, and 0.75 for M , where 0.25 represents weak correlation, 0.5 represents

medium correlation, and 0.75 represents strong correlation. For n, we used values ranging

from 4 to 50 to observe how the conditions respond to changes in portfolio size.

n\M 0.25 0.5 0.75
3 N/A -1 0.4832
4 -0.5000 0.5000 0.8333
5 0.1547 0.7208 0.9072
10 0.7569 0.9208 0.9738
15 0.8625 0.9551 0.9851
20 0.9049 0.9688 0.9897
30 0.9414 0.9807 0.9936
50 0.9670 0.9891 0.9964

Table 2.1: Values of g(n,M) for various n and M .

Figure 2.1: Values of g(n,M) for various n and M .
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The overall observation would be that, when M is fixed, the lower bound of the function

increasingly approaches 1 as n increases. This implies that the di↵erence between m and M

needs to decrease, requiring a more homogeneous distribution among the variables to observe

the diversification e↵ect. This observation makes sense because it should be more challenging

to satisfy the diversification property as the portfolio size increases. Conversely, when n is

fixed, the value of r increases as M increases. This indicates that with higher correlations

among variables, it becomes harder to achieve diversification. Overall, these results align

with theoretical expectations. Notably, the lower bound of the function approaches 1 rather

quickly when M exceeds 0.5. This suggests that with relatively strong correlations, it is

di�cult to satisfy the diversification e↵ect unless all covariances between pairs of variables

are highly similar.
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Chapter 3

Exponential Distribution

In this chapter, we assume that the loss variables follow a multivariate exponential distri-

bution. This distribution is commonly used in actuarial science due to its simplicity and

analytical tractability, and it also addresses the limitation of the previous chapter, specif-

ically the possibility of negative values. We will start with straightforward calculations of

probabilities for the sum of independently exponentially distributed variables. Subsequently,

we will explore the joint distribution of a specific loss variable Xi and the sum of all the

remaining variables in the portfolio.

We will derive the expectation of this loss variable given that the sum equals a certain level,

followed by the expectation given that the sum is greater than a certain level. Once these

foundational tools are in place, we will introduce dependence into the model by assuming

that all the loss variables in the portfolio share a common component. We will then analyze

the preconditions necessary for the desired properties to hold.

3.1 Survival Function of Sum of Variables

In this section, we provide an explicit probability density function (PDF) of the summation of

independent exponentially distributed random variables using a moment generating function

(MGF) approach. First, we introduce an algebraic expressions, Ai,n and Aī
j,n, which serve as

coe�cients for distinct exponentially distributed random variables involved in the summation

process.
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Definition 3.1.1. Define Ai,n and Aj̄
i,n such that i, j, n 2 Z+, i, j  n, and i 6= j.

Ai,n =
nY

j=1,j 6=i

�j

�j � �i
Aī

j,n =
nY

j=1,k=1,j 6=i,k,k 6=i,j

�k

�k � �j

To illustrate, let’s consider the case when n = 3. Then we have A1,3, A1̄
2,3 and A1̄

3,3 such that:

A1,3 =
�2

�2 � �1

�3

�3 � �1
, A1̄

2,3 =
�3

�3 � �2
, A1̄

3,3 =
�2

�2 � �3
.

Proposition 3.1.2. Properties of Ai,n:

1.

nX

i=1

�iAi,n = 0, which can also be derived as �jAj,n = �
nX

i=1,i 6=j

�iAi,n

2.

nX

i=1

Ai,n = 1

3.

nX

i=1

Ai,n

�i
=

nX

i=1

1

�i

Proof. 1.
nX

i=1

�iAi,n =
nX

i=1

�i

nY

j=1,j 6=i

�j

�j � �i

=
nX

i=1

Qn
i=1 �iQn

j=1,j 6=i �j � �i

=
nY

i=1

�i

nX

i=1

1Qn
j=1,j 6=i(�j � �i)

=
nY

i=1

�i

nX

i=1

1

C

nX

j=1,j 6=i

1

(�j � �i)

=
nY

i=1

�i

C

nX

i=1

nX

j=1,j 6=i

1

(�j � �i)

=
nY

i=1

�i

C
· 0

= 0

Notice that the term
1Qn

j=1,j 6=i(�j � �i)
can be partially decomposed. This decompo-
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sition involves expressing it as the product of a constant term,
1

C
, and the summation

of fractions,
nX

j=1,j 6=i

1

�j � �i
. When combined with the outer summation, for every term

1

�j � �i
, there exists a corresponding term

1

�i � �j
. Since

1

�j � �i
= � 1

�i � �j
, the

overall summation equals zero.

2. Proof by Induction. Base Case: when n = 2,

2X

i=1

Ai,2 =
�2

�2 � �1
+

�1

�1 � �2
= 1

Inductive Step: Assume that for n = k, the statement holds:

kX

i=1

Ai,k = 1

We need to prove that for n = k + 1,

k+1X

i=1

Ai,k+1 = 1

Starting from the inductive hypothesis, we have:

k+1X

i=1

Ai,k+1 =
kX

i=1

Ai,k ·
�k+1

�k+1 � �i
+ Ak+1,k+1

=
kX

i=1

Ai,k
�i

�i

�k+1

�k+1 � �i
+ Ak+1,k+1

=
kX

i=1

Ai,k�i

✓
1

�i
+

1

�k+1 � �i

◆
+ Ak+1,k+1

=
kX

i=1

Ai,k
�i

�i
+

kX

i=1

Ai,k
�i

�k+1 � �i
+ Ak+1,k+1

= 1 +
kX

i=1

Ai,k
�k+1

�k+1

�i

�k+1 � �i
+ Ak+1,k+1
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= 1 +
1

�k+1

kX

i=1

Ai,k�i
�k+1

�k+1 � �i
+ Ak+1,k+1

= 1 +
1

�k+1

kX

i=1

Ai,k+1�i + Ak+1,k+1

= 1� 1

�k+1
�k+1Ak+1,k+1 + Ak+1,k+1

= 1

In this proof, we have applied the result from the first part that
Pk

i=1 �iAi,k+1 =

�k+1Ak+1,k+1.

3.

nX

i=1

Ai,n

�i
=

nX

i=1

nY

j=1,j 6=i

�j

(�j � �i)�i

=
nX

i=1

nX

j=1,j 6=i

(
1

�i
+

1

�j � �i
)

=
nX

i=1

1

�i
+

nX

i=1

nX

j=1,j 6=i

1

�j � �i

=
nX

i=1

1

�i

Again, we use the result that
nX

i=1

nX

j=1,j 6=i

1

�j � �i
= 0.

