May 2015

Application of Coumarin Derivatives in DNA-associated Study: Mutation Detection, Site-Specific Labeling, Photoinduced Interstrand Cross-Links and Ligation Reactions

Huabing Sun
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the [Biochemistry Commons](https://dc.uwm.edu/etd/), and the [Organic Chemistry Commons](https://dc.uwm.edu/etd/)

Recommended Citation

https://dc.uwm.edu/etd/930

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.
APPLICATION OF COUMARIN DERIVATIVES IN DNA-ASSOCIATED STUDY:
MUTATION DETECTION, SITE-SPECIFIC LABELING, PHOTOOINDUCED
INTERSTRAND CROSS-LINKS AND LIGATION REACTIONS

by

Huabing Sun

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

In Chemistry

at

The University of Wisconsin-Milwaukee

May 2015
Coumarin derivatives have been widely utilized as cross-linking agents in polymer science, being fluoroprobes in biochemistry and as medicines in pharmacy. But the coumarin’s fluorogenic properties and reactivities in DNA were rarely reported and unclear, which limits its bioapplications due to possible side reactions towards biomolecules. In this thesis, we investigated the activity of coumarin moiety towards natural DNA and expanded its application in DNA-associated study. We have found that coumarin derivatives can serve as perfect DNA cross-linking agents, as alkylation agents for site-specific labeling, and fluoroprobes for single nucleotide polymorphism (SNP) analysis, which provided a novel insight of biotoxicity of coumarin in biological system and a novel bioanalytical tool.

First, sequence-dependent DNA-templated fluorogenic “click” reaction has been developed for SNP detection. Oligonucleotide (ODN) probes containing nonfluorescent alkyne-modified coumarin or azide group at the terminal sites efficiently hydride with the matched ODN template, a tumor-associated p53 gene with single nucleotide transition from dT to dC. The alkyne and azide groups at the adjacent position provided effective concentration for fluorogenic “click” reaction which generated substantial fluorescence signal. However, no obvious fluorescence was observed for noncomplementary DNA
templates. In this way, coumarin-based fluorogenic “click” reaction can be used for SNP analysis. In addition, the coumarin derivatives with the bromo group were employed as alkylation agents for site-specifically labeling dT in natural DNA, affording highly fluorescent ODNs for bioanalysis.

Second, we have found that the coumarin moieties induced quantitative photoreversible DNA interstrand cross-link (ICL) formation with dT allowing for real-time monitoring DNA cross-linking process via fluorescence assay. Photoinduced [2+2] cycloaddition between coumarin moiety and thymidine upon 350 nm irradiation generated DNA ICLs with formation of syn- and anti-cyclobutane adducts, which can be reversed into the single stranded ODNs with 254 nm photoirradiation. ICL formation completely quenched the fluorescence of coumarin, which, for the first time, enables fast and real-time detection of DNA cross-linking and photoreversible process via fluorescence spectroscopy.

Finally, rearrangement of the kinetic-controlled ligation products to the thermo-controlled ICL products was observed during photoswitchable process. In addition, light-sensitive and sequence-specific photorelease of coumarin moieties from ODN strand was discovered. Further study showed that the G:C base pairs and 350 nm irradiation played a central role in the reaction.
TABLE OF CONTENTS

Abstract .. ii

Table of Contents ... iv

List of Figures ... viii

List of Tables .. xii

List of Abbreviations ... xiii

Acknowledgements .. xv

CHAPTER

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
</tr>
<tr>
<td>1.1.</td>
<td>Coumarin and Its Derivatives</td>
</tr>
<tr>
<td>1.2.</td>
<td>The Applications of Coumarin</td>
</tr>
<tr>
<td>1.2.1.</td>
<td>Fluorescent Chemosensors</td>
</tr>
<tr>
<td>1.2.2.</td>
<td>Pharmacotherapy and Cross-Linking Agents</td>
</tr>
<tr>
<td>1.2.3.</td>
<td>Application of Coumarin in DNA</td>
</tr>
<tr>
<td>1.3.</td>
<td>DNA-Templated Reactions</td>
</tr>
<tr>
<td>1.3.1.</td>
<td>DNA Synthesis and Modification</td>
</tr>
<tr>
<td>1.3.2.</td>
<td>DNA Interstrand Cross-Link Reaction</td>
</tr>
<tr>
<td>1.3.3.</td>
<td>DNA Ligation Reactions</td>
</tr>
<tr>
<td>1.3.4.</td>
<td>Potential Application of Coumarin in DNA</td>
</tr>
<tr>
<td>1.4.</td>
<td>References</td>
</tr>
</tbody>
</table>

2. **Template-Directed Fluorogenic Click Reaction: DNA Interstrand Cross-Linking, Oligonucleotide Ligation, and Single Nucleotide Discrimination** | 30 |

| 2.1. | Introduction | 30 |
| 2.2. | ODN Probes for Fluorogenic Reaction | 33 |
5.1. Introduction .. 159
5.2. Synthesis of ODNs Containing Coumarin Moieties ... 159
5.3. The Effects of dT Position and Linker on the ICL Efficiency 161
5.4. Coumarin-Induced ICL and Ligation Reaction ... 164
5.5. Rearrangement and Photorelease of the Coumarin Moiety 167
 5.5.1. Rearrangement during Photoswitchable Process ... 167
 5.5.2. Photorelease Reaction .. 170
5.6. Experimental Section .. 171
5.7. References ... 174
5.8. Appendices C: Characterization of Compounds ... 175
Curriculum Vitae ... 177
LIST OF FIGURES

Figure 1-1. The structures of coumarin and its derivatives .. 1

Figure 1-2. Synthesis of the coumarins via Perkin reaction (a) and Pechmann condensation (b) ... 2

Figure 1-3. Energy diagram of fluorescence (a) and intramolecular charge transfer (b) ... 4

Figure 1-4. Chemosensors and the detection of Hg$^{2+}$ (a), pH (b), and H$_2$O$_2$ (c)...... 5

Figure 1-5. Metabolism (a) and pharmacology (b) of coumarins................................. 6

Figure 1-6. Photodimerization and cleavage of coumarin ... 8

Figure 1-7. Photoreversible crosslink of the polyoxazoline containing coumarin 9

Figure 1-8. Coumarin-based fluorogenic click reactions ... 10

Figure 1-9. Preparation of fluorescent ODNs via the fluorogenic reaction 11

Figure 1-10. Preparation of ODNs via DNA solid-phase synthesis 13

Figure 1-11. Linkages and reactions for ODNs post-conjugation 15

Figure 1-12. DNA interstrand cross-link agents ... 17

Figure 1-13. DNA interstrand cross-links with modified DNA constructs 18

Figure 1-14. Examples of DNA templated ligation reactions 21

Figure 1-15. Selectively post-labeling natural DNA with coumarins....................... 25

Figure 2-1. Detection of p53 mutations via a fluorogenic “click” reaction 33

Figure 2-2. The synthesis of alkyne-modified coumarin phosphoramidite 7 34
Figure 2-3. Synthesis of ODNs containing the azide group .. 34
Figure 2-4. The fluorogenic ICL reaction between ODN 4 and ODN 5 39
Figure 2-5. Monitoring fluorogenic ICL reaction via fluorescence assay 40
Figure 2-6. Single-nucleotide-specific “click” cross-linking reaction 42
Figure 2-7. The selectivity of “click” ligation reactions using probe ODN 4 44
Figure 2-8. Sequence-specific fluorogenic “click” ligation reaction for probes
ODN 8 and ODN 10 in the presence of templates 12a-d 47
Figure 2-9. Optimizations of the “click” ligation reaction conditions 48
Figure 2-10. Fluorogenic “click” ligation reaction between ODN 10 and ODN 11
in the presence of template 12a .. 49
Figure 2-11. Detection of tumor’s mutated nucleic acids via fluorogenic ligation
reaction ... 50
Figure 2-12. Fluorescence spectra of ICL and ligation products............................ 52
Figure 2-13. Synthesis of PNA and structure of duplex formed by PNA and DNA 54
Figure 2-14. Synthesis of azide-based PNA monomer .. 55
Figure 2-15. Synthesis of coumarin-based PNA monomer 55
Figure 2-16. Synthesis of coumarin-based biarylazacyclooctynone 56
Figure 3-1. N3-alkylation of thymidine and uridine ... 89
Figure 3-2. Preparation of alkylation agents 3 and 8 .. 90
Figure 3-3. N3-alkylation of thymidine with 3 and 8 ... 92
Figure 3-4. Excitation and emission spectra of T, 3 and 10 ... 93

