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ABSTRACT 

 

THE IMPACT OF PRENATAL EXPOSURE TO ENDOCRINE DISRUPTING 

CHEMICALS ON LANGUAGE DEVELOPMENT TRAJECTORIES 

by 

Justin Yu 

 

 

The University of Wisconsin-Milwaukee, 2024 

Under the Supervision of Professor Amy Kalkbrenner 

 

Environmental contaminants that can impact and disrupt the endocrine system, known 

as endocrine disrupting chemicals (EDCs), are of growing concern, found in water, air, 

and common household goods. The disruption to the endocrine system can have 

severe impacts on the development of the fetus, particularly with regards to 

neurodevelopment. Understanding and elucidating the effects of prenatal exposure to 

EDCs on neurodevelopment will help us develop policies and interventions that 

minimize exposure and risk. In this research, we examined the effects of prenatal 

exposure to EDCs and their impact on language development trajectories using two 

enhanced risk autism cohorts. Chapter 1 introduces the concepts of neurodevelopment, 

endocrine disruption, the EDCs we intend to examine, and the statistical methods we 

intend to use in this research. Chapter 2 examines the effect that autism diagnostic 

status has on language development trajectories, with the hypothesis that those with a 

diagnosis of autism or that present with sub-clinical symptoms are at greater risk of 

abnormal development. Our results indicated that children with a diagnosis of autism, or 

who present with sub-clinical symptoms are at a greater risk of falling into an abnormal 
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language trajectory. Chapter 3 examines the effects of prenatal exposure to phthalates 

on language development trajectories, with the hypothesis that increased exposure 

results in greater risk of abnormal development. Our results indicated that low molecular 

weight phthalates tended to increase risk, while high molecular weight phthalate 

metabolites tended to decrease risk, though only a few reached statistical significance. 

Chapter 4 examines the effects of prenatal exposure to air toxics on language 

development trajectories, with the hypothesis that increased exposure will lead to 

greater risk of abnormal development. Our results indicated that nearly all air toxics did 

not have significant effect on risk of abnormal language development, with only 

acetaldehyde showing a decreased risk. Chapter 5 discusses the previous chapters and 

the implications of our findings. This research highlights the need for further research in 

a larger and more representative population, and that the effects of EDCs need to be 

more thoroughly explored to better elucidate their effects on neurodevelopment. 
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Chapter 1 – General Introduction 
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I. Introduction 

 The establishment of language is an important milestone in early childhood 

development, as it plays a role in almost every aspect of daily life. The effects of delays 

and impairments in language development may continue into adulthood, and include 

atypical social and emotional development, poor academic performance, and increased 

risk for diagnosis with neurodevelopmental disorders (1–7). There are many factors that 

can influence language development, including exposure to certain environmental 

pollutants. It is well known and documented that exposure to environmental chemicals 

during pregnancy can lead to abnormal neurodevelopment. Understanding the 

relationship between language development, its overall trajectories, and prenatal 

exposure to environmental chemicals, particularly within high-risk populations, may 

provide additional insight in identifying specific environmental hazards that may 

negatively impact language development. Once identified, targeted interventions can be 

implemented by policy makers in order to better mitigate the impact of these 

environmental exposures. 

 This research focuses on prenatal exposure to chemicals that act as endocrine 

disruptors (EDCs), which may play a role in fetal neurodevelopment. Exposure to these 

chemicals may negatively affect fetal neurodevelopment, which may result in abnormal 

language development. Rather than focusing on a single time point outcome, this 

research aims to examine language development over a longitudinal time period. By 

developing and using these language development trajectories as our outcome of 

interest, we are able to perform a more nuanced examination on the effects of EDCs on 

language development and gain several advantages over more traditional 
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epidemiological methods that examine single time point outcomes. By using multiple 

measures of language to develop these trajectories, we are able to improve our 

measurement of language development, reducing the chance of outcome 

misclassification. In addition, statistical analysis of trajectory groups allows for the 

examination of both within and between group variation, allowing researchers to identify 

risk factors unique to a specific trajectory class. This, in turn, may allow for more 

targeted interventions for those who fall within that trajectory class.  

II. Language Development  

The establishment of language is an important milestone in early childhood 

development. Delays or impairment of language development may lead to adverse 

effects later in life. The Diagnostic and Statistical Manual of Mental Disorders, Fifth 

Edition (DSM-V) lists the following as criteria for diagnosis of language disorder: 

persistent difficulties in the acquisition and use of language across modalities due to 

deficits in comprehension or production, language abilities that are substantially and 

quantifiably below those expected for age, onset during an early developmental period, 

and the difficulties are not attributable to hearing or other sensory impairment, motor 

dysfunction, or another medical or neurological condition and are not better explained 

by intellectual disability or global developmental delay (8). Language impairment (LI) 

has also been linked with and often co-occurs with several neurodevelopmental 

disorders, including attention deficit hyperactive disorder (ADHD) and autism (9,10,11, 

p.). As a result, understanding how, when, and why language impairment occur are 

important in order to prevent detrimental outcomes in the future. 
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Due to the multi-faceted aspects of language development, the suspected 

causes of LI, and the impacts of those causes, are varied; causes that result in a 

smaller vocabulary may not be the same causes that cause delays in verbal 

communications, for example. From a biological perspective, there have been several 

studies that have indicated that the basal ganglia may play an  important role in 

language development (12,13). In addition, a region of the brain known as Broca’s area 

or Broca’s region has widely been regarded as an important structure for language 

development (14–16). Disruption of the development of these areas may result in 

language impairment. Thus, anything that may impact neurodevelopment has a 

possibility of directly impacting language development.  

Although the study of environmental pollutants and LI is currently limited, some 

environmental pollutants have been linked to increased risk of LI including 

polychlorinated biphenyls (17), certain heavy metals (18), air pollutants (19,20), and 

polycyclic aromatic hydrocarbons (21,22). Many other environmental pollutants (e.g. air 

toxics, pesticides, and perfluoroalkyl substances) are likely candidates for study 

because they have been linked to neurodevelopmental disorders generally, such as 

autism (23–25), but have not yet been explicitly explored for links with language 

development. Beyond biological risk factors, consistently supported demographic and 

behavioral risk factors include: lower maternal education, having a family history of LI, 

higher birth order, male sex, preterm birth, lower 5 minute Apgar score, maternal 

smoking, and maternal alcohol use (26–30).  

Human language development is not static but unfolds over time, following 

different trajectories that vary from person to person. Even among children without 
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diagnoses of developmental disorders or language impairment, subtle differences in 

language development trajectories can be detected and measured. These differences 

result in several trajectories of language development (31–33). However, impaired 

language development follows distinct and different trajectories than typical 

development. Studies of individuals with language impairment have found several 

different trajectories (34,35, p.,36,37). In addition, a large portion of existing research 

that examines language development trajectories has been in the context of autism 

spectrum disorder (ASD). For example, Landa et al. identified four groups using latent 

class growth analysis based on scores from the Mullen Scales of Early Learning on 204 

siblings of children with autism (38). For the classes identified in these studies, they can 

be generalized into two broad categories: typical development and delayed or slowed 

improvement. Typical development (TD) is the trajectory defined by control individuals; 

that is, individuals with no clinical diagnosis of autism or other neurodevelopmental 

disorder, including LI. However, the definition of TD varies by study due to the nature of 

their cohorts, along with the method used to measure language. Those with delayed or 

slowed improvement may show improvement but either at a slower pace or begin at a 

less developed point than TD individuals, though they may still develop at an equal 

pace. When compared to children without a diagnosis of autism, children with autism 

tend to score lower on psychometric tests and have trajectories that are significantly 

different (39,40), though the general trend of the trajectory may be similar. However, 

both studies did not examine a third group: individuals who show “sub-clinical” 

symptoms. A portion of this research dissertation includes this third group, which we call 
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non-typically developing (non-TD), for trajectory comparison, which may provide more 

insight into possible trajectory differences between these diagnostic groups.  

III. The Endocrine System 

The endocrine system refers to the system of organs within the body that 

produce hormones, chemical messengers that regulate bodily functions, and the effect 

these hormones have on the body. These organs include the thyroid, gonads, and 

pituitary glands, which produce hormones such as sex hormones (e.g. estrogen), 

thyroid hormones (e.g. T3, T4), and peptide hormones (e.g. insulin, oxytocin). Because 

hormones are responsible for cell-to-cell communication during development, disruption 

of the endocrine system during critical developmental windows can lead to severe 

detriments in development. Pollutants that interfere with proper endocrine functioning 

are called endocrine disrupting compounds (EDCs), and are commonly linked to many 

different developmental outcomes, including neurodevelopmental deficits. For example, 

thyroid hormones play important roles during fetal neurodevelopment, acting on 

processes such as cell migration and differentiation, myelination, and synaptogenesis 

(41,42). As a result, prenatal thyroid disruption can lead to severe neurodevelopmental 

defects, including cretinism, lower IQ, and an increased risk of developing 

neurodevelopmental disorders (43–47). 

More than 1800 EDCs have been identified by the US Food and Drug 

Administration (FDA) that disrupt at least one endocrine pathway (48). Some examples 

of common EDCs include bisphenol A, organophosphate pesticides, phthalates, 

polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), 

polychlorinated biphenyls (PCBs), and per/polyfluoroalkyl substances (PFAS). 
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Disruption of the endocrine system can occur through several different methods, 

including disrupting hormone metabolism by antagonizing or activating hormone 

receptors, modulating receptor coactivators, and influencing DNA methylation (49). 

EDCs can be found in various mediums, including groundwater, air pollution, and 

household products, and have been linked with many different health effects, including 

obesity, diabetes, reproductive health, certain types of cancer, and neurodevelopment 

disorders (50–53). Because of the large number of EDCs, combined with the multiple 

number of possible exposure routes, there has been a large emphasis on identifying 

exposure-outcome relationships and promoting the removal of EDCs with known health 

effects from general use.  

As mentioned previously, hormones play a key role in infant development, 

particularly with neurodevelopment. Many EDCs have documented associations with 

neurodevelopmental disorders such as autism and ADHD. Polychlorinated biphenyls 

(PCBs) have been associated with ADHD (54), along with more general 

neurodevelopmental impairments, such as lower IQ, mental development, and 

psychomotor development (17,55). Polybrominated diphenyl ethers (PBDEs) have 

consistently shown a connection with neurodevelopment and neurotoxicity (56–58), 

along with associations with certain neurodevelopmental detriments in children related 

to attention, fine motor coordination, and cognition (59,60). Polycyclic aromatic 

hydrocarbons (PAHs) have been associated with adverse neurodevelopmental effects, 

such as cognitive delays and autism (21,61–63). Certain pesticides have been linked to 

lower IQ, lower motor speed, lower motor coordination, lower visuospatial performance, 

worse visual memory, and an increased risk for ADHD (64–71).  
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While research into the role of hormones on language development has been 

sparser, there is still evidence that both thyroid and sex hormones may play a role in 

language development. Postnatal treatment of thyroid deficiencies led to improvements 

in language deficits in children with hypothyroidism (72). Quast et al. found that sex 

hormone levels were linked with infant babbling, an important marker of articulatory 

skills and vocal development (73). Given the important role of hormones in 

neurodevelopment, it is reasonable to suspect that some EDCs that impact 

neurodevelopment may also interfere with language development. Indeed, some 

studies have found that certain EDCs have been associated with delays in language 

development. Bornehag et al. found that certain phthalates were associated with 

language delays, and both carbamate and organochlorine pesticides have been found 

to decrease language abilities in children (74–76). 

IV. Phthalates 

Phthalates, or phthalate esters, are a class of chemicals that are primarily used 

as plasticizers. They are used in a wide variety of products, including cosmetics, food 

packaging, cleaning materials, and pharmaceuticals. Phthalates have been shown to be 

endocrine disruptors through both animal and human studies, affecting estrogen and 

thyroid hormone pathways (77–79). These effects have been linked to several health 

effects, including neurotoxicity (80–82), hepatotoxicity (82,83), metabolic syndromes 

(84,85), and reproductive effects (83,86). Phthalates impair neurodevelopment via 

several pathophysiologies, which are varied, due to the wide range and types of 

phthalates and the possibility of different biological effects from different phthalate 

compounds. Several of the mechanisms of action of phthalates that have been 
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observed in animal studies include cell apoptosis (80,87), affecting neurotransmitter 

pathways (80,88), changing gene expression (87,89), and altering hormone levels 

(89,90). These effects have been connected to potential neurodevelopmental issues, 

which indicates that there may be more than one mechanism of action taking place that 

is resulting in an association with neurodevelopmental disorders and delays.  

Currently, there is a significant amount of literature that indicates that phthalates 

have a negative impact on neurodevelopment. Phthalates have been found to be 

associated with neurodevelopmental disorders such as autism and ADHD (78,91,92) 

along with deficits in other neurological domains such as cognition (93,94), motor 

effects (95), and behavioral outcomes (96–98). Disruption of functionality and plasticity 

in the hippocampus, alterations in gene regulation and DNA damage, and disruption of 

several hormonal pathways are possible explanations for the neurodevelopmental 

effects of phthalates (99–102). There have been several studies that examined prenatal 

phthalate exposure and its effects on language development, four finding associations 

with delays in language development (74,103–105), and four finding no association 

(97,106–108). These studies generally excelled in prospective designs where 

phthalates were primarily measured via biomarkers. They used psychometric tests to 

measure language development, but only examined a single time point during 

development. Although the reasons for their differing results are not yet well-

established, possible reasons for the contradicting findings include exposure 

misclassification, precision or sampling error (particularly for those studies with smaller 

sample sizes), and confounding. In addition, there were little to no examinations on 

multi-phthalate models, which are important to consider given that exposure to 
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phthalates often occurs in a mixture setting. One weakness that has been noted in prior 

studies involve the possibility of exposure misclassification, perhaps due to single 

measurements of phthalate exposures (97,107,108), which may result in no association 

being observed between phthalate exposure and delayed language development.  

It is also important to note that when discussing phthalates and their possible 

association with language development, individual phthalates may have differing 

results, which may help to explain some of the inconsistencies. When we reviewed 

multiple studies that covered several phthalates and their metabolites, we found that 

results were inconsistent across phthalates, with some studies showing some 

phthalates with an increased risk for abnormal language development with others 

showing protective or null effects (74,97,103–108). Part of this difference may be in part 

due to the chemical composition of each phthalate and its metabolites, since it is 

thought that phthalate toxicity may be due in part to their overall molecular weight. 

Phthalates are classified into low and high molecular weight classes. The difference in 

weight may account for the differences between each individual phthalate ester. Each 

ester has different solubilities, with lower weight phthalates being more volatile in their 

pure state, but have low volatility in aqueous solutions, while high weight esters are 

hydrophobic in comparison, whose solubility is dependent on the length of the aryl 

chains of the phthalate (109).  

Currently, evidence points to a possible sex difference in phthalates’ various 

effects (110–112); this is to be expected as many endocrine disruptors impact female 

health differently than male health. This may be due to phthalate’s impact on different 

hormonal pathways, some of which may be active during different periods of 
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development between the different sexes. Prior studies have found that sex differences 

vary based on phthalates, with two studies showing greater risk for boys (74,105) and 

one showing greater risk for girls (113). This may also be further compounded by the 

effect sex may have on certain neurodevelopmental outcomes. A literature review 

performed by Etchell et al., for instance, found inconsistent evidence for sex differences 

in brain function and structure with respect to language development (114). There is 

also a sex difference in prevalence in some neurodevelopmental disorders, such as 

autism and ADHD, with males being diagnosed at a higher rate than females. This may 

be due to interactions between sex and other factors, such as genetics, hormones, and 

environment (115). 

V. Air Toxics 

Air toxics, as defined by the United States Environmental Protection Agency 

(EPA), are toxic or hazardous air pollutants that cause or may cause serious health 

effects such as cancer, reproductive effects, and/or adverse environmental and 

ecological effects (116,117). Because of this broad definition, there are several classes 

of chemicals that are considered to be air toxics; the Clean Air Act identifies a total of 

187 air toxics the EPA is required to control, though there are many more hazardous air 

pollutant (117). Pesticides, polychlorinated biphenyls (PCBs), particulate matter (e.g. 

PM10 and PM2.5), polycyclic aromatic hydrocarbons (PAHs), various volatile organic 

compounds (VOCs, e.g. benzene, formaldehyde), and heavy metals (e.g. lead, 

mercury) are just a few examples. With the wide variety of chemicals, air toxics have 

been linked to a vast array of health effects, including neurodevelopmental disorders 

(54,57,118–120), cognitive decline (121), and cancer (122). 
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Of the numerous air toxics, PCBs, phthalates, PAHs, polybrominated diphenyl 

ethers (PBDEs), and certain heavy metals are a few examples with known endocrine 

disrupting effects (61,123–142). The mechanisms by which these air toxics cause these 

effects are varied, with some mimicking sex hormones (123,143–145), while others 

disrupt thyroid hormone pathways (123,124,146–149). Air toxics that act as EDCs have 

been linked to several health outcomes, including insulin resistance, cancers, fetal 

development, and reproductive issues (150,151, p.2,152–156). The routes of exposure 

to these air toxics vary, depending on the specific EDC. For instance, exposure to PAHs 

is due to combustion of organic materials, while exposure to phthalates is due to 

exposure to plastics or plasticizers (157). Exposure to these toxics also varies 

depending on environment, with some toxics being more prevalent within indoor 

environments compared to outdoor environments. In addition to individual effects, it is 

also important to note that exposure to these chemicals often do not occur in isolation; 

that is, an individual is often exposed to more than one class of chemicals at a time. 

Exposure to such mixtures may result in  a compounding effect on the body, resulting in 

a stronger effect than if an individual were exposed to an air toxic individually. 

A large number of studies focusing on the relationship between chemicals 

considered to be air toxics and neurodevelopmental disorders examined all routes of 

exposure, rather than focusing on solely airborne exposure. Of the studies that focused 

on airborne exposure, several air toxics have been linked with an increased risk for 

autism (24,119,158–160), and airborne exposure to PAHs have been linked to an 

increased risk of ADHD (161), as well as cognitive delays and autism (21,61,62). 

Furthermore, there have been few studies done on these chemicals and language 
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development. A total of 5 studies have examined exposure to these chemicals and 

language development, with all but one finding associations between exposure and 

abnormal language development (162–166). However, these studies did not exclusively 

examine airborne exposure to these air toxics; all but one examined all routes of 

exposure and one focused on dietary exposure. Other issues include the fact that all of 

these studies have examined single time point outcomes, rather than a trajectory 

outcome, and that they did not adjust for possible co-pollutant confounding due to 

limited exposure assessment. 

Perhaps more importantly than their individual effects, exposure to air toxics 

often means all individuals are exposed to multiple chemicals. This arises because air 

toxics share common sources, creating similar geographic gradients after originating 

from vehicle exhaust, power plants, and industrial activity. Within a mixture of 

chemicals, health effects may be magnified, resulting in a more potent effect than 

exposure to a single chemical alone (e.g. pollutant-pollutant interactions). Furthermore, 

due to these exposures, there is a high risk of confounding due to the high correlation 

between the various pollutants and the correlation of the pollutants with the outcome of 

interest, along with a greater risk of Type I and Type II errors (167). While there are 

several statistical methods that can deal with pollutant-pollutant confounding, there is no 

single accepted method for examining pollutant-pollutant confounding. Rather, each 

method has its own strengths and weaknesses, along with purpose of use, so 

determining which statistical approach is most appropriate relies on the question being 

asked and what information is desired (168). 

VI. Trajectory Analysis 
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When evaluating developmental outcomes, there are two common approaches 

researchers can use: a single time point approach or a longitudinal approach. In the 

former, researchers focus on a developmental outcome measurement at a single point 

in time, often resulting in a cross-sectional view of the outcome. In the latter, 

researchers use multiple outcome measurements over a period of time, resulting in an 

analysis that takes into consideration an individual’s growth over time. While there are 

many forms of longitudinal analysis, this research focuses on trajectory analysis, which 

aims to take multiple outcome measurements in order to build and compare growth 

patterns between individuals.  

Trajectory analysis can be performed using several different statistical 

techniques. These include growth mixture modeling, group based trajectory modelling, 

latent class analysis, and latent transition analysis (169). However, despite the different 

methods one can employ, there are multiple strengths of trajectory analysis. Perhaps 

the clearest strength of studying language trajectories is that trajectories are more 

representative of development than examining diagnostic outcomes at a single time 

point (170), given that development by its nature unfolds over time, and is not well -

represented by a single-time snapshot.  This benefit can be framed as improved 

measurement of the outcome of interest; that is, reduced outcome misclassification. In 

addition, by creating trajectory groups, it allows researchers to examine between -person 

variation within each group, along with between-group variation as well. This may permit 

researchers to identify unique risk factors within each group, allowing for more targeted 

interventions to aid those specific groups in preventing detrimental health outcomes. 
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Chapter 2 - Language Trajectories in Siblings of Children with Autism  
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Abstract 

Background: Language development is a critical part of human development 

that unfolds over time. We aimed to examine and characterize the trajectories of 

language development within children with an older sibling with autism, as these 

children are more likely to have neurodevelopmental delays, thus allowing more 

detailed exploration of suboptimal language acquisition trajectories.  

Methods: Participants were drawn from the Early Autism Risk Longitudinal 

Investigation (EARLI) (n=251) and the Markers of Autism Risk in Babies – Learning 

Early Signs (MARBLES) (n=393) cohorts that recruited pregnant mothers who 

previously had a child with autism (ASD). Expressive and receptive language 

development was measured using the Mullen Scales of Early Learning (MSEL) at ages 

6,12, 24, and 36 months of age. Each child was classified into one of 3 

neurodevelopmental classifications: Autism Spectrum Disorder (ASD) (n=93), non-

typically developing with no ASD (non-TD) (n=79), or typically developing (TD) (n=250). 

We used latent class growth analysis (LCGA) to determine unique language trajectories 

based on MSEL receptive or expressive language raw scores, the child’s study-derived 

neurodevelopmental classification, child sex, maternal education, and maternal race.  

Results: We determined four language trajectories for expressive (High Growth, 

Moderate Growth, Low Growth, and Tracking) and two trajectories for receptive 

language (High Growth and Late Growth). Overall, we observed that suboptimal 

language trajectories were most common for children classified as ASD and 

intermediate for non-TD children versus TD. Non-TD and ASD children were more likely 

to belong to the Low Growth, Late Growth, and Tracking trajectories. 
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Conclusion: While previous studies have shown that children with ASD are 

more likely to have sub-optimal language development, we newly showed that children 

with non-typical development not meeting ASD criteria also exhibit higher proportions 

with suboptimal trajectories, even when symptoms associated with neurodevelopmental 

delays are sub-clinical and do not meet diagnostic criteria for ASD. 

Keywords: language development, language trajectory, autism, autism spectrum 

disorder, latent class growth analysis 

Abbreviations: autism spectrum disorder (ASD), latent class growth analysis 

(LCGA), typically developing (TD), non-typically developing (non-TD), Mullen Scales of 

Early Learning (MSEL), neurodevelopmental delays (NDDs) 
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Introduction 

Language abilities play a role in almost every aspect of daily life and early 

childhood is a time of rapid language acquisition. Language development delay or 

impairment can contribute to atypical social and emotional development, poor academic 

performance, and increased risk for diagnosis with neurodevelopmental disorders (1–7). 

Understanding the developmental trajectory of language in populations enriched for 

likelihood of neurodevelopmental disorders may aid the early identification of those 

conditions, as well as better target language focused interventions among at risk 

groups. 

Human language development unfolds over time, following trajectories that vary 

from person to person, but that also cluster in classes. In addition to an optimal 

language acquisition trajectory defined by the most growth without observed 

degradation, prior research has identified between 4 to 7 different atypical trajectories or 

patterns in children from grade school to adolescence (34,35, p.,36,37). Law et al., for 

example, found evidence for three atypical trajectories: one where individuals start at a 

lower point but track with normally developing individuals (“tracking”), one where 

individuals develop at a similar rate but plateau at a certain time point (“plateau”), and 

one where individuals start at a similar point to normally developing individuals but with 

slower growth rates (“deterioration”) (34). Pickles et al. labeled some of their trajectories 

as “delay” or “catch-up”, both of which appear to follow the proposed “tracking” 

trajectory from Law et al. Tambyraja et al. likewise found several trajectories, two of 

which following the proposed “tracking” as described above and one that followed 
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“deterioration”. The patterns identified will vary by the sample size, age of children, and 

characteristics of the sample, including the prevalence of developmental disabilities.  

A substantive portion of existing research that examines language development 

trajectories has been in the context of autism spectrum disorder (ASD). Individuals 

diagnosed with ASD, compared to those without, tend to score lower on language tests 

and have trajectories with a decrease or a slower increase in language abilities (39,40). 

Although the presence of language impairment is common in individuals with ASD, 

language development among those with ASD is highly heterogenous (171,172).  

Less studied are children who have “sub-clinical” symptoms of ASD or who may 

otherwise be identified as neuroatypical among other cognitive and behavioral 

dimensions. Studies including sufficient numbers of these children may be beneficial in 

more fully elucidating the relationship between neurodevelopment and language 

impairment trajectories, because the study will have better statistical ability to resolve 

language patterns in this group. An example of one such study that was enhanced for 

atypical development and sub-threshold autism-like traits was Landa et al.’s 

investigation of 204 siblings of children with ASD. This study identified four trajectory 

groups using latent class growth analysis based on scores from the Mullen Scales of 

Early Learning (38). 

To add to the understanding of language development trajectories among 

children, especially those with atypical development, we conducted a study of similar 

design based on data collected from two ASD sibling cohorts, using latent class growth 

analysis (LCGA). We evaluated how language development varied across children in 
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these cohorts meeting diagnostic criteria for ASD, showing evidence of atypical 

development, and appearing to be typically developing.  

Methods 

Population 

We included individuals in the Early Autism Risk Longitudinal Investigation 

(EARLI) and the Markers of Autism Risk in Babies – Learning Early Signs (MARBLES) 

studies (173,174). Both studies recruited pregnant women who already had a child with 

a diagnosis of ASD, or where the biological father had a child with ASD and followed 

both the mother and the expected child longitudinally. EARLI recruited from several 

sites, spanning across northeast Maryland, southeast Pennsylvania, and northern 

California, while MARBLES recruited primarily from northern California. Children in 

EARLI were born between 2009 and 2013, while children in MARBLES were born 

between 2006 and 2023. Demographic information was obtained via in-person 

interviews and questionnaires (Table 2.1).  

From 621 children in both cohorts, we excluded persons with 1 or no recorded 

language scores or who had no study-based classification as ASD, non-TD, or TD, 

because these were key study variables and to be consistent with prior literature, 

yielding a sample size of 493 individuals (Table 2.3).   

Language Development and Neurodevelopmental Classification 

Trained staff administered the Mullen Scales of Early Learning (MSEL, 20) to 

assess cognitive development (including language), in person, at 6, 12, 24, and 36 

months of age. The MSEL is a standardized psychometric test that is used to measure 
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cognitive development in children ages 3 to 60 months (175). The MSEL generates five 

subscores (gross motor, fine motor, expressive language, receptive language, and 

visual reception). We used expressive language and receptive language raw subscores 

to generate our language development trajectories. Both expressive and receptive 

language involve the ability to process visual, auditory, and written language, though in 

different ways. Expressive language involves the ability to communicate ideas and 

thoughts using words and gestures to convey messages accurately and appropriately to 

others. Receptive language involves the ability to understand and process the meaning 

of language directed towards an individual.  

All study children were assigned a research-based neurodevelopmental 

classification. When study children were 3 years old, licensed clinical psychologists 

evaluated them using the Autism Diagnostic Observation Schedules (ADOS, 19). These 

ADOS scores, together with MSEL composite standardized scores and clinical best 

estimate of an ASD diagnosis, were used to categorize study children as meeting 

criteria for autism (ASD), non-typical development (non-TD), and typical development 

(TD) based on a previously reported algorithm (177). Children classified as ASD had 

scores over the ADOS cutoff and met the Diagnostic and Statistical Manual of Mental 

Disorders (DSM) criteria for ASD. Non-TD children had ADOS scores within three points 

of the diagnostic cutoff or had either one MSEL subscore 2.0 standard deviations below 

average or two MSEL age adjusted subscores 1.5 standard deviations below average. 

Thus, non-TD children may have autism-related symptoms subthreshold of diagnostic 

criteria and/or poorer performance on any 1-2 of 5 MSEL subscales. Of the 96 children 

who were classified as non-TD, 71 of them were categorized as such due to low scores 
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on receptive or expressive language. Children who did not meet these criteria were 

classified as TD.  

Statistical Analysis 

The most frequently missing variables were expressive and receptive language 

scores at the middle time point: 24 months: 29% missing (Table 2.4). This may be 

explained due to a funding cut in EARLI, where this collection point was then dropped. 

A smaller number were missing other covariates, including expressive and receptive 

MSEL scores at other time points (6% for 6 months, 2% for 12 months, and 7% for 36 

months), maternal educational attainment (1%), homeownership (3%), and maternal 

race (1%). To maximize our statistical precision and avoid a potential bias by excluding 

children missing data, we used multiple imputation by chained equations using the R 

package mice to impute missing values for variables listed above, including MSEL 

scores (178). Imputed distribution of these variables can be seen in Table 2.4.  