From the earlier proof, we see that we utilized partial fraction decomposition techniques

extensively. The properties of Ai,n are a direct result of these techniques. In the following

demonstration, we will observe that the Ai,n’s are derived as derivatives from the product of

moment generating functions (MGFs) of exponential distributions. While these derivatives

look like weights in the summation expression, it is important to note that they are not true

weights, as not every term is nonnegative. A similar proof, derived from the convolution of

probability density functions (pdf), can be found in Ross (2019).

Proposition 3.1.3. Let {X1, X2, ..., Xn} be mutually independent Exponential random vari-
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ables such that Xi ⇠ Exp( 1
�i
), E[Xi] =

1
�i
, all �0

is are distinct, and the probability density

function of Xi is �ie��ixi. Denote S =
nX

i=1

Xi. Then the survival function of S is given by

P (S > s) =
nX

i=1

Ai,ne
��is (3.1)

where Ai,n has been defined in Definition 3.1.1.

Proof. Proving by induction, we begin with the base case when n = 2. The proof is based on

the basic property of MGF and the repeated application of partial fraction decomposition.

mX1+X2(t) = mX1(t) ·mX2(t)

=
�1

�1 � t
· �2

�2 � t

=
�1�2

�2 � �1
· ( 1

�1 � t
� 1

�2 � t
)

=
�2

�2 � �1

�1

�1 � t
+

�1

�1 � �2

�2

�2 � t

= A1,2
�1

�1 � t
+ A2,2

�2

�2 � t

=
2X

i=1

Ai,2
�i

�i � t

Inductive step: when n = k for k 2 Z+, we proceed with the inductive step.

mPk
i=1 Xi

(t) =
kY

i=1

mXi(t)

=
kX

i=1

Ai,k
�i

�i � t

To complete the proof, we establish the result for the case when n = k+1. Proposition 3.1.2

(3) is applied at the last step.

mPk+1
i=1 Xi

(t) =
k+1Y

i=1

mXi(t)
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=
kY

i=1

mXi(t) ·mXk+1
(t)

=
kX

i=1

Ai,k
�i

�i � t
· �k+1

�k+1 � t

=
kX

i=1

Ai,k
�i�k+1

�k+1 � �i

✓
1

�i � t
� 1

�k+1 � t

◆

=
kX

i=1

Ai,k+1
�i

�i � t
+

kX

i=1

Ai,k
�k+1

�k+1 � �i
· �i

�k+1
· �k+1

�k+1 � t

=
kX

i=1

Ai,k+1
�i

�i � t
�

kX

i=1

Ai,k+1�i ·
1

�k+1
· �k+1

�k+1 � t

=
kX

i=1

Ai,k+1
�i

�i � t
+ Ai,k+1�k+1 ·

1

�k+1
· �k+1

�k+1 � t

=
k+1X

i=1

Ai,k+1
�i

�i � t

Now, we recognize that this is a weighted average of exponential moment generating func-

tions. Hence, we have successfully derived the survival function P (S > s) and the probability

density function fS(s) for the sum S of n independent exponential random variables. These

expressions, given by
Pn

i=1 Ai,ne��is and
Pn

i=1 �iAi,ne��is respectively, indicate that the dis-

tribution of S is a linear combination of X 0
is.

After the derivation process, we can verify the properties of Ai,n both algebraically and in the

context of probability theory. We observe that
Pn

i=1 Ai,n = 1 because the weights across all

terms in the summation must sum to one. This is easily verified by the fact that mS(0) = 1.

Additionally, the third property is evident when we find the first moment of S using the

MGF. Specifically,

m(1)
S (0) =

nX

i=1

Ai,n
�i

(�i � 0)2
=

nX

i=1

Ai,n

�i

is equivalent to

E[S] =
nX

i=1

E[Xi] =
nX

i=1

1

�i
.

This equivalence further demonstrates the consistency of the properties of Ai,n within the

framework of probability theory.
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3.2 CTE Premiums

After deriving the explicit formula for the sum of independent exponentially distributed ran-

dom variables, we are equipped to derive the explicit CTE-induced conditional expectation

formula, alongside the variance and covariance formulas. To facilitate these calculations, we

establish several frequently used results.

Definition 3.2.1. In this chapter, we use the following notations:

g1(�i,�j, s) =

Z s

0

xie
�(�i��j)xidxi

=
1� e�(�i��j)s � (�i � �j)se�(�i��j)s

(�i � �j)2

(3.2)

g2(�i,�j, s) =

Z 1

s

e��jtg1(�i,�j, t)dt

=
1

(�i � �j)2

⇣e��js

�j
� ((�i � �j)�is+ 2�i � �j)e��is

�2
i

⌘ (3.3)

h1(�i,�j, s) =

Z s

0

x2
i e

�(�i��j)xidxi

=
2� 2e�(�i��j)s � 2(�i � �j)se�(�i��j)s � (�i � �j)2s2e�(�i��j)s

(�i � �j)3

(3.4)

h2(�i,�j, s) =

Z 1

s

e��jth1(�i,�j, t)dt

=
1

(�i � �j)3

h2e��js

�j
�
 

2

�i
+ 2(�i � �j)

⇣ s

�i
+

1

�2
i

⌘
+ (�i � �j)

2
⇣s2

�i
+

2s

�2
i

+
2

�3
i

⌘!
e��is

i

(3.5)

g3(�i,�j,�k, s) =

Z s

0

xje
�(�j��k)xjg1(�i,�k, s� xj)dxj

=
1

(�i � �k)2

h
g1(�j,�k, s)�

✓
e�(�i��k)s + (�i � �k)e

�(�i��k)ss

◆
g1(�j,�i, s)

+ (�i � �k)e
�(�i��k)sh1(�j,�i, s)

i

(3.6)

The expressions g1 and g2 are utilized in the formulas about the first moment, while the

functions h1 and h2 are employed in the formulas about the second moments. The expression
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g3 is incorporated in the covariance formula.

When deriving the formulas, we will consider three distinct scenarios: (1) when all the �i’s are

distinct, (2) when all the �i’s are the same, and (3) when some �i’s are identical while others

di↵er. The results of the first scenario will be presented in detail in the following subsection.

However, due to space constraints and the supplementary nature of the information, results

from scenarios (2) and (3) will be provided in the appendix for cross-verification purposes.

Given the expression for the summation of random variables, it is necessary to assume that

all �i’s are distinct. Otherwise, we encounter division by zero in the denominator, rendering

the calculation invalid.

When deriving the expectation of Xi given that the sum equals a predetermined value, due

to the independence of all the random variables, we can represent the joint distribution of

Xi and the sum of Xj for all j 6= i as the product of their individual distributions. With this

joint probability density function (pdf) established, we can then calculate the expectation

using the standard definition.