Figure 3-5. Fluorescence spectra of resulting ODNs under different conditions .. 94

Figure 3-6. Fluorescence spectra of resulting ODNs after the labeling for

ODN-A12, T12, G12, and T12 ... 95

Figure 3-7. Preparation of alkylation agent 14 for detection of H2O2 96

Figure 4-1. Preparation of phosphoramidites 8-13 ... 117

Figure 4-2. LC-MS analysis of photochemical reaction of 1 and nucleosides 123

Figure 4-3. Cycloaddition between 1 and dT, and fluorescence emission

spectra of 1 and products. ... 124

Figure 4-4. PAGE analysis of ICL formation for ds DNA-1-6 125

Figure 4-5. List of ds DNAs used in the study ... 127

Figure 4-6. Fluorescence intensity of 4 when flanked by different bases 127

Figure 4-7. Cyclic voltammogram of coumarin 4 .. 128

Figure 4-8. PAGE analysis of ICL generation for ds DNA-1, 4, and 7-9 129

Figure 4-9. Fluorescence spectra of ds DNA-4 before and after photoirradiation . 130

Figure 4-10. ICL formation rate of ds DNA-4 via fluorescence assay............... 132

Figure 4-11. ICL formation rate of ds DNA-7 via fluorescence assay............... 133

Figure 4-12. ICL formation rate of ds DNA-8 via fluorescence assay............... 134

Figure 4-13. ICL formation rate of ds DNA-9 via fluorescence assay............... 134

Figure 4-14. Photoreversible process for ds DNA-4 over three cycles 136
Figure 4-15. Photoreversible process for ds DNA-7 over three cycles 136

Figure 4-16. PAGE analysis of ICL formation for ds DNA-11a-d 137

Figure 4-17. Decreased fluorescence intensity at 385 nm for ds DNA-11a-d............ 138

Figure 4-18. PAGE analysis of ICL formation and cleavage of ds DNA-10, 12, and 13 .. 140

Figure 5-1. Synthesis of the phosphoramidites 4-6 .. 160

Figure 5-2. Double stranded DNAs used in this study .. 161

Figure 5-3. PAGE analysis of distance-dependent ICL formation 163

Figure 5-4. PAGE analysis of ICL and ligation reactions for ds DNA-13/14........ 165

Figure 5-5. PAGE analysis of ICL and ligation reactions for ds DNA-15/16 166

Figure 5-6. Cross-link yields during photoreversible process for ds DNA-13-16. 169

Figure 5-7. Photorelease reaction of 3 for ds DNA-15/16.. 171
LIST OF TABLES

Table 2-1. Oligodeoxynucleotides used in the study .. 35

Table 2-2. Duplex thermal stability .. 37

Table 2-3. Duplex melting temperatures (Tm) of ODN probes 45

Table 4-1. List of coumarin-containing ODNs .. 118

Table 4-2. Melting temperatures of ds DNA-1-6... 120

Table 4-3. ICL formation rates for ds DNA-1-6.. 126

Table 4-4. Rate of ICL formation or cleavage for ds DNA-4, and 7-9 132

Table 4-5. Rate of ICL formation or cleavage for ds DNA-11a-d 139

Table 4-6. Rate of ICL formation or cleavage for ds DNA-10, 12, and 13 141

Table 5-1. ICL reaction rates for ds DNA-7-12 ... 163

Table 5-2. Rates of cross-link formation or cleavage for ds DNA-13-16 167
LIST OF ABBREVIATIONS

A
Adenosine

ATP
Adenosine triphosphate

C
Cytidine

CPG
Crushed porous glass

DCC
N,N'-Dicyclohexylcarbodiimide

DIPEA
N,N'-Diisopropylethylamine

DNA
2'-Deoxyribonucleic acid

DMF
Dimethylaminomethylene

DMSO
Dimethyl sulfoxide

DMTr
4',4'-Dimethoxytrityl

ds DNA
Double-stranded DNA

EDTA
Ethylenediaminetetraacetic acid

ESI
Electrospray

EtOAc
Ethyl acetate

EtOH
Ethanol

Fmoc
Fluorenymethyloxycarbonyl

G
Guanosine

HATU
O-(Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate

HBTU
O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate

HRMS
High-resolution mass spectrometry

k
Reaction rate constant

MALDI-TOF
Matrix-assisted laser desorption/ionization – time of flight

MeCN
Acetonitrile
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NHS</td>
<td>N-Hydroxysuccinimide</td>
</tr>
<tr>
<td>Pac</td>
<td>Phenoxyacetyl</td>
</tr>
<tr>
<td>PNA</td>
<td>Peptide nucleic acid</td>
</tr>
<tr>
<td>iPr</td>
<td>Isopropyl</td>
</tr>
<tr>
<td>qPCR</td>
<td>Quantitative polymerase chain reaction</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>T</td>
<td>Thymidine</td>
</tr>
<tr>
<td>TBAF</td>
<td>Tert-n-butylammonium fluoride</td>
</tr>
<tr>
<td>TEA</td>
<td>Triethylamine</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>T_m</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethylsilyl</td>
</tr>
<tr>
<td>TPP</td>
<td>Triphenylphosphine</td>
</tr>
<tr>
<td>U</td>
<td>Uridine</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Prof. Xiaohua Peng, for her kind support and thoughtful supervision. Her profound knowledge, excellent advice and professional training have helped me to become a better researcher and taught me the value of persistence for truth and nature of chemistry. Thanks to my previous advisors, Prof. Jing Li and Prof. Fuzhen Tian, for their nice training and kind help. I really appreciate the nice support and help from my committee members: Prof. Andy Pacheco, Prof. Alan Schwabacher, Prof. Alexander Arnold, and Prof. Mark Dietz. Thank Prof. Yinsheng Wang (University of California at Riverside) and Prof. J. Craig Blain (Harvard University) for their kind collaboration.

It is my great pleasure to be one member of Prof. Peng’s Lab, which offers perfect opportunities to learn novel bio-techniques and interdisciplinary research from interesting discussions with talented coworkers. Thanks to Dr. Sheng Cao, Dr. Wenbing Chen, Dr. Yanyan Han, and Yibin Wang for kind assistance during my study and life; Mohammad Mojibul Haque, Heli Fan, and Hyeyoung Eom as good collaborators for their contribution to synthesize coumarin derivatives; Yunyan Kuang as a good collaborator for professional training of biotechniques; undergraduate students, without listing their name due to afraidness of missing someone, for their help in lab.

Sincere gratitude to staffs, lecturers and professors in the department of Chemistry & Biochemistry, I could not successfully complete my graduate studies without their support and help. Generous financial support from our department and University helping me a lot in expanding my opinions in biochemical issues is greatly acknowledged.
Last but not the least, special thanks to my family for their unconditionally support in these years: my parents, Shenglei Sun and Huanchun Zhang, taught me studious, optimistic, kind and social personalities being highly valuable in my life; my wife, Heli Fan, provided trust and great support all the time; and my son, Fan Sun, is training me to be a responsible father and gives me endless energy.

(Huabing Sun, Jan 2015 at UW-Milwaukee)
Chapter 1. Introduction

1.1. Coumarin and Its Derivatives

Coumarins, known as benzo-\(\alpha\)-pyrones, were first isolated from Tonka beans in 1820s and first prepared by William Henry Perkin in 1868.\(^1\) The non-substituted coumarin shows weak fluorescence, but its derivatives with suitable substitutions exhibit strong fluorescence with high fluorescence quantum yield and large Stokes shift.\(^3\)\(^-\)\(^5\) For example, installation of an electron-withdrawing group at the position-3 and/or an electron-donating group at the position-7 can greatly enhance the fluorescence of the coumarin moiety.\(^6\) Moreover, the coumarin can be substituted at varied positions, such as the position-3, 4, 6, 7, and 8. Usually, the coumarin with an electron-donating hydroxyl group at the positon-7 was considered as the parent of many coumarin analogues (Figure 1-1).