We used latent class growth analysis (LCGA) to characterize language 

development trajectories, separately modeling expressive vs. receptive language. 

LCGA is a method to identify unmeasured (or latent) class membership using observed 

variables, with the goal of creating classes (or trajectories) so that individuals within a 

class are more similar than individuals between classes (179,180). We used a “one-

step” approach where the same LCGA model was used to find the trajectories that best 

fit the data and estimate associations between neurodevelopmental classification (ASD, 

non-TD, TD) with trajectories. In addition to MSEL scores and neurodevelopmental 

classification, we also included the following a priori potential predictors of language for 

more accurate prediction for language trajectory assignments: child sex, race/ethnicity, 
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and maternal education (as a proxy for socioeconomic status) (27–30). Parameters 

from the LCGA models were used to generate relative risk ratios and 95% confidence 

intervals, and we performed an overall chi-squared test of the association between 

neurodevelopmental classification and language trajectories. 

We ran LCGA models with 2-7 classes, assessing each model for goodness of 

fit, as indicated by lower Bayesian information criteria (BIC), sample size adjusted BIC 

(SABIC), and integrated complete likelihood (ICL), and higher entropy values. These fit 

measures do not always agree with each other, often pointing to different models as the 

best fitting model. Because our models generally had low entropy (>0.8), we selected 

the best-fitting model (number of classes) using the BIC, based on recommendations in 

Diallo et al. (181), along with favoring fewer over more classes for interpretability, and 

avoiding models with classes with <5% of the study population. While the complete 

models use probabilities of language trajectory membership (where a child has 

probabilities for each trajectory), we assigned each child to the trajectory class for which 

they had the highest probability for figures. 

We selected language trajectory class names based on the overall shape of the 

class in the plot and guided by designations used in prior literature. We examined the 

patterns of expressive versus receptive language, examining both MSEL raw score 

correlations at each time point and concordance between our assigned language 

trajectories.  

All analyses were conducted using Rstudio version 2022.02.1 Build 461 with R 

Version 4.1.3 “One Push-Up”. The LCGA was conducted using the lcmm package 

(182). 
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Results 

Of the included children from EARLI and MARBLES, 114 were designated as 

ASD, 96 as non-TD, and 283 as TD. Children classified as having ASD were more likely 

to be male and from families with lower-SES (e.g., lower educational attainment) and of 

non-white race compared to the other neurodevelopmental classifications (Table 2.1). 

Children classified as TD were from families with higher SES (higher maternal 

education and more homeownership).  

Mean expressive and receptive MSEL language raw scores increased across 

age (Figure 2.5). While the mean language scores in infancy (6 and 12 months) were 

similar across ASD, non-TD, and TD, the scores began to diverge at 24 and 36 months. 

During those later time points, the mean expressive and receptive MSEL scores were 

lowest for ASD, intermediate for non-TD, and highest for children classified as TD 

(Table 2.1). Expressive and receptive language raw scores were correlated at all ages, 

with higher correlations with later developmental periods, with no individuals exhibiting 

highly discordant scores (e.g., high expressive with low receptive) (Figure 2.6). 

For expressive language, 4 trajectory classes were optimal (Table 2.5). The 4 

assigned trajectory classes started at a similar level of language ability at 6 months, 

diverged slightly at 12 months, and then increasingly diverged at 24 and 36 months of 

age, resulting in classes that we named High Growth, Tracking, Moderate Growth, and 

Low Growth (Figure 2.1). The Tracking class mostly followed the High Growth class, 

albeit with lower scores at 24 months, along with a noticeable increase at 36 months. 

The majority of children, overall and for all neurodevelopmental classifications, were 

assigned to the intermediate Tracking trajectory for expressive language (273 of 493, 
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Figure 2.3). Moderate growth had consistent growth, but mean scores were lower than 

both Tracking and High Growth classes. The Low Growth class had almost no change 

in scores between 12 and 24 months, with a slight increase in scores at 36 months.  

For receptive language, both the BIC and ICL indicated that the 4-class model 

was the best fit (Table 2.6). However, the 3 and 4-class models all had at least one 

class that had less than 5 percent of the population, and so we selected the next best 

fitting, 2-class model, labeling them as High Growth and Late Growth. Here, the Late 

Growth trajectory saw slight changes in raw scores between 12 and 24 months, but 

scores at 36 months jumped considerably (Figure 2.2). A majority of children, overall 

and for all neurodevelopmental classifications, were assigned to the High Growth 

trajectory for receptive language (373 of 493, Figure 2.4).  

For both receptive and expressive language, we observed that our results had 

low entropy (entropy > 0.8), which indicated that the class separation was good for our 

LCGA. There were no individuals who had clearly discordant language trajectory 

assignments between expressive vs. receptive language (e.g., being assigned to High 

Growth for expressive but Late Growth for receptive). All individuals were either in the 

same class or in the adjacent class (Table 2.9).  

For both expressive and receptive language, individuals in the Low or Late 

Growth trajectory were more likely to be male, have mothers who were less educated, 

and were less likely to identify as non-Hispanic white than individuals who fell in the 

High Growth trajectory (Tables 2.7 and 2.8). Individuals in the Tracking or Moderate 

Growth trajectory were less likely to identify as non-Hispanic white and more likely to 

have mothers who were less educated compared to the High Growth trajectory.  



 

26 
 

Both expressive and receptive language trajectories were highly associated with 

a child’s neurodevelopmental classification, as shown by very low p-values from our 

overall chi square tests (Table 2.2 and Figures 2.3 and 2.4). 

For expressive language, children with ASD at 36 months were substantially 

more likely to be in the Low Growth trajectory and were more likely to fall into the 

Tracking trajectory when compared to children classified as TD (Table 2.2 and Figures 

2.3 and 2.4). Language trajectories for children classified as non-TD showed 

intermediate patterns of suboptimal language – between the more severely impacted 

ASD distribution which was largely of Moderate and Low Growth language trajectories, 

and the TD distribution which was largely made up of children with High Growth 

language trajectories. Non-TD children compared to TD children were more likely to be 

classified in the Low Growth and Tracking language trajectories, though the confidence 

bands include the null (Table 2.2). No TD children were classified as Moderate Growth, 

leading to an inability to calculate relative risk ratios (RRR) for these comparisons. 

For receptive language, children with ASD were more likely to fall into the Late 

Growth trajectory when compared to both TD and non-TD children (Table 2.2 and 

Figures 2.3 and 2.4). When compared to TD children, non-TD children were more likely 

to fall into the Late Growth category.  

Discussion 

The goal of this study was to characterize the trajectory of language development 

in two cohorts of children with enhanced risk for neurodevelopmental disorders because 

they had a sibling with ASD, including the distribution of trajectories across 
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neurodevelopmental classification. Our results supported the hypothesis that a child’s 

neurodevelopmental outcome classification was highly related to their language 

development trajectory. More specifically, children who were classified as ASD were 

more likely to belong trajectories that indicate a slower rate of language development 

and children with non-TD (but without ASD) were generally intermediate in trajectories 

of language acquisition compared to children classified as having typical development 

(TD). 

Children classified as having ASD were more likely to belong to the Low Growth 

and Late Growth trajectories for expressive and receptive language, respectively, when 

compared to both non-TD and TD classified children. The Low Growth trajectory is 

distinct from other trajectories by having lower overall scores at each time point. Each of 

the other expressive language trajectories showed a marked increase in mean score at 

24 months, which was not reflected in the Low Growth trajectory. Notably, for the Late 

Growth trajectory, we observed a large jump in score in receptive language at 36 

months, an indication that there may be some “catch up” to the High Growth trajectory 

scores with certain developmental trajectories, though our analysis was not able to 

observe these other hypothetical trajectories in receptive language. Children classified 

as non-TD were also more likely to belong to both the Low Growth and Tracking 

trajectory classes for expressive and the Late Growth class for receptive language when 

compared to TD children. These results are consistent with prior literature, which shows 

that children with ASD generally score lower on language tests than those who do not 

have ASD, although there is a high amount of heterogeneity with language growth 

(37,39,40). While Landa and Pickles were in comparable cohorts (Landa included 
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children with a sibling with ASD while Pickles used referrals for possible autism), 

Brignell pulled from a broader community-based population. 

Similar to the “catch up” effect observed in receptive language for the Late 

Growth trajectory, a smaller jump in score was seen in the Low Growth class for 

expressive language. Prior literature has indicated that such trajectory shapes are 

possible to observe in language development (37), and as such, it cannot be discounted 

that the Late Growth trajectory may be closer to a “tracking” trajectory, or that the Low 

Growth trajectory may be closer to a “late growth” trajectory. However, the LCGA 

algorithm did not determine that this was the case, though models that have greater 

number of classes may have been able to resolve more distinct and nuanced trajectory 

patterns. These trends highlight that the selection of the number of classes has a 

significant impact on the findings of all LCGA studies, including ours.  

The use of the MSEL is important to note, as the MSEL is one of several inputs 

used in determining child neurodevelopmental classification as having non -TD, in 

addition to being the primary determinant of language trajectories. The distinction 

between a non-TD and TD classification involves criteria across the 5 MSEL subscores, 

of which expressive and receptive language are 2 of the 5. From our sample, a total of 

82 of 96 individuals did not meet these language subscore thresholds. As a result, there 

is some level of correlation between our neurodevelopmental classifications and 

independent variables (language trajectories), at least for individuals with a non -TD 

classification. However, the neurodevelopmental classification algorithm does not only 

rely solely on the expressive and receptive language subscores of the MSEL, but also 

uses the fine motor and visual receptive subscores, so there may still be some level of 
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independence there. Further, the algorithm utilizes the standard score, which reflects 

distance from the normative mean, while our analysis uses the raw score, which reflects 

absolute level of language, as our dependent variable. 

Our findings are in concert with previous studies and extend the understanding of 

language trajectories among children with suboptimal neurodevelopment. Landa et al. 

placed 235 children into three groups: Early-ASD (diagnostic impression of ASD at 14 

months), Late-ASD (did not receive a diagnostic impression of ASD at 14 months), and 

non-ASD (40). They used generalized estimating equations (GEE) to determine 

differences in mean language scores using the MSEL between the three groups, finding 

significant differences for receptive and expressive language between the Early-ASD 

group and the Non-ASD group at all ages, whereas separation between the Late-ASD 

group and the Non-ASD group occurred only at later developmental periods: 24 and 36 

months. Our approach in contrast to that of Landa et al. was able to shed light on a 

group that had non-typical development but did not meet ASD study criteria. 

Furthermore, it is only with our LCGA/trajectory approach that we could go describe the 

shape of language acquisition trajectories (such as we found with our Late Growth 

group), in contrast to only determining mean differences with a GEE approach. Tek et 

al. examined 35 children using Brown’s 14 grammatical morphemes, dividing them into 

ASD and TD groups, using individual growth curve analysis to examine the differences 

(183). They found two distinct language development profiles, which they labeled as 

ASD-high verbal and ASD-low verbal. Our larger sample size (493) allowed us to detect 

a greater number of language trajectories (such as the four trajectories we resolved for 

expressive language) and their links with neurodevelopmental classification. Visser et 
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al. examined 203 children using LCGA to generate five different trajectory groups based 

on their Autism Diagnostic Observation Schedule (ADOS) scores, including the ADOS 

language score, along with other domains such as IQ (184). While Visser et al. was able 

to describe ASD phenotypic subgroups, the subgroups were more holistic and included 

other behavioral and cognitive domains beyond just language. Furthermore, all children 

were referred for ASD, thus preventing the evaluation of language in relation to more 

typical developmental classifications.  

Strengths of our study include the use of language development trajectories, 

rather than single time point outcomes, which allowed for a more detailed and accurate 

examination of language acquisition across development. In addition, we had 4 

repeated, robust measures of both expressive and receptive language, reducing the 

possibility of incorrectly assigning an individual to a wrong trajectory class. Second, the 

use of cohorts which prospectively follow siblings of children with autism allowed for a 

greater ability to detect abnormal language development trajectories that may be less 

common in unselected cohorts. Our included cohorts have a heightened prevalence for 

ASD compared to the general population and have increased prevalence of other 

neurodevelopmental delays. Third, the use of a continuous neurodevelopmental 

outcome measurement (i.e., MSEL raw scores), rather than a dichotomous 

neurodevelopmental outcome, allowed for the examination of individuals who present 

with “sub-clinical” symptoms (non-TD). Few studies have included these individuals as a 

separate group, with some including this group as part of the controls or not including 

them in the analysis altogether. The inclusion of this non-TD group allows a more 
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complete picture of language development in early childhood across a range of 

neurodevelopmental outcomes.  

Our measurement of language using the MSEL was robust in that it is considered 

to be a suitable psychometric test for measuring expressive and receptive language 

(185) and has been shown to have good construct validity (186). Yet the MSEL is 

limited to expressive and receptive language domains and may miss other aspects of 

language - a complex phenotype. Future research should explore other facets of 

language development, such as vocabulary, grammatical development, or semantics. 

Our analysis was limited to the first 36 months of age, so we are unable to extrapolate 

language trajectories after this period. Studies that have examined language 

development patterns in children with ASD past the age of 36 months have largely 

found that, while children with ASD generally start with lower scores, their growth 

patterns are similar to those without ASD, with some instances of children with ASD 

scoring near identically to those without ASD (37,39). Due to the nature of LCGA 

analysis, our results are sensitive to the number of classes selected and our total 

sample size. While our sample size is sufficiently large enough to utilize LCGA, 

selecting for a different number of classes or changing the sample size may alter the 

results. However, we are confident that the overall direction of effect would remain 

consistent between various class choices.  

In conclusion, we identified unique language trajectories for expressive and 

receptive language development in a population of children more likely to develop ASD 

or a developmental delay. Children with an ASD exhibited the most impairment; while 

children with non-typical development were intermediate, with both of these groups 
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more likely to belong to the Low or Late Growth category as opposed to the High 

Growth category when compared to children with typical development. Further 

exploration of these results should be conducted in larger and more diverse populations 

and/or with more in-depth characterization of language development measures. 
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Tables and Figures 

Table 2.1: Characteristics of Participants in Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk in 

Babies – Learning Early Signs (MARBLES) by Study Neurodevelopmental Classification 
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ASD 

(N=114) 

Non-TD 

(N=96) 

TD 

(N=283) 

Overall 

(N=493) 

Child Gender     

  Female 28 (24.6%) 43 (44.8%) 145 (51.2%) 216 (43.8%) 

  Male 86 (75.4%) 53 (55.2%) 138 (48.8%) 277 (56.2%) 

Maternal Educational 

Attainment 
    

  Less than high school 5 (4.5%) 3 (3.1%) 6 (2.1%) 14 (2.9%) 

  High school 

diploma/GED 
8 (7.1%) 9 (9.4%) 12 (4.3%) 29 (5.9%) 

  Some college 49 (43.8%) 41 (42.7%) 92 (32.6%) 182 (37.1%) 

  Bachelor’s degree 25 (22.3%) 25 (26.0%) 101 (35.8%) 151 (30.8%) 

  Graduate or professional 

degree 
25 (22.3%) 18 (18.8%) 71 (25.2%) 114 (23.3%) 

  Missing 2 0 1 3 

Homeownership     

  Rent 52 (50.5%) 40 (43.0%) 95 (34.2%) 187 (39.5%) 

  Own 51 (49.5%) 53 (57.0%) 183 (65.8%) 287 (60.5%) 

  Missing 11 3 5 19 

Maternal Race/Ethnicity     

  Non-Hispanic White 56 (50.5%) 43 (45.7%) 165 (58.3%) 264 (54.1%) 
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ASD 

(N=114) 

Non-TD 

(N=96) 

TD 

(N=283) 

Overall 

(N=493) 

  Black/African American 11 (9.9%) 13 (13.9%) 7 (2.5%) 31 (6.4%) 

  Hispanic 24 (21.6%) 19 (20.2%) 57 (20.1%) 100 (20.5%) 

  Other/Multiracial 20 (18.0%) 19 (20.2%) 54 (19.1%) 93 (19.0%) 

  Missing 3 2 0 5 

Expressive language 
raw score (6 months) 

    

  Mean (SD) 6.49 (1.29) 6.11 (1.12) 6.33 (1.27) 6.32 (1.25) 

  Median [Min, Max] 6.00 [4.00, 11.0] 6.00 [3.00, 10.0] 6.00 [3.00, 12.0] 6.00 [3.00, 12.0] 

  Missing 18 12  37  67  

Receptive language raw 

score (6 months) 
    

  Mean (SD) 7.85 (1.51) 7.73 (1.56) 8.04 (1.48) 7.94 (1.51) 

  Median [Min, Max] 8.00 [4.00, 12.0] 8.00 [2.00, 12.0] 8.00 [3.00, 13.0] 8.00 [2.00, 13.0] 

  Missing 18  12  37  67  

Expressive language 

raw score (12 months) 
    

  Mean (SD) 11.0 (2.70) 11.4 (2.46) 12.5 (2.45) 12.0 (2.60) 

  Median [Min, Max] 11.0 [5.00, 16.0] 12.0 [6.00, 16.0] 13.0 [5.00, 19.0] 12.0 [5.00, 19.0] 

  Missing 9  10  10  29  
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ASD 

(N=114) 

Non-TD 

(N=96) 

TD 

(N=283) 

Overall 

(N=493) 

Receptive language raw 

score (12 months) 
    

  Mean (SD) 11.2 (2.14) 12.2 (1.84) 13.0 (1.83) 12.5 (2.04) 

  Median [Min, Max] 11.0 [5.00, 17.0] 12.0 [7.00, 16.0] 13.0 [9.00, 26.0] 13.0 [5.00, 26.0] 

  Missing 9  10  10  29  

Expressive language 

raw score (24 months) 
    

  Mean (SD) 16.3 (5.04) 19.4 (3.65) 22.4 (3.84) 20.6 (4.83) 

  Median [Min, Max] 16.0 [6.00, 28.0] 20.0 [9.00, 26.0] 22.0 [12.0, 33.0] 21.0 [6.00, 33.0] 

  Missing 42  57  83  182  

Receptive language raw 

score (24 months) 
    

  Mean (SD) 17.3 (5.98) 21.7 (4.62) 25.8 (3.24) 23.3 (5.47) 

  Median [Min, Max] 15.0 [2.00, 28.0] 22.0 [13.0, 30.0] 26.0 [14.0, 33.0] 25.0 [2.00, 33.0] 

  Missing 43  57  83  183  

Expressive language 

raw score (36 months) 
    

  Mean (SD) 25.2 (7.18) 29.7 (5.98) 33.8 (3.77) 31.0 (6.27) 

  Median [Min, Max] 26.0 [6.00, 41.0] 31.0 [15.0, 42.0] 34.0 [23.0, 45.0] 32.0 [6.00, 45.0] 
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ASD 

(N=114) 

Non-TD 

(N=96) 

TD 

(N=283) 

Overall 

(N=493) 

  Missing 14  5  29  48  

Receptive language raw 

score (36 months) 
    

  Mean (SD) 25.6 (6.89) 30.1 (4.28) 32.6 (3.81) 30.5 (5.54) 

  Median [Min, Max] 28.0 [2.00, 41.0] 30.0 [22.0, 42.0] 32.0 [24.0, 46.0] 31.0 [2.00, 46.0] 

  Missing 13  5  31  49  

Footnotes for Table 2.1: TD = Typically Developing, Non-TD = Non-typically Developing; Percentages were calculated after removing 

missing individuals from the sample; We present maternal education here as a categorical variable, but because it is coded as 

ordinal, we elected to use it as a continuous variable in our analysis to avoid problems with model convergence 
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Table 2.2: Relative Risk Ratios of Language Development Trajectory by Neurodevelopmental Classification, Participants in Early 
Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk in Babies – Learning Early Signs (MARBLES)  

  Relative Risk Ratios and 95% Confidence Intervals 

 Total (ASD/Non-TD/TD) ASD vs TD ASD vs Non-TD Non-TD vs TD 

  Expressive Language (overall chi-square p value < 2.2e-16) 

High Growth (n=106) 106 (5/13/88) Referent Referent Referent 

Tracking (n=273) 273 (40/56/177) 3.7 (1.1, 12.3) 1.5 (0.4, 5.9) 2.4 (0.6, 10.6) 

Moderate Growth 
(n=34) 

34 (29/5/0) * 12.3 (1.9, 81.3) * 

Low Growth (n=80) 80 (40/22/18) 32.1 (7.7, 133.0) 3.5 (0.9, 13.5) 9.2 (0.7, 115.8) 

  Receptive Language (overall chi-square p value < 2.2e-16) 

High Growth (n=373) 373 (43/63/267) Referent Referent Referent 

Late Growth (n=120) 120 (71/33/16) 25.9 (12.8, 52.4) 2.8 (1.4, 5.5) 9.0 (2.5, 32.1) 

Footnote for Table 2.2: TD = Typically Developing, Non-TD = Non-typically Developing; n=114 for ASD, n=96 for non-TD, n=283 for 
TD; Multinomial logistic regression models with neurodevelopmental classification status as the main predictor and the trajectory 
classes as the outcome; All models were adjusted for child sex, maternal race (categorical), and maternal education (continuous, 
higher is more educated); * = because there were no TD individuals with that fell into the Moderate Growth trajectory class, those 
RRR were unable to be calculated 
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Table 2.3: Characteristics of Participants Included and Excluded from Analyses 

 
Included 
(N=493) 

Excluded 
(N=128) 

Overall 
(N=621) 

Child Gender    

  Female 216 (43.8%) 64 (54.7%) 280 (45.9%) 

  Male 277 (56.2%) 53 (45.3%) 330 (54.1%) 

  Missing 0  11  11  

Maternal Educational 

Attainment 
   

  Less than high school 14 (2.9%) 4 (5.8%) 18 (3.2%) 

  High school 

diploma/GED 
29 (5.9%) 7 (10.2%) 36 (6.4%) 

  Some college 182 (37.1%) 19 (27.5%) 201 (36.0%) 

  Bachelor’s degree 151 (30.8%) 20 (29.0%) 171 (30.6%) 

  Graduate or professional 

degree 
114 (23.3%) 19 (27.5%) 133 (23.8%) 

  Missing 3  59 62  

Homeownership    

  Rent 187 (39.5%) 31 (44.3%) 218 (40.1%) 

  Own 287 (60.5%) 39 (55.7%) 326 (59.9%) 

  Missing 19  58  77  



  

 

4
0

 

 
Included 

(N=493) 

Excluded 

(N=128) 

Overall 

(N=621) 

Neurodevelopmental 

Classification Status 
   

Typically Developing 283 (59.3%) 3 (33.3%) 286 (57.0%) 

Non-typically Developing 96 (18.7%) 3 (33.4%) 99 (19.7%) 

ASD 114 (22.0%) 3 (33.3%) 117 (23.3%) 

Missing 0 119 119 

Maternal Race/Ethnicity    

  Non-Hispanic White 264 (54.1%) 39 (52.7%) 303 (53.9%) 

  Black/African American 31 (6.4%) 8 (10.8%) 39 (6.9%) 

  Hispanic 100 (20.5%) 12 (16.2%) 112 (19.9%) 

  Other/Multiracial 93 (19.0%) 15 (20.3%) 108 (19.3%) 

  Missing 5 54 59 

Expressive language 

raw score (6 months) 
   

  Mean (SD) 6.32 (1.25) 6.33 (1.54) 6.32 (1.28) 

  Median [Min, Max] 6.00 [3.00, 12.0] 6.00 [3.00, 11.0] 6.00 [3.00, 12.0] 

  Missing 67  88  155  

Receptive language raw 

score (6 months) 
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Included 

(N=493) 

Excluded 

(N=128) 

Overall 

(N=621) 

  Mean (SD) 7.94 (1.51) 8.03 (1.93) 7.95 (1.55) 

  Median [Min, Max] 8.00 [2.00, 13.0] 8.00 [1.00, 11.0] 8.00 [1.00, 13.0] 

  Missing 67  88  155  

Expressive language 

raw score (12 months) 
   

  Mean (SD) 12.0 (2.60) 12.0 (2.91) 12.0 (2.62) 

  Median [Min, Max] 12.0 [5.00, 19.0] 12.0 [6.00, 17.0] 12.0 [5.00, 19.0] 

  Missing 29  91 120  

Receptive language raw 

score (12 months) 
   

  Mean (SD) 12.5 (2.04) 12.4 (2.49) 12.5 (2.07) 

  Median [Min, Max] 13.0 [5.00, 26.0] 13.0 [3.00, 16.0] 13.0 [3.00, 26.0] 

  Missing 29  91  120  

Expressive language 

raw score (24 months) 
   

  Mean (SD) 20.6 (4.83) 20.1 (5.45) 20.6 (4.85) 

  Median [Min, Max] 21.0 [6.00, 33.0] 20.0 [11.0, 28.0] 21.0 [6.00, 33.0] 

  Missing 182  116  298  
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Footnote for Table 2.3: To be removed from the analysis, an individual needed to be missing 3 or more MSEL scores for either 

expressive or receptive language or be missing a study classification (ASD, non-TD, or TD)  

 
Included 

(N=493) 

Excluded 

(N=128) 

Overall 

(N=621) 

Receptive language raw 

score (24 months) 
   

  Mean (SD) 23.3 (5.47) 19.6 (5.62) 23.2 (5.51) 

  Median [Min, Max] 25.0 [2.00, 33.0] 18.0 [13.0, 29.0] 25.0 [2.00, 33.0] 

  Missing 183  116  299  

Expressive language 

raw score (36 months) 
   

  Mean (SD) 31.0 (6.27) 26.8 (9.82) 31.0 (6.36) 

  Median [Min, Max] 32.0 [6.00, 45.0] 25.0 [12.0, 39.0] 32.0 [6.00, 45.0] 

  Missing 48  120  168  

Receptive language raw 

score (36 months) 
   

  Mean (SD) 30.5 (5.54) 26.5 (9.80) 30.4 (5.65) 

  Median [Min, Max] 31.0 [2.00, 46.0] 28.0 [5.00, 38.0] 31.0 [2.00, 46.0] 

  Missing 49 120  169  
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Table 2.4: Characteristics of Included Study Sample Before and After Imputing Missing Data  

  
Original Data 

(N=493) 
Imputed 
(N=493) 

Child Gender   

  Female 216 (43.8%) 216 (43.8%) 

  Male 277 (56.2%) 277 (56.2%) 

Maternal Educational 
Attainment 

 
 

  Less than high school 14 (2.9%) 14 (2.8%) 

  High school 

diploma/GED 
29 (5.9%) 29 (5.9%) 

  Some college 182 (37.1%) 184 (37.3%) 

  Bachelor’s degree 151 (30.8%) 151 (30.6%) 

  Graduate or professional 
degree 

114 (23.3%) 115 (23.3%) 

  Missing 3   

Homeownership   

  Rent 187 (39.5%) 194 (39.4%) 

  Own 287 (60.5%) 299 (60.6%) 

  Missing 19   

Maternal Race/Ethnicity   
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Original Data 

(N=493) 

Imputed 

(N=493) 

  Non-Hispanic White 264 (54.1%) 265 (53.8%) 

  Black/African American 31 (6.4%) 31 (6.3%) 

 Hispanic 100 (20.5%) 100 (20.3%) 

  Other/Multiracial 93 (19.0%) 97 (19.7%) 

  Missing 5  

Expressive language 

raw score (6 months) 
 

 

  Mean (SD) 6.32 (1.25) 6.27 (1.25) 

  Median [Min, Max] 6.00 [3.00, 12.0] 
6.00 [3.00, 

12.0] 

  Missing 67   

Receptive language raw 
score (6 months) 

 
 

  Mean (SD) 7.94 (1.51) 7.86 (1.54) 

  Median [Min, Max] 8.00 [2.00, 13.0] 
8.00 [2.00, 

13.0] 

  Missing 67   

Expressive language 

raw score (12 months) 
 

 

  Mean (SD) 12.0 (2.60) 12.0 (2.61) 
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Original Data 

(N=493) 

Imputed 

(N=493) 

  Median [Min, Max] 12.0 [5.00, 19.0] 
12.0 [5.00, 

19.0] 

  Missing 29   

Receptive language raw 

score (12 months) 
 

 

  Mean (SD) 12.5 (2.04) 12.5 (2.00) 

  Median [Min, Max] 13.0 [5.00, 26.0] 
13.0 [5.00, 

26.0] 

  Missing 29   

Expressive language 

raw score (24 months) 
 

 

  Mean (SD) 20.6 (4.83) 20.4 (4.93) 

  Median [Min, Max] 21.0 [6.00, 33.0] 
20.0 [6.00, 

33.0] 

  Missing 182   

Receptive language raw 

score (24 months) 
 

 

  Mean (SD) 23.3 (5.47) 22.9 (5.62) 

  Median [Min, Max] 25.0 [2.00, 33.0] 
25.0 [2.00, 

33.0] 

  Missing 183   
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Original Data 

(N=493) 

Imputed 

(N=493) 

Expressive language 

raw score (36 months) 
 