Proposition 3.2.2. Under the same assumptions as in Proposition 3.1.3, for the simplicity,

let Ai,n = Ai and Aj̄
i,n = Aj̄

i for any i, j, n 2 Z+
and i, j < n, i 6= j, the conditional expectation

of Xi given that Sn = s exists and is equal to

E[Xi|Sn = s] =
�iPn

k=1 �kAk,ne��ks

nX

j 6=i,j=1

�jA
ī
j,ne

��jsg1(�i,�j, s) (3.7)

Proof.

E[Xi|Sn = s] =

Z s

0

xifXi|S(xi|s)dxi

=

Z s

0

xi

fXi(xi)fPn
j 6=i,j=1 Xj

(s� xi)

fSn(s)
dxi

=

Z s

0

xi

�ie��ixi
Pn

j 6=i,j=1 �jAī
je

��j(s�xi)

Pn
k=1 �kAke��ks

dxi

=
�i

Pn
j 6=i,j=1 A

ī
j�je��js

Pn
k=1 �kAke��ks

Z s

0

xie
�(�i��j)xidxi

=
�i

Pn
j 6=i,j=1 A

ī
j�je��js

Pn
k=1 �kAke��ks

g1(�i,�j, s) (3.8)
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Building upon the above result, we proceed to derive the CTE-induced premium pricing

formula proposed at the beginning of this paper, the formula for the conditional expectation

of Xi given that Sn > s. Following the definition, this can be accomplished by integrating

the product of the conditional expectation E[Xi|Sn = t] and the probability density function

fSn(t) over the interval from s to 1.

Proposition 3.2.3. Under the same assumptions as in Proposition 3.2.2, the conditional

expectation of Xi given that Sn > s exists and is equal to

E[Xi|Sn > s] = �i

nX

j 6=i,j=1

�jAjg2(�i,�j, s)

Proof.

E[Xi|Sn > s] =

Z 1

s

fS(t)E[Xi|S = t]dt

=

Z 1

s

nX

k=1

�kAke
��kt

✓
�i

Pn
j 6=i,j=1 �jAje��jt

Pn
k=1 �kAke��kt

g1(�i,�j, t)

◆
dt

=

Z 1

s

�i

nX

j 6=i,j=1

�jAje
��jtg1(�i,�j, t)dt

= �i

nX

j 6=i,j=1

�jAj

Z 1

s

e��jtg1(�i,�j, t)dt

= �i

nX

j 6=i,j=1

�jAjg2(�i,�j, s) (3.9)

The formula for the CTE-induced premium pricing may appear complex and challenging

to interpret due to its direct integral nature. However, this structure o↵ers an advantage

that every component is integrable, which enables us to proceed with deriving variance and

covariance expressions.
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Proposition 3.2.4. Under the same assumptions as in Proposition 3.2.2, we have

V ar[Xi|Sn = s] =
�i

Pn
j 6=i,j=1 �jAje��js

Pn
k=1 �kAke��ks

h1(�i,�j, s)�

�i

Pn
j 6=i,j=1 �jAje��js

Pn
k=1 �kAke��ks

g1(�i,�j, s)

�2

Proof.

E[X2
i |S = s] =

Z s

0

x2
i fXi|S(xi|s)dxi

=
�i

Pn
j 6=i,j=1 �jAje��js

fS(s)

Z s

0

x2
i e

�(�i��j)xidxi

=
�i

Pn
j 6=i,j=1 �jAje��js

Pn
k=1 �kAke��ks0

h1(�i,�j, s)

So the variance V [Xi|Sn = s] = E[X2
i |Sn = s]�

⇣
E[Xi|S = s]

⌘2
.

Proposition 3.2.5. Under the same assumptions as in Proposition 3.2.2, we have:

V ar[Xi|Sn > s] = �i

nX

j 6=i,j=1

�jAjh2(�i,�j, s)�

�i

nX

j 6=i,j=1

�jAjg2(�i,�j, s)

�2

Proof.

E[X2
i |Sn > s] =

Z 1

s

fSn(t)E[X2
i |Sn = t]dt

=

Z 1

s

fSn(t)
�i

Pn
j 6=i,j=1 �jAje��jt

fS(t)
h1(�i,�j, t)dt

=

Z 1

s

�i

nX

j 6=i,j=1

�jAje
��jth1(�i,�j, t)dt

= �i

nX

j 6=i,j=1

�jAj

Z 1

s

e��jth1(�i,�j, t)dt

= �i

nX

j 6=i,j=1

�jAjh2(�i,�j, s)
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So the variance V ar[Xi|Sn > s] = E[X2
i |Sn > s]�

⇣
E[Xi|Sn > s]

⌘2
.

The covariance between any pair of Xi and Xj conditional on Sn = s plays a pivotal role in

analyzing the preconditions necessary for the desired properties to hold.

Following the previous methodology, we segment the portfolio into 5 distinct subsets: Xi,

Xj,
Pn

p=1,p 6=i Xp,
Pn

q=1,q 6=j Xq, and
Pn

k=1,k 6=i,j Xk. Despite the complexity of the resulting

covariance formula, each component is precisely defined.

Proposition 3.2.6. Under the same assumptions of Proposition 3.2.2, we have

Cov(Xi, Xj|Sn = s) =
�i�j

fSn(s)

nX

k=1,k 6=i,j

�ke
��ksg3(�i,�j,�k, s)

�
⇣�i

Pn
p 6=i,p=1 �pApe��ps

fSn(s)
g1(�i,�p, s)

⌘⇣�j

Pn
q 6=j,q=1 �qAqe��qs

fS�n(s)
g1(�j,�q, s)

⌘

Proof. The joint distribution of Xi, Xj and Sn �Xi �Xj is the product of marginal distri-

butions due to the mutual independence of the variables:

fXi,Xj ,Sn�Xi�Xj(xi, xj, s� xi � xj)

= fXi(xi)fXj(xj)fS�Xi�Xj(xi, xj, s� xi � xj)

= �i�je
��ixie��jxj

nX

k=1,k 6=i,j

�kAke
��k(s�xi�xj)

By following the previous derivations, we have:

E[XiXj|Sn = s]

=

Z s

0

Z s�xj

0

xixj

fXi,Xj ,S�Xi�Xj(xi, xj, s� xi � xj)

fSn(s)
dxidxj

=
1

fS(s)

Z s

0

Z s�xj

0

xixj�i�je
��ixie��jxj

nX

k=1,k 6=i,j

�kAke
��k(s�xi�xj)dxidxj

=
�i�j

fS(s)

Z s

0

xje
��jxj

Z s�xj

0

xie
��ixi

nX

k=1,k 6=i,j

�kAke
��k(s�xi�xj)dxidxj

=
�i�j

fS(s)

Z s

0

xje
��jxj

nX

k=1,k 6=i,j

�ke
��k(s�xj)

Z s�xj

0

xie
�(�i��k)xidxidxj
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=
�i�j

fS(s)

Z s

0

xje
��jxj

nX

k=1,k 6=i,j

�ke
��k(s�xj)g1(�i,�k, s� xj)dxj

=
�i�j

fS(s)

nX

k=1,k 6=i,j

�ke
��ks

Z s

0

xje
�(�j��k)xjg1(�i,�k, s� xj)dxj

=
�i�j

fS(s)

nX

k=1,k 6=i,j

�ke
��ksg3(�i,�j,�k, s) (3.10)

So the covariance Cov(Xi, Xj|Sn = s) = E[XiXj|Sn = s]� E[Xi|Sn = s]E[Xj|Sn = s].