![Figure 1-1. The structures of coumarin and its derivatives.](image-url)
Initially, the coumarin was synthesized using the Perkin reaction via the aldol condensation of salicylaldehyde and acetic anhydride in the presence of sodium acetate as a base catalyst (Figure 1-2). Later, the Pechmann condensation of resorcinol and malic acid/ethyl acetoacetate provided another more economical and efficient method for synthesis of coumarin and its derivatives. Condensation starts with electrophilic attack of the activated carbonyl group at the ortho position of benzene ring under acidic conditions. Then, esterification/transesterification and dehydration occurs yielding the coumarin moiety (Figure 1-2). Most coumarin analogues in our studies were prepared via Pechmann condensation.

![Chemical reactions]

Figure 1-2. Synthesis of the coumarins via Perkin reaction (a) and Pechmann condensation (b).
1.2. The Applications of Coumarin

Due to the excellent photo-properties and photo-reactivities, coumarin and its analogues have found wide applications. They have been used as fluorophores, chemosensors, pharmacotherapy drugs, and cross-linking agents.

1.2.1. Fluorescent Chemosensors

The fluorescence of coumarin can be tuned by introducing different substituents with varied electron-donating/withdrawing abilities, which is widely used in design of coumarin derivatives. The substituents-dependent fluorescence properties of the coumarin moiety may result from intramolecular charge transfer.\(^\text{10}\) It is well-known that π- π* transitions can form the excited states via excitation from the HOMO (the highest occupied molecular orbital) to the LUMO (the lowest unoccupied molecular orbital). Then the internal conversion of the excited states to lower energy states occurs with loss of heat energy. Subsequently, the excited state would return to the ground state by emission of a photon as the form of fluorescence (Figure 1-3a). The emitted photon (light) with less energy has a longer wavelength, which can be distinguished from the excitation light. Usually, transitions of coumarin are related to the intra-molecular charge transfer from the benzene ring to the pyranone moiety. As shown in Figure 1-3b, an electron donating group at the position-7 and/or an electron-withdrawing group (-COOH) at the position-3 can promote the process, thereby enhancing the fluorescence intensity of coumarin.\(^\text{11}\)
Coumarin derivatives serve as the fluorescent chemosensors for various metal ions including Hg (II), Cu (II), Ni (II), Zn (II), Fe (III), Al (III), Ca (II), Cr (III), and Ag (I), pH of the solution, and detection of biochemical agents such as hydrogen peroxide, nitric oxide, and nitroxide. For example, chemosensors for detection of Hg^{2+} ions have been reported using Hg (II) ions-induced desulfurization reaction to afford fluorescent coumarin analogue (Figure 1-4a). The non-conjugated chemosensor 2-hydroxy *cis*-comarinic acid 1 is weakly fluorescent, but can be converted to a highly fluorescent coumarin 2 which undergoes Hg^{2+}-catalyzed desulfurization-lactonization cascade. This fluorescent sensor showed a non-fluorescent background, good selectivity and fast sensitivity towards Hg^{2+} (Figure 1-4a). Additionally, coumarin derivatives acted as pH-responsive fluorescent sensors. For example, compound 3 serves as a pH-dependent probe. The pH-responsive photophysical properties of 3 result from the phenol moiety which is in an equilibrium between the protonated and deprotonated phenolate forms at different pH, while an electron-withdrawing group (e.g. -Cl) at the 6-position of coumarin reduces the pK_{a} value of 3 to the desired level. Moreover, the lipophilicity of the probe can be fine-tuned via introducing ammonium salts of carboxylic acids. The excitation intensity as well as the fluorescence intensity depended on pH value of solution (Figure 1-4b). A protonated form of 3 was produced at a low pH value, which
showed weaker fluorescent intensity than a deprotonated form generated under basic condition. In this way, it can be used as pH-responsive probes.

Figure 1-4. Chemosensors and the detection of Hg$^{2+}$ (a), pH (b), and H$_2$O$_2$ (c).

Recently, coumarin-derived fluorescent chemosensors with minimal toxicity have been applied in the detection of biochemical agents, such as hydrogen peroxide, nitric oxide, nitroxide, and hydroxyl radicals.$^{16, 17}$ Introduction of an electron-withdrawing boronate group at the position-7 in probe 4 quenches the fluorescence of coumarin, while the boronate group can be selectively converted to an electron-donating hydroxyl group in the presence of hydrogen peroxide which greatly enhances the fluorescence intensity and the quantum yield of the coumarin moiety.16 This water-soluble probe 4 showed good selectivity for hydrogen peroxide over other reactive oxygen species. About 100-fold enhancement of the fluorescence intensity was observed with 4 after reaction with hydrogen peroxide (Figure 1-4c).
1.2.2. Pharmacotherapy and Cross-Linking Agents

Recent studies showed that the coumarin derivatives have good pharmacological properties and photoreactivities. Thus, they are widely used as therapeutic agents or cross-linking agents in material science.

First of all, coumarin showed lower toxicity than other related compounds. They are moderately toxic to the liver and kidneys with a median lethal dose of 275 mg/kg. The coumarin derivatives have been widely used in foods, beverages, cosmetics, and tobacco. They can be metabolized in body by a specific cytochrome P-450 system with hydroxylation majorly at the position-7 or 3 (Figure 1-5a). The yielded product 3-hydroxycoumarin can be further nonenzymatically metabolized to water-soluble o-hydroxyphenyl lactic acid and o-hydroxyphenylacetic acid via ring splitting.

![Figure 1-5. Metabolism (a) and pharmacology (b) of coumarins.](image)

Besides low toxicity, coumarin analogues exhibit a broad spectrum of pharmacological properties, such as antidepressant, antimicrobial, antioxidant, anti-inflammatory, and anti-tumor activity (Figure 1-5b). For example, coumarin derivatives can inhibit endogorous generation of reactive nitrogen species and reactive oxygen species with one
or more unpaired electrons. These reactive oxidants have important functions in physiological concentrations, such as cell signaling, inducing mitogenic response and defense against infection caused by microorganisms. However, the excessive free radicals levels may lead to oxidative stress which causes damages to lipids, proteins and DNA. Coumarin derivatives exhibiting antioxidant properties have the capacity to reduce these harmful effects. For instance, nitric oxide serves as a molecular messenger, but overproduction of nitric oxide can cause disorder in central nervous system, resulting in depressant. The acetic acid salt derivative of coumarin 6 acts as the inhibitor of nitric oxide synthase, therefore controlling generation of nitric oxide. Compound 6 can clinically use as anti-depressant. Coumarin derivatives also serve as monoamine oxidase inhibitors for treatment of Parkinson’s disease. Suitable monoamine oxidase helps to maintain neuron firing rates in the body, but monoamine oxidase over normal level can generate toxic hydroxyl radicals leading to the neurodegenerative disorders such as Parkinson’s disease. Compound 7 can efficiently inhibit excessive generation of monoamine oxide, thereby being used for treatment of Parkinson’s disease. Coumarins consisting of benzopyrone rings, such as coumarin 8, have also shown antioxidant properties via reducing generation and stimulating the scavenging of oxidative species. Interestingly, coumarins that act as protein kinase 2 inhibitors showed anti-tumor activites. Protein kinase 2 known as pleiotropic enzymes controls a broad series of bioevents such as cell cycle regulation, gene expression, and RNA and protein synthesis. Studies demonstrated that its overexpression in a variety of tumors contributes to uncontrolled growth of tumors cells. Coumarin 9 can form strong electrostatic interactions with protein kinase 2 leading to loss of its bioactivity. Thus, compound 9
acts as selective inhibitors of protein kinase 2 and efficiently reduces growth rate of tumors.

The coumarins also show good photo-optical properties and have been applied in polymer science and bio-study, especially photoreversible (photodimerization and photocleavage) research. Coumarin dimerization occurs upon photoirradiation with a wavelength of more than 300 nm forming the syn- and anti-dimers via [2 + 2] cycloaddition reaction. Formation of the syn- and anti-dimers depends on the concentration of coumarin and the polarity of solvents (Figure 1-6). Usually, coumarin at high concentrations would favorably be at the excited singlet state, which can react with the coumarin at the ground-state to yield syn-dimer, while low concentrations would favor the triplet state to produce anti-dimer. In addition, the singlet state is favored in polar solvents, leading to generation of syn-dimer, while nonpolar solvents or existence of photosensitizers such as benzophenone would result in anti-dimer. Moreover, the formed cyclobutane dimers can be symmetrically cleaved into coumarin monomer via photoscission reaction upon photo-irradiation at 254 nm. The dimmers with stable structures (five- or six-membered rings) attached to the cyclobutane, would be cleaved into the original monomers, preserving the stable structure. While asymmetric cleavage would occur for dimers without stable rings, resulting from either steric or other possible repulsions among neighbors.