 

  Mean (SD) 31.0 (6.27) 31.1 (6.12) 

  Median [Min, Max] 32.0 [6.00, 45.0] 
32.0 [6.00, 

45.0] 

  Missing 48   

Receptive language raw 

score (36 months) 
 

 

  Mean (SD) 30.5 (5.54) 30.6 (5.43) 

  Median [Min, Max] 31.0 [2.00, 46.0] 
31.0 [2.00, 

46.0] 

  Missing 49  

Footnote for Table 2.4: To be removed from the analysis, an individual needed to be missing 3 or more MSEL scores for either 

expressive or receptive language or be missing a neurodevelopmental classification; Percentages were calculated after removing 

missing individuals from the sample; We present maternal education here as a categorical variable, but because it is coded as 

ordinal, we elected to use it as a continuous variable in our analysis to avoid problems with model convergence 
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Table 2.5: Measures of Model Fit for Expressive Language Latent Class Growth Analysis 

Number of 
classes 

Log-
likelihood SABIC BIC Entropy ICL 

1 -5440.39 10917.1 10955.19 1 10955.19 

2 -5127.54 10336.8 10422.5 0.915236* 10451.47 

3 -4979.2 10085.51 10218.82 0.844211 10303.2 

4 -4908.17 9988.841 10169.76* 0.851522 10271.24* 

5 -4887.5 9992.901 10221.43 0.788803 10389 

6 -4843.89* 9951.077* 10227.22 0.87692 10335.94 

7 -1.00E+09 2E+09 2E+09 1 2E+09 

Footnote for Table 2.5: Higher log-likelihood, lower SABIC (sample adjusted BIC), lower BIC (Bayesian Inclusion Criterion), higher 
entropy, and lower ICL (integrated classification likelihood) indicates an overall better fit; * indicates the best model based on the 
above criteria (single class will always have an entropy of 1 so we select the next highest entropy instead); we prioritized BIC and 
ICL based on the findings in Diallo et al., 2016 
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Table 2.6: Measures of Model Fit for Receptive Language Latent Class Growth Analysis  

Number of 
classes 

Log-
likelihood SABIC BIC Entropy ICL 

1 -5346.83 10729.97 10768.06 1 10768.06 

2 -5003.98 10089.68 10175.38 0.900346 10209.44 

3 -4860.16 9847.437 9980.746 0.95275* 10006.34 

4 -4658.26 9489.037 9669.955* 0.920754 9724.116* 

5 -1.00E+09 2E+09 2E+09 1 2E+09 

6 -4576.24* 9415.777* 9691.915 0.83438 9838.213 

7 -4581.78 9472.269 9796.017 0.911532 9880.888 

Footnote for Table 2.6: Higher log-likelihood, lower SABIC (sample adjusted BIC), lower BIC (Bayesian Inclusion Criterion), higher 
entropy, and lower ICL (integrated classification likelihood) indicates an overall better fit; * indicates the best model based on the 
above criteria (single class will always have an entropy of 1 so we select the next highest entropy instead); 5 and 6 class models 
failed to converge; we prioritized BIC and ICL based on the findings in Diallo et al., 2016; classes had <5% of the population in the 3 
and 4 class models, so we selected the next best fit model instead  
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Table 2.7: Characteristics of Study Population Stratified by Assigned Expressive Language Trajectory Classes 

  
High Growth 

(N=106) 

Tracking 

(N=273) 

Moderate Growth 

(N=34) 

Low Growth 

(N=80) 

Overall 

(N=493) 

Child Gender      

  Female 51 (48.1%) 128 (46.9%) 7 (20.6%) 30 (37.5%) 216 (43.8%) 

  Male 55 (51.9%) 145 (53.1%) 27 (79.4%) 50 (62.5%) 277 (56.2%) 

Maternal Educational 

Attainment 
     

  Less than high school 44 (41.5%) 82 (30.0%) 5 (14.7%) 20 (25.0%) 151 (30.6%) 

  High school 

diploma/GED 
30 (28.3%) 65 (23.8%) 8 (23.5%) 12 (15.0%) 115 (23.3%) 

  Some college 3 (2.8%) 17 (6.2%) 3 (8.8%) 6 (7.5%) 29 (5.9%) 

  Bachelor’s degree 2 (1.9%) 5 (1.8%) 3 (8.8%) 4 (5.0%) 14 (2.8%) 

  Graduate or professional 

degree 
27 (25.5%) 104 (38.1%) 15 (44.1%) 38 (47.5%) 184 (37.3%) 

Homeownership      

  Rent 35 (33.0%) 105 (38.5%) 19 (55.9%) 35 (43.8%) 194 (39.4%) 

  Own 71 (67.0%) 168 (61.5%) 15 (44.1%) 45 (56.3%) 299 (60.6%) 

Maternal Race/Ethnicity      

  Non-Hispanic White 60 (56.6%) 155 (56.8%) 14 (41.2%) 36 (45.0%) 265 (53.8%) 
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High Growth 

(N=106) 

Tracking 

(N=273) 

Moderate Growth 

(N=34) 

Low Growth 

(N=80) 

Overall 

(N=493) 

  Black/African American 6 (5.7%) 12 (4.4%) 4 (11.8%) 9 (11.3%) 31 (6.3%) 

  Hispanic 14 (13.2%) 56 (20.5%) 10 (29.4%) 20 (25.0%) 100 (20.3%) 

  Other/Multiracial 26 (24.5%) 50 (18.3%) 6 (17.6%) 15 (18.8%) 97 (19.7%) 

Expressive language 

raw score (6 months) 
     

  Mean (SD) 6.33 (1.34) 6.25 (1.14) 6.62 (1.71) 6.14 (1.25) 6.27 (1.25) 

  Median [Min, Max] 6.00 [3.00, 10.0] 
6.00 [4.00, 

12.0] 
6.00 [3.00, 11.0] 6.00 [3.00, 11.0] 

6.00 [3.00, 

12.0] 

Expressive language 

raw score (12 months) 
     

  Mean (SD) 13.0 (2.58) 12.0 (2.45) 11.3 (2.41) 11.0 (2.79) 12.0 (2.61) 

  Median [Min, Max] 13.0 [5.00, 18.0] 
12.0 [5.00, 

19.0] 
12.0 [6.00, 15.0] 11.5 [6.00, 15.0] 

12.0 [5.00, 

19.0] 

Expressive language 

raw score (24 months) 
     

  Mean (SD) 27.0 (2.74) 19.8 (2.80) 11.9 (3.47) 17.5 (3.17) 20.4 (4.93) 

  Median [Min, Max] 26.0 [21.0, 33.0] 
20.0 [6.00, 

26.0] 
12.0 [6.00, 19.0] 18.0 [11.0, 27.0] 

20.0 [6.00, 

33.0] 

Expressive language 

raw score (36 months) 
     

  Mean (SD) 36.8 (2.76) 32.6 (2.49) 16.7 (4.50) 24.3 (2.48) 31.1 (6.12) 
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High Growth 

(N=106) 

Tracking 

(N=273) 

Moderate Growth 

(N=34) 

Low Growth 

(N=80) 

Overall 

(N=493) 

  Median [Min, Max] 37.0 [31.0, 45.0] 
32.0 [26.0, 

42.0] 
18.0 [6.00, 23.0] 25.0 [18.0, 29.0] 

32.0 [6.00, 

45.0] 
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Table 2.8: Characteristics of Study Population Stratified by Assigned Receptive Language Trajectory Classes  

  
High Growth 

(N=373) 

Late Growth 

(N=120) 

Overall 

(N=493) 

Child Gender    

  Female 179 (48.0%) 37 (30.8%) 216 (43.8%) 

  Male 194 (52.0%) 83 (69.2%) 277 (56.2%) 

Maternal Educational 

Attainment 
   

  Less than high school 10 (2.7%) 4 (3.3%) 14 (2.8%) 

  High School/GED 18 (4.8%) 11 (9.2%) 29 (5.9%) 

  Some college 121 (32.4%) 63 (52.5%) 184 (37.3%) 

  Bachelor's degree 127 (34.0%) 24 (20.0%) 151 (30.6%) 

  Graduate or 
Professional degree 

97 (26.0%) 18 (15.0%) 115 (23.3%) 

Homeownership    

  Rent 127 (34.0%) 67 (55.8%) 194 (39.4%) 

  Own 246 (66.0%) 53 (44.2%) 299 (60.6%) 

Maternal 

Race/Ethnicity 
   

  Non-Hispanic White 212 (56.8%) 53 (44.2%) 265 (53.8%) 
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High Growth 

(N=373) 

Late Growth 

(N=120) 

Overall 

(N=493) 

  Black/African American 18 (4.8%) 13 (10.8%) 31 (6.3%) 

  Hispanic 67 (18.0%) 33 (27.5%) 100 (20.3%) 

  Other/Multiracial 76 (20.4%) 21 (17.5%) 97 (19.7%) 

Receptive language 

raw score (6 months) 
   

  Mean (SD) 7.95 (1.52) 7.59 (1.56) 7.86 (1.54) 

  Median [Min, Max] 8.00 [2.00, 13.0] 8.00 [3.00, 11.0] 8.00 [2.00, 13.0] 

Receptive language 

raw score (12 months) 
   

  Mean (SD) 12.8 (2.00) 11.6 (1.75) 12.5 (2.00) 

  Median [Min, Max] 13.0 [5.00, 26.0] 12.0 [7.00, 15.0] 13.0 [5.00, 26.0] 

Receptive language 

raw score (24 months) 
   

  Mean (SD) 25.6 (2.69) 14.4 (3.42) 22.9 (5.62) 

  Median [Min, Max] 26.0 [16.0, 33.0] 14.0 [2.00, 21.0] 25.0 [2.00, 33.0] 

Receptive language 

raw score (36 months) 
   

  Mean (SD) 32.4 (3.83) 25.1 (6.02) 30.6 (5.43) 

  Median [Min, Max] 32.0 [24.0, 46.0] 27.0 [2.00, 35.0] 31.0 [2.00, 46.0] 
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Table 2.9: Cross-classification of study population by assigned language trajectories 

Expressive Language 
Trajectories 

Receptive Language 
Trajectories 

 High Growth Late Growth 

High Growth 105 1 

Tracking 232 41 

Moderate Growth 3 31 

Low Growth 33 47 
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Table 2.10: Total number of children falling into trajectories based on Neurodevelopmental Classification 

Neurodevelopmental Classification 
Expressive Language 
Trajectories 

ASD Non-TD TD 

High Growth 5 13 88 
Tracking 40 56 177 
Moderate Growth 29 5 0 
Low Growth 40 22 18 
    
Receptive Language 
Trajectories 

   

High Growth 43 63 267 
Late Growth 71 33 16 
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Figure 2.1: Expressive Language Trajectories 

 

Footnotes for Figure 2.1: Bars indicate 95 percent confidence interval centered around the mean at each time point 
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Figure 2.2: Receptive Language Trajectories

 

Footnotes for Figure 2.2: Bars indicate 95 percent confidence interval centered around the mean at each time point 
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Figure 2.3: Proportions of trajectory class assignment for expressive language

 

Footnotes for Figure 2.3: Trend shows that those with a diagnosis of ASD or Non-TD are more likely to fall into Low and Moderate 

Growth compared to Tracking and High Growth 
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Figure 2.4: Proportions of trajectory class assignment for receptive language 

 

Footnotes for Figure 2.4: Trend shows that those with a diagnosis of ASD or Non-TD are more likely to fall into Late Growth 
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Figure 2.5: Distributions of MSEL Expressive and Receptive Language Raw Scores at 6, 12, 24, and 36 Months

 

Footnotes for Figure 2.5: Bars indicate 95 percent confidence intervals centered on mean 
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Figure 2.6: Scatterplots of MSEL Expressive vs Receptive Language Raw Scores at Each Time of Data Collection  

 

Footnote for Figure 2.6: Comparison of expressive and receptive language scores; disjoint scores would be present in the upper left 

and lower right corners; we observe a mostly linear relationship between the two scores 
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Chapter 3 - The Impact of Prenatal Phthalate Exposure on Language Development 

Trajectories in Siblings of Children with Autism  
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Abstract 

Background: Language development is a critical part of human development 

that unfolds across time. We aimed to examine how prenatal phthalate exposure affects 

early childhood language development, utilizing a robust longitudinal analysis 

methodology.  

Methods: Participants were drawn from the Early Autism Risk Longitudinal 

Investigation (EARLI) (n=251) and the Markers of Autism Risk in Babies – Learning 

Early Signs (MARBLES) (n=393) cohorts that recruited pregnant mothers who 

previously had a child with autism (ASD). Expressive and receptive language 

development was measured using the Mullen Scales of Early Learning (MSEL) at ages 

6,12, 24, and 36 months of age. A total of 14 phthalate metabolites were assessed 

using multiple first morning voids at each trimester of pregnancy. We used latent class 

growth analysis (LCGA) to determine language trajectories based on MSEL receptive or 

expressive language raw scores, prenatal phthalate exposure, cohort, child sex, 

maternal age, maternal race/ethnicity, homeownership, and maternal educational 

attainment.  

Results: We found 3 trajectories for both expressive and receptive language 

using both a one-step and two-step LCGA approach. The general direction of risk did 

not change between the one and two step approaches. Most phthalates were not 

statistically significant. Certain metabolites of di(2-ethylhexyl) phthalate decreased risk 

of falling into an abnormal trajectory for receptive language, and metabolites of di -

isodecyl phthalate decreased risk of falling into the Tracking trajectory for expressive 

language using the one-step approach. The metabolites of di-n-butyl phthalate 
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increased risk for falling into the Low Growth trajectory for expressive language using 

the one-step approach. 

Conclusion: Most of our phthalates were not statistically significant, though 

some trends were observed among low and high molecular weight phthalates. These 

trends were largely consistent with prior literature.  
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Introduction 

The establishment of language is an important milestone in early childhood 

development, as it plays a role in almost every aspect of daily life. Language 

development delay or impairment may continue into adulthood, and can contribute to 

atypical social and emotional development, poor academic performance, and increased 

risk for diagnosis with neurodevelopmental disorders (Beitchman & Brownlie, 2012; 

Howlin & Udwin, 2002; Irwin et al., 2002; Johnson et al., 1999; Roulstone et al., 2011; 

Snowling et al., 2006; Whitehouse et al., 2009). The causes of language delay are 

multifaceted and varied, with some common social factors including family history, child 

sex, maternal education, and home environment (28,187,188). There are also varied 

environmental chemical exposures that are suspected to be linked with language 

delays, including certain heavy metals (e.g. lead, mercury), polychlorinated biphenyls, 

polybrominated diphenyl ethers, phthalates, and organophosphate insecticides 

(74,189–192), although, for some of these exposures, both the direction and magnitude 

of causality with language have proven to be inconsistent.  

Certain biological systems are critical to early neurodevelopment and language 

development, such as the endocrine system. Environmental pollutants that disrupt this 

system, known as endocrine disrupting chemicals (EDCs) are therefore of vital interest, 

having a higher a priori suspicion of causing language impairment. As such, 

understanding environmental causes that may act as EDCs will not only provide a better 

understanding behind the etiology of language disorders, but also provide stakeholders 

with vital knowledge to make impactful changes to reduce overall risk. 
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Phthalates are a class of environmental exposures with known impacts on the 

endocrine system and neurodevelopment. They are plasticizers used in a wide variety 

of products, including cosmetics, food packaging, cleaning materials, and 

pharmaceuticals. Phthalates may impair neurodevelopment via several proposed 

pathophysiologies, including cell apoptosis (80,87), affecting neurotransmitter pathways 

(80,88), and altering gene expression and hormone levels (87,89). These effects are 

thought to be linked to potential neurodevelopmental issues, including disorders such as 

autism and ADHD (78,91,92) along with deficits in other neurological domains such as 

cognition (93,94), motor effects (95), and behavioral outcomes (96–98). 

Of the multiple dozens of phthalates used in products, they are grouped broadly 

by low molecular weight (LMW) and high molecular weight (HMW) (193). HMW 

phthalates, such as di-(2-ethylhexyl) phthalate (DEHP), di-isononyl phthalate (DiNP), 

and di-isodecyl phthalate (DiDP) are typically used to add flexibility to polyvinyl chloride 

plastic (PVC) and are used in plastic tubing and food packaging. LMW ph thalates, such 

as diethyl phthalate (DEP), dimethyl phthalate (DMP) and dibutyl phthalate (DBP) tend 

to be used as solvents, and are more present in household products such as adhesives 

and cosmetics (193,194). The difference in metabolism of the different types of 

phthalates are thought to result in differing biological pathways. HMW phthalates tend to 

form oxidized metabolites, while LMW phthalates tend to form monoesters. These 

monoesters are theorized to be more relevant to androgen insufficiency (193). However, 

toxicity profiles can vary between various phthalates, and not all phthalates have been 

thoroughly investigated for their mechanisms of action.  
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Phthalates have been studied in relation to language impairment, including both 

HMW and LMW phthalate groups. Results of impacts on language have been 

inconsistent between molecular weight classes and individual phthalates.  

Findings of LMW phthalates (as a class) and language vary widely to include 

increased and decreased risk (protective associations). One study found increased risk 

of language impairment for all LMW phthalates examined (106), three studies found 

increased or decreased risk depending on the individual phthalate compound examined 

(74,107,108), and one study found protective associations for all LMW phthalates 

examined (97). Olesen et al. found various results depending on the method of 

language measurement, with increased risk for complexity scores on the MacArthur-

Bates Communicative Development Inventories for all LMW phthalates, but individual 

LMW phthalates had increased or decreased risk for vocabulary scores on the 

MacArthur-Bates Communicative Development Inventories. In addition, Olesen found 

sex differences, where males generally exhibited risk associations between LMW 

phthalates in that study, while females largely exhibited associations that leaned more 

protective, though none reached statistical significance, for both measures of language 

(105). 

For HMW phthalates, the direction of association has been more consistent with 

increased risk across several studies, suggesting that HMW phthalates may be more 

harmful to the developing nervous system, although results were still dependent on sex 

and the language measurement tool. For instance, Bornehag et al., Hyland et al, and 

Polanska et al., all found increased risk for all HMW phthalates observed (74,106,108). 

Olesen et al. found increased risk in males for both vocabulary and complexity with 
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HMW phthalates, but females had a decreased risk, except for the metabolite mEHP 

which had an increased risk (105). Likewise, Huang et al. found decreased risk for all 

HMW phthalates when examining verbal IQ, but an increased risk when examining 

verbal comprehension index on the Wechsler Intelligence Scale for Children -IV (103).  

Possible reasons for the high variability in findings may reflect true nuance where 

impairment only follows from exposure to a particular phthalate compound, pertains to 

only a certain subtle attribute of language that is only detectable by certain 

psychometric tests, or is only evident in one sex. Alternately, heterogenous findings 

may be influenced by errors such as exposure misclassification, precision or sampling 

error (particularly for those studies with smaller sample sizes), and confounding. These 

studies of phthalates and language generally excelled in prospective designs where 

phthalates were primarily measured via biomarkers and used psychometric tests to 

measure language development, but only examined a single time point during 

development. One weakness that has been noted in prior studies involve the possibility 

of exposure misclassification, perhaps due to measurements of phthalate exposures at 

a single point during development (97,107,108), which may result in no association 

being observed between phthalate exposure and delayed language development. 

To clarify the possibility that certain phthalates, and phthalate molecular classes, 

may exert deleterious impacts on language, we conducted a study based on data 

collected from two autism sibling cohorts. Phthalates were measured using urinary 

biomarkers including more than one point of collection during pregnancy. We utilized 

latent class growth analysis (LCGA) to capture different trajectories of language 

acquisition measured 4 times in early childhood. We examined the association of 15 
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prenatal phthalate exposures and their potential impact on language development 

trajectories and examined whether results differed by child sex. 

Methods 

Population 

We included individuals in the Early Autism Risk Longitudinal Investigation 

(EARLI) and the Markers of Autism Risk in Babies – Learning Early Signs (MARBLES) 

studies (173,174). Both studies recruited pregnant women who already had a child with 

a diagnosis of ASD or whose fathers who had a previous biological child with ASD. Both 

the mother and the expected child were followed longitudinally. EARLI recruited from 

several sites, spanning across northeast Maryland, southeast Pennsylvania, and 

northern California, while MARBLES recruited primarily from northern California. 

Children in EARLI were born between 2009 and 2013, while children in MARBLES were 

born between 2006 and 2023. Demographic information was obtained via in-person 

interviews and questionnaires. 

Language Development and Neurodevelopment Measurement 

The Mullen Scales of Early Learning (MSEL, 20) was used to assess language 

development at 6, 12, 24, and 36 months of age. The MSEL is a standardized 

psychometric test that is used to measure cognitive development in children ages 3 to 

60 months (175). Trained staff administered the MSEL in person at each of the time 

points above for both cohorts, having the child complete MSEL tasks and grading them 

based on tasks completed. The MSEL generates five subscores (gross motor, fine 

motor, expressive language, receptive language, and visual reception). We used 
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expressive language and receptive language raw subscores to generate our language 

development trajectories. Both expressive and receptive language involve the ability to 

process visual, auditory, and written language, though in different ways. Expressive 

language involves the ability to communicate ideas and thoughts through the use of 

words and gestures to convey messages accurately and appropriately to others. 

Receptive language involves the ability to understand and process the meaning of 

language directed towards an individual. At the 36 month visit, children were assigned a 

neurodevelopmental classification from licensed clinical psychologists using the Autism 

Diagnostic Observation Schedules (ADOS, 19). The ADOS, together with MSEL 

composite standardized scores and clinical best estimate of an ASD diagnosis, were 

used to categorize study children as meeting criteria for autism (ASD), non -typical 

development (non-TD), and typical development (TD) based on a previously reported 

algorithm (177). 

Phthalate Measurements 

 Mothers in EARLI were instructed to provide up to two first morning void (FMV) 

urine samples during their 1st, 2nd, or 3rd trimester. Further details on the collection and 

analysis for the EARLI phthalate metabolites are detailed in a previous paper (195). For 

MARBLES participants, mothers were instructed to collect three FMVs and one 24-hour 

urine sample in each trimester. Further details on the collection and analysis for the 

MARBLES phthalate metabolites are detailed in a previous paper (196). A total of 14 

metabolites were quantified in both studies: monoethyl phthalate (mEP2), mono-isobutyl 

phthalate (miBP), monohydroxy-isobutyl phthalate (MHiBP), mono-n-butyl phthalate 

(mBP2), monohydroxy-n-butyl phthalate (MHBP), monobenzyl phthalate (mBzP2), 
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mono(2-ethylhexyl) phthalate (mEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate 

(mEHHP), mono(2-ethyl-5-oxohexyl) phthalate (mEOHP), mono(2-ethyl-5-

carboxypentyl) phthalate (mECPP), mono(3-carboxypropyl) phthalate (mCPP), mono-

isononyl phthalate (mNP2), mono-carboxyisooctyl phthalate (mCOP), and mono-

carboxyisononyl phthalate (mCNP). We also constructed ΣDEHP due to the high 

correlation between the metabolites of DEHP (mEHP, mEHHP, mEOHP, and mECPP) 

by using the molar sum of those metabolites: we divided their concentrations by their 

molecular weight and then summed the results. 

To control for urinary dilution, we used two measurements. For EARLI, creatinine 

concentration was collected, and for MARBLES, specific gravity was collected. For each 

measurement, a site-specific Z-score was created and included in all models along with 

the raw unadjusted reported phthalate concentrations. Creatinine concentrations were 

log-base2 transformed prior to the calculations of Z-scores. This is consistent with 

methods described in Chiu et al. (197). 

 For phthalate concentrations below the limit of detection (LOD), we used 

machine-observed concentrations without substitution or transformation. Because some 

women had multiple phthalate measurements, we created an average exposure for 

each individual for each phthalate metabolite by summing all phthalate measurements 

taken, then dividing by the total number of samples taken during the prenatal period. 

Because MARBLES also had pooled samples that used mu ltiple samples for a single 

phthalate concentration, we generated a weighted average metabolite concen tration for 

that mother using the following formula: 𝐶𝑎𝑣𝑔 =
𝐶𝑖+𝐶𝑝𝑜𝑜𝑙 ∗𝑁𝑝𝑜𝑜𝑙

𝑁𝑝𝑜𝑜𝑙+𝑁𝑖
, where 𝐶𝑖 is the 
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concentration for any individual sample (i.e. non-pooled samples), 𝐶𝑝𝑜𝑜𝑙 is the 

concentration of the pooled sample, 𝑁𝑝𝑜𝑜𝑙  is the number of samples used in the pool, 

and 𝑁𝑖 is the number of individual samples. For individuals that did not have pooled 

samples, we averaged the individual samples together to obtain the average metabolite 

concentration. To best model phthalates numerically in relation to language scores, we 

examined the AIC for simple models using phthalates and the expressive and receptive 

language scores at 36 months (Supplemental Table 2). We found that transformations 

of phthalates were not necessary. However, we winsorized phthalate metabolite 

measures at the 99th percentile to reduce the effects of extreme measurements. We 

divided all phthalates by their interquartile range for all statistical analyses. 

Statistical Analysis 

A total of 621 individuals were in the initial study populations. We excluded 

persons missing the study-derived diagnostic classification (n=119) or for whom we 

weren’t confident in their language trajectories (those with 1 or no recorded language 

scores out of the 4 data collections points, n=98), or who were missing all phthalate 

measurements (n=209), yielding a sample size of 362 individuals (Table 3.2). The most 

frequently missing variables were expressive and receptive language scores at 24 

months: 39.8% and 40.1% missing, respectively (Table 3.3). A total of 209 persons 

were missing phthalate values, and when one was missing, the entire suite of phthalate 

metabolites was missing. A smaller number were missing other covariates, including 

expressive and receptive Mullen scores at other time points (15.7% for 6 months, 6.1% 

for 12 months, and 0.8 and 1.1% for 36 months respectively), maternal educational 

attainment (0.3%), homeownership (3.5%), and maternal race (1.0%). To include 



  

73 
 

persons missing covariates or 1 or 2 Mullen scores, we used multiple imputation by 

chained equations using the R package mice to impute missing values for variables 

listed above, including Mullen scores (178). Imputed distribution of these variables can 

be seen in Table 3.3. 

We used a latent class growth analysis (LCGA) approach to analyze the 

relationship between individual phthalates and language development trajectories, 

separately modeling expressive and receptive language. We used LCGA to both create 

language development trajectories that best fit the data and to assign children to the 

trajectory most appropriate to their language development. LCGA is a method to identify 

unmeasured (or latent) class membership using observed variables, with the goal of 

creating classes (or trajectories) so that individuals within a class are more similar than 

individuals between classes (179,180). We performed two types of LCGA analysis: a 

two-step and a one-step process.  

Our primary analyses consisted of a two-step LCGA approach, where we first 

assigned language trajectories, and then in a separate model regressed these on 

phthalate exposures. We ran several LCGA models with different numbers of classes, 

ranging from 2 classes to 7 classes, using only Mullen scores as our inputs. We 

selected the best number of classes using the following measures of fitness: Bayesian 

information criteria (BIC), sample size adjusted BIC (SABIC), integrated complete 

likelihood (ICL), and entropy, selecting the model that had the best measures of fit (i.e. 

low BIC, ICL, and SABIC with low entropy [>0.8]). We prioritized using the BIC based on 

recommendations observed in Diallo et al. (181), along with two additional 

considerations: we favored models with fewer classes to aid in interpretability, and we 
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avoided models with low number of individuals in a class (<10% of the study 

population). After individuals were assigned, a multinomial logistic regression was 

performed using the assigned classes as the outcome and phthalate exposures as our 

main predictors, along with site-specific Z-score for urine dilution. We adjusted all 

models for cohort (EARLI vs. MARBLES) and also accounted for the following a priori 

potential predictors of language: child sex, maternal age, maternal race/ethnicity, 

maternal education, and home-ownership (as proxies for socioeconomic status) (27–

30). 

In a sensitivity analysis, we used a one-step LCGA, where the language 

trajectories were established in one model simultaneously with the same covariates as 

above and phthalate exposures. The inclusion of these predictors in the LCGA 

algorithm holds several advantages: misclassification of individuals into the wrong 

trajectory class is irrelevant (198), measurement errors of trajectory membership are 

incorporated into the analysis (198), and the inclusion of covariates can improve class 

separation and reduces standard errors (199). We ran several LCGA models with 

different numbers of classes, ranging from 2 classes to 5 classes, using the same 

method described above to select the optimum number of trajectory classes.  

For both the two-step and one-step processes, we assessed the coefficients and 

confidence intervals for each phthalate metabolite as a predictor of language trajectory 

class. Following each process, each person was assigned a probability of belonging to 

each trajectory class (separately for two and one step), and we assigned each person to 

their highest probability class for tables and figures. We selected class names based on 

the overall shape of the class in the plot, guided by designations used in prior literature.  
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All analyses were conducted using Rstudio version 2022.02.1 Build 461 with R 

Version 4.1.3 “One Push-Up”. The LCGA was conducted using the lcmm package 

(182). 