In this section, we have derived essential formulas including the CTE-induced premium pric-

ing formula, the covariance formula, and other important derivative expressions, focusing

specifically on scenarios where all �i’s are distinct. These formulas constitute the founda-

tional framework for the expessions under dependence assumption.

3.3 Examples

In this section, we introduce a model aimed at understanding dependencies among variables.

Our approach builds upon the independence assumption, laying the groundwork for exploring

dependent assumptions later on.

To create these dependencies, we construct a set of variables {X1 + Z,X2 + Z,X3 + Z},
where Xi ⇠ Exp(�i) for i = 1, 2, 3, and Z ⇠ Exp(�0), with all Xi and Z being mutually

independent. By introducing the common factor Z, we control interdependence, facilitating

our observation of the trigger conditions for desired properties.

We define the total sum S =
P3

i=1 Xi + 3Z = SX + 3Z, where 3Z ⇠ Exp( 3
�0
). To simplify

notation, we denote 3Z as X4 and �0
3 as �4.

Given the relatively small size of the portfolio, we opt to present all formulas in detail.

To illustrate, we begin by defining the probability density function (pdf) for summation as

follows:

fS(s) =
4X

i=4

Ai,4�ie
��is

=
�1�2�3�4

(�2 � �1)(�3 � �1)(�4 � �1)
e��1s +

�1�2�3�4

(�1 � �2)(�3 � �2)(�4 � �2)
e��2s
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+
�1�2�3�4

(�1 � �3)(�2 � �3)(�4 � �3)
e��3s +

�1�2�3�4

(�1 � �4)(�2 � �4)(�3 � �4)
e��4s (3.11)

In the next step, without loss of generality, we find the expectation of X1 given that the

portfolio’s sum is fixed. Specifically, we aim to compute E[X1|S = s] rather than E[X1 +

Z|S = s] for ease of computation with the joint probability density function (pdf), to work

with the joint pdf of X1 and X2 +X3 +3Z is more straightforward than that of X1 +Z and

X2 +X3 + 2Z. Thus, we have:

fX1,X2+X3+3Z(x1, x2 + x3 + 3z) = fX1(x1) · fX2+X3+X4(x2 + x3 +X4)

= �1e
��1x1 ·

4X

j=2

A1
j,4e

��jXj

We will use the derived joint pdf to determine E[X1|S = s] and E[X1|S > s]. The same

methodology is used to determine E[Z|S = s] and E[Z|S > s].

E[X1|S = s] =
1

fS(s)

Z s

0

x1�1e
��1x1

4X

j=2

A1̄
j�je

��j(s�x1)dx1

=
�1

fS(s)

4X

j=2

A1̄
j�je

��jsg1(�1,�j, s) (3.12)

E[X1|S > s] =�1

4X

j=2

A1̄
j�jg2(�1,�j, s) (3.13)

E[Z|S = s] =
1

3
E[3Z|S = s]

=
1

3
E[X4|S = s]

=
1

3fS(s)

Z s

0

x4�4e
��4x4

3X

j=1

A4̄
j�je

��j(s�x4)dx4

=
�4

3fS(s)

3X

j=1

A4̄
j�je

��jsg1(�4,�j, s) (3.14)

E[Z|S > s] = �4

3X

j=1

A4̄
j�jg2(�4,�j, s) (3.15)

The CTE-induced premium pricing formula for the first policyholder is defined as: E[X1 +

Z|S > s] = E[X1|S > s]+E[Z|S > s]. It is derived from the summation of (3.13) and (3.15).
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When we switch our attention to covariance, we can still group the loss variables due to the

independence assumption. To define the expectation of the product of X1 and X2 , we will

split the portfolio into three parts: X1, X2 and
P4

j=3 X4.

fX1(x1)fX2(x2)fS�X1�X2(s� x1 � x2)

=�1e
��1x1�2e

��2x2

4X

j=3

A1̄,2̄
j �je

��j(s�x1�x2)

=�1�2

4X

j=3

A1̄,2̄
j �je

��jse�(�1��j)x1e�(�2��j)x2 (3.16)

Using the joint pdf to find the expectation, we have:

E[X1X2|S = s] =
�1�2

fS(s)

Z s

0

Z s�x1

0

x1x2

4X

j=3

A1̄,2̄
j �je

��jse�(�1��j)x1e�(�2��j)x2dx2dx1

=
�1�2

fS(s)

Z s

0

x1

4X

j=3

A1̄,2̄
j �je

��jse�(�1��j)x1

Z s�x1

0

x2e
�(�2��j)x2dx2dx1

=
�1�2

fS(s)

Z s

0

x1

4X

j=3

A1̄,2̄
j �je

��jse�(�1��j)x1g1(�2,�j, s� x1)dx1

=
�1�2

fS(s)

4X

j=3

A1̄,2̄
j �je

��js

Z s

0

x1e
�(�1��j)x1g1(�2,�j, s� x1)dx1

=
�1�2

fS(s)

4X

j=3

A1̄,2̄
j �je

��jsg3(�2,�1,�j, s) (3.17)

E[X1Z|S = s] =
1

3
E[X1X4|S = s]

=
1

3fS(s)

Z s

0

Z s�x1

0

x1x4fX1(x1)fX4(x4)fX2+X3(s� x1 � x4)dx4dx1

=
�1�4

3fS(s)

Z s

0

Z s�x1

0

x1x4

3X

j=2

A1̄,4̄
j �je

��jse�(�1��j)x1e�(�4��j)x4dx4dx1

=
�1�4

3fS(s)

Z s

0

x1

3X

j=2

A1̄,4̄
j �je

��jse�(�1��j)x1

Z s�x1

0

x4e
�(�4��j)x4dx4dx1

=
�1�4

3fS(s)

3X

j=2

A1̄,4̄
j �je

��jsg3(�4,�1,�j, s) (3.18)
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Combining all the previous results, we can derive the covariance between X1 and X2 by

the definition, Cov[X1, X2|S = s] = E[X1X2|S = s] � E[X1|S = s]E[X2|S = s]. And the

covariance betweenX1 and Z is Cov(X1, Z|S = s) = E[X1Z|S = s]�E[X1|S = s]E[Z|S = s].