Figure 1-6. Photodimerization and cleavage of coumarin.

The coumarin with intrinsic fluorescence and photoreversible properties has wide applications. They have been used for size-tunable study via photo-cross-linking and cleavage of coumarin, formulation of nanoparticles, and drug delivery via photocleavage of the dimers. Photo-cross-linkable polymers containing coumarin as side chain are used as liquid crystalline polymers for information storage devices, nonlinear optical devices, and television and computer displays. The photosensitive polyoxazoline containing
coumarins can dimerize to form polyoxazoline gels upon photo irradiation at 350 nm, while the cross-linked polymer can be split into single strands after irradiation at 253 nm. The cross-linked polymer films cannot dissolve in methanol, but become soluble after 253 nm irradiation (Figure 1-7). Photoresponsive biopolymers, such as polypeptides containing coumarins, have been used for the chemical synthesis of biodegradable cross-linked materials.

![Photoreversible crosslink of the polyoxazoline containing coumarin](image)

Figure 1-7. Photoreversible crosslink of the polyoxazoline containing coumarin.

1.2.3. Application of Coumarin in DNA

Coumarin-derived fluorophores have also found wide application in the field of nucleic acid chemistry. They are used as biosensors, phototrigger, and fluorescence tags for sequencing, DNA structure determination, and bio-kinetic analysis. Coumarin fluorophore can be covalently bound to DNA via a number of biochemical or cost-effective chemical methods. Recently, coumarin-based fluorogenic “click” reaction has been proved to be an important postsynthetic DNA labeling method which showed high efficiency under mild reaction conditions and produced the distinct fluorescence. It has been widely applied in the emerging area of cell biology and functional proteomics.

Non-fluorescent coumarin derivatives are employed in fluorogenic “click” reactions which generate substantial fluorescent signal with formation of triazole complexes. It is well-known that installation of an electron-withdrawing group at the 3-position and/or an
electron-donating group at the 7-position greatly increase the fluorescence intensity of coumarin moiety. On the other hand, substitution by the functional group with opposite electroproperties would quench its fluorescence. Based on this principle, two coumarin-based fluorogenic “click” reactions were developed. One employs an alkyne-modified coumarin 10 and the other uses an azide-modified coumarin 12. Compound 10 contains the electron-withdrawing alkynyl group at the position-7 which quenches the fluorescence of the coumarin, while the electron-donating triazole moiety is formed after “click” reaction which restores the fluorescence of the coumarin moiety 11 (Figure 1-8).29 In the other method, compound 12 with an electron-rich azide group at the position-3 is not fluorescent but undergoes “click” reaction to generate a highly fluorescent product 13. The greatly enhanced fluorescence intensity of 13 results from formation of the triazole moiety which has decreased electron density in comparison with azide group (Figure 1-8).30

Figure 1-8. Coumarin-based fluorogenic click reactions.

These fluorogenic “click” reactions have been widely applied in construction of fluorescently tagged oligodeoxyribonucleotides (ODNs). In particular, 3-azidocoumarin 12 attracted much attention in this field because it can react with any alkyne-modified nucleotides to produce a fluorescent product. The alkyne-modified nucleosides can be easily incorporated in ODN via solid-phase DNA synthesis. For example, the alkyne-
modified uridine nucleosides (14) can be easily converted into the corresponding phosphoramidites which are readily incorporated into ODNs at single or multiple site(s) via standard solid-phase DNA synthesis. The ODNs containing alkyne reporters react with non-fluorescent 7-hydroxyl-3-azidocoumarin in the presence of catalyst Cu (I) to yield the ODNs with high fluorescence (Figure 1-9).

Figure 1-9. Preparation of fluorescent ODNs via the fluorogenic reaction.

1.3. DNA-Templated Reactions

1.3.1. DNA Synthesis and Modification

DNA-templated reactions of modified ODN probes have been widely used in nucleic acid sensing, small-molecule discovery, and reaction discovery via effective-molarity-based method. Several natural or artificial methods exist to create chemically unmodified gene sequences, including DNA replication in nature, polymerase chain reaction, and gene synthesis. Great efforts have been made for improving the ODN bio/chemical properties by introducing novel groups to ODNs. Two common approaches, direct incorporation of chemical modifications into ODNs via solid-phase synthesis or post-synthetic conjugation with functional reporter groups, were employed for construction of ODNs with various chemical functional groups.
The first one involves direct incorporation of the modified nucleoside phosphoramidites bearing the designed functional groups via solid-phase DNA synthesis, in which ODNs are bound on the surface of glass bead with pores and prepared via step-by-step reactions in the solutions. This method showed great advantage of easily removing excess un-reacted agents or byproducts from the desired ODNs via washing. ODN synthesis is performed via the stepwise addition of free nucleotide residue at the 5'-terminus of ODN via synthetic cycles.34 Usually, one ODN synthetic cycle consists of four steps: detritylation, coupling, capping, and oxidation (Figure 1-10). Detritylation, also known as de-blocking, is to remove the dimethoxytrityl (DMTr) in the solid bead-bound ODN using an acid (2% trichloroacetic acid) to generate the reactive residue, a free hydroxyl group at the 5-terminus. The formed DMTr cation with a color of orange-red was used for quantification of the last synthesis cycle. Then, the phosphoramidite is activated by 1\textit{H}-tetrazole and subsequently reacts with the 5'-hydroxy group in the solid bead-bound ODN. The phosphite triester linkage is formed in the process. Followed by the coupling reaction, the capping reaction is performed by permanently blocking the unreacted 5'-hydroxy group using a mixture of 1-methylimidazole and acetic anhydride. This step prevents formation of deletion sequences. Finally, the tricoordinated phosphite triester linkage is oxidized to a more stable tetracoordinated phosphate trimester using a solution of iodine/water/pyridine. The ODN product contains a dimethoxytrityl (DMTr) protected 5'-hydroxy group that undergoes further synthetic cycles for elongation of the ODN chain. The designed modified phosphoramidites with DMTr group can be incorporated into flexible positions.
Figure 1-10. Preparation of ODNs via DNA solid-phase synthesis.
The ODNs produced by solid-phase synthesis contain various protecting groups, such as 2-cyanoethyl groups at the phosphate moieties and the acyl groups at the A, G, and C. Following by solid-phase synthesis, the ODNs are usually deprotected, cleaved from the solid support, and purified. Normally, the ammonia solutions are employed for cleaving the bounded ODNs from solid support. Meanwhile, all protecting groups are removed yielding the desired ODNs (Figure 1-10). After the cleavage and deprotection, the desired ODNs are purified via two major methods, denaturing polyacrylamide gel electrophoresis (PAGE) or high performance liquid chromatography (HPLC). The purified ODNs can be characterized by mass spectrum, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF).

The post-synthetic conjugation method was also used for preparation of modified ODNs. It is particularly useful when the designed functional groups are not compatible with DNA solid-phase synthesis or post-treatment conditions. This method involves two steps: first, the ODNs containing a reporter group was synthesized via solid-phase synthesis; second, coupling of the ODNs with the designed functional residues to form the target ODNs. Several chemical linkages or highly efficient chemical reactions, such as amide, thiourea, thioethers, and thiazolidines linkages, Diels-Alder and Huisgen dipolar cycloadditions, and Staudinger ligations reactions, have been developed/used for facile construction of modified ODNs with the desired biochemical properties.
The amide and thiourea linkages can be generated via chemical reactions between the amino group in ODNs and the carbodiimide-activated carboxylic and isothiocyanate groups (Figure 1-11). The reaction is highly efficient. However, the pH-dependent amino groups and carbodiimide-activated intermediates may lead to low reactivity and side reactions under acidic conditions. The sulfur-containing linkages, for instance thioethers and thiazolidines, can be prepared via the reaction of thiol groups with the active maleimide or vinyl sulfone or 1,2-aminothiol reporters (Figure 1-11). Side reactions may also occur especially with biomolecules containing thiol groups. In addition, hydrolysis of thiazolidine linkages can occur at the acidic environment by the reaction of 1, 2-aminothiol with an aldehyde moiety. Recently, “click” reactions, such as Diels-Alder and Huisgen dipolar cycloadditions, and Staudinger ligations were developed for ODNs post-conjugation (Figure 1-11). The Diels-Alder cycloadditions involve reaction of the diene in ODNs with an electron-donating group and a dienophile bearing an electron-withdrawing group. The Huisgen 1, 3-dipolar cycloadditions and Staudinger ligation...
reactions between an azide and an alkyne or the phosphane group can form triazole and aza-ylide linkages. These have been widely used for construction of ODNs with special biochemical properties.