Results 

Males had slightly lower MSEL raw scores than females at 36 months of age 

(Table 3.1). Children whose mothers were 30 or younger or who did not receive at least 

a college degree had lower MSEL raw scores than children who had mothers older than 

30 or who received at least a college degree. Children of African American or Hispanic 

mothers also had lower MSEL raw scores than children from non-Hispanic white or 

multiracial mothers. Children whose parents rented had lower MSEL scores than 

children of homeowners. There was no appreciable difference in MSEL scores between 

birth seasons.  

There was a tendency for many of the phthalate metabolites to be higher among 

females (Supplemental Table 1). Many of the HMW phthalates were increasingly higher 

for older maternal ages and higher levels of maternal education. Most phthalates did not 

seem consistently patterned by race, except for mEP2 and mCOP where concentrations 

were several-fold higher among mothers who identified as African American.  

With our two-step LCGA approach, for expressive language, 3 trajectory classes 

were optimal for capturing patterns in language development. These trajectory classes 

were named High Growth, Tracking, and Low Growth (Figure 3.1). None of the 

phthalates were statistically significant for associations with expressive language 

trajectories (Table 3.4). In general, we observed that most metabolites of LMW 
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phthalates saw an increase in the likelihood for falling into the Tracking and Low Growth 

versus the more optimal High Growth trajectory categories. DBP was the LMW 

phthalate with the strongest risk ratios with the suboptimal trajectories. Higher levels of 

the HMW butyl benzyl phthalate (BzBP) exhibited increased likelihood of being in the 

suboptimal expressive language trajectories. Other HMW phthalates saw a decrease in 

likelihood of falling into Tracking and Low Growth categories (e.g. protective direction), 

and this pattern was most notable for metabolites of di(2-ethylhexyl) phthalate.  

 With our two-step LCGA approach, for receptive language, 3 trajectory classes 

were optimal for capturing patterns in language development, which we named High 

Growth, Tracking, and Late Growth (Figure 3.2). Metabolites of LMW phthalates 

generally had near-null associations, except for those of DEP, which exhibited 

somewhat elevated associations with the Tracking and Low Growth trajectories (but 

without being statistically significant). Associations with HMW phthalate metabolites 

were also largely near-null, except for BzBP, which exhibited elevated (risk) 

associations, and DEHP, for which several metabolites exhibited statistically significant 

protective associations for both Tracking and Late Growth trajectories.  

We examined whether sex was a modifier by including a sex by phthalate 

metabolite interaction term. For expressive language, based on likelihood ratio testing, 

sex did not appear to be a modifier for any phthalate metabolites (Table 3.11). For 

receptive language, sex was suggestive as a possible effect modifier for the metabolites 

of DiNP (mCOP and mNP2) and was most notable and consistent for metabolites of 

DEHP (Table 3.12). Especially for the Late Growth Trajectory, the association with 

these metabolites exerted a stronger protective effect among females versus males. 
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In sensitivity analyses, we also conducted a one-step LCGA. Like our two-step 

approach, we used goodness-of-fit measures to determine the total number of classes 

from between 1 and 5 total classes (Tables 3.9 and 3.10). While goodness-of-fit 

measures sometimes indicated more classes, an examination of the distribution of 

population showed that at least one class would have fewer than 10 percent of the 

study population. In general, the one-step and two-step class distributions were broadly 

overlapping, with only a few individuals being classified as a different class (Table 3.9 

and 3.12).  

With our one-step LCGA approach, for expressive language, 3 trajectory classes 

were found to be optimal for all phthalates, which we named High Growth, Tracking, 

and Low Growth. The shape of the trajectories generally followed those observed in our 

two-step approach (Figures 3.3 to 3.16). In general, trends observed in the two-step 

process were observed in the one-step approach. However, two metabolites were 

statistically significant where they were not in the two-step process.  

With our one-step LCGA approach, for receptive language, 3 trajectory classes 

were found to be optimal for all metabolites, which we labeled as High Growth, 

Tracking, and Late Growth. The shape of the trajectories generally followed those 

observed in our two-step approach (Figures 3.17 to 3.31). In general, trends observed 

in the two-step process were observed in the one-step approach.  

Discussion 

 The goal of this study was to characterize language development trajectories in 

two cohorts of children with enhanced familial risk for autism and evaluate if prenatal 
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phthalate exposure was associated with delayed or abnormal language development. 

Results were mixed depending on the individual phthalate. Most phthalates, whether 

HMW or LMW, were not associated with impaired language trajectories. The LMW 

phthalates DBP and DEP exhibited a trend toward impaired expressive language and 

DEP with impaired receptive language. Among the HMW phthalates, BzBP exhibited a 

trend with suboptimal language development. Metabolites of the HMW DiDP, DiNP, 

DEHP, and the metabolite mCPP consistently exhibited a trend towards protective 

effects on both expressive and receptive language.  

While most phthalate exposures were consistent with the direction of their risk 

between the various trajectory classes, there were a handful of instances where a 

metabolite was protective for one class but raised risk or had a null effect for another 

class. For example, in our two-step approach for expressive language, miBP and mCNP 

saw a decrease in risk for belonging to the Low Growth class but a null effect for 

belonging to the Tracking class. This may indicate a true difference between the risk of 

belonging to those two trajectories. It may also be possible that in this sample which is 

enhanced for genetic liability for neurodevelopmental disorders generally and autism, 

the action of phthalates differs from an unselected population. We also observed that 

certain phthalates were heightened in specific populations (e.g., mEP2 in African 

Americans were significantly higher compared to other races). This may be due to the 

relatively small sample size of the categories, or it may indicate a true difference in 

phthalate distribution based on those categories.  

Multiple testing is of particular concern in our study, due to the multiple tests that 

needed to be performed; we examined a total of 15 metabolites across two different 
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facets of language using two separate methods. In addition, some of the groups had a 

small number of individuals, despite our efforts to choose classes that had greater than 

10 percent of the total study population. Because of these two factors, it is possible that 

we found false negatives in our analysis; that is, the fact that we did not find many 

statistically significant associations does not mean that phthalates are not without risk. It 

is possible that any given phthalate (or other endocrine disrupting exposure) could truly 

support a higher uptake of language skills and decrease the risk of falling into a less 

optimal language development trajectory. Yet this hypothesis is not consistent with prior 

literature, which primarily shows that phthalate exposure leads to language 

development impairments and other deleterious aspects of neurodevelopment, and so 

these results should not be taken to indicate that some phthalates support 

neurodevelopment.  

A strength of our approach over most previous publications was the use of 

biomarkers collected at more than one time period, allowing us to obtain a more 

accurate representation of phthalate exposure during the entire pregnancy. The areas 

of the brain that are most likely related to language appear to develop during the second 

and third trimesters (200,201), and we collected exposure data during those time 

periods. However, no postnatal samples were collected, which reduces our ability to 

determine whether phthalate exposure that occurred following birth may have impacted 

language development. Because some phthalate exposures arise from behavioral 

patterns that are relatively stable over time, prenatal exposure may, for some 

phthalates, serve as a proxy of phthalate exposure following birth, but this is imperfect 

and with unknown degrees of error. In addition, phthalate metabolites tend to have short 
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half-lives, in the span of hours, which may limit our ability to determine if the levels of 

metabolites measured truly reflect actual phthalate exposure (202,203).  

We compared phthalate measurements in our study to the National Health and 

Nutrition Examination Survey (NHANES) laboratory data, combining the reported data 

from the 2011 to 2012 and 2013 to 2014 reports (n= 5171). We used a two-sided Wilcox 

Rank Sum test to assess whether the phthalate measures significantly differed from 

each other. As seen in Table 3.13, we found that levels of nearly all phthalates in our 

study were higher than levels found in NHANES. There may be several explanations for 

these discrepancies. The population in our study is not nationally representative, but 

rather concentrated around a handful of states. While we did not examine statewide 

averages, it may be possible that the states our participants resided in have generally 

higher phthalate levels than the national average. Furthermore, because our population 

had higher concentrations of phthalates than a nationally representative sample, there 

may be a possibility that the effects observed in this study may not be as pronounced in 

a more generalizable population. 

Di-n-butyl phthalate, or DBP, is one of the more well-studied phthalates. A LMW 

phthalate, it’s commonly used as a plasticizer and can be found in shower curtains, 

raincoats, food wraps, bowls, car interiors, vinyl fabrics, floor tiles, and other products 

(204). We found that its metabolites tended to increase the risk of falling into a 

suboptimal language trajectory for expressive language and decrease the risk of falling 

into a suboptimal language trajectory for receptive language. This is consistent with 

prior studies, which show both an increase and decrease in risk depending on the 

specific measure of language used. Bornehag and Hyland both found that a DBP 
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metabolite resulted in increased risk at language delays, while Olesen found that it 

largely increased risk, though it decreased risk for girls (74,105,106). Gascon, on the 

other hand, found that it improved language development (97). However, results from 

these studies did not meet statistical significance, much like our own. 

Di-ethyl phthalate, or DEP, is a LMW phthalate commonly found in plastics, 

personal care products, industrial materials (e.g. dyes, rocket propellant, sealants, and 

lubricants), and medical products (83). We found that its metabolite was linked with 

higher risk of falling into an abnormal language trajectory for both expressive and 

receptive language. This is consistent with some prior studies that have examined DEP. 

Olesen, Miodovnik, and Ramos all found that a DEP metabolite increased risk for 

various measures of language ability (105,205,206). However, some studies have found 

a protective effect, such as Bornehag, Gascon, and Polanska (74,97,108). However, 

just like our results, none of these studies achieved statistical significance.  

Butyl benzyl phthalate, or BzBP, is a HMW phthalate that is most commonly 

found in toys, bag, gloves, and plastic tubing in order to improve flexibility and make 

such products soft and malleable (207). We found that its metabolite increased the risk 

of belonging to an abnormal language trajectory for expressive language. For receptive 

language, it increased the risk of falling into the Late Growth trajectory. Our results are 

fairly consistent with prior literature. Bornehag, Hyland, and Polanska all similarly found 

increased risk for various measures of language (74,106,108). However, Olesen found 

increased risk for males, but decreased risk for females, and Gascon found decreased 

risk (97,105). None of the above studies reached statistical significance, however.  
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Di(2-ethylhexyl) phthalate, or DEHP, is also one of the more well-studied 

phthalates. A HMW phthalate, it’s commonly found in medical devices such as medical 

tubing and catheters, along with soft plastic products like toys and infant products (82). 

We found that its metabolites tended to decrease the risk of falling into a suboptimal 

language trajectory for both expressive and receptive language. This is inconsistent with 

most other studies that have examined this phthalate and its metabolites. Bornehag, 

Hyland, and Polanska all found increased risk for language delays (74,106,108). Olesen 

and Huang both found increased risk in some instances (Olesen for males only, Huang 

for Verbal Comprehension on the Wechsler Intelligence Scale for Children -IV), with 

decreased risk in others (Olesen for females only, Huang for Wechsler Preschool and 

Primary Scale of Intelligence-Revised Verbal IQ) (103,105). Most of the studies above 

did not meet statistical significance, save for mEOHP in Huang’s study for increased 

risk for lower verbal comprehension. 

Most phthalates in prior studies did not reach statistical significance, much like 

our study. Of the studies that did find significance, Huang found that miBP, a metabolite 

of di-isobutyl phthalate (DiBP), and mEOHP, a metabolite of DEHP, were statistically 

significant, significantly lowering scores on the Wechsler Intelligence Scale for Children -

IV Verbal Comprehension Index (103). However, it should be noted that they did not 

examine prenatal exposure, but instead children who were exposed to products that 

were tainted by DEHP between 3 and 12 years of age. Olesen found several statistically 

significant results, all of which increased risk in males for either the MacArthur-Bates 

Communicative Development Inventories Vocabulary Scores or Complexity Scores 

(105). These included the metabolites of DEHP, metabolites of DEP, and metabolites of 
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BzBP. Bornehag et al. found that metabolites of DBP and BzBP were associated with 

higher risk of language delay, though other phthalates examined returned null results 

(74). However, they only examined a single time point and used a method of measuring 

language development that is noticeably unique, examining number of words known 

rather than utilizing a psychometric test. Finally, Ramos found some statistically 

significant results in their path analysis, with organophosphates being associated with 

lower communication and expressive language in both parent and teacher reported 

models (206).  

Loftus et al. used a pregnancy cohort to examine the effects of phthalate 

exposure on different neurodevelopmental outcomes. Uniquely, they utilized weighted 

quantile sum (WQS) regression as their statistical method. While this allowed for 

examination of phthalate mixtures, there are some limitations to WQS regression. Loftus 

et al. noted that the WQS regression can’t account for “relative toxicity of mixture 

components”; in other words, they were unable to determine individual risk for each of 

the phthalates used in the mixture. In addition, WQS regression may have lower 

accuracy with highly correlated exposures; depending on the specific metabolites 

analyzed, correlation may be high enough that diminished accuracy may be of concern 

(208).  

We explored the possibility of sex modification via the inclusion of an interaction 

term of phthalate metabolite and child sex, due to the possibility that these EDCs may 

be affecting each sex differently. A prior review found that there was inconsistent 

evidence of sex modification between prenatal phthalate exposure and child language 

development (209). We found mixed results for different phthalate metabolites. While 
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we found no evidence of sex modification for expressive language for any metabolite, 

for receptive language, sex was a suggestive effect modifier for the metabolites mCOP, 

mNP2, mEHHP, and mEHP, and a significant effect modifier for the metabolite mECPP 

(Tables 3.13 and 3.14). More specifically, when examining the risk ratios, we find that 

males generally have a higher risk of belonging in the Tracking trajectory compared to 

females when exposed to higher concentrations of metabolites of DEHP (i.e. mEHHP, 

mEHP, and mECPP) but have a lower risk of belonging in the Tracking trajectory 

compared to females for the metabolites of DiNP (i.e. mCOP, mNP2). Our results with 

DEHP are consistent with the results found in Olesen et al., where males had increased 

risk, some being statistically significant, when compared to females (105). However, 

there have been no prior studies that have examined sex differences for DiNP 

metabolites. These results suggests that certain phthalates and their metabolites may 

have a differential impact based on sex, although the specific pathophysiology is 

unclear. It may be possible that the increased risk in males may be due to phthalates 

disrupting the development of androgen-dependent structures by affecting testosterone 

synthesis (210). There is also evidence that suggests that certain phthalates act as anti-

estrogens and anti-androgens, with DEP, DEHP, DiBP, and DBP acting as anti-

androgen, and DBP and DEHP acting as anti-estrogens (211). These same phthalates 

can also act as xenobiotics, activating estrogen and androgen receptors, with DEP, 

DEHP, DiBP, DiNP, and DBP activating estrogen receptors, and DBP and DEHP 

activating androgen receptors (211). This behavior may help to explain why DiNP 

results the increase in risk we observed in females compared to males; the activation of 

estrogen receptors may be influencing neurodevelopment, resulting in an increased risk 
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of language impairment. Further studies should focus on examining these sex 

differences and potentially explore further routes or biological pathways that may 

explain these differences. 

Our results examining sex differences may intersect with known sex differences 

in language within children with autism. Some studies have indicated a sex difference, 

with some indicating that girls have worse language skills than boys (212–214), while 

others indicate the reverse (215,216). Our results indicated that prenatal exposure to 

certain phthalates may decrease the risk of females of falling into an abnormal language 

trajectory compared to males, while exposure to another may increase that risk. This 

may help to explain the disparate results from prior literature, namely that the 

differences observed may be caused by differences in androgen or estrogen levels 

during development. 

Strengths of our study include the use of language development trajectories, 

rather than single time point outcomes, which allowed for a more detailed and accurate 

examination of how neurodevelopmental outcome classification affects language 

development. In addition, the use of repeated measurements reduced the possibility of 

outcome misclassification, as there are multiple points in time where the outcome is 

assessed, reducing the possibility of incorrectly assigning an individual to a wrong 

trajectory class. We used a total of four time points, giving us a robust amount of data to 

use to construct our trajectories classes. Second, the use of cohorts which prospectively 

follow siblings of children with autism allowed for a greater ability to detect abnormal  

language development trajectories that may be less common in unselected cohorts. 
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These cohorts have a heightened prevalence for neurodevelopmental delays compared 

to the general population. 

Because all children in our study have an older sibling with autism, our results 

may not be applicable to the general population. In addition, while the MSEL is 

considered to be a suitable psychometric test for measuring expressive and receptive 

language (185) and has been shown to have good construct validity (186), language is 

a complex phenotype that develops throughout a child’s early development period. Our 

analysis is limited to the facets of language development that the MSEL measures: 

namely expressive and receptive language. Future research should explore other facets 

of language development, such as vocabulary, grammatical development, or semantics. 

Our analysis was limited to the first 36 months of age, so we are unable to extrapolate 

language trajectories after this period. Due to the nature of LCGA analysis, our results 

are sensitive to the number of classes selected and our total sample size. While our 

sample size is sufficiently large enough to utilize LCGA, selecting for a different number 

of classes or changing the sample size may alter the results. However, we are confident 

that the overall direction of effect would remain consistent between various class 

choices. 

In conclusion, we explored how prenatal exposure to phthalates influences 

language development trajectories and found that most low molecular weight phthalates 

increased risk and most high molecular weight phthalates decreased risk for belonging 

to abnormal language trajectories, though most were not statistically significant. In 

addition, we found evidence that sex may be acting as a modifier for receptive 

language. While our study may not be generalizable due to the nature of the cohorts 
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used, our use of multiple exposure and outcome measures, along with the use of LCGA 

to explore trajectory growth, are considerable advantages to our study. Future studies 

should continue to explore potential associations, with an emphasis on exploring 

potential sex modification and mixture effects.  
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Tables and Figures 

Table 3.1: Mean and Standard Deviation of 36 Month Mullen Scores for Included Population by Child Characteristics 

 

Expressive 
language raw 

score (36 
months) 

Receptive 
language raw 

score (36 months) 

Cohort   
MARBLES 

(N=203) 30.9 (6.31) 30.3 (5.63) 

EARLI (N=159) 31.5 (5.86) 31.0 (4.80) 

Child Sex   

Female (N=156) 32.2 (4.99) 31.6 (4.19) 

Male (N=206) 30.3 (6.76) 30.0 (5.89) 

Maternal age   

<30 years (N=70) 29.8 (6.00) 29.7 (4.56) 

31 to 35 years 
(N=142) 

31.5 (6.15) 30.7 (5.77) 

36 to 40 years 
(N=104) 

31.1 (5.82) 31.1 (4.85) 
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>40 years (N=49) 32.1 (6.72) 31.1 (5.65) 

Maternal 
Race/Ethnicity 

  

Non-Hispanic 
White (N=203) 

31.7 (6.02) 31.1 (5.34) 

Black/African 
American (N=24) 

30.4 (6.09) 29.9 (4.09) 

Hispanic (N=68) 30.0 (5.95) 28.9 (5.39) 

Other/Multiracial 
(N=67) 

31.0 (6.56) 31.5 (5.05) 

Maternal 
Educational 
Attainment 

 

 

High School/GED 
or Less (N=32) 

29.0 (6.42) 28.3 (4.74) 

Some college 
(N=128) 

30.2 (6.03) 29.7 (5.25) 

Bachelor's degree 
(N=123) 

32.2 (5.55) 31.5 (5.11) 

Graduate or 
Professional 

degree (N=79) 
31.8 (6.65) 32.0 (5.27) 
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Homeownership   

Rent (N=131) 30.3 (6.76) 29.8 (5.83) 

Own (N=231) 31.6 (5.70) 31.2 (4.89) 

Birth Season   

Spring (n=71) 31.3 (5.36) 30.4 (4.69) 

Summer (n=111) 30.6 (6.64) 29.9 (5.78) 

Fall (n=94) 31.8 (6.42) 31.6 (5.32) 

Winter (n=86) 30.9 (5.69) 30.8 (4.95) 

Overall (N=362) 31.1 (6.12) 30.7 (5.28) 

Footnotes for Table 3.1: Mean and standard deviations were calculated after removing missing values  



  

 
 

9
1

 

Table 3.2: Comparison of characteristics of included versus excluded individuals 

  
Included 

(N=378) 

Excluded 

(N=259) 

Overall 

(N=621) 

Child Sex    

  Female 156 (43.1%) 124 (50.0%) 280 (45.9%) 

  Male 206 (56.9%) 124 (50.0%) 330 (54.1%) 

  Missing 0 11 11 

Maternal Age    

  20 to 30 years 70 (19.3%) 56 (22.3%) 102 (16.6%) 

  31 to 35 years 142 (39.2%) 102 (40.6%) 244 (39.8%) 

  36 to 40 years 101 (27.9%) 76 (30.3%) 177 (28.9%) 

  40 to 49 years 49 (13.5%) 17 (6.8%) 66 (10.8%) 

  Missing 0 8 8 

Maternal Race/Ethnicity    

  Non-Hispanic White 203 (56.5%) 100 (49.2%) 303 (53.9%) 

  Black/African American 24 (6.7%) 15 (7.4%) 39 (6.9%) 

  Hispanic 66 (18.4%) 46 (22.7%) 112 (19.9%) 

  Other/Multiracial 66 (18.4%) 42 (20.7%) 108 (19.3%) 

  Missing 3 56 59 
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Included 

(N=378) 

Excluded 

(N=259) 

Overall 

(N=621) 

Maternal Educational Attainment    

  High School/GED or less 32 (8.9%) 22 (11.1%) 36 (6.4%) 

  Some college 128 (35.4%) 73 (36.9%) 201 (36%) 

  Bachelor's degree 122 (33.8%) 49 (24.7%) 171 (30.6%) 

  Graduate or Professional degree 79 (21.9%) 54 (27.3%) 133 (23.8%) 

  Missing 1 61 62 

Homeownership    

Rent 128 (36.7%) 90 (46.2%) 218 (40.1%) 

Own 221 (63.3%) 105 (53.8%) 326 (59.9%) 

Missing 13 64 77 

Expressive language raw score 

(6 months) 
   

  Mean (SD) 6.14 (1.08) 6.66 (1.53) 6.32 (1.28) 

  Median [IQR] 6.00 [0] 6.00 [1.00] 6.00 [1.00] 

  Missing 57 98 155  

Receptive language raw score (6 

months) 
   

  Mean (SD) 7.84 (1.52) 8.14 (1.58) 7.95 (1.55) 
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Included 

(N=378) 

Excluded 

(N=259) 

Overall 

(N=621) 

  Median [IQR] 8.00 [2.00] 8.00 [2.00] 8.00 [2.00] 

  Missing 57 98 155  

Expressive language raw score 

(12 months) 
   

  Mean (SD) 11.8 (2.66) 12.4 (2.48) 12.0 (2.62) 

  Median [IQR] 12.0 [4.00] 13.0 [3.00] 12.0 [4.00] 

  Missing 22 98 120  

Receptive language raw score 

(12 months) 
   

  Mean (SD) 12.5 (2.03) 12.5 (2.17) 12.5 (2.07) 

  Median [IQR] 13.0 [3.00] 13.0 [3.00] 13.0 [3.00] 

  Missing 22 98 120  

Expressive language raw score 

(24 months) 
   

  Mean (SD) 20.4 (4.67) 21.0 (5.20) 20.6 (4.85) 

  Median [IQR] 21.0 [6.00] 21.0 [6.00] 21.0 [6.00] 

  Missing 144 154 298  

Receptive language raw score 

(24 months) 
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Included 

(N=378) 

Excluded 

(N=259) 

Overall 

(N=621) 

  Mean (SD) 23.2 (5.46) 23.1 (5.65) 23.2 (5.51) 

  Median [IQR] 25.0 [7.00] 25.0 [7.00] 25.0 [7.00] 

  Missing 145 154 299  

Expressive language raw score 

(36 months) 
   

  Mean (SD) 31.2 (6.12) 30.2 (7.22) 31.0 (6.36) 

  Median [IQR] 32.0 [7.00] 32.0 [8.00] 32.0 [7.00] 

  Missing 3 165 168  

Receptive language raw score 

(36 months) 
   

  Mean (SD) 30.6 (5.29) 29.7 (6.83) 30.4 (5.65) 

  Median [IQR] 31.0 [5.75] 30.0 [5.75] 31.0 [5.00] 

  Missing 4 165 169  

Footnote for Table 3.2: Percentages were calculated after removing missing individuals from the sample 
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Table 3.3: Comparison of Imputed versus Non-Imputed Covariates 

  
Non-imputed 

(N=362) 

Imputed 

(N=362) 

Child Sex   

  Female 156 (43.1%) 156 (43.1%) 

  Male 206 (56.9%) 206 (56.9%) 

Maternal Age   

  20 to 30 years 70 (19.3%) 70 (19.3%) 

  31 to 35 years 142 (39.2%) 142 (39.2%) 

  36 to 40 years 101 (27.9%) 101 (27.9%) 

  40 to 49 years 49 (13.5%) 49 (13.5%) 

Maternal Race/Ethnicity   

  Non-Hispanic White 203 (56.5%) 203 (56.1%) 

  Black/African American 24 (6.7%) 24 (6.6%) 

  Hispanic 66 (18.4%) 68 (18.8%) 

  Other/Multiracial 66 (18.4%) 67 (18.5%) 

  Missing 3  

Maternal Educational 
Attainment 

  

  High School/GED or less 32 (8.9%) 32 (8.8%) 
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Non-imputed 

(N=362) 

Imputed 

(N=362) 

  Some college 128 (35.4%) 128 (35.4%) 

  Bachelor's degree 122 (33.8%) 123 (34.0%) 

  Graduate or Professional degree 79 (21.9%) 79 (21.8%) 

  Missing 1  

Homeownership   

Rent 128 (36.7%) 131 (36.2%) 

Own 221 (63.3%) 231 (63.8%) 

Missing 13  

Expressive language raw score 

(6 months) 
  

  Mean (SD) 6.14 (1.08) 6.09 (1.11) 

  Median [IQR] 6.00 [0] 6.00 [0] 

  Missing 57  

Receptive language raw score 

(6 months) 
  

  Mean (SD) 7.84 (1.52) 7.90 (1.51) 

  Median [IQR] 8.00 [2.00] 8.00 [2.00] 

  Missing 57  
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Non-imputed 

(N=362) 

Imputed 

(N=362) 

Expressive language raw score 

(12 months) 
  

  Mean (SD) 11.8 (2.66) 11.7 (2.68) 

  Median [IQR] 12.0 [4.00] 12.0 [4.00] 

  Missing 22  

Receptive language raw score 

(12 months) 
  

  Mean (SD) 12.5 (2.03) 12.4 (2.01) 

  Median [IQR] 13.0 [3.00] 13.0 [3.00] 

  Missing 22  

Expressive language raw score 

(24 months) 
  

  Mean (SD) 20.4 (4.67) 20.3 (4.84) 

  Median [IQR] 21.0 [6.00] 20.0 [5.75] 

  Missing 144  

Receptive language raw score 

(24 months) 
  

  Mean (SD) 23.2 (5.46) 23.1 (5.43) 

  Median [IQR] 25.0 [7.00] 25.0 [7.00] 
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Non-imputed 

(N=362) 

Imputed 

(N=362) 

  Missing 145  

Expressive language raw score 

(36 months) 
  

  Mean (SD) 31.2 (6.12) 31.1 (6.12) 

  Median [IQR] 32.0 [7.00] 32.0 [7.00] 

  Missing 3  

Receptive language raw score 
(36 months) 

  

  Mean (SD) 30.6 (5.29) 30.7 (5.28) 

  Median [IQR] 31.0 [5.75] 31.0 [5.75] 

  Missing 4  

Footnote for Table 3.3: Percentages were calculated after removing missing individuals from the 

sample 
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Table 3.4: Relative Risk Ratios and 95% Confidence Intervals for Phthalate Metabolites and Expressive and Receptive Language 

Trajectories 

Molecular 
Weight 

Parent Compound Metabolite 

Expressive Language Receptive Language 

Tracking Low Growth Tracking Late Growth 

One Step Two Step One Step Two Step One Step Two Step One Step Two Step 

Low Molecular 
Weight 

DBP 

mBP 
1.10 
(0.83, 
1.46) 

1.08 
(0.85, 
1.37) 

1.46 
(1.07, 
2.00) 

1.24 
(0.93, 
1.65) 

0.89 
(0.65, 
1.22) 

0.85 
(0.65, 
1.11) 

0.91 
(0.64, 
1.28) 

0.92 
(0.67, 
1.26) 

MHBP 
1.08 
(0.84, 
1.40) 

1.13 
(0.90, 
1.42) 

1.32 
(0.99, 
1.77) 

1.26 
(0.94, 
1.67) 

0.99 
(0.71, 
1.36) 

0.90 
(0.69, 
1.18) 

1.03 
(0.73, 
1.46) 

1.05 
(0.78, 
1.43) 

DEP mEP2 
1.01 
(0.92, 
1.12) 

1.02 
(0.93, 
1.13) 

1.03 
(0.92, 
1.15) 

1.01 
(0.90, 
1.14) 

1.27 
(0.92, 
1.74) 

1.23 
(0.93, 
1.62) 

1.20 
(0.87, 
1.67) 

1.24 
(0.93, 
1.64) 

DiBP 

MHiBP 
0.96 
(0.71, 
1.28) 