The last needed piece is the variance of Z.

V ar(Z|S = s) = E[Z2|S = s]�
✓
E[Z|S = s]

◆2

=
1

9
E[X2

4 |S = s]�
✓
1

3
E[X4|S = s]

◆2

=
�4

P3
j 6=4,j=1 �jA4̄

je
��js

9fS(s)
h1(�4,�j, s)�

✓
�4

3fS(s)

3X

j=1

A4̄
j�je

��jsg1(�4,�j, s)

◆2

(3.19)

Hence, we have all the pieces needed to construct the covariance between X1+Z and X2+Z.

The covariance formula is given by:

Cov[X1 + Z,X2 + Z|S = s]

=Cov[X1, X2|S = s] + Cov[X1, Z|S = s] + Cov[X2, Z|S = s] + V ar[Z|S = s]

To gain insights into whether the diversification property is satisfied, we need to determine if

the covariance is negative. We will examine the calculation results by using specific values of

�i for i = 0, 1, 2, 3. The parameter values 0.1, 0.2, 0.3, and 0.4 will be rotated and observed.

Specifically, when �0 = 0.3, it will result in a situation where the denominator becomes zero.

To avoid this issue, we will use �0 = 0.31 instead.

�1 �2 �3 �0 V aR95%(S) ⇢X1+Z,X2+Z

0.1 0.2 0.3 0.4 77.3898 -0.6039
0.1 0.3 0.2 0.4 77.3898 -0.5237
0.2 0.3 0.4 0.1 122.3257 -0.3498
0.3 0.4 0.1 0.2 92.3684 0.6635
0.4 0.1 0.2 0.31 81.4163 -0.5369
0.4 0.3 0.2 0.31 61.4447 0.0629
0.4 0.3 0.2 0.1 122.3257 -0.0463
0.4 0.2 0.3 0.31 61.4447 -0.3882

Table 3.1: Values of V aR95%(S) and Cov(X1 + Z,X2 + Z) for various �i.

38



In the model, we are using Z as the common factor, and the positivity of covariance be-

tween variables is mainly determined by which parameter is dominant in the model. Several

observations can be made based on the parameter values: (1) When the parameter of Z is

relatively large, meaning that �0 is greater than or not significantly less than �1 and �2,

we are more likely to observe a negative correlation coe�cient between the first two loss

variables. This is reasonable because the covariance is derived under the assumption that

the loss summation equals the 95% VaR. (2) When �0 is relatively small compared to �1 and

�2, the influence of Z is minimized, and we are more likely to observe a positive covariance.

Under these conditions, the common factor Z has less impact on the overall correlation

structure.
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Chapter 4

Pareto Distributions

Since it was first proposed by the Italian economist Vilfredo Pareto, the Pareto distribution

has been an appropriate description for the distribution of wealth, natural phenomena, and

other social and scientific phenomena that exhibit the long-tail characteristic. This charac-

teristic implies that while a large number of small outcomes are common, a small number of

extreme outcomes are rare. Because of this, the Pareto distribution is particularly significant

in actuarial science. In the insurance industry, for instance, a small number of claims can

often account for a large portion of the total payout, and the heavy-tail nature of the Pareto

distribution e↵ectively captures this phenomenon. Modeling the tail of the loss distribution

also aids in risk assessment, reserve allocation, and, as discussed in this dissertation, setting

premiums.

Compared to the exponential distribution assumption we made in the previous chapter, the

Pareto distribution captures the heavy-tail characteristics that the exponential distribution

lacks, providing a more suitable framework for modeling rare and extreme events in insurance

and actuarial science.

4.1 Introduction and Stochastic Representation

As time has progressed, the ability to describe the Pareto distribution in greater detail has

improved by introducing additional parameters into the model. For the completeness, we will

begin with the definition of four types of Pareto distributions using the notations provided
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by Arnold (2014), increasing in complexity. We will briefly discuss the significance of the

parameters and how they evolve from one type to another.

To begin with, the Type I Pareto distribution, denoted as P (I)(�,↵), has a survival function

defined by

S(x) =
⇣x
�

⌘�↵

for x � �. In this definition, � is the scale parameter, which determines the minimum possible

value, and ↵ is the shape parameter, which determines the steepness of the distribution.

If the variables need to be shifted by a level, the location parameter is introduced in the

distribution, resulting in the Type II Pareto distribution. The survival function is given by

S(x) =

✓
1 +

x� µ

�

◆�↵

for x � µ, denoted as P (II)(µ, �,↵). Most of the time, µ is positive because the Pareto

distribution commonly describes wealth or income, and it is reasonable to assume these

quantities are positive. However, in some special situations, negative income is also possible

in the real world. Specifically, if we take the location parameter µ to be the same as the

scale parameter �, the two types of Pareto distributions would coincide.

Another way to capture the similar tail characteristics of the Type II Pareto distribution is

provided by the Type III Pareto distribution. The survival function is given by

S(x) =

 
1 +

✓
x� µ

�

◆ 1
�

!�1

for x � µ, denoted as P (III)(µ, �, �). In addition to the location and scale parameters, this

distribution introduces �, called the inequality parameter. Similar to the shape parameter

↵, the inequality parameter � also defines the tail shape of the distribution. As � increases,

more extreme values are observed.

To incorporate both the shape parameter and the inequality parameter into a single expres-

sion, we use the Type IV Pareto distribution. The survival function is given by

S(x) =

 
1 +

✓
x� µ

�

◆ 1
�

!�↵
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denoted as P (IV)(µ, �, �,↵). Here, µ 2 R, � > 0, � > 0, ↵ > 0, and x � µ. The Type IV

Pareto distribution is the most comprehensive definition, as the Type I, II, and III Pareto

distributions can all be expressed as special cases of the Type IV Pareto distribution:

P (I)(�,↵) = P (IV)(�, �, 1,↵)

P (II)(µ, �,↵) = P (IV)(µ, �, 1,↵)

P (III)(µ, �, �) = P (IV)(µ, �, �, 1)

We will utilize the Pareto Type II distribution in this chapter due to its stochastic represen-

tation derived from the exponential distribution.