1.3.2. DNA Interstrand Cross-Linking Reaction

The modified ODNs with chemically functional groups have been widely utilized in the DNA-templated reactions, in which complementary ODNs hybridize via hydrogen bonds to form a DNA duplex, so that the reactive groups of ODNs can be confined to the same region in space affording highly effective concentration for the reactions. DNA-templated reactions enable the efficient biochemical reaction occurring with a much lower concentration (nM-µM) than non-templated chemical synthesis (M). In general, DNA interstrand cross-link (ICL) reaction and ligation reaction are two most important DNA-templated reactions which receive lots of attention in biochemistry.

DNA ICL reactions refer to the reactions capable of forming the covalent chemical bonds between the two strands of a DNA double helix. Usually, the ICL reaction can be achieved by various exogenous cross-linking agents or functional reporters introduced in the modified ODNs. In genetics, the formed covalent bonds cannot be cleaved by enzymes. If not repaired, DNA ICLs can block the DNA strand separation and interrupt DNA replication finally leading to cell death. Many exogenous DNA cross-linking agents have been clinically used in the cancer therapy. For example, bifunctional alkylating agents such as the nitrogen mustards (15) and cis-diamminedichloroplatinum (II) (16) can react with the N7 of the guanine to yield interstrand cross-links (Figure 1-12). Photoreactive psoralen (17) can cross-link the thymidine via [2 + 2] cycloaddition when irradiated with UV light >300 nm. Psoralens have been used for treatment of
psoriasis, vitiligo and cutaneous T-cell lymphoma.39 Recently, H\textsubscript{2}O\textsubscript{2}-responsive anticancer prodrugs targeting the unique biochemical alterations such as high level of reactive oxygen species in cancer cells have been discovered. These agents exhibit therapeutic activity and selectivity.40 For example, our group has developed several novel H\textsubscript{2}O\textsubscript{2}-activated anticancer prodrugs containing electron-withdrawing boronate esters (18 and 19). These compounds are inactive towards DNA but can be triggered by H\textsubscript{2}O\textsubscript{2} to release active species: quinone methides or nitrogen mustards that directly form DNA ICL products (Figure 1-12).41-42

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{DNA interstrand cross-link agents.}
\end{figure}

For most bifunctional DNA alkylating agents, the ICL formation requires much excessive DNA cross-linking agents (most more than 100 times) but leading to low ICL yields (most < 50%), several side reactions and DNA damages. Cross-linking also occurs in the same strand to form the monoadducts and intrastrand cross-links.43 Cross-linking between DNA and protein is also possible.
DNA-templated reactions overcome the problems discussed above: a) only equivalent modified DNA constructs are required to enable the efficient ICL reactions with high cross-linking yields; b) less side reactions are observed and good selectivity is achieved. A number of modified ODNs consist of different functional groups which can produce the efficient ICL reaction via various chemistry, such as click chemistry, photo-generated radicals or carbenes, and photo-induced cycloaddition. Among these, “click” chemistry has been widely applied for covalently cross-linking complementary DNA strands through formation of triazole linkages. A number of alkyne- or azide-modified nucleotides have been developed for DNA-associated “click” reactions. For example, various terminal alkynes or azide groups are introduced in 2’-deoxyuridine, which was incorporated into ODNs via solid-phase DNA synthesis and ODNs post-conjugation respectively (Figure 1-13). Highly efficient “click” reactions have been achieved using these alkyne-containing (20) and azide-modified (21) ODNs leading to quantitative formation of DNA ICL products. These DNA-templated “click” reactions are complete
within 15 min. The diazirine-based nucleoside analogues were also incorporated in ODNs which allowed efficient interstrand cross-linking upon photoirradiation. The aryl-(trifluoromethyl) diazirine-modified nucleoside analogue 22 is particularly useful for this purpose. They can be successfully incorporated into ODNs via solid-phase synthesis. Photoirradiation causes loss of the nitrogen gas generating a carbene 23 which is highly reactive towards a variety of functional groups even the inert aliphatic C-H bonds. The ODNs containing 22 produce very stable DNA interstrand cross-links (Figure 1-13). DNA ICLs are also generated via [2 + 2] photocycloaddition reaction. For example, the artificial base pairs of two p-stilbazoles 24 introduced in the base paring positions of two complementary DNA strands efficiently produced DNA cross-linking products upon light irradiation at 340 nm. The photo-cross-linking reaction can finish within 3 min yielding two diastereomers due to free rotation of the vinyl group. The cross-linked duplex was highly stable (Figure 1-13). The DNA cross-linking reactions by modified DNA constructs showed high efficiency. They have been applied in various fields including detection of nucleic acid-nucleic acid and protein-nucleic acid interactions, DNA repair, gene regulation, reversible control of DNA hybridization, phototherapy, and DNA-based nanomaterials. Although DNA-templated ICL reactions using two complementary ODN strands are simple and highly efficient, they usually require two modified ODNs which limits their applications in natural DNA study such as the detection of mutation, sequencing and translating DNA sequences. These problems can be overcome by DNA-templated ligation reaction.
1.3.3. DNA Ligation Reactions

DNA-templated chemical ligation reactions are defined as joining two short DNA fragments by chemical reactions in the presence of a long complementary DNA template. In biology, DNA ligase which can biocatalyze formation of phosphodiester linkers between 3'-hydroxyl and 5'-phosphoryl groups is used for DNA bio-ligation reactions, such as the polymerase chain reaction (PCR). Unlike the interstrand cross-link reactions using two ODN strands, DNA-templated ligation reactions consist of three ODN strands including a long natural DNA template being complementary with the other two probe strands to modulate the effective molarity of the two reactants, and two short ODN strands with reactive groups at the terminal positions participating in the chemical reaction. DNA hybridization among three strands can form the DNA duplex confining the reactive groups at the internal positions in space. This can create a very high effective molarity of reactants, resulting in efficient reactions with accelerated reaction rates by several orders of magnitude.
Figure 1-14. Examples of DNA templated ligation reactions.

Many biocompatible reactions have been employed in DNA-templated ligation, such as copper-free click reactions, Staudinger ligation, and photocycloaddition. Among these, DNA-templated copper-free alkyne-azide \([3 + 2]\) cycloaddition reaction is very efficient and fast (Figure 1-14). The most prominent copper-free “click” reaction is the strain-promoted azide-alkyne \([3 + 2]\) cycloaddition (SPAAC) reaction using a cyclooctyne moiety and an azido group which is first developed by Bertozzi. The SPAAC reaction showed high efficiency and orthogonality without using the toxic Cu (I) which allows wide \textit{in vivo} applications. Initially, the dibenzocyclooctyne 25 was employed in SPAAC reaction. Compound 25 was introduced at the 5-terminus of ODN via solid-phase DNA synthesis, while the azide moiety was incorporated at the 3’-terminus of ODN via post-conjugation. In the presence of a matched template, the
SPAAC reaction occurs to afford the stable ligation product with high efficiency. The reaction is complete within 5 min. Recently, the Staudinger ligation has been employed for ligating ODN strands. For example, the reaction between a triaryl phosphine bearing an elect!philic trap and an azide group yields an stable amide linkage efficiently forming ODN ligation products (Figure 1-14).50 Both azides and the triaryl phosphine with the methyl ester 26 are introduced in ODNs through post-conjugation methods because they are not compatible with the conditions used in solid-phase DNA synthesis. With formation of DNA duplex via hybridization, the aza-ylide is generated to react with the ester forming a five-membered ring. After hydrolysis, the stable amide linkage is formed in the ligation product. Sometimes, the natural ODNs can also serve as the reactants in the ligation reaction.