0.99 
(0.78, 
1.25) 

0.90 
(0.59, 
1.38) 

0.81 
(0.57, 
1.15) 

0.93 
(0.66, 
1.30) 

0.93 
(0.68, 
1.27) 

1.00 
(0.70, 
1.42) 

0.95 
(0.66, 
1.36) 

miBP 
1.01 
(0.74, 
1.37) 

1.00 
(0.79, 
1.27) 

0.98 
(0.69, 
1.39) 

0.85 
(0.60, 
1.20) 

0.98 
(0.71, 
1.37) 

0.96 
(0.70, 
1.31) 

0.99 
(0.70, 
1.41) 

0.90 
(0.63, 
1.30) 

High Molecular 
Weight 

BzBP mBzP2 
1.17 
(0.90, 
1.51) 

1.14 
(0.91, 
1.43) 

1.21 
(0.89, 
1.64) 

1.20 
(0.89, 
1.62) 

0.95 
(0.67, 
1.35) 

0.93 
(0.70, 
1.22) 

1.16 
(0.82, 
1.65) 

1.14 
(0.84, 
1.55) 

DiDP mCNP 
0.88 
(0.79, 
0.98) 

1.00 
(0.96, 
1.04) 

0.91 
(0.80, 
1.03) 

0.98 
(0.91, 
1.05) 

0.98 
(0.94, 
1.02) 

0.98 
(0.95, 
1.02) 

0.92 
(0.82, 
1.03) 

0.95 
(0.88, 
1.03) 

DiNP mCOP 
0.94 
(0.82, 
1.08) 

0.95 
(0.83, 
1.09) 

0.92 
(0.74, 
1.13) 

0.91 
(0.74, 
1.11) 

0.91 
(0.77, 
1.07) 

0.94 
(0.80, 
1.11) 

0.85 
(0.68, 
1.05) 

0.85 
(0.68, 
1.06) 
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mNP2 
0.95 
(0.85, 
1.06) 

0.97 
(0.87, 
1.08) 

0.99 
(0.86, 
1.14) 

0.97 
(0.83, 
1.12) 

0.93 
(0.82, 
1.05) 

0.95 
(0.85, 
1.08) 

0.86 
(0.72, 
1.02) 

0.86 
(0.72, 
1.04) 

DOP, DBP, other 
HMW phthalates 

mCPP 
0.98 
(0.91, 
1.06) 

0.98 
(0.92, 
1.05) 

0.93 
(0.82, 
1.05) 

0.96 
(0.88, 
1.06) 

0.94 
(0.87, 
1.02) 

0.98 
(0.91, 
1.05) 

0.95 
(0.86, 
1.04) 

0.94 
(0.84, 
1.04) 

DEHP 

mECPP 
0.92 
(0.82, 
1.04) 

0.94 
(0.86, 
1.02) 

0.80 
(0.62, 
1.02) 

0.81 
(0.65, 
1.00) 

0.87 
(0.78, 
0.97) 

0.87 
(0.78, 
0.96) 

0.80 
(0.66, 
0.96) 

0.80 
(0.67, 
0.96) 

mEHHP 
0.96 
(0.88, 
1.04) 

0.96 
(0.90, 
1.02) 

0.82 
(0.65, 
1.03) 

0.81 
(0.64, 
1.01) 

0.92 
(0.86, 
1.00) 

0.92 
(0.86, 
0.99) 

0.87 
(0.76, 
1.00) 

0.87 
(0.76, 
0.99) 

mEHP 
0.97 
(0.88, 
1.06) 

0.98 
(0.91, 
1.05) 

0.81 
(0.62, 
1.06) 

0.80 
(0.61, 
1.04) 

0.94 
(0.87, 
1.02) 

0.93 
(0.86, 
1.01) 

0.87 
(0.74, 
1.03) 

0.87 
(0.74, 
1.01) 

mEOHP 
0.97 
(0.89, 
1.05) 

0.97 
(0.92, 
1.04) 

0.83 
(0.66, 
1.06) 

0.82 
(0.65, 
1.03) 

0.94 
(0.87, 
1.01) 

0.93 
(0.88, 
1.00) 

0.88 
(0.77, 
1.02) 

0.89 
(0.78, 
1.01) 

ΣDEHP 
0.95 
(0.87, 
1.04) 

0.96 
(0.89, 
1.03) 

0.82 
(0.64, 
1.03) 

0.81 
(0.65, 
1.01) 

0.91 
(0.84, 
0.99) 

0.91 
(0.84, 
0.98) 

0.85 
(0.73, 
0.99) 

0.85 
(0.74, 
0.99) 

Footnotes for Table 3.4: High Growth was used as the referent group; All phthalates were winsorized to the 99th percentile; all 

models were adjusted for site specific Z-score for urinary dilution measure (specific gravity or creatinine), cohort, child sex, maternal 

age, maternal race/ethnicity, home-ownership, and maternal educational attainment   
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Table 3.5: Measures of Model Fit for Expressive Language Latent Class Growth Analysis, Two-Step Model 

Number of 
classes 

Log-
likelihood SABIC BIC Entropy ICL 

1 -4302.09 8617.99 8633.85 1 8633.85 

2 -4008.34 8044.31 8076.04 0.90* 8101.04 

3 -3905.41 7852.24 7899.84 0.82 7973.67 

4 -3857.71 7770.66 7834.11 0.82 7928.66* 

5 -3839.51 7748.08 7827.4* 0.79 7957.89 

6 -3829.19 7741.24 7836.42 0.81 7967.04 

7 -3821.89* 7740.46* 7851.51 0.79 8002.91 

Footnote for Table 3.5: Higher log-likelihood, lower SABIC (sample adjusted BIC), lower BIC (Bayesian Inclusion Criterion), higher 
entropy, and lower ICL (integrated classification likelihood) indicates an overall better fit; * indicates the best model based on the 
above criteria (single class will always have an entropy of 1 so we select the next highest entropy instead); we prioritized BIC and 
ICL based on the findings in Diallo et al., 2016; classes had <5% of the population in the 6 class model, so we selected the next best 
fit model instead 
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Table 3.6: Measures of Model Fit for Receptive Language Latent Class Growth Analysis, Two-Step Model  

Number of 
classes 

Log-
likelihood SABIC BIC Entropy ICL 

1 -4247.94 8509.70 8525.56 1 8525.56 

2 -3947.36 7922.34 7954.07 0.929* 7972.757 

3 -3893.73 7828.89 7876.48 0.844 7941.112 

4 -3883.52 7822.29 7885.75 0.805 7987.721 

5 -3880.92 7830.89 7910.21 0.777 8045.602 

6 -3670.24* 7423.35* 7518.53* 0.8475 7621.971 

7 -3880.92 7858.51 7969.56 0.515 8326.024 

Footnote for Table 3.6: Higher log-likelihood, lower SABIC (sample adjusted BIC), lower BIC (Bayesian Inclusion Criterion), higher 
entropy, and lower ICL (integrated classification likelihood) indicates an overall better fit; * indicates the best model based on the 
above criteria (single class will always have an entropy of 1 so we select the next highest entropy instead); 6 class model failed to 
converge; we prioritized BIC and ICL based on the findings in Diallo et al., 2016; classes had <5% of the population in the 5 and 7 
class models, so we selected the next best fit model instead 
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Table 3.7: Measure of Model Fit for Expressive Language Latent Class Growth Analysis, One-Step Model 

Metabolite Classes 
Log-

likelihood SABIC BIC Entropy ICL 

mBP 1 -4081.62 8204.03 8251.62 1 8251.62 

 2 -3800.66 7685.60 7783.96 0.92 7803.86 

 3 -3700.11 7528.01 7677.12 0.82 7747.43 

 4 -3674.03 7519.36 7719.23 0.86 7787.20 

 5 -3610.86 7436.53 7687.16 0.88 7759.95 

       
mBzP2 1 -4083.89 8208.57 8256.16 1 8256.16 

 2 -3802.72 7689.73 7788.08 0.92 7807.69 

 3 -3700.86 7529.52 7678.63 0.82 7749.45 

 4 -3677.13 7525.56 7725.43 0.77 7841.44 

 5 -3620.79 7456.40 7707.03 0.80 7823.00 

       
mCNP 1 -4085.83 8212.44 8260.03 1 8260.03 

 2 -3797.79 7679.87 7778.21 0.92 7798.55 

 3 -3694.10 7516.00 7665.11 0.83 7731.22 

 4 -3643.75 7458.80 7658.67 0.85 7735.95 

 5 -3628.33 7471.47 7722.10 0.82 7825.52 

       
mCOP 1 -4084.49 8209.77 8257.36 1 8257.36 

 2 -3803.51 7691.32 7789.67 0.92 7809.49 

 3 -3702.61 7533.01 7682.12 0.82 7752.31 

 4 -3649.82 7470.94 7670.81 0.85 7748.30 

 5 -3632.31 7479.44 7730.07 0.79 7850.62 

       
mCPP 1 -4085.59 8211.96 8259.55 1 8259.55 

 2 -3804.88 7694.04 7792.39 0.92 7812.57 

 3 -3703.66 7535.12 7684.23 0.83 7753.75 
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 4 -3651.33 7473.97 7673.84 0.84 7755.78 

 5 -3631.55 7477.92 7728.55 0.81 7841.41 

       
mECPP 1 -4082.87 8206.52 8254.11 1 8254.11 

 2 -3802.31 7688.92 7787.27 0.92 7807.17 

 3 -3702.01 7531.81 7680.92 0.82 7750.60 

 4 -3684.74 7540.78 7740.65 0.77 7857.42 

 5 -3628.84 7472.49 7723.13 0.78 7851.98 

       
mEHHP 1 -4083.14 8207.07 8254.66 1 8254.66 

 2 -3802.02 7688.34 7786.68 0.92 7806.29 

 3 -3701.97 7531.74 7680.85 0.82 7750.91 

 4 -3648.54 7468.38 7668.25 0.84 7749.67 

 5 -3626.75 7468.30 7718.93 0.85 7804.45 

       
mEHP 1 -4083.49 8207.77 8255.36 1 8255.36 

 2 -3802.06 7688.41 7786.76 0.92 7806.42 

 3 -3702.08 7531.96 7681.07 0.82 7751.62 

 4 -3647.90 7467.10 7666.97 0.84 7748.16 

 5 -3618.38 7451.57 7702.20 0.87 7776.32 

       
mEOHP 1 -4084.01 8208.82 8256.41 1 8256.41 

 2 -3802.70 7689.70 7788.05 0.92 7807.56 

 3 -3702.59 7532.97 7682.08 0.82 7752.40 

 4 -3648.50 7468.30 7668.17 0.85 7743.74 

 5 -3617.72 7450.25 7700.88 0.88 7772.26 

       
mEP2 1 -4085.72 8212.22 8259.81 1 8259.81 

 2 -3804.08 7692.46 7790.81 0.92 7810.40 

 3 -3704.36 7536.52 7685.63 0.82 7756.11 

 4 -3648.32 7467.94 7667.81 0.86 7740.47 
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 5 -3615.25 7445.30 7695.93 0.88 7767.53 

       
MHBP 1 -4079.16 8199.11 8246.70 1 8246.70 

 2 -3799.51 7683.32 7781.67 0.92 7801.69 

 3 -3698.55 7524.89 7674.00 0.83 7742.94 

 4 -3644.31 7459.92 7659.79 0.84 7739.74 

 5 -3607.75 7430.30 7680.93 0.87 7758.55 

       
MHiBP 1 -4085.69 8212.16 8259.75 1 8259.75 

 2 -3804.96 7694.21 7792.55 0.92 7812.68 

 3 -3702.47 7532.73 7681.84 0.83 7751.28 

 4 -3645.90 7463.10 7662.97 0.84 7742.12 

 5 -3625.01 7464.83 7715.46 0.80 7830.30 

       
miBP 1 -4085.74 8212.28 8259.86 1 8259.86 

 2 -3804.74 7693.78 7792.13 0.92 7811.43 

 3 -3702.46 7532.72 7681.83 0.82 7752.15 

 4 -3646.12 7463.54 7663.41 0.84 7744.42 

 5 -3625.25 7465.31 7715.94 0.81 7829.36 

       
mNP2 1 -4085.22 8211.22 8258.81 1 8258.81 

 2 -3804.08 7692.44 7790.79 0.92 7810.44 

 3 -3702.07 7531.94 7681.05 0.82 7750.81 

 4 -3651.48 7474.27 7674.14 0.84 7756.12 

 5 -3634.27 7483.36 7734.00 0.77 7870.71 

       
DEHP 1 -4083.24 8207.27 8254.86 1 8254.86 

 2 -3802.29 7688.88 7787.23 0.92 7806.96 

 3 -3702.17 7532.14 7681.25 0.82 7751.29 

 4 -3648.07 7467.45 7667.32 0.85 7742.69 

 5 -3617.92 7450.65 7701.28 0.85 7786.97 



  

 
 

1
0

6
 

Footnotes for Table 3.7: Higher log-likelihood, lower SABIC (sample adjusted BIC), lower BIC (Bayesian Inclusion Criterion), higher 

entropy, and lower ICL (integrated classification likelihood) indicates an overall better fit; All phthalates were winsorized to the 99th 

percentile; all models were adjusted for site specific Z-score for urinary dilution measure (specific gravity or creatinine), cohort, child 

sex, maternal age, maternal race/ethnicity, home-ownership, and maternal educational attainment; 4 and 5 class models had <10% 

of population in at least one group, which resulted in those models being dropped from consideration, even if they had better fit 

measures 
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Table 3.8: Measure of Model Fit for Receptive Language Latent Class Growth Analysis, One-Step Model 

Metabolite Classes 
Log-

likelihood SABIC BIC Entropy ICL 

mBP 1 -4016.66 8074.12 8121.70 1 8121.70 

 2 -3701.74 7487.78 7586.13 0.94 7600.18 

 3 -3635.61 7399.01 7548.12 0.89 7590.25 

 4 -3465.42 7102.15 7302.02 0.91 7347.13 

 5 -3426.35 7067.50 7318.14 0.85 7407.87 

       
mBzP2 1 -4012.83 8066.44 8114.03 1 8114.03 

 2 -3702.46 7489.20 7587.55 0.94 7602.32 

 3 -3638.71 7405.22 7554.33 0.86 7609.58 

 4 -3463.08 7097.46 7297.33 0.91 7344.58 

 5 -3425.24 7065.28 7315.91 0.87 7390.53 

       
mCNP 1 -4017.48 8075.75 8123.34 1 8123.34 

 2 -3705.69 7495.68 7594.03 0.94 7608.81 

 3 -3643.77 7415.33 7564.44 0.86 7621.13 

 4 -3466.70 7104.70 7304.57 0.90 7353.36 

 5 -3427.69 7070.18 7320.81 0.87 7398.07 

       
mCOP 1 -4016.47 8073.73 8121.31 1 8121.31 

 2 -3703.74 7491.77 7590.12 0.94 7605.42 

 3 -3640.59 7408.97 7558.08 0.85 7616.31 

 4 -3466.41 7104.12 7303.99 0.90 7354.36 

 5 -3434.72 7084.24 7334.87 0.85 7421.26 

       
mCPP 1 -4016.53 8073.86 8121.44 1 8121.44 

 2 -3701.96 7488.20 7586.55 0.94 7602.29 

 3 -3636.49 7400.78 7549.89 0.87 7603.27 
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 4 -3617.65 7406.61 7606.48 0.79 7713.76 

 5 -3601.80 7418.42 7669.05 0.84 7764.51 

       
mECPP 1 -4014.64 8070.07 8117.66 1 8117.66 

 2 -3702.93 7490.16 7588.51 0.94 7603.32 

 3 -3639.56 7406.92 7556.03 0.86 7610.78 

 4 -3468.61 7108.52 7308.39 0.90 7356.53 

 5 -3426.34 7067.48 7318.12 0.88 7389.98 

       
mEHHP 1 -4015.60 8071.98 8119.56 1 8119.56 

 2 -3704.07 7492.44 7590.79 0.94 7605.67 

 3 -3640.88 7409.55 7558.66 0.86 7614.38 

 4 -3468.91 7109.13 7309.00 0.90 7357.76 

 5 -3442.49 7099.79 7350.42 0.85 7439.93 

       
mEHP 1 -4016.42 8073.63 8121.22 1 8121.22 

 2 -3704.76 7493.81 7592.16 0.94 7607.1 

 3 -3641.67 7411.14 7560.25 0.86 7617.68 

 4 -3464.32 7099.94 7299.81 0.90 7348.76 

 5 -3601.12 7417.05 7667.68 0.76 7806.25 

       
mEOHP 1 -4016.47 8073.72 8121.31 1 8121.31 

 2 -3704.97 7494.24 7592.58 0.94 7607.48 

 3 -3641.31 7410.42 7559.53 0.86 7615.51 

 4 -3484.59 7140.48 7340.35 0.90 7388.39 

 5 -3447.10 7109.00 7359.63 0.83 7458.90 

       
mEP2 1 -4017.53 8075.85 8123.44 1 8123.44 

 2 -3705.67 7495.63 7593.98 0.95 7607.75 

 3 -3642.22 7412.24 7561.35 0.85 7620.57 

 4 -3470.66 7112.62 7312.49 0.90 7363.41 
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 5 -3437.22 7089.26 7339.89 0.85 7427.09 

       
MHBP 1 -4015.22 8071.22 8118.81 1 8118.81 

 2 -3703.01 7490.31 7588.66 0.94 7602.65 

 3 -3638.42 7404.65 7553.76 0.89 7597.47 

 4 -3466.86 7105.03 7304.90 0.90 7352.79 

 5 -3427.86 7070.53 7321.16 0.85 7406.98 

       
MHiBP 1 -4017.28 8075.34 8122.93 1 8122.93 

 2 -3705.24 7494.77 7593.12 0.94 7607.53 

 3 -3642.25 7412.29 7561.40 0.86 7618.52 

 4 -3469.67 7110.64 7310.51 0.90 7360.60 

 5 -3606.55 7427.90 7678.54 0.78 7806.04 

       
miBP 1 -4017.49 8075.76 8123.35 1 8123.35 

 2 -3704.63 7493.56 7591.91 0.94 7606.03 

 3 -3641.38 7410.56 7559.67 0.86 7615.58 

 4 -3622.53 7416.36 7616.23 0.85 7690.92 

 5 -3432.45 7079.70 7330.33 0.86 7411.89 

       
mNP2 1 -4016.53 8073.84 8121.43 1 8121.43 

 2 -3703.54 7491.36 7589.71 0.94 7604.87 

 3 -3640.28 7408.36 7557.47 0.85 7616.24 

 4 -3466.74 7104.78 7304.65 0.90 7356.12 

 5 -3429.68 7074.18 7324.81 0.85 7409.87 

       
DEHP 1 -4015.55 8071.89 8119.48 1 8119.48 

 2 -3704.00 7492.29 7590.63 0.94 7605.49 

 3 -3640.63 7409.07 7558.18 0.86 7613.79 

 4 -3628.18 7427.66 7627.53 0.80 7729.59 

 5 -3438.38 7091.56 7342.19 0.87 7420.80 
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Footnotes for Table 3.8: Higher log-likelihood, lower SABIC (sample adjusted BIC), lower BIC (Bayesian Inclusion Criterion), higher 

entropy, and lower ICL (integrated classification likelihood) indicates an overall better fit; All phthalates were winsorized to the 99th 

percentile; all models were adjusted for site specific Z-score for urinary dilution measure (specific gravity or creatinine), cohort, child 

sex, maternal age, maternal race/ethnicity, home-ownership, and maternal educational attainment; 4 and 5 class models had <10% 

of population in at least one group, which resulted in those models being dropped from consideration, even if they had better fit 

measures 
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Table 3.9: Comparison of Class Assignment between One-Step and Two-Step Models for Expressive Language 

Metabolite 
Two-Step 
Categorizations One-Step Categorizations 

mBP  

High 
Growth Tracking 

Low 
Growth 

 High Growth 100 8 0 

 Tracking 8 179 3 

 Low Growth 0 6 58 

     

mBzP2  

High 
Growth Tracking 

Low 
Growth 

 High Growth 100 8 0 

 Tracking 9 180 1 

 Low Growth 0 7 57 

     

mCNP  

High 
Growth Tracking 

Low 
Growth 

 High Growth 99 9 0 

 Tracking 12 174 4 

 Low Growth 0 4 60 

     

mCOP  

High 
Growth Tracking 

Low 
Growth 

 High Growth 99 9 0 

 Tracking 8 181 4 

 Low Growth 0 5 60 

     

mCPP  

High 
Growth Tracking 

Low 
Growth 

 High Growth 100 8 0 

 Tracking 9 180 1 
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 Low Growth 0 5 59 

     

mECPP  

High 
Growth Tracking 

Low 
Growth 

 High Growth 100 8 0 

 Tracking 10 179 1 

 Low Growth 0 5 59 

     

mEHHP  

High 
Growth Tracking 

Low 
Growth 

 High Growth 99 9 0 

 Tracking 9 180 1 

 Low Growth 0 5 59 

     

mEHP  

High 
Growth Tracking 

Low 
Growth 

 High Growth 100 8 0 

 Tracking 10 179 1 

 Low Growth 0 6 58 

     

mEOHP  

High 
Growth Tracking 

Low 
Growth 

 High Growth 100 8 0 

 Tracking 9 180 1 

 Low Growth 0 5 59 

     

mEP2  

High 
Growth Tracking 

Low 
Growth 

 High Growth 100 8 0 

 Tracking 8 181 1 

 Low Growth 0 6 58 
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MHBP  

High 
Growth Tracking 

Low 
Growth 

 High Growth 100 8 0 

 Tracking 8 181 1 

 Low Growth 0 6 58 

     

MHiBP  

High 
Growth Tracking 

Low 
Growth 

 High Growth 99 8 0 

 Tracking 11 181 1 

 Low Growth 0 7 57 

     

miBP  

High 
Growth Tracking 

Low 
Growth 

 High Growth 100 8 0 

 Tracking 11 178 1 

 Low Growth 0 5 59 

     

mNP2  

High 
Growth Tracking 

Low 
Growth 

 High Growth 99 9 0 

 Tracking 9 180 1 

 Low Growth 0 7 57 

     

DEHP  

High 
Growth Tracking 

Low 
Growth 

 High Growth 99 9 0 

 Tracking 9 180 1 

 Low Growth 0 5 59 
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Table 3.10: Comparison of Class Assignment between One-Step and Two-Step Models for Receptive Language 

Metabolite 
Two-Step 
Categorizations One-Step Categorizations 

mBP  

High 
Growth Tracking 

Late 
Growth 

 High Growth 35 18 0 

 Tracking 1 223 3 

 Late Growth 1 2 79 

     

mBzP2  

High 
Growth Tracking 

Late 
Growth 

 High Growth 44 9 0 

 Tracking 2 223 2 

 Late Growth 0 2 80 

     

mCNP  

High 
Growth Tracking 

Late 
Growth 

 High Growth 44 9 0 

 Tracking 2 223 2 

 Late Growth 0 3 79 

     

mCOP  

High 
Growth Tracking 

Late 
Growth 

 High Growth 45 8 0 

 Tracking 2 223 2 

 Late Growth 0 2 80 

     

mCPP  

High 
Growth Tracking 

Late 
Growth 

 High Growth 44 9 0 

 Tracking 1 223 3 
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 Late Growth 0 2 80 

     

mECPP  

High 
Growth Tracking 

Late 
Growth 

 High Growth 45 8 0 

 Tracking 2 224 1 

 Late Growth 0 2 80 

     

mEHHP  

High 
Growth Tracking 

Late 
Growth 

 High Growth 45 8 0 

 Tracking 2 224 1 

 Late Growth 0 2 80 

     

mEHP  

High 
Growth Tracking 

Late 
Growth 

 High Growth 45 8 0 

 Tracking 2 224 1 

 Late Growth 0 2 80 

     

mEOHP  

High 
Growth Tracking 

Late 
Growth 

 High Growth 45 8 0 

 Tracking 2 224 1 

 Late Growth 0 2 80 

     

mEP2  

High 
Growth Tracking 

Late 
Growth 

 High Growth 45 8 0 

 Tracking 2 224 1 

 Late Growth 0 3 79 
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MHBP  

High 
Growth Tracking 

Late 
Growth 

 High Growth 38 15 0 

 Tracking 1 223 3 

 Late Growth 1 2 79 

     

MHiBP  

High 
Growth Tracking 

Late 
Growth 

 High Growth 44 9 0 

 Tracking 2 222 3 

 Late Growth 0 2 80 

     

miBP  

High 
Growth Tracking 

Late 
Growth 

 High Growth 44 9 0 

 Tracking 2 222 3 

 Late Growth 0 2 80 

     

mNP2  

High 
Growth Tracking 

Late 
Growth 

 High Growth 45 8 0 

 Tracking 2 223 2 

 Late Growth 0 2 80 

     

DEHP  

High 
Growth Tracking 

Late 
Growth 

 High Growth 45 8 0 

 Tracking 2 224 1 

 Late Growth 0 2 80 
Footnotes for Table 3.10:  
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Table 3.11: Sex Modification for Expressive Language 

Molecular 
Weight 

Parent 
Compound 

Metabolite 
LRT P-value 

Tracking 
(female) 

Tracking 
(male) 

Low Growth 
(female) 

Low Growth 
(male) 

 (N=81) (N=109) (N=16) (N=48) 

Low Molecular 
Weight 

DBP 
mBP 0.39 

1.20 (0.89, 
1.63) 

0.90 (0.61, 
1.31) 

1.20 (0.78, 
1.85) 

1.17 (0.78, 
1.76) 

MHBP 0.23 
1.30 (0.95, 

1.77) 
0.89 (0.61, 

1.30) 
1.22 (0.77, 

1.93) 
1.16 (0.78, 

1.73) 

DEP mEP2 0.12 
1.03 (0.87, 

1.21) 
1.03 (0.91, 

1.16) 
0.36 (0.12, 

1.11) 
1.05 (0.91, 

1.20) 

DiBP 
MHiBP 0.55 

1.03 (0.87, 
1.21) 

1.03 (0.91, 
1.16) 

0.36 (0.12, 
1.11) 

1.05 (0.91, 
1.20) 

miBP 0.80 
1.06 (0.77, 

1.46) 
0.93 (0.66, 

1.31) 
0.90 (0.55, 

1.47) 
0.79 (0.49, 

1.29) 

High Molecular 
Weight 

BzBP mBzP2 0.69 
1.16 (0.87, 

1.54) 
1.12 (0.77, 

1.63) 
1.09 (0.68, 

1.74) 
1.26 (0.83, 

1.92) 

DiDP mCNP 0.29 
0.98 (0.94, 

1.03) 
1.19 (0.87, 

1.62) 
0.86 (0.62, 

1.21) 
1.18 (0.86, 

1.61) 

DiNP 

mCOP 0.53 
1.03 (0.86, 

1.23) 
0.85 (0.69, 

1.04) 
0.91 (0.62, 

1.34) 
0.86 (0.68, 

1.10) 

mNP2 0.53 
1.03 (0.90, 

1.18) 
0.87, 0.73, 

1.03) 
1.05 (0.85, 

1.29) 
0.88 (0.72, 

1.07) 

DOP, DBP, 
other HMW 
phthalates 

mCPP 0.67 
0.98 (0.89, 

1.08) 
0.98 (0.89, 

1.08) 
0.79 (0.50, 

1.24) 
0.99 (0.89, 

1.09) 

DEHP 

mECPP 0.17 
0.93 (0.83, 

1.03) 
0.95 (0.82, 

1.11) 
0.78 (0.51, 

1.20) 
0.83 (0.63, 

1.08) 

mEHHP 0.11 
0.95 (0.88, 

1.03) 
0.98 (0.89, 

1.09) 
0.82 (0.56, 

1.21) 
0.81 (0.61, 

1.06) 

mEHP 0.18 
0.97 (0.89, 

1.07) 
0.98 (0.88, 

1.09) 
0.88 (0.66, 

1.19) 
0.74 (0.51, 

1.07) 
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mEOHP 0.22 
0.97 (0.90, 

1.05) 
0.98 (0.89 

1.07) 
0.84 (0.56, 

1.25) 
0.81 (0.61, 

1.08) 

ΣDEHP 0.16 
0.95 (0.87, 

1.04) 
0.97 (0.87, 

1.09) 
0.82 (0.56, 

1.20) 
0.82 (0.63, 

1.07) 

Footnotes for Table 3.11: Female and High Growth were defaulted as the referent group; All phthalates were winsorized to the 99th 

percentile; models were adjusted for site specific Z-score for urinary dilution measure (specific gravity or creatinine), cohort, child 

sex, maternal age, maternal race/ethnicity, home-ownership, and maternal educational attainment 
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Table 3.12: Sex Modification for Receptive Language 

Molecular Weight 
Parent 

Compound 
Metabolite 

LRT P-
value 

Tracking 
(Female) 

Tracking 
(Male) 

Late Growth 
(Female) 

Late Growth 
(Male) 

(N=106) (N=121) (N=24) (N=58) 

Low Molecular 
Weight 

DBP 
mBP 0.18 

1.07 (0.72, 
1.60) 