Proposition 4.1.1 (Pareto Type II as a Log-Exponential Distribution). Let V ⇠ Exp(1).

Then, X = µ+ �(e
V
↵ � 1) ⇠ P (II)(µ, �,↵). In particular, Y = �e

V
↵ ⇠ P (I)(�,↵).

Proof.

P(X > x) = P
✓
e

V
↵ � 1 >

x� µ

�

◆

= P
✓
e

V
↵ >

x� µ

�
+ 1

◆

= P
✓
V > ↵ ln

✓
1 +

x� µ

�

◆◆

= exp

✓
�↵ ln

✓
1 +

x� µ

�

◆◆

=

✓
1 +

x� µ

�

◆�↵

which is the survival function of P (II)(µ, �,↵).

In particular, define a random variable Y = �e
V
↵ , we have

P(Y > y) = P
⇣
�e

V
↵ > y

⌘

= P
⇣
V > ↵ ln

⇣y
�

⌘⌘

= exp
⇣
�↵ ln

⇣y
�

⌘⌘
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=
⇣y
�

⌘�↵

which is the survival function of P (I)(�,↵).

The advantage of using the stochastic representation related to the exponential distribution

is that when deriving the distribution of the summation, it is natural to construct a similar

structure using the gamma distribution.

Proposition 4.1.2. Assume Xi
i.i.d⇠ Exp(�i) and V ⇠ Gamma(↵,�0), V is independent with

any Xi, then
X1
V ⇠ P (II)(0, �0

�i
,↵) and S =

Pn
i=1 Xi

V
follows a mixture Pareto distribution

which is the summation of P (II)(0, �0
�i
,↵) with the weight of Ai.

Proof. Let Xi
V = Yi,

Pn
i=1 Xi = SX and the probability density function of SX is given by

fSX (sX) =
Pn

i=1 Ai�ie��isX . Using the results of Chapter 3, the following steps can be

justified:

P(S > s) = P
✓
SX

V
> s

◆

= P(SX > sV )

=

Z 1

0

Z 1

sv

fSX (sX)dSXfV (v)dv

=

Z 1

0

Z 1

sv

nX

i=1

Ai�ie
��iSXdSX

(�0v)↵e��0v

v�(↵)
dv

=

Z 1

0

 nX

i=1

Ai�i
e��iSX

��i

����
1

sv

�
(�0v)↵e��0v

v�(↵)
dv

=

Z 1

0

nX

i=1

Aie
��isv

(�0v)↵e��0v

v�(↵)
dv

=
nX

i=1

Ai�↵
0

�(↵)

Z 1

0

v↵�1e�(�0+�is)vdv

=
nX

i=1

Ai�↵
0

�(↵)

�(↵)

(�0 + �is)↵

=
nX

i=1

Ai
�↵
0

(�0 + �is)↵

=
nX

i=1

Ai

✓
1 +

s
�0
�i

◆�↵
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Then the pdf of S will be

fS(s) =
nX

i=1

Ai
↵�↵

0�i

(�0 + �is)↵+1

4.2 CTE Premiums

Consider a portfolio of independent loss random variables {Y1, Y2, ..., Yn} and denote the

total loss as S. Then, the conditional distribution of any variable Yi given that S equals to

some predetermined value s can be derived as:

fYi|S(yi|s) =
fYi(yi)f

Pn
j 6=i,j=1 Yj

(s� yi)

fS(s)

=

↵�0�i
(�0+�iyi)↵+1

Pn
j=1,j 6=i

↵Ai
j�0�j

(�0+�j(s�yi))↵+1

Pn
k=1

↵Ai�0�k
(�0+�ks)↵+1

=
↵2�0�i

Pn
j=1,j 6=i

Ai
j�j

(�0+�iyi)↵+1(�0+�j(s�yi))↵+1

Pn
k=1

↵Ai�k
(�0+�ks)↵+1

After this, the conditional expectation can be derived by straightforward integration.

E[Yi|S = s] =

Z s

0

yifYi|S(yi|s)dyi

=

Z s

0

yi
↵2�0�i

Pn
j=1,j 6=i

Aī
j�j

(�0+�iyi)↵+1(�0+�j(s�yi))↵+1

Pn
k=1

↵Ai�k
(�0+�ks)↵+1

dyi

=
↵2�0�iPn

k=1
↵Ai�k

(�0+�ks)↵+1

nX

j=1,j 6=i

Aī
j�j

Z s

0

yi
(�0 + �iyi)↵+1(�0 + �j(s� yi))↵+1

dyi (4.1)

When examining the integrand in the final step,
yi

(�0 + �iyi)↵+1(�0 + �j(s� yi))↵+1
, if the

exponent term ↵ is an integer, then the term can be decomposed using partial fraction

decomposition into a summation of simpler fraction terms such as 1
(a+b)n for some a, b, and

integer n. We explore this process and derive a formula accordingly.
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Definition 4.2.1. For p, q � 1, p, q 2 Z, define

mx(p, q) =
1

(a+ x)p(b� x)q
,

where a, b are any real constants.

Proposition 4.2.2. Assume

✓
0

0

◆
= 1 and

✓
s

t

◆
= 0 for any s < t, mx(p, q) can be decom-

posed by an iteration form such as

mx(p, q) =
p�1X

i=1

1

(a+ b)q+i

i�1X

j=0

✓
q

j + 1

◆✓
i� 1

j

◆
mx(p� i, 0) +

1

(a+ b)q
mx(p, 0)

+
q�1X

i=1

1

(a+ b)p+i

i�1X

j=0

✓
p

j + 1

◆✓
i� 1

j

◆
mx(0, q � i) +

1

(a+ b)p
mx(0, q) (4.2)

The result can be proven by mathematical induction, and the proof will be detailed in the

appendix. This iterative method not only applies to fractions with a constant numerator

but can also be extended to fractions with a variable numerator after some algebraic trans-

formations. For example, consider x and x2, then the breakdown process is as follows:

x

(a+ x)p(b� x)q
=

a+ x� a

(a+ x)p(b� x)q

=
1

(a+ x)p�1(b� x)q
� a

(a+ x)p(b� x)q

= mx(p� 1, q)� amx(p, q)

x2

(a+ x)p(b� x)q
=

(a+ x)2 � 2a(a+ x) + a2

(a+ x)p(b� x)q

=
1

(a+ x)p�2(b� x)q
� 2a

(a+ x)p�1(b� x)q
+

a2

(a+ x)p(b� x)q

= mx(p� 2, q)� 2amx(p� 1, q) + a2mx(p, q)

The previous expression can be further decomposed into a linear combination of mx(i, 0)

and mx(0, j) for i = 1, 2, ..., p and j = 1, 2, ..., q. It is evident that every term comprising the
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final decomposition result is integral, as follows:

Z s

0

m(p, 0)dx =

8
>><

>>:

ln |a+ x|� ln |a| if p = 1

1
1�p

⇥
(a+ s)1�p � a1�p

⇤
if p � 2

Z s

0

m(0, q)dx =

8
>><

>>:

ln |b|� ln |b� s| if p = 1

1
q�1

⇥
(b� s)1�q � b1�q

⇤
if p � 2

So we can have the explicit expression of E[Yi|S = s] by substituting a = �0
�i
, b = �0

�j
+ s,

↵ > 2:

E[Yi|S = s] =
↵2�0�iPn

k=1
↵Ai�k

(�0+�ks)↵+1

nX

j=1,j 6=i

Aī
j�

↵+1
i �↵+2

j ✓1(a, b, s) (4.3)

Where ✓1(a, b, s) is the full explicit integral result, and due to its length, it will be provided

in the appendix. The second moment expectation can be derived after one step breakdown.