Apart from “click” chemistry and Staudinger reaction, photo-induced [2 + 2] cycloaddition is also used for DNA ligation. The C5-C6 double bond of pyrimidines is often involved in the DNA-templated photo-induced [2 + 2] cycloaddition reactions. Fujimoto developed a highly efficient reversible photoligation using 5-vinyl-2’-deoxyuridine (27) and 2’-deoxyuridine with no side reactions (Figure 1-14).51 The 5-vinyl-2’-deoxyuridine (27) can be incorporated in ODNs via automated DNA synthesis. The photocycloaddition of 5-vinyl-2’-deoxyuridine and the natural dU in the internal positions of the longer ODN template is almost quantitative upon irradiation at 366 nm. The formed product can be photo-cleaved to the original strands via 302 nm photo-irradiation. The ligation products are longer than the starting ODNs and would bind more tightly with ODN template than the two starting probe strands via hydrogen bonds, which prevent dissociation of the ligated product from the template. Therefore the template
loses its catalytic ability and one template only produces one ligated product. Recently, the ligation reactions capable of achieving template turnover have been developed. Kool group reported that the nucleophilic phosphorothioate group at the 5'-terminus can react with the dabsylate group 28 at the 3-terminus to form the butanediol-linker 29 (Figure 1-14). Formation of the linker 29 destabilizes the duplex formed by ligated products and the template, which is favorable for releasing the free template for further ligation reactions. Therefore, this method yields generation of multiple ligated products with one DNA template. Moreover, the dabsylate group 28 can quench the fluorescence of the fluorophore conjugated in the flanking base, but the fluorescence can be restored after loss of the dabsylate group in the ligation reactions. Thus, the ligation reaction involving a dabsylate group can produce 92-fold amplification of fluorescence signals without using enzymes, additional chemical reagents, or thermal cycling.

1.3.4. Potential Application of Coumarin in DNA

Although DNA-templated organic reactions have been well studied and various functional groups have been introduced in ODNs for such purpose, the biological application of these reactions is still limited due to several unsolved problems, such as the challenge in real-time detection and amplification of the formed products and the challenge in signal amplification due to low-abundance of DNA targets in biological system. We expect that these challenges can be overcome by development of fluorogenic DNA-templated reactions capable of fluorescence signal amplification. As the coumarin moieties show substituent-dependent tunable fluorescence, we became interested in DNA-templated coumarin-based fluorogenic reactions. Such reactions use non-fluorescent coumarin precursors as reporters which undergo a certain chemical reaction
to produce a highly fluorescent product. They are expected to expand the biological applications of DNA-templated reaction, such as for developing simple methods for real-time detection of single nucleotide polymorphism (SNP) and for highly sensitive fluorescence-labeling. Although lots of methods have been developed for sequence-specific DNA detection using fluorescence assays, most of them have low sensitivity and involve stringent washing of unreacted probe which are costly and/or time-consuming. The coumarin-based fluorogenic reaction with low/no background will avoid removal of the unreacted probes (Chapter 2), which allows development of simple and easy methods for real-time SNP detection.

On the other hand, the DNA-templated reaction is highly efficient which offers an excellent way for studying organic molecules’ reactivities towards DNA. The coumarins have been widely utilized as drugs, biomolecular reporters, and components in bio-nanomaterials. However, its reactivity towards biomolecules is still unclear which may induce unrecognized side reactions in bioapplications. We fully investigate the reactivity of the coumarin moiety towards four DNA components by using DNA-templated chemical reaction. Such study provides a novel understanding about biochemical properties of coumarins in cells (Chapter 4 and 5). In addition, we discovered a bromo-substituted coumarin derivative (30) that reacts with dT under physiological conditions. The reactions between coumarin derivative 30 and dT in natural DNA can afford the DNA conjugates with several fluorescent coumarin reporters (Chapter 3). This allowed us to develop a novel method capable of labeling natural DNA with multiple fluorophores by taking the advantages of the good chemical reactivity of coumarin derivatives with dT, which greatly increase its analytical sensitivity. Most current DNA labeling methods just
allow one fluorescent reporter being conjugated to one natural ODN strand leading to low sensitivity.

Figure 1-15. Selectively post-labeling natural DNA with coumarins.
1.4. References

Chapter 2. Template-Directed Fluorogenic Click Reaction: DNA Interstrand Cross-Linking, Oligonucleotide Ligation, and Single Nucleotide Discrimination

2.1. Introduction

The abnormal behaviors of tumor cells are demonstrated resulting from mutations in key regulatory genes. Therefore, fast and facile detection of mutated gene is highly important for early diagnosis and treatment of cancer diseases. Several methods have been developed to monitor gene mutations, for example DNA chip analysis, denaturing high-performance liquid chromatography analysis, heteroduplex analysis, and those have been applied in hospital laboratories, such as the single-strand conformational polymorphism and restriction fragment length polymorphism analyses. Recently, rapid and simple methods based on DNA melting curve analysis have been developed. However, most existing technologies rely on allele-specific hybridization. Hybridization alone is a non-covalent binding event between the target DNA and a complementary oligonucleotide probe. This is a transient event that requires stringent conditions, barely exhibits sufficient selectivity in distinguishing matched from single-base mismatched DNA targets, and cannot be used in cells. One of the most common strategies currently used to engender high selectivity in sequence detection is the use of DNA-ligation reactions (e.g. ligases). Many DNA-templated chemical reactions have been utilized for sensing DNA or RNA sequences, which can achieve single nucleotide discrimination. The advantages offered by chemical ligation techniques is the feasibility of performing
reactions with DNA-analogues on RNA templates, and/or within living cells, and allowing direct read-outs of the formed products.19-20

One important issue in the design of DNA-diagnostic chemical reactions is the detection of the formed product. Gel electrophoresis and HPLC-based separation techniques have most frequently been used as the precise yet time-consuming means of reaction monitoring. Mass spectroscopy has been demonstrated to enable rapid and accurate detection of reaction products. However, these methods are off-line methods. These limitations have motivated the development of simpler fluorescence-based assays with molecular beacons, binary probes, forced intercalation of thiazole orange probes, and base-discriminating fluorescent probes. Fluorescence assay enables real-time measurements, and provides advantages as far as ease, sensitivity, and speed of detection.21 The major disadvantage of fluorescence assay is the background signal that arises from a number of sources.22 For example, fluorescence occurs from partially labeled molecular beacons (possessing the fluorophore, but not the quencher), a small amount of “open” hairpin structures in the absence of the target, and the inefficiency of the quencher to totally deactivate the dye fluorescence.23 To obtain \textit{in-situ} and real-time information on the DNA-templated chemical reactions and to eliminate residual fluorescence, it is expected that the reporters used should be non-fluorescent, but can generate a fluorescent product upon DNA-templated chemical reaction. In this work, we used the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) to develop a fluorogenic “click” ligation reaction which is capable of single nucleotide discrimination and can be used for detecting tumor’s mutated genes.
The CuAAC reaction, the most prominent example of click chemistry attracts particular attention for DNA-templated reaction and a variety of biological application because the “click” chemistry is a regioselective and bioorthogonal reaction that is clean, fast, high-yielding, and operated in aqueous solution. Brown and coworkers first applied the “click” reaction for template-directed DNA ligation and covalent intramolecular DNA circularization and catenation. Later, our group has utilized the “click” reaction for developing a highly efficient chemical ligation for quantitative conjugation of peptide nucleic acid (PNA) with DNA. The PNA click ligation is sequence-specific and capable of single nucleotide discrimination.

Recently, fluorogenic “click” reactions between non-fluorescent alkynes and azides to form a substantial turn-on fluorescent signal upon formation of triazole complexes have been optimized. These reactions have been widely used in bioconjugation labeling and fluorogenic probing. However, the fluorogenic “click” reaction as one of the important click reactions has not been used in the template-dependent reaction for DNA single nucleotide discrimination. We envisaged a very simple method of detecting tumor’s mutated nucleic acids by using the fluorogenic “click” reaction. In this chapter, ODNs containing non-fluorescent alkyne-modified coumarin or azide group were employed as the probes for DNA-templated ligation and interstrand cross-linking and for detection of SNPs in p53 tumor suppressor gene. The fluorogenic “click” reaction occurred only in the presence of tumor-associated genetic sequences p53 gene with one base mutation which produced strongly fluorescent products (Figure 2-1).
Figure 2-1. Detection of p53 mutations via a fluorogenic “click” reaction.