0.63 (0.42, 
0.94) 

1.26 (0.79, 
2.00) 

0.64 (0.41, 
1.01) 

MHBP 0.25 
1.09 (0.73, 

1.63) 
0.69 (0.46, 

1.04) 
1.34 (0.86, 

2.10) 
0.78 (0.50, 

1.21) 

DEP mEP2 0.16 
1.19 (0.84, 

1.68) 
1.33 (0.84, 

2.10) 
0.95 (0.59, 

1.53) 
1.37 (0.86, 

2.17) 

DiBP 

MHiBP 0.24 
1.19 (0.84, 

1.68) 
1.33 (0.84, 

2.10) 
0.95 (0.59, 

1.53) 
1.37 (0.86, 

2.17) 

miBP 0.32 
1.55 (0.81, 

2.96) 
0.77 (0.53, 

1.11) 
1.53 (0.76, 

3.09) 
0.69 (0.43, 

1.12) 

High Molecular 
Weight 

BzBP mBzP2 0.21 
1.11 (0.73, 

1.69) 
0.75 (0.51, 

1.11) 
1.44 (0.90, 

2. 28) 
0.89 (0.59, 

1.35) 

DiDP mCNP 0.36 
0.99 (0.95, 

1.04) 
0.96 (0.90, 

1.03) 
0.85 (0.62, 

1.15) 
0.97 (0.89, 

1.05) 

DiNP 

mCOP 0.06 
1.14 (0.87, 

1.50) 
0.77 (0.62, 

0.97) 
0.79 (0.44, 

1.40) 
0.78 (0.61, 

1.00) 

mNP2 0.05 
1.08 (0.90, 

1.23) 
0.80 (0.67, 

0.97) 
0.82 (0.55, 

1.21) 
0.81 (0.66, 

0.99) 

DOP, DBP, 
other HMW 
phthalates 

mCPP 0.11 
1.06 (0.92, 

1.23) 
0.93 (0.85, 

1.02) 
0.74 (0.44, 

1.23) 
0.94 (0.84, 

1.04) 

DEHP 

mECPP 0.01 
0.84 (0.74, 

0.96) 
0.90 (0.77, 

1.06) 
0.63 (0.36, 

1.10) 
0.87 (0.71, 

1.08) 

mEHHP 0.05 
0.90 (0.82, 

0.99) 
0.95 (0.85, 

1.06) 
0.74 (0.48, 

1.12) 
0.92 (0.79, 

1.07) 

mEHP 0.08 
0.91 (0.82, 

1.02) 
0.95 (0.85, 

1.07) 
0.58 (0.30, 

1.12) 
0.92 (0.79, 

1.08) 
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mEOHP 0.17 
0.93 (0.85, 

1.01) 
0.95 (0.86, 

1.05) 
0.76 (0.49, 

1.16) 
0.92 (0.80, 

1.07) 

ΣDEHP 0.04 
0.89 (0.80, 

0.99) 
0.94 (0.83, 

1.06) 
0.69 (0.42, 

1.12) 
0.91 (0.77, 

1.07) 

Footnotes for Table 3.12: Female and High Growth were defaulted as the referent group; All phthalates were winsorized to the 99th 

percentile; models were adjusted for site specific Z-score for urinary dilution measure (specific gravity or creatinine), cohort, child 

sex, maternal age, maternal race/ethnicity, home-ownership, and maternal educational attainment 
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Table 3.13: Comparison of Urinary Phthalate Concentrations between NHANES and Study Population 

Phthalate 

metabolite 

Study 

Population 

(N=362) 

Combined 

NHANES data 

(N=5171) 

Wilcox 

Rank Sum 

P-value 

mBP 12.9 [14.5] 11.2 [12.8] << 0.001 

mEP2 28.4 [42.5] 38.4 [83.0] << 0.001 

miBP 8.46 [11.0] 8.25 [9.05] 0.75 

mBzP2 6.68 [10.9] 5.29 [8.02] << 0.001 

mCNP 3.74 [4.09] 2.64 [3.19] << 0.001 

mCOP 23.3 [47.7] 19.4 [38.6] 0.01 

mNP2 1.41 [2.53] 1.09 [1.87] << 0.001 

mECPP 20.2 [27.5] 13.7 [15.2] << 0.001 

mEHHP 12.7 [16.5] 8.33 [9.81] << 0.001 

mEHP 2.92 [4.86] 1.53 [1.98] << 0.001 

mEOHP 10.2 [12.8] 5.46 [6.06] << 0.001 

Footnotes for Table 3.13: Due to skewness of data, medians and IQRs were calculated after removing any 

missing individuals; two-sided Wilcox Rank Sum test was performed using unpaired test; all values were 

adjusted for creatinine (NHANES and EARLI) or specific gravity (MARBLES) 
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Figure 3.1: Two-Step Latent Class Growth Analysis Plot for Expressive Language 

  

Footnotes for Figure 3.1: Points indicate mean scores at that age with 95 percent confidence intervals  



  

 
 

1
2

3
 

Figure 3.2: Two-Step Latent Class Growth Analysis Plot for Receptive Language

 

Footnotes for Figure 3.2: Points indicate mean scores at that age with 95 percent confidence intervals  
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Figure 3.3: One-Step Latent Class Growth Analysis Plot for Expressive Language for mBP 

 

Footnotes for Figure 3.3: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.4: One-Step Latent Class Growth Analysis Plot for Expressive Language for mBzP2 

 

Footnotes for Figure 3.4: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.5: One-Step Latent Class Growth Analysis Plot for Expressive Language for mCNP 

 

Footnotes for Figure 3.5: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.6: One-Step Latent Class Growth Analysis Plot for Expressive Language for mCOP 

 

Footnotes for Figure 3.6: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.7: One-Step Latent Class Growth Analysis Plot for Expressive Language for mCPP 

 

Footnotes for Figure 3.7: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.8: One-Step Latent Class Growth Analysis Plot for Expressive Language for mECPP 

 

Footnotes for Figure 3.8: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.9: One-Step Latent Class Growth Analysis Plot for Expressive Language for mEHHP 

 

Footnotes for Figure 3.9: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.10: One-Step Latent Class Growth Analysis Plot for Expressive Language for mEHP 

 

Footnotes for Figure 3.10: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.11: One-Step Latent Class Growth Analysis Plot for Expressive Language for mEOHP 

 

Footnotes for Figure 3.11: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.12: One-Step Latent Class Growth Analysis Plot for Expressive Language for mEP2 

 

Footnotes for Figure 3.12: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.13: One-Step Latent Class Growth Analysis Plot for Expressive Language for MHBP 

 

Footnotes for Figure 3.13: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals



  

 
 

1
3

5
 

Figure 3.14: One-Step Latent Class Growth Analysis Plot for Expressive Language for MHiBP 

 

Footnotes for Figure 3.14: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.15: One-Step Latent Class Growth Analysis Plot for Expressive Language for miBP 

 

Footnotes for Figure 3.15: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.16: One-Step Latent Class Growth Analysis Plot for Expressive Language for mNP2 

 

Footnotes for Figure 3.16: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.17: One-Step Latent Class Growth Analysis Plot for Expressive Language for DEHP 

 

Footnotes for Figure 3.17: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.18: One-Step Latent Class Growth Analysis Plot for Receptive Language for mBP2 

 

Footnotes for Figure 3.18: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.19: One-Step Latent Class Growth Analysis Plot for Receptive Language for mBzP2 

 

Footnotes for Figure 3.19: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.20: One-Step Latent Class Growth Analysis Plot for Receptive Language for mCNP 

 

Footnotes for Figure 3.20: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.21: One-Step Latent Class Growth Analysis Plot for Receptive Language for mCOP 

 

Footnotes for Figure 3.21: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.22: One-Step Latent Class Growth Analysis Plot for Receptive Language for mCPP 

 

Footnotes for Figure 3.22: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.23: One-Step Latent Class Growth Analysis Plot for Receptive Language for mECPP 

 

Footnotes for Figure 3.23: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.24: One-Step Latent Class Growth Analysis Plot for Receptive Language for mEHHP 

 

Footnotes for Figure 3.24: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.25: One-Step Latent Class Growth Analysis Plot for Receptive Language for mEHP 

 

Footnotes for Figure 3.25: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.26: One-Step Latent Class Growth Analysis Plot for Receptive Language for mEOHP 

 

Footnotes for Figure 3.26: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.27: One-Step Latent Class Growth Analysis Plot for Receptive Language for mEP2 

 

Footnotes for Figure 3.27: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.28: One-Step Latent Class Growth Analysis Plot for Receptive Language for MHBP 

 

Footnotes for Figure 3.28: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.29: One-Step Latent Class Growth Analysis Plot for Receptive Language for MHiBP 

 

Footnotes for Figure 3.29: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.30: One-Step Latent Class Growth Analysis Plot for Receptive Language for miBP 

 

Footnotes for Figure 3.30: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.31: One-Step Latent Class Growth Analysis Plot for Receptive Language for mNP2 

 

Footnotes for Figure 3.31: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Figure 3.32: One-Step Latent Class Growth Analysis Plot for Receptive Language for DEHP 

 

Footnotes for Figure 3.32: Model was adjusted for child sex, maternal age at birth, maternal race/ethnicity, highest maternal 

educational attainment, and birth season; Points indicate mean scores at that age with 95 percent confidence intervals
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Chapter 4 - The Impact of Prenatal Air Toxic Exposure on Language Development 

Trajectories in Siblings of Children with Autism 

  



  

155 
 

Abstract 

Background: Language development is a critical part of neurodevelopment that 

is correlated with many neurodevelopmental disorders. We aimed to examine how 

prenatal air toxic exposure affects early childhood language development, utilizing a 

robust longitudinal analysis methodology.  

Methods: Participants were drawn from the Early Autism Risk Longitudinal 

Investigation (EARLI) (n=251) and the Markers of Autism Risk in Babies – Learning 

Early Signs (MARBLES) (n=393) cohorts that recruited pregnant mothers who 

previously had a child with autism (ASD). Expressive and receptive language 

development was measured using the Mullen Scales of Early Learning (MSEL) at ages 

6,12, 24, and 36 months of age. A total of 53 air toxics were assessed by utilizing 

census tract data to assign exposures via the National Air Toxics Assessment (NATA) 

datasets from 2011 and 2014. We used latent class growth analysis (LCGA) to 

determine language trajectories based on MSEL receptive or expressive language raw 

scores, prenatal air toxic exposure, cohort, child sex, maternal age, maternal 

race/ethnicity, homeownership, and maternal educational attainment.  

Results: We found 3 trajectories for both expressive and receptive language 

using both a two-step LCGA approach. Most air toxics were not statistically significant. 

Acetaldehyde showed significant protective effects for expressive language, decreasing 

the risk of falling into the Low Growth category for each IQR increase in concentration.  

Conclusion: Most air toxics were not statistically significant, with only 

acetaldehyde showing significant protective effects. Observed trends in risk were 
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inconsistent with prior literature, which may be due to small sample size and differences 

in analysis methodology.  
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Introduction 

Language development is a key milestone in early childhood development, 

playing important roles in later stages of life. Delays or impairments in language 

development can lead to atypical social and emotional development, poor academic 

performance, and increase risk of certain neurodevelopmental disorders (Beitchman & 

Brownlie, 2012; Howlin & Udwin, 2002; Irwin et al., 2002; Johnson et al., 1999; 

Roulstone et al., 2011; Snowling et al., 2006; Whitehouse et al., 2009). Common social 

factors that may influence language development include family history, child sex, 

maternal education, and home environment (28,187,188). However, environmental and 

chemical factors are still an area that requires additional exploration. 

Certain systems are critical to early neurodevelopment, particularly the endocrine 

system. Because the hormones generated by the endocrine system play critical roles 

during fetal development, disruption of this system can lead to language development. 

Environmental pollutants that disrupt this system, known as endocrine disrupting 

chemicals (EDCs) are therefore of vital interest, having a higher a priori suspicion of 

causing language impairment. As such, understanding environmental causes that may 

act as EDCs will not only provide a better understanding behind the etiology of 

language disorders, but also provide stakeholders with vital knowledge to make 

impactful and lasting policy changes to reduce overall risk. 

Air toxics, as defined by the United States Environmental Protection Agency 

(EPA), are toxic or hazardous air pollutants that cause or may cause serious health 

effects such as cancer, reproductive effects, and/or adverse environmental and 

ecological effects (116,117). Because of this broad definition, there are several classes 
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of chemicals that are considered to be air toxics; the Clean Air Act identifies a total of 

187 air toxics the EPA is required to control, though there are many more (117). 

Polychlorinated biphenyls (PCBs), phthalates, polycyclic aromatic hydrocarbons 

(PAHs), polybrominated diphenyl ethers (PBDEs), certain heavy metals, nitrogen oxides 

(NO2 and NOX), particulate matter (specifically PM2.5), and certain volatile organic 

compounds (VOCs) are a few examples of air toxics with known endocrine disrupting 

effects (61,123–142,217–219). The mechanisms by which these air toxics cause these 

effects are varied, with some mimicking sex hormones (123,143–145), while others 

disrupt thyroid hormone pathways (123,124,146–149).  

Because many air toxics are considered EDCs, their impact on 

neurodevelopment, and thus language development, must be considered. Several 

reviews have found that various EDCs that are considered air toxics impact 

neurodevelopment and language development specifically. Davis et al. found in their 

review that PCBs and certain pesticides were negatively associated with language 

delays, and Suades-Gonzalez et al. found PAHs to be negatively associated with 

language development (220,221). However, some studies have found that exposure to 

certain air toxics does not lead to language delays. Guxens et al. did a comprehensive 

study over six European cohorts, finding no association between NO2, NOX, particulate 

matter, and language development (222). Stingone et al. found that perchloroethylene 

did not influence standardized language test scores, and Huang et al. and Gascon et al. 

both found that certain phthalates did not negatively affect language (97,103,223). 

However, it should be noted that these studies did not specify the primary exposure 
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source for these EDCs. Rather, these studies examined all exposure, rather than 

focusing on airborne exposure to these EDCs. 

There have been several studies that have primarily focused on airborne 

exposure to air toxics that are EDCs, rather than all exposure, and their possible 

connections with neurodevelopment. Exposure to airborne PAHs were found to be 

associated with a decrease in infant mental development across several studies using 

various measures of neurodevelopment, including the Bayley’s Scales of Infant 

Development and Raven Coloured Progressive Matrices (21,61,62). Nitrogen dioxide 

was also found to be negatively associated with infant mental development in Freire et 

al. and resulted in a decrease in all subscales of the McCarthy Scales of Children’s 

Abilities in Guxens et al. (224,225). Guxens additionally found that benzene was also 

negatively associated with infant mental development (225). There have also been 

multiple studies that have looked at hazardous air pollutants and their association with 

autism spectrum disorder, with some airborne EDCs being associated with ASD, such 

as certain heavy metals, methylene chloride, styrene, certain conjugates of xylene, and 

other aromatic solvents (118,119,159,160). A review by Volk et al. found 

comprehensive evidence that prenatal air pollution exposure is linked to various 

neurodevelopmental disorders and delays (226). However, there is a lack of literature 

utilizing trajectory analysis to assess this connection, as well as a lack of literature that 

specifically examines the impact of air toxics on language development. 

We conducted a study based on data collected from two ASD sibling cohorts. We 

examined the association of prenatal air toxic exposure to language development 
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trajectories to explore potential associations between those trajectories with prenatal air 

toxic exposure. 

Methods 

Population 

We included individuals in the Early Autism Risk Longitudinal Investigation 

(EARLI) and the Markers of Autism Risk in Babies – Learning Early Signs (MARBLES) 

cohorts (173,174). Briefly, both studies recruited pregnant women who already had a 

child with a diagnosis of ASD and families whose fathers who had a biological child with 

ASD, with EARLI recruiting from northeast Maryland, southeast Pennsylvania, and 

northern California, while MARBLES recruited primarily from northern California. Both 

studies followed the mother and the expected child longitudinally, collecting 

demographic, neurodevelopmental, and exposure data at set time intervals. Children in 

EARLI were born between 2009 and 2013, while children in MARBLES were born 

between 2006 and 2023. Demographic information was obtained via in -person 

interviews and questionnaires. 

Language Development and Neurodevelopment Measurement 

The Mullen Scales of Early Learning (MSEL, 20) was used in order to assess 

language development, which was administered by trained study staff at 6, 12, 24, and 

36 months of age at in-person study visits. Briefly, the MSEL is a standardized 

psychometric test that is used to measure cognitive development in children ages 3 to 

60 months, providing scores on five different domains: gross motor, fine motor, 

expressive language, receptive language, and visual reception (175). Expressive 
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language involves the use of words and gestures to convey accurate and appropriate 

messages, thoughts, and ideas to others. Receptive language involves the ability to 

understand and process the meaning of language directed towards an individual. We 

used both expressive and receptive language raw scores to generate our language 

development trajectories, using the 6, 12, 24 and 36 month assessments.  

Air Toxic Measurements 

 We assessed air toxic exposure by using an emissions-based model from the US 

EPA: the National Air Toxics Assessment (NATA). The NATA model is run every 3 

years, and uses inputs from the National Emissions Inventory to generate the average 

ambient concentration of multiple air toxics. The national Emission Inventory provides 

estimate of air emissions of criteria pollutants and air toxics using emission sources, 

including point sources (e.g. industrial facilities, electric power plants), nonpoint sources 

(e.g. residential heating, commercial combustion), onroad sources (i.e. emission from 

onroad vehicles), nonroad sources (e.g. construction equipment, locomotives), and fire 

sources (227). A hybrid model that combines a regional air-quality model (CMAQ) and 

dispersion model (AERMOD) is then used to estimate annual average ambient air toxic 

concentrations across US census tracts (228,229). The NATA model has been shown 

to be reasonably accurate with its estimations, with one validation study confirming that 

NATA could predict national medians of most toxics well, though there are some 

instances where the model may overestimate or underestimate certain types of toxics 

from specific sources (230–232).  

We used both the 2011 and 2014 NATA datasets. A total of 180 air toxics were 

assessed in 2011 and 181 air toxics in 2014. We selected 82 air toxics with known or 
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suspected endocrine disrupting effects based on prior literature (Table 4.6). We 

included air toxics that were measured in both the 2011 and 2014 datasets, leaving 53 

total air toxics. Individuals who were born after 2012 (i.e. a birth year of 2013 to 2016) 

were assigned exposure corresponding to the 2014 NATA dataset, while those born in 

2006 to 2012 were assigned exposure corresponding to the 2011 NATA dataset. The 

NATA datasets are publicly available on the US EPA website 

(https://www.epa.gov/national-air-toxics-assessment), and we used Total Concentration 

for all air toxics from both the 2011 and 2014 datasets, measured in ug/m3 (233,234). 

Air toxic exposure was assigned via census tract. Home addresses were obtained from 

study participants at enrollment, which were then used to assign 2010 census tracts to 

individuals. These census tracts were then used to connect to state-specific NATA 

datasets for each air toxic exposure. Out of the original 621 individuals, 74 were not 

assigned a census tract, who were removed from the final analysis, as air toxic 

exposure could not be assigned. 

To assist in the comparison of results and to better examine patterns that may 

arise due to correlations between air toxics, we grouped air toxics using agglomerative 

hierarchical clustering based on multiscale bootstrap resampling by using the pvclust 

function in the pvclust package in R. Briefly, agglomerative hierarchical clustering is a 

nesting algorithm that combines two variables, called clusters, that are the most similar 

into one larger cluster. This process is repeated until all variables are in one cluster, 

creating a dendrogram. We used Ward’s Method for clustering and used Euclidian 

distance, defined as √∑ (𝑥𝑖 −𝑦𝑖)
2

𝑖 , where x and y are two vectors (i.e. air toxic 

https://www.epa.gov/national-air-toxics-assessment
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measurements). Groupings were determined based on approximately unbiased test p-

value, with an alpha of 0.95 or higher (235). 

We performed an AIC analysis on several key air toxics to determine if a 

transformation was required. These air toxics were selected due to known toxicities 

(e.g. lead and mercury) or that were observed to have high magnitudes of risk in a 

preliminary examination, where they were transformed first by winsorizing to the 99 th 

percentile and then dividing by their interquartile range. We calculated AIC based on the 

following transformations, along with their untransformed values: natural log, log base 2, 

log base 10, squared, root, winsorizing to the 99th percentile and dividing by interquartile 

range, and categorized based on quantiles (Table 4.8). Based on the AIC observed, we 

elected to transform all air toxics by winsorizing to the 99 th percentile and dividing by 

their interquartile range. 

Statistical Analysis 

A total of 621 individuals were in the initial study populations. We excluded 

persons with 1 or no recorded language scores (n=89) or who were missing all air toxic 

measurements (n=74), yielding a sample size of 471 individuals (Table 4.1). The most 

frequently missing variables were expressive and receptive language scores at 24 

months: 38.9% and 39.1% missing, respectively (Table 4.7). Other missing covariates 

include expressive and receptive Mullen scores at other time points (14.0% for 6 

months, 5.9% for 12 months, and 6.2% and 6.4% for 36 months), maternal educational 

attainment (0.6%), maternal race (1.3%), and homeownership (4.3%). To include 

persons missing covariates or Mullen scores, we used multiple imputation by chained 

equations using the R package mice to impute missing values for variables listed above, 
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including Mullen scores (178). Imputed distribution of these variables can be seen in 

Table 4.7. 

We used a latent class growth analysis (LCGA) approach to analyze the 

relationship between individual air toxics and language development trajectories, 

separately modeling expressive vs. receptive language. LCGA is a method to identify 

unmeasured (or latent) class membership using observed variables, with the goal of 

creating classes (or in our case, trajectories) so that individuals within a trajectory class 

are more similar than individuals between trajectory classes (179,180).  

We assigned language trajectories to individuals via an LCGA with the 

expressive or receptive language raw scores as the inputs, and in a separate model 

regress these on air toxic exposures.  We ran several LCGA models with different 

numbers of classes, ranging from 2 to 7 classes. While the following measures of fit 

were available to us (Bayesian information criteria (BIC), sample size adjusted BIC 

(SABIC), integrated complete likelihood (ICL), and entropy), we prioritized low BIC when 

selecting the best model, following recommendations by Diallo et al. (181). Additionally, 

we favored models with fewer classes to aid in interpretability and avoided models with 

low number of individuals within classes (<10% of the population). After individuals were 

assigned, a multinomial logistic regression was performed using the assigned classes 

as the outcome and air toxic exposure as our main predictor. We adjusted all models for 

cohort (EARLI vs. MARBLES) and also accounted for the following a priori potential 

predictors of language: child sex, maternal age, maternal race/ethnicity, maternal 

education and home-ownership (as proxies for socioeconomic status) (27–30). 
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We assessed the coefficients and confidence intervals for each air toxic as a 

predictor of language trajectory class. Following each process, each person was 

assigned a probability of belonging to each trajectory class. For tables and figures, we 

assigned each person to their highest probability class. We selected class names based 

on the overall shape of the class in the plot, guided by designations used in prior 

literature. Because of the high number of statistical tests run, we also adjusted for 

multiple comparisons by using the Benjamini and Hochberg false discovery rate (236). 

The results of this adjustment can be found on Table 4.3.  

In order to assess the potential impact of air toxic mixtures, we conducted a 

Bayesian kernel machine regression (BKMR). Briefly, BKMR utilizes a kernel function to 

represent the exposure-outcome response, which allows the model to make use of a 

large number of potential exposures (237,238). Because BKMR requires a binary 

outcome, if more than 2 trajectory classes are found to be ideal, then the “non -typically 

developing” trajectories will be combined to form a binary outcome for analysis. We then 

examined whether any interaction terms between exposures were statistically 

significant, along with the overall impact of the mixture model. Due to the high 

correlation between certain air toxics, we elected to use hierarchical variable selection, 

grouping air toxics that had a Spearman correlation of 0.6 or greater together prior to 

analysis (Figure 4.4). 

All analyses were conducted using Rstudio version 2022.02.1 Build 461 with R 

Version 4.1.3 “One Push-Up”. The LCGA was conducted using the lcmm package 

(182). 

Results 
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Males had slightly lower MSEL raw scores than females at 36 months of age 

(Table 4.1). Children whose mothers were 30 or younger or who did not receive at least 

a college degree had lower MSEL raw scores than children who had mothers older than 

30 or who received at least a college degree. Children of African American or Hispanic 

mothers also had lower MSEL raw scores than children from non-Hispanic white or 

multiracial mothers. Children whose parents rented had lower MSEL scores than 

children of homeowners. There was no appreciable difference in MSEL scores between 

birth seasons.  

Hierarchical clustering denoted 7 total groupings of air toxics (Figure 4.3). These 

groupings are likely due to air toxics within the group sharing common sources, or that 

may act on the body using similar or identical pathophysiologies. It is also probable that 

some of the groups are due to those members belonging to the same class of 

chemicals (e.g. volatile organic compounds). 

For expressive language, 3 trajectory classes were optimal for capturing patterns 

in language development. These trajectory classes were also named High Growth, 

Tracking, and Low Growth (Figure 4.1). We used High Growth as the referent class for 

our multinomial regression. In general, we observed that associations of many air toxics 

with expressive language trajectories were not statistically significant (Table 4.2). 

However, lead, naphthalene, and acetaldehyde were statistically significant, decreasing 

risk of falling into the Low Growth trajectory class for every IQR increase in 

concentration. 

For receptive language, 3 trajectory classes were optimal for capturing patterns 

in language development, which we named High Growth, Tracking, and Low Growth 
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(Figure 4.2). We used High Growth as the referent class for our multinomial regression. 

We observed that none of the air toxics examined were not statistically significant 

(Table 4.2).  

The posterior probabilities of inclusion for air toxics groups (Group PIP) and each 

individual air toxic (Conditional PIP) can be found in Tables 4.4 and 4.5, which indicate 

the relative importance of the air toxic, both within their defined groups and individually, 

to the mixture model. Our BKMR analysis indicates that there is a slight increase in 

overall risk of falling into a non-typically developing trajectory for both expressive and 

receptive language as overall air toxic concentration increases, though there is a drop in 

risk at higher quantiles (Figures 4.5 and 4.8). However, this increase in risk was not 

statistically significant. In addition, for both expressive and receptive language, 

interactions between air toxics do not appear to be statistically significant (Figures 4.7 

and 4.10), although there is an indication that a general direction may be present for 

some interactions (Figures 4.6 and 4.9). 

Discussion 

 The goal of this study was to characterize language development trajectories in 

two cohorts of children with enhanced risk for autism and evaluate if prenatal air toxic 

exposure was associated with delayed or abnormal language development. Results 

indicated that most air toxics were not associated with impaired language trajectories. 

Prior to adjusting for multiple comparisons, lead, naphthalene, and acetaldehyde were 

statistically significant for expressive language, leading to a decrease in risk of falling 

into the Low Growth trajectory class for each IQR increase. Following adjustment for 

multiple testing, only acetaldehyde remained statistically significant. 
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 Acetaldehyde is a volatile organic compound (VOC) that’s commonly used as a 

solvent in industrial applications. Our results indicated that acetaldehyde had a 

protective effect on language development; that is, higher levels of prenatal exposure 

led to a decreased risk of belonging to an abnormal language trajectory. Prior literature 

has found mixed results regarding exposure to airborne acetaldehyde and its effect on 

neurodevelopment. While von Ehrenstein et al. found that exposure increased the odds 

for ASD, Kalkbrenner et al. did not find this result (24,160). The results from 

Kalkbrenner et al. showed decreased odds for ASD, as well as slightly higher scores on 

the Social Responsiveness Scales, though results were not statistically significant (24). 

Further, Madaniyazi et al. also found that acetaldehyde did not significantly impact 

various measures of neurodevelopment as reported by the Ages and Stages 

Questionnaire, which included a measure of language (239). 

 Lead was found to be protective in our results; that is, higher exposure to lead 

was associated with a decreased risk of belonging to an abnormal trajectory class for 

both expressive and receptive language. While these results were not statistically 

significant when adjusted for multiple testing, it nonetheless is inconsistent with prior 

studies that show that lead is neurotoxic. Several prior studies have also shown that 

higher levels of lead exposure were associated with worse language development. Hou 

et al. found that blood lead levels were associated with worse neurodevelopmental 

outcomes in children, including language development as measured by the Gesell 

Development Schedules (240). Lin et al. found that prenatal exposure to lead was 

associated with lower language quotients as measured by the Comprehensive 

Developmental Inventory for Infants and Toddlers within 2 year olds (241). Campbell et 
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al. found that higher bone lead levels in male teenagers from 11 to 14 years old 

decreased language processing performance, lending evidence that lead exposure 

continues to negatively impact language past childhood into adolescence (242). 

 One of the groups created via hierarchical clustering included the toxics toluene, 

xylene, ethylbenzene, and hexane. These toxics fall under a class of chemicals known 

as volatile organic compounds, or VOCs. All toxics within this group were shown to 

have protective effects for both expressive and receptive language, although the effects 

were not statistically significant; that is, an increase in prenatal exposure led to a 

decreased risk of falling into an abnormal language trajectory for all four of the toxics. 