E[Y 2
i |S = s] =

Z s

0

y2i fYi|S(yi|s)dyi

=
↵2�0�iPn

k=1
↵Ai�k

(�0+�ks)↵+1

nX

j=1,j 6=i

Aī
j�j

Z s

0

y2i
(�0 + �iyi)↵+1(�0 + �j(s� yi))↵+1

dyi

=
↵2�0�iPn

k=1
↵Ai�k

(�0+�ks)↵+1

nX

j=1,j 6=i

Aī
j�j✓2(a, b, s) (4.4)

Where ✓2(a, b, s) is the full explicit integral result, and will be provided in the appendix.

By the variance definition, it’s straightforward to show that

V ar[Yi|S = s] =
↵2�0�i

fS(s)

nX

j=1,j 6=i

Aī
j�j✓2(a, b, s)�


↵2�0�i

fS(s)

nX

j=1,j 6=i

Aī
j�j✓1(a, b, s)

�2
,

where fS(s) =
nX

k=1

↵Ai�k

(�0 + �ks)↵+1
.

An issue arises when attempting to evaluate E[Yi|S > s], as the integral
R1
s ln |a + t|dt
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diverges. Given this limitation, this chapter will focus solely on the condition where S = s.

In order to introduce these dependencies, we intend to replicate a similar approach to that

outlined in Chapter 3. This involves constructing a portfolio comprising Y1, Y2, and Y3, where

each Yi is defined as Yi =
Xi+Z

V . Here, Xi ⇠ Exp(�i), Z ⇠ Exp(�0), and V ⇠ Gamma(↵,�0)

for i = 1, 2, 3, with all Xi and Z being mutually independent. The total sum is then given

by S =
P3

i=1
Xi+Z

V = SX+3Z
V , where Sx =

P3
i=1 Xi. This allows us to establish the joint pdf

as follows:

fYi,Yj ,S�Yi�Yj(yi, yj, s� yi � yj)

=fYi(yi)fyj(yj)fS�Yi�Yj(s� yi � yj)

=
↵�0�i

(�0 + �iyi)↵+1

↵�0�j

(�0 + �jyj)↵+1

nX

k=1,k 6=i,j

Ai,j
k

↵�↵
0�k

(�0 + �k(s� yi � yj))↵+1
(4.5)

Subsequently, our analysis will involve calculating E[YiYj|S = s],

E[YiYj|S = s]

=
↵3�2+↵

0 �i�j�k

fS(s)

nX

k=1,k 6=i,j

Ai,j
k

Z s

0

yi
(�0 + �jyj)↵+1

�↵+1
i �↵+1

k ✓1(
�0

�i
,
�0

�k
+ s, s� yj)dyj (4.6)

However, in our attempt to establish the formula, we encountered a similar challenge when

computing E[Yi|S > s]. Specifically, we encountered divergence in the integral of ✓1. This

divergence poses a significant obstacle in our analysis, requiring further investigation and

potentially alternative approaches to address it e↵ectively.
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Chapter 5

Conclusions and Future Research

5.1 Summary

In this dissertation, we have developed a premium pricing framework aimed at control-

ling insolvency risk when loss variables are interdependent. Traditionally, insurance pricing

assumes all loss variables are independent, allowing the application of the Central Limit The-

orem and the Law of Large Numbers to ensure the total loss of a group of insureds does not

exceed a predetermined level. However, this independence assumption is increasingly chal-

lenged by the rising occurrence of cyber-attacks and natural disasters, introducing significant

uncertainty into the premium pricing model due to the dependence between variables.

To address this issue, we adopted the concept of the Conditional Tail Expectation (CTE)

allocation principle from capital allocation principles. Individual premiums are made pro-

portional to their covariance with the total loss. From this idea, we proposed a premium

pricing formula based on the expectation of a specific loss variable, given that the total loss

exceeds a predetermined level. To ensure the fairness of premium allocation, we posited that

the framework should satisfy two desirable properties: diversification and monotonicity.

The diversification property ensures that adding one more policyholder to the portfolio will

not increase the premiums of all existing policyholders, implying that the framework is not

adversely a↵ected by the expansion of the plan. The monotonicity property ensures that if

one policyholder becomes riskier, other policyholders’ premiums will not increase, protecting

low-risk insureds from the risks posed by higher-risk insureds. We derived the corresponding
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mathematical inequalities to reflect these properties.

We assumed the risk variables follow normal, exponential, and Pareto distributions. Under

the normal distribution assumption, we utilized the formula established by Landsman and

Valdez (2003), expanding our observations by applying di↵erent numerical settings. Under

the exponential distribution assumption, we first established the distribution of the sum-

mation of independent exponential random variables, derived the CTE-induced premium

pricing formula, and finally calculated the covariance between two random variables given

that the summation exceeds a certain level. To incorporate dependence, we designed an

example where each policyholder’s loss random variable is the sum of distinct exponential

random variables and a common exponential random variable. The covariance was deter-

mined using previous discoveries and numerical explorations. Under the Pareto distribution

assumption, we used the stochastic representation of the Type II Pareto distribution to de-

rive the summation of independent variables and the expectation of a specific variable given

that the summation exceeds a predetermined level. The exact CTE-induced premium pricing

formula was not achieved due to the divergence of the resulting integral.

When considering the feasibility of a concept, it is essential to evaluate both its theoret-

ical and practical applications. This dissertation has focused primarily on the theoretical

feasibility of the CTE-induced premium pricing framework.

5.2 Future work

The first potential enhancement for this dissertation lies in the continued exploration of

the premium pricing formula under the Pareto distribution assumption. As discussed in

Chapter 4, the proposed CTE-induced formula has not been explicitly established due to

the divergence of the integral of the natural logarithm terms. This necessitates further

algebraic e↵orts or possibly a solution outside the realm of analytical approaches.