2.2. ODN Probes for Fluorogenic Reaction

2.2.1. Preparation of the ODNs Containing Alkyne-Modified Coumarin

The goal of the study is to develop a simple and effective method to detect tumor’s mutated nucleic acids by using the fluorogenic “click” reaction. Such method will allow easy, fast, sensitive, and real-time detection of specific nucleic acid sequences without stringent washing conditions or background signal from un-reacted probes. This requires the design of non-fluorescent DNA probes that can be covalently bound together via a CuAAC reaction to produce an enhanced fluorescence signal. The use of non-fluorescent probes will ensure a low background or zero background. The covalent attachment between two probes will produce a permanent signal and avoid the stringent conditions for washing un-reacted probes. Initially, we chose coumarin derivatives as fluorogenic reporters because their fluorescence intensity can be tuned by varying the electronic properties of the substituents at the aromatic rings.35 Furthermore, they are easy to prepare and are biocompatible. It is known that coumarin analogues having an alkyne group at the position-7 or those carrying an azido group at the position-3 are non-fluorescent but can undergo “click” reaction to generate a fluorescent product via formation of a triazole moiety.35 As the azide group is not compatible with solid-phase DNA synthesis via phosphoramidite chemistry due to the Staudinger reaction (see chapter 1), we used an alkyne-modified coumarin as the reporter which was incorporated at the 5’-terminus of DNA probes. Therefore, 7-ethyl-4-hydroxymethylchromen-2-one (6) and its phosphoramidite building block 7 have been prepared (Figure 2-2). As described by Fahrni and co-worker, 7-ethyl-4-
hydroxymethylchromen-2-one (6) was synthesized starting from ethyl acetoacetate.36 PAC phosphoramidites have been employed for synthesizing ODNs containing alkyne-modified coumarin because a very mild deprotection condition is used which can avoid decomposition of the functionalized DNA probes.

![Synthesis of alkyne-modified coumarin phosphoramidite 7.](image)

Figure 2-2. Synthesis of alkyne-modified coumarin phosphoramidite 7.

We followed the procedure described by Brown and coworkers to synthesize ODNs containing azide group in the 3’-terminus.26 Incorporation of azide group was done by the reaction of succinimidyl-4-azidobutyrate (10) and 3’-amino-modifier C7-ODNs (Figure 2-3). Compound 10 was prepared starting from methyl 4-bromobutanoate. All ODNs have been purified by 20% denaturing PAGE. ODNs containing alkyne-modified coumarin or azide group have been confirmed by mass spectrometry (Table 2-1).
Table 2-1. Oligodeoxynucleotides used in the study.

<table>
<thead>
<tr>
<th>Entry</th>
<th>ODN sequence</th>
<th>Mass (Calcd.)</th>
<th>Mass (Found)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODN 1</td>
<td>3’-dCGGAGGCCAAGT</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>ODN 2</td>
<td>3’-dACTTGGCCTCCG</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>3aODN 3</td>
<td>3’-dNH₂ACTTGGCCTCCG</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>3bODN 4</td>
<td>3’-dZACTTGGCCTCCG</td>
<td>3917.5</td>
<td>3916.9</td>
</tr>
<tr>
<td>3cODN 5</td>
<td>3’-dCGGAGGCCAAGT₆</td>
<td>3957.5</td>
<td>3957.4</td>
</tr>
<tr>
<td>3cODN 6</td>
<td>3’-dCGGAGACCAAGT₆</td>
<td>3941.5</td>
<td>3941.6</td>
</tr>
<tr>
<td>3aODN 7</td>
<td>3’-dNH₂CTTGGCCT</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>3bODN 8</td>
<td>3’-dZCTTTGCGCT</td>
<td>2696.7</td>
<td>2696.6</td>
</tr>
<tr>
<td>3bODN 9</td>
<td>3’-dNH₂CTTGGCCCTC</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>3bODN 10</td>
<td>3’-dZCTTTGGCCTC</td>
<td>2985.9</td>
<td>2985.9</td>
</tr>
<tr>
<td>3cODN 11</td>
<td>3’-dCGTACC CGCGCT₆</td>
<td>3844.4</td>
<td>3844.0</td>
</tr>
<tr>
<td>3’-dTACCGGGAGXCCAAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODN 13</td>
<td>3’-dAGGCCCAAGT</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>ODN 14a-d</td>
<td>3’-dGAGXCCAAGT 14a: X = G; 14b: X = A; 14c: X = T; 14d: X = C</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>
2.2.2. Thermal Stability Study

The efficiency of DNA-templated chemical reactions depends on formation of a stable DNA duplex. The sequence selectivity relies on the mismatch discrimination of the modified ODN probes. In order for coumarin or azide group to be useful as part of a probe to specifically detect a complementary sequence, they must maintain the mismatch discrimination ability of DNA probes. Therefore, the melting temperatures (T_m) of ODNs bearing alkyne-modified coumarin or azide unit has been examined (Table 2-2). The specific sequences were designed to target codon 248 in exon 7 of the p53 gene. The p53 gene is often mutated in human cancer, and there is a high frequency of $A \rightarrow G$ transition at codon 248. Initially, the ODN probe (ODN 4) was designed to utilize “click” reaction to cross-link target sequence and to discriminate between matched (dG, ODN 5) and mismatched sequence (dA, ODN 6). The coumarin moiety increased the duplex stability (ODN 2 • ODN 5) with a ΔT_m of 3.6 °C relative to duplex not containing coumarin moiety (ODN 1 • ODN 2), while Azide group slightly decreased the duplex stability (ODN 1 • ODN 2) ($\Delta T_m = -0.4$ °C). However, the duplex (ODN 4 • ODN 5) containing a coumarin moiety opposite to an azide unit showed extra stability ($\Delta T_m = 4.6$ °C). The introduction of a coumarin moiety or an azide group in the ODN probes do not affect mismatch discrimination of dC toward dA ($\Delta T_m = -17.4$). These data suggest that azide
and coumarin moiety can be utilized as reporters for designing ODN probes for detecting tumor’s mutated DNA.

Table 2-2. Duplex thermal stability a

<table>
<thead>
<tr>
<th>Duplexes</th>
<th>T_m (°C)</th>
<th>ΔT_m (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'-d(GCC TC C GGT TCA) (ODN 2)</td>
<td>53.1 ± 0.3</td>
<td>0</td>
</tr>
<tr>
<td>3'-d(CGG AGG ACC AGT) (ODN 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'-d(GCC TC C GGT TCAZ) (ODN 4)</td>
<td>52.7 ± 0.4</td>
<td>-0.4</td>
</tr>
<tr>
<td>3'-d(CGG AGG ACC AGT) (ODN 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'-d(GCC TC C GGT TCA) (ODN 2)</td>
<td>56.7 ± 0.4</td>
<td>+3.6</td>
</tr>
<tr>
<td>3'-d(CGG AGG CCA AGT6) (ODN 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'-d(GCC TC C GGT TCAZ) (ODN 4)</td>
<td>57.7 ± 0.8</td>
<td>+4.6</td>
</tr>
<tr>
<td>3'-d(CGG AGG CCA AGT6) (ODN 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'-d(GCC TC C GGT TCAZ) (ODN 4)</td>
<td>40.3 ± 0.3</td>
<td>-17.4</td>
</tr>
<tr>
<td>3'-d(CGG AGA CCA AGT6) (ODN 6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aMeasured in 0.1 M NaCl, 10 mM potassium phosphate buffer (pH 7.0) with 4 μM + 4 μM single-strand concentration.