This result is contradictory to prior literature that has shown xylene, toluene, and 

ethylbenzene to be neurotoxic in nature. Madaniyazi et al. found that increases in the 

concentration of certain forms of xylene were associated with lower scores in  the Ages 

and Stages Questionnaire, while Grandjean and Landrigan found in a review that 

toluene exposure can lead to deficits in neurodevelopment (239,243). Additionally, Von 

Ehrenstein et al. found that ethylbenzene, toluene, and xylenes were associated with a 

greater risk for autism spectrum disorder (160). Kalkbrenner et al. also found that 

ethylbenzene, hexane, toluene, and xylenes all increased the risk of autism, though only 

ethylbenzene and xylenes were statistically significant. However, our results show that 

all four toxics had protective effects, although our results were not statistically 

significant. This may be due to random chance due to multiple testing, or it may be due 

to the relatively small sample size, which led to comparatively smaller populations that 

fall into each of the trajectory classes. 
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 Multiple testing is of particular concern in this study, due to the large number of 

air toxics examined; in total, we examined 53 air toxics over two different measures of 

language across three classes. In order to help address the problem of multiple 

comparisons, we adjusted p-values using the Benjamini and Hochberg false discovery 

rate (236). After adjusting for multiple comparisons, only acetaldehyde remained 

statistically significant for expressive language. In addition, some of the groups had a 

small number of individuals, despite our efforts to choose classes that had greater than 

10 percent of the study population. Because of these two factors, it is possible that we 

found false negatives in our analysis; that is, the fact that we did not find many 

statistically significant associations does not mean that air toxics are not without risk.  

 Most prior studies that examined airborne air toxics and neurodevelopment found 

that some toxics were linked to measures of neurodevelopment. However, in our study, 

after adjusting for multiple comparisons, we only found that acetaldehyde was 

statistically significant. Furthermore, we found that acetaldehyde decreased the risk of 

falling into an abnormal language trajectory, which runs counter to our hypothesis that 

exposure to air toxics would increase risk of neurodevelopmental delays or disorder. 

While our smaller sample size may explain some of this discrepancies, there may be 

further reasons for our disparate results. Because we used NATA to collect exposure 

data, we may not be capturing all sources of airborne exposure to these air toxics, since 

NATA focuses mostly on outdoor sources of air pollution. As such, our exposure may be 

underrepresenting the true exposure for some air toxics. It is also possible that our 

findings were influenced by the uniqueness of our sample, where children were at 

enhanced risk for autism. 
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 We examined the potential effects of air toxic mixtures on language development 

trajectories by utilizing BKMR analysis. Our results found that there was an increase in 

risk in a mixture model as concentrations increased from the 50 th quantile up until the 

60th quantile, though risk then decreased past the 65th percentile. This change in risk 

was also not statistically significant. In addition, when we examined interactions 

between any single air toxic and all other air toxics, we found that there were no 

statistically significant interactions, though some trends could be seen with some air 

toxics. It should be noted that our sample size is relatively small, which limits our ability 

to assess interactions, even within the BKMR framework.  

Strengths of our study include the use of language development trajectories as 

our outcome, which allows for a more detailed and accurate examination of how air 

toxic affects language development when compared to a single time point outcome. In 

addition, because we made use of repeated measures for our outcome in order to 

develop these trajectories, there is a decreased risk of exposure misclassification, as 

these measures would decrease the probability of incorrect assignment of trajectories. 

Second, the use of cohorts with heightened familial risk of autism allows for a greater 

ability to detect abnormal language development trajectories that may be less common 

in the general population, as these cohorts are at a heightened prevalence for 

neurodevelopmental delays. 

Our results are not applicable to the general population, as both cohorts used 

were at heightened risk of autism. In addition, while the MSEL is considered to be a 

suitable psychometric measure of expressive and receptive language (185) and has 

been shown to have good validity (186), language is a complex phenotype, with multiple 
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facets to consider. Our analysis is limited to expressive and receptive language only, 

and only through the methodology of the MSEL. Future research should explore other 

facets of language, such as vocabulary, grammatical development, or semantics. We 

are also unable to extrapolate language trajectories after 36 months of age. Future 

studies should aim to examine language development over a longer period of time, 

particularly because language can develop rapidly within the first few years of life. Due 

to the nature of LCGA analysis, our results are sensitive to the number of classes 

selected. While we followed recommendations outlined in Diallo et al., we may have 

selected for a non-ideal number of classes, which may have resulted in different results 

(181). However, we are confident that the overall direction of effect would remain 

consistent between various class choices. Finally, our study focused on airborne 

exposure of air toxics, but it is not the only route of exposure for many of the toxics 

examined. Our study can’t account for those additional routes of exposure, nor did it 

account for the actual body burden the mother experienced. In addition, because NATA 

is not published every year, we used datasets closest to each child’s birth year, which 

may not reflect the actual concentration of air toxics absorbed during the entire prenatal 

period.  
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Tables and Figures 

Table 4.1: Mean and Standard Deviation of 36 Month Mullen Scores for Included Population by Child Characteristics 

 

Expressive 
language raw 

score (36 
months) 

Receptive 
language raw 

score (36 months) 

Child Sex   

Female (N=200) 32.2 (5.25) 31.6 (4.63) 

Male (N=271) 30.2 (6.84) 29.7 (5.90) 

Maternal age 
  

20 to 30 years 
(N=92) 

29.5 (6.81) 29.3 (5.19) 

31 to 35 years 
(N=186) 

31.4 (6.03) 30.6 (5.62) 

36 to 40 years 
(N=140) 

31.2 (6.12) 31.0 (5.47) 

40 to 49 years 
(N=53) 

32.0 (6.44) 31.0 (5.30) 

Maternal 
Race/Ethnicity 
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Non-Hispanic 
White (N=262) 

31.7 (5.92) 31.0 (5.30) 

Black/African 
American (N=31) 

29.8 (6.28) 29.3 (3.54) 

Hispanic (N=90) 29.9 (6.60) 28.7 (6.24) 

Other/Multiracial 
(N=88) 

30.7 (6.88) 31.3 (5.36) 

Maternal 
Educational 
Attainment 

 

 

High School/GED 
or Less (N=43) 

28.8 (6.86) 28.0 (4.96) 

Some college 
(N=170) 

30.1 (6.28) 29.4 (5.53) 

Bachelor's degree 
(N=149) 

32.4 (5.65) 31.4 (5.19) 

Graduate or 
Professional 

degree (N=109) 
31.6 (6.48) 31.9 (5.34) 

Homeownership   

Rent (N=178) 30.3 (7.12) 29.6 (6.31) 

Own (N=293) 31.5 (5.69) 31.1 (4.83) 
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Birth Season   

Spring (n=103) 31.1 (5.84) 30.3 (5.03) 

Summer (n=141) 30.7 (6.57) 30.0 (5.65) 

Fall (n=120) 31.5 (6.47) 31.0 (5.82) 

Winter (n=107) 31.0 (6.19) 30.8 (5.27) 

Overall (N=471) 31.0 (6.29) 30.5 (5.48) 

Footnotes for Table 4.1: Mean and standard deviations calculated after removing missing values 
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Table 4.2: Relative Risk Ratios for each IQR increase of Air Toxics 

Air Toxic Expressive Language Receptive Language 
 Tracking Low Growth Tracking Low Growth 

Group 1     

Cresol/Cresylic Acid 1.00 (0.78, 1.28) 1.00 (0.70, 1.42) 1.00 (0.67, 1.49) 1.00 (0.64, 1.56) 

Phenol 1.00 (0.78, 1.28) 1.00 (0.70, 1.42) 1.00 (0.67, 1.49) 1.00 (0.64, 1.56) 

Group 2     

DEHP 0.97 (0.76, 1.25) 0.96 (0.67, 1.38) 0.99 (0.67, 1.48) 0.97 (0.62, 1.52) 

Carbon Disulfide 0.99 (0.77, 1.27) 0.98 (0.68, 1.41) 1.00 (0.67, 1.49) 0.99 (0.63, 1.55) 

Group 3     

Xylenes 0.90 (0.71, 1.16) 0.76 (0.53, 1.10) 0.97 (0.65, 1.43) 0.69 (0.44, 1.08) 

Toluene 0.88 (0.69, 1.12) 0.74 (0.52, 1.07) 0.99 (0.67, 1.47) 0.76 (0.49, 1.19) 

Ethylbenzene 0.85 (0.67, 1.09) 0.77 (0.54, 1.11) 1.01 (0.68, 1.50) 0.79 (0.50, 1.23) 

Hexane 0.90 (0.71, 1.16) 0.76 (0.53, 1.10) 0.97 (0.65, 1.43) 0.69 (0.44, 1.08) 

Group 4     

Dibenzofuran 1.25 (0.97, 1.60) 0.92 (0.65, 1.30) 1.01 (0.68, 1.50) 1.13 (0.72, 1.76) 

Polychlorinated Biphenyls 1.01 (0.79, 1.29) 0.99 (0.70, 1.42) 0.98 (0.66, 1.47) 1.01 (0.65, 1.58) 

Group 5     

Hexachlorobenzene 1.00 (0.78, 1.28) 1.01 (0.71, 1.44) 1.00 (0.67, 1.49) 1.00 (0.64, 1.56) 

Trichlorobenzene 1.20 (0.94, 1.53) 1.24 (0.86, 1.77) 0.91 (0.61, 1.36) 0.97 (0.62, 1.52) 

Group 6     

2,4,6-Trichlorophenol 0.92 (0.72, 1.18) 0.91 (0.64, 1.29) 0.79 (0.53, 1.19) 0.99 (0.63, 1.56) 

Trifluralin 0.97 (0.76, 1.25) 1.03 (0.73, 1.47) 0.88 (0.59, 1.31) 1.00 (0.64, 1.55) 

Arsenic 1.10 (0.86, 1.40) 1.05 (0.74, 1.50) 0.90 (0.60, 1.35) 0.96 (0.61, 1.50) 

Carbaryl 0.96 (0.75, 1.23) 0.92 (0.64, 1.31) 1.08 (0.72, 1.60) 1.03 (0.66, 1.61) 

2,4-Dichlorophenoxyacetic Acid 
Salts And Esters 

0.90 (0.71, 1.15) 0.97 (0.68, 1.38) 1.00 (0.67, 1.49) 0.87 (0.56, 1.36) 

Group 7     

Manganese 1.00 (0.78, 1.28) 1.15 (0.80, 1.64) 0.91 (0.61, 1.36) 1.02 (0.65, 1.59) 

Nickel 0.98 (0.77, 1.26) 0.98 (0.69, 1.40) 1.03 (0.69, 1.53) 0.93 (0.59, 1.45) 

Dimethyl Phthalate 1.09 (0.85, 1.40) 1.08 (0.76, 1.54) 1.01 (0.68, 1.52) 1.13 (0.73, 1.77) 
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Acrylonitrile 1.07 (0.84, 1.37) 1.01 (0.71, 1.44) 1.44 (0.95, 2.20) 1.40 (0.88, 2.23) 

Vinyl Chloride 0.99 (0.78, 1.27) 0.77 (0.54, 1.11) 0.95 (0.64, 1.42) 0.83 (0.53, 1.30) 

Methyl Iodide 1.04 (0.81, 1.32) 0.94 (0.66, 1.34) 1.03 (0.69, 1.54) 0.99 (0.64, 1.55) 

Aniline 1.01 (0.79, 1.30) 0.95 (0.67, 1.36) 1.03 (0.70, 1.54) 1.03 (0.66, 1.61) 

Ethylene Dibromide 1.09 (0.85, 1.39) 1.09 (0.77, 1.56) 1.05 (0.70, 1.57) 1.11 (0.71, 1.74) 

Mercury 1.16 (0.91, 1.49) 1.07 (0.75, 1.53) 1.10 (0.73, 1.64) 1.08 (0.69, 1.70) 

Methyl Chloride 1.01 (0.79, 1.29) 1.01 (0.71, 1.45) 1.01 (0.68, 1.50) 1.01 (0.65, 1.58) 

Nitrophenol 1.01 (0.79, 1.29) 0.96 (0.67, 1.37) 1.31 (0.88, 1.96) 1.40 (0.89, 2.19) 

No Group     

Acetaldehyde 0.91 (0.71, 1.16) 0.53 (0.36, 0.77) 0.81 (0.55, 1.20) 0.71 (0.46, 1.10) 

Acrolein 1.08 (0.84, 1.37) 0.70 (0.48, 1.02) 1.06 (0.71, 1.58) 0.93 (0.59, 1.45) 

Acrylamide 1.00 (0.78, 1.27) 0.96 (0.67, 1.37) 0.99 (0.66, 1.48) 0.97 (0.62, 1.52) 

Chlorobenzene 1.01 (0.79, 1.29) 0.99 (0.70, 1.41) 0.99 (0.66, 1.47) 0.99 (0.63, 1.55) 

Dibutyl phthalate 1.11 (0.87, 1.42) 0.98 (0.68, 1.41) 1.41 (0.91, 2.17) 1.37 (0.85, 2.21) 

Dichlorobenzene 1.01 (0.79, 1.29) 0.75 (0.52, 1.09) 1.24 (0.82, 1.87) 1.01 (0.64, 1.61) 

Dichlorvos 0.99 (0.78, 1.27) 0.98 (0.68, 1.39) 1.02 (0.68, 1.53) 1.01 (0.64, 1.58) 

Dimethyl Formamide 0.92 (0.72, 1.18) 0.89 (0.62, 1.27) 1.22 (0.81, 1.85) 1.04 (0.66, 1.64) 

Ethylene Oxide 0.97 (0.76, 1.24) 0.99 (0.70, 1.41) 1.01 (0.67, 1.50) 0.99 (0.63, 1.55) 

Hydrazine 1.00 (0.78, 1.28) 1.01 (0.71, 1.44) 0.98 (0.66, 1.46) 0.98 (0.63, 1.53) 

Methyl Bromide 1.01 (0.79, 1.29) 0.96 (0.67, 1.37) 0.95 (0.64, 1.42) 0.99 (0.63, 1.54) 

Methyl Tertbutyl Ether 1.10 (0.86, 1.41) 1.04 (0.73, 1.49) 0.97 (0.65, 1.44) 0.92 (0.59, 1.43) 

Naphthalene 0.97 (0.76, 1.23) 0.60 (0.42, 0.88) 0.99 (0.67, 1.46) 0.69 (0.44, 1.08) 

Nitrobenzene 1.00 (0.78, 1.28) 1.00 (0.70, 1.42) 1.00 (0.67, 1.50) 1.00 (0.64, 1.56) 

Propylene Dichloride 1.21 (0.95, 1.55) 0.98 (0.69, 1.39) 0.84 (0.56, 1.26) 0.96 (0.61, 1.50) 

Styrene 0.93 (0.73, 1.19) 0.76 (0.53, 1.09) 0.97 (0.65, 1.45) 0.79 (0.51, 1.24) 

Trichloroethylene 0.98 (0.77, 1.25) 0.78 (0.54, 1.12) 1.29 (0.85, 1.96) 0.91 (0.57, 1.45) 

Triethylamine 0.95 (0.74, 1.21) 0.77 (0.53, 1.11) 0.87 (0.59, 1.28) 0.69 (0.45, 1.08) 

Vinyl Acetate 1.01 (0.79, 1.29) 0.79 (0.55, 1.13) 0.92 (0.62, 1.38) 0.93 (0.59, 1.45) 

Vinylidene Chloride 1.02 (0.79, 1.30) 1.02 (0.72, 1.46) 1.10 (0.72, 1.67) 1.12 (0.70, 1.78) 

Cobalt 0.92 (0.72, 1.18) 0.97 (0.68, 1.39) 0.99 (0.67, 1.48) 0.91 (0.58, 1.43) 

Cyanide 1.01 (0.79, 1.29) 1.04 (0.73, 1.49) 1.02 (0.68, 1.52) 1.01 (0.65, 1.57) 
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Lead 0.95 (0.74, 1.22) 0.64 (0.44, 0.92) 0.84 (0.56, 1.25) 0.77 (0.50, 1.21) 

Selenium 0.86 (0.67, 1.10) 0.76 (0.53, 1.09) 1.02 (0.68, 1.51) 0.81 (0.51, 1.26) 

Tetrachloroethylene 0.95 (0.75, 1.21) 0.84 (0.58, 1.22) 1.05 (0.70, 1.57) 0.97 (0.62, 1.53) 

Footnotes for Table 4.2: All models were adjusted for child sex, maternal age, maternal race/ethnicity, maternal education and home-

ownership; each relative risk is per IQR increase for each air toxic; High Growth was used as the referent group for both models 
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Table 4.3: False Discovery Rate Adjusted P-Values 

Air Toxic Expressive Language Receptive Language 

 Tracking Low Growth Tracking Low Growth 

 Non-
corrected 

Corrected 
Non-

corrected 
Corrected 

Non-
corrected 

Corrected 
Non-

corrected 
Corrected 

Group 1         

Cresol/Cresylic Acid 0.998 0.998 0.995 0.995 0.998 0.998 0.998 0.998 

Phenol 0.998 0.998 0.995 0.995 0.998 0.998 0.998 0.998 

Group 2         

DEHP 0.836 0.998 0.832 0.995 0.973 0.998 0.904 0.998 

Carbon Disulf ide 0.924 0.998 0.928 0.995 0.994 0.998 0.962 0.998 

Group 3         

Xylenes 0.423 0.998 0.144 0.678 0.864 0.998 0.106 0.998 

Toluene 0.294 0.998 0.108 0.678 0.954 0.998 0.227 0.998 

Ethylbenzene 0.562 0.998 0.181 0.678 0.567 0.998 0.239 0.998 

Hexane 0.201 0.998 0.163 0.678 0.961 0.998 0.29 0.998 

Group 4         

Dibenzofuran 0.079 0.998 0.627 0.995 0.968 0.998 0.594 0.998 

Polychlorinated Biphenyls 0.936 0.998 0.974 0.995 0.935 0.998 0.97 0.998 

Group 5         

Hexachlorobenzene 0.982 0.998 0.97 0.995 0.997 0.998 0.994 0.998 

Trichlorobenzene 0.151 0.998 0.245 0.811 0.641 0.998 0.885 0.998 

Group 6         

2,4,6-Trichlorophenol 0.512 0.998 0.586 0.995 0.259 0.998 0.98 0.998 

Trif luralin 0.836 0.998 0.851 0.995 0.54 0.998 0.995 0.998 

Arsenic 0.468 0.998 0.78 0.995 0.615 0.998 0.854 0.998 

Carbaryl 0.758 0.998 0.635 0.995 0.721 0.998 0.895 0.998 

2,4-Dichlorophenoxyacetic 

Acid Salts And Esters 
0.409 0.998 0.852 0.995 0.996 0.998 0.553 0.998 

Group 7         
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Manganese 0.988 0.998 0.451 0.995 0.662 0.998 0.928 0.998 

Nickel 0.892 0.998 0.927 0.995 0.89 0.998 0.738 0.998 

Dimethyl Phthalate 0.48 0.998 0.662 0.995 0.944 0.998 0.584 0.998 

Acrylonitrile 0.571 0.998 0.961 0.995 0.089 0.998 0.154 0.998 

Vinyl Chloride 0.95 0.998 0.158 0.678 0.819 0.998 0.414 0.998 

Methyl Iodide 0.784 0.998 0.744 0.995 0.87 0.998 0.97 0.998 

Aniline 0.907 0.998 0.797 0.995 0.867 0.998 0.882 0.998 

Ethylene Dibromide 0.497 0.998 0.622 0.995 0.806 0.998 0.635 0.998 

Mercury 0.228 0.998 0.71 0.995 0.649 0.998 0.722 0.998 

Methyl Chloride 0.938 0.998 0.94 0.995 0.966 0.998 0.955 0.998 

Nitrophenol 0.928 0.998 0.831 0.995 0.183 0.998 0.142 0.998 

No Group         

Acetaldehyde 0.452 0.998 0.001 0.044 0.295 0.998 0.126 0.998 

Acrolein 0.55 0.998 0.061 0.678 0.792 0.998 0.743 0.998 

Acrylamide 0.97 0.998 0.815 0.995 0.953 0.998 0.897 0.998 

Chlorobenzene 0.941 0.998 0.953 0.995 0.944 0.998 0.969 0.998 

Dibutyl Phthalate 0.405 0.998 0.917 0.995 0.125 0.998 0.196 0.998 

Dichlorobenzene 0.918 0.998 0.132 0.678 0.315 0.998 0.951 0.998 

Dichlorvos 0.949 0.998 0.89 0.995 0.912 0.998 0.971 0.998 

Dimethyl Formamide 0.522 0.998 0.51 0.995 0.34 0.998 0.872 0.998 

Ethylene Oxide 0.79 0.998 0.975 0.995 0.978 0.998 0.964 0.998 

Hydrazine 0.984 0.998 0.962 0.995 0.928 0.998 0.94 0.998 

Methyl Bromide 0.949 0.998 0.82 0.995 0.796 0.998 0.963 0.998 

Methyl Tertbutyl Ether 0.442 0.998 0.819 0.995 0.874 0.998 0.711 0.998 

Naphthalene 0.776 0.998 0.009 0.236 0.95 0.998 0.102 0.998 

Nitrobenzene 0.996 0.998 0.993 0.995 0.996 0.998 0.994 0.998 

Propylene Dichloride 0.127 0.998 0.898 0.995 0.396 0.998 0.843 0.998 

Styrene 0.588 0.998 0.135 0.678 0.887 0.998 0.306 0.998 

Trichloroethylene 0.86 0.998 0.173 0.678 0.223 0.998 0.687 0.998 

Triethylamine 0.684 0.998 0.161 0.678 0.482 0.998 0.104 0.998 

Vinyl Acetate 0.924 0.998 0.192 0.678 0.691 0.998 0.733 0.998 
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Vinylidene Chloride 0.895 0.998 0.895 0.995 0.665 0.998 0.639 0.998 

Cobalt 0.531 0.998 0.887 0.995 0.977 0.998 0.692 0.998 

Cyanide 0.944 0.998 0.828 0.995 0.933 0.998 0.968 0.998 

Lead 0.686 0.998 0.015 0.262 0.379 0.998 0.261 0.998 

Selenium 0.243 0.998 0.135 0.678 0.941 0.998 0.348 0.998 

Tetrachloroethylene 0.686 0.998 0.372 0.995 0.816 0.998 0.895 0.998 

Footnotes for Table 4.3: An FDR of 0.1 was used 
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Table 4.4: Posterior Inclusion Probabilities for Expressive Language 

Air Toxic 
Group 
PIP 

Conditional 
PIP 

Group 1   

Acetaldehyde 0.47 0.32 

Acrylamide 0.47 0 

Hydrazine 0.47 0.28 

Methyl Tertbutyl Ether 0.47 0.40 

Group 2   

Acrolein 0.59 0.04 

Dibutyl Phthalate 0.59 0.003 

Dichlorobenzene 0.59 0.18 

Dimethyl Formamide 0.59 0.10 

Hexachlorobenzene 0.59 0.42 

Naphthalene 0.59 0.24 

Trichloroethylene 0.59 0.003 

Vinyl Acetate 0.59 0.01 

Tetrachloroethylene 0.59 0 

Group 3   

Acrylonitrile 0.66 0.61 

Vinyl Chloride 0.66 0.39 

Group 4   

DEHP 0.42 0.20 

Ethylbenzene 0.42 0.04 

Xylenes 0.42 0.09 

Hexane 0.42 0.27 

Styrene 0.42 0 

Toluene 0.42 0 

Triethylamine 0.42 0.01 

Cobalt 0.42 0.21 
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Selenium 0.42 0.19 

Group 5   

Chlorobenzene 0.48 0 

Dimethyl Phthalate 0.48 0 

Nitrophenol 0.48 0.01 

Arsenic 0.48 0.66 

Manganese 0.48 0.26 

Nickel 0.48 0.07 

Group 6   

Cresol/Cresylic Acid 0.74 0.42 

Phenol 0.74 0.58 

Group 7   

Methyl Bromide 0.89 0.55 

Trifluralin 0.89 0.45 

Group 8   

Ethylene Dibromide 0.79 0.53 

Propylene Dichloride 0.79 0.47 

No Group   

Aniline 0.80 1 

2,4,6-Trichlorophenol 0.68 1 

Carbaryl 1 1 

Carbon Disulfide 1 1 

2,4-Dichlorophenoxyacetic 
Acid Salts And Esters 

0.22 1 

Dibenzofuran 0.49 1 

Dichlorvos 1 1 

Ethylene Oxide 0.86 1 

Methyl Chloride 1 1 

Methyl Iodide 1 1 

Nitrobenzen3 1 1 

Polychlorinated Biphenyls 0.92 1 
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Trichlorobenzene 1 1 

Vinylidene Chloride 0.79 1 

Cyanide 0.93 1 

Lead 0.58 1 

Mercury 1 1 

Footnotes for Table 4.4: All models were adjusted for child sex, maternal age, maternal race/ethnicity, maternal education and home-
ownership; Tracking and Low Growth classes were combined into a “non-optimal” class for comparison 
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Table 4.5: Posterior Inclusion Probabilities for Receptive Language 

Air Toxic 
Group 
PIP 

Conditional 
PIP 

Group 1   

Acetaldehyde 0.88 0.08 

Acrylamide 0.82 0.76 

Hydrazine 0.88 0.15 

Methyl Tertbutyl Ether 0.88 0.01 

Group 2   
Acrolein 0.86 0 

Dibutyl Phthalate 0.86 0.12 

Dichlorobenzene 0.86 0.02 

Dimethyl Formamide 0.86 0.18 

Hexachlorobenzene 0.86 0.08 

Naphthalene 0.86 0.05 

Trichloroethylene 0.86 0.20 

Vinyl Acetate 0.86 0.14 

Tetrachloroethylene 0.86 0.21 

Group 3   
Acrylonitrile 1 0.69 

Vinyl Chloride 1 0.31 

Group 4   
DEHP 0.72 0.12 

Ethylbenzene 0.72 0.13 

Xylenes 0.72 0 

Hexane 0.72 0.22 

Styrene 0.72 0.02 

Toluene 0.72 0.25 

Triethylamine 0.72 0 

Cobalt 0.72 0.17 
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Selenium 0.72 0.09 

Group 5   
Chlorobenzene 1 0.23 

Dimethyl Phthalate 1 0.03 

Nitrophenol 1 0.05 

Arsenic 1 0.28 

Manganese 1 0.04 

Nickel 1 0.37 

Group 6   
Cresol/Cresylic Acid 1 0.52 

Phenol 1 0.48 

Group 7   
Methyl Bromide 1 0.62 

Trifluralin 1 0.38 

Group 8   
Ethylene Dibromide 1 0.25 

Propylene Dichloride 1 0.75 

No Group   

Aniline 1 1 

2,4,6-Trichlorophenol 1 1 

Carbaryl 1 1 

Carbon Disulfide 0.84 1 
2,4-Dichlorophenoxyacetic 

Acid Salts And Esters 1 1 

Dibenzofuran 1 1 

Dichlorvos 0.85 1 

Ethylene Oxide 0.96 1 

Methyl Chloride 1 1 

Methyl Iodide 0.81 1 

Nitrobenzene 1 1 

Polychlorinated Biphenyls 1 1 
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Trichlorobenzene 0.51 1 

Vinylidene Chloride 0.98 1 

Cyanide 1 1 

Lead 1 1 

Mercury 1 1 

Footnotes for Table 4.5: All models were adjusted for child sex, maternal age, maternal race/ethnicity, maternal education and home-
ownership; Tracking and Low Growth classes were combined into a “non-optimal” class for comparison 
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Table 4.6: Air Toxics with Evidence of Endocrine Disrupting Activity 

Acetaldehyde (244) o-Cresol (245) 
Xylenes (isomers and mixture) 

(246,247) 
Methyl tert butyl ether (248) 

Acrolein (249,250) m-Cresol (245) Ethylene oxide (251) 4,4'-Methylenedianiline (252) 

Acrylamide (253) p-Cresol (245) Ethylene thiourea (254) Naphthalene (255) 

Acrylonitrile (256) 2,4-D, salts and esters (257) Heptachlor (258,259) Nitrobenzene (260) 

4-Aminobiphenyl (261) DDE (262) Hexachlorobenzene (263) 4-Nitrophenol (264,265) 

Aniline (266) Dibenzofurans (267,268) Hexachlorocyclopentadiene (269) 
Ethylene dibromide 

(Dibromoethane) (270) 

2,4,6-Trichlorophenol (271) 
1,2-Dibromo-3-chloropropane 

(272) 
Hexachloroethane (273) N-Nitrosomorpholine (274) 

Bis(2-ethylhexyl)phthalate 
(DEHP) (275) 

Dibutylphthalate (276,277) Hexane (278,279) Parathion (280) 

Carbaryl (281) 1,4-Dichlorobenzene(p) (282) Hydrazine (283,284) 
Pentachloronitrobenzene 
(Quintobenzene) (285) 

Carbon disulf ide (286) Dichlorvos (287) Lindane (all isomers) (288) Pentachlorophenol (289) 

Chlordane (288,290) Dimethyl formamide (291) Methoxychlor (292,293) Phenol (294,295) 