Additionally, conducting a simulation study to cross-check the derived explicit formula could

yield valuable insights. Such a study might uncover new patterns or relationships that are

not apparent from the theoretical analysis alone.

Another significant potential for this dissertation is its application to real-world data. Real-

data applications introduce numerous factors, such as the mixture of distributions, de-

ductibles, and policy limits, which must be considered. Testing the proposed formula with
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real-world data would provide a more comprehensive understanding of its practical utility

and limitations.

Overall, while this dissertation has focused on identifying the preconditions for the desired

properties—monotonicity and diversification—it has primarily emphasized trends in the data

rather than providing extensive numerical conclusions. The complexity of the formulas and

the construction of sample portfolios present challenges for deeper analytical analysis. Future

research could further refine the premium pricing formula by continuing to explore the Pareto

distribution, conducting simulation studies, and applying the model to real-world data.
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Appendices

Appendix A: Proposition 3.1.3 Formula Verification

To verify Proposition 3.1.3, assume that �i = �j for all i 6= j. Let {X1, X2, . . . , Xn} be
identically and independently exponentially distributed random variables such that Xi ⇠
Exp

�
1
�

�
. Denote S =

Pn
i=1 Xi. Then S ⇠ Gamma(↵ = n, � = 1

�). The survival function is
given by:

P(S > s) = e��s
n�1X

i=0

(�s)i

i!

For the case when n = 2, consider two portfolios. Portfolio 1 consists of {Y1, Y2}, where
Y1 ⇠ Exp( 1

�1
and Y2 ⇠ Exp( 1

�2
) with �1 6= �2. Portfolio 2 consists of {Y 0

1 , Y
0
2} where both

variables follow Exp( 1
�1
). Define ✏ = �2 � �1.

We analyze the limit as ✏ ! 0:

lim
✏!0

✓
�1 + ✏

✏
e��1s +

�1

�✏
e�(�1+✏)s

◆
= lim

✏!0

✓
(�1 + ✏)e��1s � �1e��1se�✏s

✏

◆

= lim
✏!0

✓
e��1s(1 + s�1e�✏s)

1

◆

= e��1s + s�1e
��1s

= e��1s
1X

i=0

(�1s)i

i!

This limit holds for n � 2 and shows that when �i and �j are the same for all i 6= j,
the distribution of the sum S =

Pn
i=1 Yi becomes a gamma distribution with parameter n.

Therefore, Proposition 3.1.3 is verified.
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Appendix B: Full Expression in (4.3) and (4.4)

The full expression of ✓1(a, b, s) in (4.3).

✓1(a, b, s)

=

Z s

0

yi
(a+ yi)↵+1(b� yi)↵+1

dyi

=

Z s

0


myi(↵,↵ + 1)� amyi(↵ + 1,↵ + 1)

�
dyi

=

Z s

0

 ↵�1X

i=1

1

(a+ b)↵+1+i

i�1X

j=0

✓
↵ + 1

j + 1

◆✓
i� 1

j

◆
myi(↵� i, 0) +

1

(a+ b)↵+1
myi(↵, 0)

+
↵X

i=1

1

(a+ b)↵+i

i�1X

j=0

✓
↵

j + 1

◆✓
i� 1

j

◆
myi(0,↵ + 1� i) +

1

(a+ b)↵
myi(0,↵ + 1)

�
↵X

i=1

a

(a+ b)↵+1+i

i�1X

j=0

✓
↵ + 1

j + 1

◆✓
i� 1

j

◆
[myi(↵ + 1� i, 0) +myi(0,↵ + 1� i)]

� a

(a+ b)↵+1
[myi(↵ + 1, 0) +myi(0,↵ + 1)

�
dyi

=
↵�2X

i=1

1

(a+ b)↵+1+i

i�1X

j=0

✓
↵ + 1

j + 1

◆✓
i� 1

j

◆
1

1� ↵ + i
[(a+ s)1�↵+i � a1�↵+i]

+
1

(a+ b)2↵

↵�2X

j=0

✓
↵ + 1

j + 1

◆✓
↵� 2

j

◆
[ln|a+ s|� ln|a|] + 1

(a+ b)↵+1

1

1� ↵
[(a+ s)1�↵ � a1�↵]

+
↵�1X

i=1

1

(a+ b)↵+i

i�1X

j=0

✓
↵
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i� 1
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◆
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↵� i
[(b� s)i�↵ � bi�↵]
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↵�1X
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↵
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◆✓
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j
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[ln|b|� ln|b� s|] + 1

(a+ b)↵
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↵
[(b� s)�↵ � b�↵]

�
↵�1X
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a

(a+ b)↵+1+i

i�1X

j=0

✓
↵ + 1

j + 1

◆✓
i� 1

j

◆
1

↵� i
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The full expression of ✓2(a, b, s) in (4.4).

✓2(a, b, s)

=

Z s

0


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Appendix C: Proof of Proposition 4.2.2

Proof. Prove by induction. Base Case: when p = 1, q = 1

mx(1, 1) =
1

(a+ x)(b� x)

=
1

(a+ b)

✓
1

(a+ x)
+

1

(b� x)

◆

=
1

(a+ b)

1

(a+ x)
+

1

(a+ b)

1

(b� x)

=
1

(a+ b)
mx(1, 0) +

1

(a+ b)
mx(0, 1)

Inductive Step: If the proposition holds,

mx(p, q � 1) =
p�1X
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(a+ b)q�1+i
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Starting from the inductive hypothesis, we have
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1
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+
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For k 2 Z+, because the structure of terms mx(k, 0) and mx(0, k) are the same, so we will
focus on the terms mx(k, 0). We want to check that if the following equation holds:
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The above equation reduces to:

i�1X

j=0
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◆✓
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i�2X

j=0

✓
q

j + 1

◆✓
i� 2
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◆
=

i�1X

j=0

✓
q
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◆✓
i� 1

j

◆
(5.1)

To prove (5.1) by calculation, we can define a function in R as follows:

1 iteration <- function(q, i) {

2 # The first summation on the left -hand side

3 s1 <- sum(choose(q-1, 1:i) * choose(i-1, 0:(i-1)))

4 # The second summation on the left -hand side

5 s2 <- sum(choose(q, 1:(i-1)) * choose(i-2, 0:(i-2)))

6 # The summation on the right -hand side

7 s3 <- sum(choose(q, 1:i) * choose(i-1, 0:(i-1)))

8 return(s1 + s2 - s3)

9 }

This function will always return 0, indicating that Proposition 4.2.2 is correct.
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