agemayjune <- subset(ages, t < 52) agejulaug <- subset(ages, t > 51 & t < 114) agesepoct <- subset(ages, t > 113 & t < 166) set.seed(6575) mayjunesample <- sample.split(agemayjune$AGE, SplitRatio = 0.80) mayjunetrain <- subset(agemayjune, mayjunesample == TRUE) mayjunetest <- subset(agemayjune, mayjunesample == FALSE) mayjunemod <- polr(riskcat ~ AGE, data = mayjunetrain, Hess = TRUE) mayjunepred = predict(mayjunemod, mayjunetest) table(mayjunepred, mayjunetest$riskcat) set.seed(5767) julaugsample <- sample.split(agejulaug$AGE, SplitRatio = 0.80) julaugtrain <- subset(agejulaug, julaugsample == TRUE) julaugtest <- subset(agejulaug, julaugsample == FALSE) julaugmod <- polr(riskcat ~ AGE, data = julaugtrain, Hess = TRUE) julaugpred = predict(julaugmod, julaugtest) table(julaugpred, julaugtest$riskcat) set.seed(7656) sepoctsample <- sample.split(agesepoct$AGE, SplitRatio = 0.80) sepoctrain <- subset(agesepoct, sepoctsample == TRUE) sepoctest <- subset(agesepoct, sepoctsample == FALSE) sepoctmod <- polr(riskcat ~ AGE, data = sepoctrain, Hess = TRUE) sepoctpred = predict(sepoctmod, sepoctest) table(sepoctpred, sepoctest$riskcat) summary(mayjunemod) summary(julaugmod) summary(sepoctmod)