Chlorobenzene (263) Dimethyl phthalate (77,296) 
Methyl bromide (Bromomethane) 

(297) 
Polychlorinated biphenyls 
(Aroclors) (123,143,267) 

Chlorobenzilate (298,299) 2,4-Dinitrophenol (300,301) 
Methyl chloride (Chloromethane) 

(302) 
Propoxur (Baygon) (303) 

Cresols/Cresylic acid (isomers 

and mixture) (245) 
Ethyl benzene (246,247) 

Methyl iodide (Iodomethane) 

(304) 

Propylene dichloride (1,2-

Dichloropropane) (305) 

o-Xylenes (246,247) Styrene (306) 
Arsenic Compounds (inorganic 

including arsine) (307) 
2,4-Toluene diamine (308) 

m-Xylenes (246,247) 
2,3,7,8-Tetrachlorodibenzo-p-

dioxin (309) 
Chromium Compounds (310) 

Toxaphene (chlorinated 
camphene) (311) 

p-Xylenes (246,247) Toluene (312) Cobalt Compounds (313) 1,2,4-Trichlorobenzene (314,315) 

Cyanide Compounds (316) Trichloroethylene (317) Mercury Compounds (318) Trif luralin (319) 

Lead Compounds (320) 2,4,5-Trichlorophenol (321) Nickel Compounds (322) Vinyl acetate (323) 

Manganese Compounds (324) Triethylamine (325) Selenium Compounds (326) Vinyl chloride (327) 

Tetrachloroethylene 

(Perchloroethylene) (328) 

Vinylidene chloride (1,1-

Dichloroethylene) 

Tetrachloroethylene 

(Perchloroethylene) (328) 
 

Footnotes for Table 4.6: All toxics have shown potential evidence of endocrine disruption in either animal or epidemiological studies  
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Table 4.7: Comparison of characteristics of included versus excluded individuals 

 
Included 

(N=471) 

Excluded 

(N=150) 

Overall 

(N=621) 

Child Sex    

Female 200 (42.5%) 80 (57.6%) 280 (45.9%) 

Male 271 (57.5%) 59 (42.4%) 330 (54.1%) 

Missing 0 11 11 

Maternal Age    

20 to 30 years 92 (19.5%) 34 (23.9%) 102 (16.6%) 

31 to 35 years 58 (12.3%) 8 (5.6%) 244 (39.8%) 

36 to 40 years 186 (39.5%) 58 (40.9%) 177 (28.9%) 

40 to 49 years 135 (28.7%) 42 (29.6%) 66 (10.8%) 

Missing 0 8 8 

Maternal Race/Ethnicity    

Non-Hispanic White 260 (55.9%) 43 (44.3%) 303 (53.9%) 

Black/African American 29 (6.3%) 10 (10.3%) 39 (6.9%) 

Hispanic 89 (19.1%) 23 (23.7%) 112 (19.9%) 

Other/Multiracial 87 (18.7%) 21 (21.7%) 108 (19.3%) 

Missing 6  53 59 
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Included 

(N=471) 

Excluded 

(N=150) 

Overall 

(N=621) 

Maternal Educational Attainment    

High School/GED or less 148 (31.6%) 23 (25.3%) 36 (6.4%) 

Some college 109 (23.3%) 24 (26.4%) 201 (36%) 

Bachelor's degree 43 (9.2%) 11 (12.1%) 171 (30.6%) 

Graduate or Professional degree 168 (35.9%) 33 (36.2%) 133 (23.8%) 

Missing 3 59 62 

Homeownership    

Rent 175 (38.5%) 43 (48.3%) 218 (40.1%) 

Own 280 (61.5%) 46 (51.7%) 326 (59.9%) 

Missing 16 61 77 

Expressive language raw score 

(6 months) 
   

Mean (SD) 6.26 (1.20) 6.74 (1.65) 6.32 (1.28) 

Median [IQR] 6.00 [1.00] 6.00 [1.00] 6.00 [1.00] 

Missing 66 89 155 

Receptive language raw score (6 

months) 
   

Mean (SD) 7.84 (1.51) 8.62 (1.59) 7.95 (1.55) 
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Included 

(N=471) 

Excluded 

(N=150) 

Overall 

(N=621) 

Median [IQR] 8.00 [2.00] 9.00 [2.00] 8.00 [2.00] 

Missing 66 89 155 

Expressive language raw score 

(12 months) 
   

Mean (SD) 11.8 (2.61) 13.1 (2.44) 12.0 (2.62) 

Median [IQR] 12.0 [4.00] 13.0 [3.00] 12.0 [4.00] 

Missing 28 92 120 

Receptive language raw score 

(12 months) 
   

Mean (SD) 12.4 (2.11) 12.7 (1.80) 12.5 (2.07) 

Median [IQR] 13.0 [3.00] 13.0 [2.00] 13.0 [3.00] 

Missing 28 92 120 

Expressive language raw score 

(24 months) 
   

Mean (SD) 20.6 (4.76) 20.7 (5.58) 20.6 (4.85) 

Median [IQR] 21.0 [6.00] 21.0 [6.50] 21.0 [6.00] 

Missing 183 115 298 

Receptive language raw score 

(24 months) 
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Included 

(N=471) 

Excluded 

(N=150) 

Overall 

(N=621) 

Mean (SD) 23.2 (5.47) 22.7 (5.88) 23.2 (5.51) 

Median [IQR] 25.0 [6.50] 25.0 [8.50] 25.0 [7.00] 

Missing 184 115 299 

Expressive language raw score 

(36 months) 
   

Mean (SD) 31.1 (6.29) 27.0 (8.22) 31.0 (6.36) 

Median [IQR] 32.0 [6.75] 26.0 [11.5] 32.0 [7.00] 

Missing 29 139 168 

Receptive language raw score 

(36 months) 
   

Mean (SD) 30.5 (5.54) 27.1 (8.65) 30.4 (5.65) 

Median [IQR] 31.0 [5.00] 28.0 [6.00] 31.0 [5.00] 

Missing 30 139 169 

Footnote for Table 4.7: Percentages were calculated after removing missing individuals from the sample 
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Table 4.8: Comparison of Imputed versus Non-Imputed Covariates 

 
Non-imputed 

(N=471) 

Imputed 

(N=471) 

Child Sex   

Female 200 (42.5%) 200 (42.5%) 

Male 271 (57.5%) 271 (57.5%) 

Missing 0  

Maternal Age   

20 to 30 years 92 (19.5%) 92 (19.5%) 

31 to 35 years 58 (12.3%) 186 (39.5%) 

36 to 40 years 186 (39.5%) 140 (29.7%) 

40 to 49 years 135 (28.7%) 53 (11.3%) 

Missing 0  

Maternal Race/Ethnicity   

Non-Hispanic White 260 (55.9%) 262 (55.6%) 

Black/African American 29 (6.3%) 31 (6.6%) 

Hispanic 89 (19.1%) 90 (19.1%) 

Other/Multiracial 87 (18.7%) 88 (18.7%) 

Missing 6   
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Non-imputed 

(N=471) 

Imputed 

(N=471) 

Maternal Educational 

Attainment 
  

High School/GED or less 148 (31.6%) 43 (9.1%) 

Some college 109 (23.3%) 170 (36.1%) 

Bachelor's degree 43 (9.2%) 149 (31.6%) 

Graduate or Professional degree 168 (35.9%) 109 (23.1%) 

Missing 3  

Homeownership   

Rent 175 (38.5%) 178 (37.8%) 

Own 280 (61.5%) 293 (62.2%) 

Missing 16  

Expressive language raw score 

(6 months) 
  

Mean (SD) 6.26 (1.20) 6.26 (1.21) 

Median [IQR] 6.00 [1.00] 6.00 [1.00] 

Missing 66  

Receptive language raw score 
(6 months) 

  

Mean (SD) 7.84 (1.51) 7.80 (1.54) 
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Non-imputed 

(N=471) 

Imputed 

(N=471) 

Median [IQR] 8.00 [2.00] 8.00 [2.00] 

Missing 66  

Expressive language raw score 

(12 months) 
  

Mean (SD) 11.8 (2.61) 11.9 (2.58) 

Median [IQR] 12.0 [4.00] 12.0 [4.00] 

Missing 28  

Receptive language raw score 

(12 months) 
  

Mean (SD) 12.4 (2.11) 12.4 (2.10) 

Median [IQR] 13.0 [3.00] 13.0 [3.00] 

Missing 28  

Expressive language raw score 

(24 months) 
  

Mean (SD) 20.6 (4.76) 20.3 (4.79) 

Median [IQR] 21.0 [6.00] 20.0 [7.00] 

Missing 183  

Receptive language raw score 

(24 months) 
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Non-imputed 

(N=471) 

Imputed 

(N=471) 

Mean (SD) 23.2 (5.47) 22.9 (5.46) 

Median [IQR] 25.0 [6.50] 25.0 [7.00] 

Missing 184  

Expressive language raw score 

(36 months) 
  

Mean (SD) 31.1 (6.29) 31.0 (6.29) 

Median [IQR] 32.0 [6.75] 32.0 [7.00] 

Missing 29  

Receptive language raw score 

(36 months) 
  

Mean (SD) 30.5 (5.54) 30.5 (5.48) 

Median [IQR] 31.0 [5.00] 31.0 [5.00] 

Missing 30  

Footnote for Table 4.8: Percentages were calculated after removing missing individuals from the sample  
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Table 4.9: Comparison of Transformation of Air Toxics 

Footnotes for Table 4.9: AIC values are presented and rounded to the nearest hundredth; lower values indicate better fit  

Transformation Lead Mercury 
Methyl 

Chloride 
Acrylonitrile 

Dibutyl 
Phthalate 

Acetaldehyde Dichlorobenzene Naphthalene Xylenes Hexane 

Unaltered 2436.87 2438.52 2439.32 2434.7 2437.89 2440.35 2440.12 2440.23 2439.64 2439.17 

Natural log 2433.44 2437.60 2439.13 2436.78 2438.17 2440.15 2439.34 2440.09 2438.13 2437.74 

Log base 2 2433.44 2437.60 2439.13 2436.78 2438.17 2440.15 2439.34 2440.09 2438.13 2437.74 

Log base 10 2433.44 2437.60 2439.13 2436.78 2438.17 2440.15 2439.34 2440.09 2438.13 2437.74 

Squared 2436.56 2434.82 2440.13 2435.85 2439.06 2440.62 2440.55 2437.66 2441.28 2441.10 

Root 2434.95 2437.80 2439.22 2435.04 2437.43 2440.26 2439.69 2440.47 2439.05 2438.57 

Winsorized and 
divided by IQR 

2435.49 2436.75 2439.11 2434.26 2437.31 2440.30 2439.40 2440.44 2439.83 2439.27 

Quantile 2436.65 2433.46 2440.26 2433.00 2438.76 2442.27 2440.92 2441.98 2442.84 2440.70 
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Figure 4.1: Language Development Trajectories from Latent Class Growth Analysis for Expressive Language 

 

Footnotes for Figure 4.1: Points indicate mean scores at that age with 95 percent confidence intervals 
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Figure 4.2: Language Development Trajectories from Latent Class Growth Analysis for Receptive Language 

 

Footnotes for Figure 4.2: Points indicate mean scores at that age with 95 percent confidence intervals  
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Figure 4.3: Cluster Dendrogram for Air Toxics 

 

Footnotes for Figure 4.3: Red boxes indicate clusters; Values at nodes indicate p-value percentages for clustering (higher 

percentage indicates tighter clustering); clusters were drawn on neighboring nodes with p-values greater than or equal to 95  
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Figure 4.4: Spearman Correlation between Air Toxics Heat Map 

 

Footnotes for Figure 4.4: Spearman correlations were used between each pairwise combination; redder squares indicate 

greater positive correlation (i.e. greater concentration of one toxic leads to greater concentration in the other)  
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Figure 4.5: Bayesian Kernel Machine Regression Overall Risk – Expressive Language 

 

Footnotes for Figure 4.5: Overall effect of chemical mixture of all air toxics on effect of belonging to non-optimal language trajectory; 
50th percentile is used as baseline comparison; adjusted for child sex, maternal age, maternal race/ethnicity, maternal education and 
home-ownership  
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Figure 4.6: Bayesian Kernel Machine Regression Single Exposure Effects – Expressive Language 

 

Footnote for Figure 4.6: Effect of single air toxic and probability of belonging to a non-optimal language trajectory associated with the 
exposure at 75th versus 25th percentile, while holding other air toxics at their 25th, 50th, and 75th percentiles; adjusted for child sex, 
maternal age, maternal race/ethnicity, maternal education and home-ownership  
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Figure 4.7: Bayesian Kernel Machine Regression Interactive Effects - Expressive Language 

 

Footnote for Figure 4.7: Each point shows difference between effect size of air toxic when all other air toxics are held at 75th 
percentile and when all other air toxics are held at 25th percentile, including 95 percent confidence intervals; adjusted for child sex, 
maternal age, maternal race/ethnicity, maternal education and home-ownership  
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Figure 4.8: Bayesian Kernel Machine Regression Overall Risk – Receptive Language 

 

Footnotes for Figure 4.8: Overall effect of chemical mixture of all air toxics on effect of belonging to non-optimal language trajectory; 
50th percentile is used as baseline comparison; adjusted for child sex, maternal age, maternal race/ethnicity, maternal education and 
home-ownership  
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Figure 4.9: Bayesian Kernel Machine Regression Single Exposure Effects – Receptive Language 

 

Footnote for Figure 4.9: Effect of single air toxic and probability of belonging to a non-optimal language trajectory associated with the 
exposure at 75th versus 25th percentile, while holding other air toxics at their 25th, 50th, and 75th percentiles; adjusted for child sex, 
maternal age, maternal race/ethnicity, maternal education and home-ownership  
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Figure 4.10: Bayesian Kernel Machine Regression Interactive Effects - Receptive Language 

 

Footnote for Figure 4.10: Each point shows difference between effect size of air toxic when all other air toxics are held at 75th 
percentile and when all other air toxics are held at 25th percentile, including 95 percent confidence intervals; adjusted for child sex, 
maternal age, maternal race/ethnicity, maternal education and home-ownership 



  

208 
 

Chapter 5 – Discussion, Conclusions, and Future Directions 
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Mixtures Analysis 

 Prior research has used a variety of methods to examine chemical mixtures. 

Loftus et al. used a weighted quantile sum regression (WQS) to examine the effects of a 

phthalate mixture on neurodevelopment, and Ramos et al. used a combination of 

principal component analysis (PCA) with structural equation modeling (SEM) to assess 

the effects of phthalates, organophosphate esters, and organophosphorous pesticides 

on language ability (107,206). WQS is also used in air toxics literature in order to 

assess air toxic mixtures (239,329) However, WQS has several limitations, namely that 

by using quantiles, information about the exposure is lost. In addition, while WQS may 

be used to assess the effects of a mixture, as well as determine which individual 

exposure contribute the most, it is unable to generate any measure of risk (208). Finally, 

the WQS assumes that all exposures in the weighted index have associations in the 

same direction with the outcome, an assumption that is highly unlikely to occur in an 

environmental mixture (330). 

While we performed a mixtures analysis in our third analysis with air toxic 

exposures, we did not perform a mixtures analysis for our second analysis with 

phthalate exposures due to constraints on time. If we were to repeat this analysis, then 

a mixtures analysis should be performed, as exposure to phthalates rarely occurs in 

isolation. Because phthalates can degrade into multiple metabolites, it may also be 

prudent to use a mixture analysis in order to completely capture the effect of the parent 

compound. However, the metabolites may have differing mechanisms of actions that 

may lead to different physiological responses, so if this approach and rationale were to 

be used, then one must be certain that the metabolite in question all act via similar 
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pathophysiologies. In addition, while our analysis did not show that an air toxic mixture 

significantly influences language development trajectories, this may not be because a 

mixture does not have an effect. Our sample size was relatively small, which may have 

affected our ability to statistically resolve our BKMR, which can be sensitive to sample 

size. In addition, while none of the interactions were statistically significant, there was 

evidence of trends for certain air toxics, which indicates that a mixture of certain air 

toxics may impact language development trajectories. 

 Future research should focus on correcting the shortcomings of our mixture 

analysis. A mixtures analysis should be performed on all phthalate metabolites, ideally 

with a larger sample size in order to achieve adequate statistical power and resolution 

to observe any small effect sizes that may arise. Different methodology may be prudent 

to use as well; we utilized BKMR for its advantages over other methodologies. First, 

because it conducts variable selection and effect estimates simultaneously, it is more 

capable of capturing uncertainty in the exposure-response function compared to other 

methods. Second, it can examine both main effect and interaction components of the 

model while also accounting for uncertainty within the model (237,331). However, other 

methods may prove useful to answer other questions or to help support the results from 

a BKRM analysis. For example, weighted quantile sum regression may be able to 

provide a clearer picture on the effect of an overall mixture, and might be able to 

corroborate results taken from a BKMR analysis.   

Use of High/Enhanced Risk Cohorts 

 The population used for this research consisted of families where the pregnant 

mother or father had a biological child that had already been diagnosed with autism. 



  

211 
 

The mother and the younger sibling were then followed through time. As a result, this 

population would be considered an enhanced risk autism cohort due to the heritable 

nature of autism. This also allowed us to observe a greater variability of potentially 

neurodivergent phenotypes, giving us greater power and ability to detect and 

characterize language development trajectories. However, this also limits the 

generalizability of our results. While enhanced risk cohorts have been used in the past 

to examine neurodevelopmental disorders and delays (195,196,332–334), we run the 

risk of not being able to appropriately apply our results to the general population, limiting 

the overall utility of our results. Future research should look at the general population in 

order to improve overall generalizability.  

Use of Trajectory Analysis (Latent Class Growth Analysis) 

 The statistical method used for this research was latent class growth analysis 

(LCGA), a type of growth curve modeling that tries to predict latent classes using 

observed variables. This methodology may provide better insight into how prenatal 

exposure to endocrine disruptors impacts neurodevelopment. While not performed in 

this research, a comparison of this method to other cross-sectional methods would be 

prudent to observe any differences in risk, as well as assess precision  (e.g. comparison 

of risk ratios obtained via LCGA to odds ratios from a more traditional logistic regression 

using a subscore from a specific time point). Ideally, we would see greater precision 

with the use of LCGA compared to a logistic regression.  

Beyond comparison to cross-sectional methods, there are also other longitudinal 

methods that may be employed to assess risk using repeat measures. Such methods 

include mixed effect models, group based trajectory methods, and growth mixture 
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modeling. Prior studies have made use of such methods to assess the effects of 

environmental toxics on neurodevelopmental (335–337). Each method has their own 

strengths and weaknesses, but it is important to note that the trajectories determined in 

each study may be unique to that study’s population (169). While trajectory analysis 

may prove useful in better assessing and describing health outcomes over time, they 

are not without their limitations, particularly when it comes to interpretability and 

generalizability of results.  

Sex Differences in the Effect of Phthalates 

 We examined whether sex acted as a modifier of prenatal phthalate exposure 

and language, finding that it did not act as a modifier for expressive language, but did 

act as a modifier for some metabolites for receptive language. Our results showed that 

for the metabolites of di-isononyl phthalate (DiNP), females may have a higher risk of 

falling into the Tracking trajectory compared to males. For certain metabolites of DEHP, 

females may be at a lower risk for falling into the Late Growth trajectory compared to 

males, although both sexes see a decreased risk of falling into the trajectory in general.  

 This research is one of the few that has examined potential sex differences in the 

effects of phthalate exposure on language development. Olesen et al. performed a 

stratified analysis on boys and girls, but did not examine specifically whether sex was a 

modifier (105). However, the results indicated that there may be a sex difference 

present for some phthalate metabolites, as difference between effect measures were 

observed between girls and boys. For example, the metabolites for DEHP were shown 

to result in increased risk for boys, but decreased risk for girls, a result that is reflected 

in our own study. Dewey et al. also performed a stratified analysis, with their results 
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indicating that DEHP decreased language composite scores on the Bayley Scales of 

Infant Development – Third Edition for males, but increased it in females (338). While 

they did not compare the stratified results directly, it can be inferred that a sex 

difference is present. 

 Our study examined modification more directly by including a sex-phthalate 

interaction term and examining whether that term was statistically significant. We did not 

stratify by sex like Dewey and Olesen; rather, we kept all individuals in the analysis. Our 

results with DEHP largely agreed with both studies, namely that DEHP or metabolite for 

DEHP affected males more strongly than females, with males generally having 

heightened risk of falling into a suboptimal language trajectory compared to females. 

Thus, this study supports prior literature, and the use of an interaction term rather than 

stratification provides stronger evidence that a sex difference is present. Future studies 

should strongly consider performing a similar analysis in order to better separate the 

differential effects phthalates have on males versus females. 

Discussion on Environmental Exposure 

 We examined prenatal phthalate exposure in two different studies using two 

different exposure pathways and methodologies. In one study, we assigned prenatal 

phthalate exposure through metabolite biomarker concentrations determined in urine 

samples provided by the pregnant mother, adjusting for creatinine or specific gravity 

depending on the specific cohort the child belonged to. In another study, certain 

phthalate exposures were included in the model as air toxics, where total concentration 

was assigned to each individual based on their birth year and census tract. Two 
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phthalates were common between both studies: dibutyl phthalate (DBP) and di(2-

ethylhexyl) phthalate (DEHP).  

 While results were consistent for DEHP across both studies, showing that DEHP 

decreased risk of falling into an abnormal language trajectory for both expressive and 

receptive language, the results for DBP differed between the two studies. When 

examined as an air toxic, DBP appeared to increase risk for falling into an abnormal 

language trajectory for both expressive and receptive language. However, when 

examined via biomarkers, DBP appeared to decrease the risk for falling into an 

abnormal language trajectory for receptive language.  

This finding highlights the potential differences in association that may be found 

for any environmental exposure depending on the route of exposure taken as well as 

the measurement method used. Biomarkers are often considered to be the “gold 

standard” for measuring overall environmental exposure, though the nature of the 

toxicant and the biomarkers being used must be taken into consideration. In this 

instance, the use of urinary biomarkers to measure phthalate exposure is commonly 

regarded to be among the more accurate methods of measuring phthalate exposure, 

though the timing of urine collection is an important factor in the overall accuracy of this 

method (339). Since our study using urinary biomarkers consisted of multiple 

measurements, and because the parent cohorts had specified instructions for the 

collection of urine samples, the overall accuracy of our phthalate exposure is likely to be 

high. As a result, the study that used the urinary biomarkers is the stronger study when 

examining the impact of prenatal phthalate exposure on language development.  
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However, it still must be considered that these urinary biomarkers are measuring 

the metabolites of the phthalates, rather than the parent compound. The metabolites 

have their own toxicity when compared to their parent compound, and as such, we must 

consider the possibility that our results may be due to the effects of the metabolites, 

rather than the parent compound. This is counter to the study utilizing air toxics, which 

is measuring the effects of the parent compound. The different result with dibutyl 

phthalate may be a result of this. 

 In our third study, we examined the effects of air toxics that act as EDCs on 

language development by using the National Air Toxics Assessment. It logically follows 

that the route of exposure for our toxics was purely airborne, and that we did not 

consider other possible exposure routes for those phthalates. While this may appear to 

be a weakness of our study, and it can be considered one, we were interested in 

examining the effects of prenatal airborne exposure to these toxics, rather than all 

possible exposure.  

 While there have been many studies that have examined the same air toxics in 

the past, many of them do not specify airborne exposure only. For example, there are 

many studies that have examined the effects of pesticides on neurodevelopment. 

However, pesticide exposure can occur via multiple mediums, such as airborne 

exposure (i.e. inhalation), ingestion (e.g. via contaminated food or water), or dermal 

exposure (e.g. handling of pesticide containers or sprayers). As such, a study that 

examines a pesticide such as dichlorvos, trifluralin, or parathion may be capturing all 

possible routes of exposure, rather than just airborne exposure. 
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 Our study is one of the few studies that specifically examined airborne exposure 

of air toxics and its potential relationship with language development. Of the air toxics 

that have been examined, airborne PAHs were found to be associated with a decrease 

in infant mental development across several studies using various measures of 

neurodevelopment, including the Bayley’s Scales of Infant Development and Raven 

Coloured Progressive Matrices (21,61,62). Guxens found that benzene was negatively 

associated with infant mental development (225), and there have been multiple studies 

that have linked some airborne EDCs with an increased risk of ASD, including certain 

heavy metals, methylene chloride, styrene, certain conjugates of xylene, and other 

aromatic solvents (118,119,159,160). However, while some of the measures above 

measure some degree of language, none of the studies specifically looked at language. 

Our study therefore provides vital information on the impact of airborne exposure to 

EDCs and their potential impact on language development. 

 When examining and measuring environmental exposures, it is prudent to 

consider the route we are assuming the exposure is taking and whether this route is the 

prevalent or biologically viable pathway. As mentioned above, air toxics are not found 

solely in the air; lead, pesticides, and some VOCs are found in other mediums, such as 

water, food, or personal care products. These additional routes may result in an 

underestimation of total exposure to the toxic in question. However, airborne exposure 

may be the primary route for some toxics, even if there are other routes of exposure. As 

a result, airborne exposure may be the most important route to examine. Furthermore, it 

may not always be viable to collect exposure data to the level of detail and granularity 

that would give us the true level of exposure for an individual. In these instances, it may 
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be more prudent to use exposure data that is more readily available, even at the cost of 

accuracy. The findings from such a study are not invalid, but may be used to justify 

further examination and study, which may lead to more accurate exposure data 

collection. This, in turn, will lead to stronger studies that can help guide and inform new 

policies to reduce the exposure and impact of these environmental contaminants. 

Future Examination of Language Development as an Outcome 

 Our primary outcome of interest was language development. Because our 

population included two cohorts that had an enhanced familial risk for autism, we were 

able to detect more nuanced differences in neurodevelopment than a more generalized 

cohort. Future studies should aim to examine language in a more general izable cohort 

in order to determine if the patterns observed in this research can be found in a cohort 

that is not enriched for autism or other neurodevelopmental disorders.  

Furthermore, the use of language impairment as an outcome may help to better 

identify individuals who may go on to develop other neurodevelopmental disorders. 

Some studies have noted that individuals that present with language impairments go on 

to develop other neurodevelopmental disorders such as autism (340,341). Identification 

of individuals with language development impairments may be crucial to improve the 

gender gap in neurodevelopmental diagnoses, such as in autism, where females are 

often under-diagnosed (342,343). This is due to language milestones being relatively 

gender agnostic which may result in a more objective assessment on 

neurodevelopment. Pediatricians, parents, and caretakers may then use these 

assessments in order to refer a child for further psychometric or diagnostic testing in 

order to determine if a child may possess a neurodevelopmental disorder, or that the 
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child may need to be reassessed at a later time to determine if sub-clinical symptoms 

worsen such that a diagnosis can be made. 

Conclusions 

 We performed three studies in order to assess the effects of endocrine disruptors 

on language development. The first analysis examined if child neurodevelopmental 

diagnosis was related to overall language development trajectory. We found that 

diagnostic status was related to language trajectories, with children who were classified 

as ASD or non-TD being more likely to fall into trajectories that would indicate deficits in 

language development.  

The second analysis examined if prenatal exposure to various phthalates 

affected language development. Most of the phthalates examined failed to statistically 

resolve. However, trends were observed among the phthalates based on their weights, 

with low molecular weight phthalates generally showing an increased risk of falling into 

an abnormal language development trajectory and high molecular weight phthalates 

generally showing a decreased risk instead. We further found that sex was not a 

modifier for expressive language, but was a modifier for receptive language for the 

metabolites of DiNP (mCOP and mNP2) and the metabolites of DEHP (mEHP, mEHHP, 

mEOHP, and mECPP), showing a stronger protective effect for females versus males 

for falling into the Late Growth trajectory.  

The third analysis examined if prenatal exposure to specific air toxics affected 

language development. After adjusting for multiple testing via false discovery rate, only 

acetaldehyde was statistically significant, showing an overall decrease in risk for 
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belonging to an abnormal language trajectory. Further, we found that a model that 

contained all air toxics did not appear to have an impact on overall language trajectory, 

and that there did not appear to be any statistically significant interactions between the 

multiple air toxics, although some trends were observed with some air toxics, with 

mixtures with those air toxics showing a protective effect. 

 In summary, our findings indicate that most EDCs had a null effect on language 

development trajectories. Of the EDCs that had a significant effect, most were 

protective in nature, decreasing the risk of falling into a non-optimal language trajectory 

with increasing concentration. Furthermore, we found that sex may be acting as a 

modifier for phthalates with respect to receptive language, and that air toxic mixtures do 

not significantly impact the risk of falling into a non-optimal trajectory. Future research 

should focus on examining a larger and more representative population, ideally with 

multiple outcome measurements in order to continue to better capture the progression 

of language and neurodevelopment. 
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Appendix 

Supplemental Table 1: Median and Interquartile Ranges of Phthalate Metabolites (ng/mL) by Child 

Characteristics for Included Individuals – File Supplemental 1 

Supplemental Table 2: AIC for Transformations of Phthalates – File Supplemental 2 
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