2.3. Fluorogenic DNA Interstrand Cross-Linking via Click Reaction

2.3.1. Efficiency of Click Reaction

Cross-linked DNA duplexes have been used in many fields such as DNA repair, gene regulation, reversible control of DNA hybridization, and as aptamers and decoys to sequester DNA-binding proteins, and in nanotechnology for the assembly of stable DNA
nanoarrays (Chapter 1). Both Brown and Seela groups have used “click” chemistry to cross-link complementary DNA strands through modified nucleobases or sugar moieties.38-39 In this work, we used a fluorogenic “click” reaction for building covalently fluorescent cross-linked DNA constructs, which can be a useful tool in nanotechnology and in biological applications. ODN 4 containing an azide group at the 3’-terminus and ODN 5 bearing an alkyne-modified coumarin at the 5’-terminus have been used for this study (Figure 2-4A). All click reactions were performed in 100 mM NaCl and 10 mM potassium phosphate buffer (pH = 7) to ensure complete formation of the duplexes. Initially, we used gel-electrophoresis to examine the cross-linking efficiency. ODN 4 was 32P-labeled at the 5’-terminus. The cross-linking reaction was performed in the presence of Cu[I]/THPTA (Tris-(hydroxypropyltriazolylmethyl)amine) at room temperature. The Cu[I] was generated in situ from CuSO\textsubscript{4} and sodium ascorbate and bound with a water-soluble ligand THPTA which greatly reduced the degradation of ODNs and also increased the “click” reaction yield.40 The click reaction was performed at room temperature under different conditions: lane 1, the reaction was carried out in the absence of the catalyst; lanes 2-4, the reactions were carried out in the presence of 80 mM THPTA/4 mM CuSO\textsubscript{4}/40 mM Na-ascorbate for different time; lane 5, the reaction was performed with 40 mM THPTA/2 mM CuSO\textsubscript{4}/20 mM Na-ascorbate (Figure 2-4). The DNA interstrand cross-linking (ICL) reaction between ODN 4 and ODN 5 was highly efficient with a yield of about 90% within 0.5 hour at room temperature (Figure 2-4B, lane 2). A control reaction was performed in the absence of CuSO\textsubscript{4}/sodium ascorbate/THPTA and no cross-linking product (~ 0.3%, close to background) was observed (Figure 2-4B, Lane 1). We also observed that less catalyst led to a lower yield
(79%, Figure 2-4B, Lane 5). The rate of DNA ICL formation at room temperature followed first-order kinetics ($k_{ICL} = (1.1 \pm 0.2) \times 10^{-3}$ s$^{-1}$, $t_{1/2} = 10.5$ min, Figure 2-4C). Cross-linked product (ODN 15) was purified by gel electrophoresis and characterized by MALDI-TOF.

![Diagram](image)

Figure 2-4. The fluorogenic ICL reaction between ODN 4 and ODN 5 [The fluorogenic click reaction (A), phosphorimage autoradiogram of denaturing PAGE analysis (B), and kinetic study (C). ([ODN 4] = 50 nM, [ODN 5] = 75 nM).].

2.3.2. Detection of ICL via Fluorescence Assay

To confirm the enhanced fluorescence after the fluorogenic click reaction, the isolated cross-linking product (ODN 15) as well as the DNA ICL reaction was also examined by fluorescence spectroscopy. In comparison with a mixture of unreacted ODN 4 and ODN 5 (10 µM), ODN 15 showed 5 times fluorescence enhancement (Figure 2-5A). This is
consistent with the results observed by Fahrni and coworker that an alkyne group at the position-7 quenched the fluorescence of coumarin moiety, while the formation of a triazole moiety restored its fluorescence.36 The results indicated that the restored fluorescence was not quenched by duplex DNA or only to a very small extent. Therefore, alkyne-modified coumarin can be a good reporter group for a DNA-templated fluorogenic reaction. Finally, we were able to use the fluorescence spectroscopy to detect DNA ICL formation. The DNA precipitations and gel-filtration on an Illustra G-25 column were carried out to remove the catalyst and salts. The fluorescence of the reaction mixture was measured before and after “click” reaction. The enhanced fluorescence intensity was observed upon the addition of the catalyst (80 mM THPTA/4 mM CuSO\textsubscript{4}/40 mM Na-ascorbate) (Figure 2-5B). Thus, the DNA cross-linking reaction can be monitored by fluorescence spectroscopy.

Figure 2-5. Monitoring fluorogenic ICL reaction via fluorescence assay [Fluorescence emission of the cross-linking product ODN 15 and a mixture of unreacted ODN 4 and ODN 5 in water (A, 10 µM, λ\textsubscript{ex} = 330 nm, λ\textsubscript{em} = 410 nm, slit width = 10 nm); Fluorescence emission of a reaction mixture of ODN 4 (0.4 µM) and ODN 5 (0.4 µM) in
or without the presence of 80 mM THPTA/4 mM CuSO₄/40 mM Na-ascorbate for 1 hour (B, 0.4 μM, λ_{ex} = 330 nm, λ_{em} = 410 nm, slit width = 10 nm).

2.3.3. Selectivity of Fluorogenic DNA Interstrand Cross-Linking

Then, we examined the selectivity of the DNA-templated fluorogenic “click” reaction, which depended on the reaction temperature and duplex stability. At room temperature, ICL product was also observed with a mismatched duplex DNA (ODN 4 • ODN 6) that contains a dA opposite to dC (Figure 2-6A). The cross-linking yield is comparable with that obtained with a fully matched DNA duplex (ODN 4 • ODN 5) (Figure 2-6B, lanes 2 and 4). The matched duplex (ODN 4 • ODN 5) formed efficient ICL with a yield of 89% while similar efficiency (86%) was observed for the mismatched duplex (ODN 4 • ODN 6) at room temperature. However, the selectivity (~10:1) was achieved when the reaction was performed at the melting temperature of the mismatched duplex (ODN 4 • ODN 6, 45 °C, Table 2-2) (Figure 2-6B, lanes 2 and 4). The matched duplex (ODN 4 • ODN 5) produced efficient ICL with a yield of 83% while very little cross-linked product (<8%) was observed for the mismatched duplex (ODN 4 • ODN 6). These data showed that DNA-templated fluorogenic “click” reaction is sequence-specific and has the potential to be used for DNA detection.
2.4. Single Nucleotide Discrimination via the Fluorogenic Click Ligation Reaction

2.4.1. Optimization of Probes

Our preliminary experiments demonstrated that the fluorogenic “click” reaction can be used to detect DNAs at single nucleotide resolution. However, DNA cross-linking reaction has some limitations in real application for DNA detection because it requires both probe and target be modified with either azide or alkyne moiety. The targets are difficult to be modified with azide or alkyne at the specific position. The above problem can be overcome by developing a template-directed fluorogenic “click” ligation reaction because one can use two modified probes that are complementary to a native target. The
designed templates (ODN 12a-d) contain sequences from the region around codon 248 in exon 7 of the p53 gene that is often mutated in human cancers. Template ODN 12b contains the genetic sequence in normal human cells, while ODN 12a contains the mutated nucleic acid G existing in cancer cells. Detection of the tumor’s mutated nucleic acids can be achieved if a DNA-templated fluorogenic “click” ligation reaction capable of single nucleotide discrimination is available. Because we expected to develop DNA probes that would enable a sequence-specific fluorogenic “click” ligation reaction therefore allowing for the detection of tumor’s mutated DNA sequence (ODN 12a). The identification of such DNA probes requires systematic design of suitable length of ODN, optimization of the distance between two probes, reaction conditions, and work-up procedures.

Initially, a 12-mer probe (ODN 4) containing azide unit was employed, which is complementary to the 3’-terminal part of the templates. Another 12-mer probe (ODN 11) containing an alkyne-modified coumarin at the 5’-terminus has been designed to pair with the 5’-terminal part of ODN 12a. There is no gap between two substrates (ODN 4 and ODN 11). An efficient ligation reaction was observed in the presence of the target 12a (tumor’s mutated nucleic acid) with a ligation yield of 89%. The “click” ligation was complete within 3 hours at 28 °C and followed first-order kinetics with a rate constant \(k_L \) of \((2.9 + 0.4) \times 10^{-4} \text{ s}^{-1}\) (Figure 2-7A). Apart from the formation of ligation product, a byproduct (DNA*) was observed. This byproduct is most likely caused by the side reaction between azide-modified DNA and the ligand, as it was not formed in the absence of the ligand in ICL click reactions (Figure 2-6, lane 1). However, the selectivity was not achieved when the “click” reaction was performed at room temperature. The mismatched
template (ODN 12b) also produced 84% ligated product (Figure 2-7B). The excellent selectivity was achieved when the reaction temperature was increased to 45 °C which is above the melting temperature of the mismatched duplex (40 °C for ODN 4 • ODN 12a) (Table 2-2) (Figure 2-7C). In order for the detection method being carried out in mild condition, we expected that the fluorogenic “click” ligation reaction should show sequence-selectivity at room temperature. Therefore, the length of probes has been optimized.

Figure 2-7. The selectivity of “click” ligation reactions using probe ODN 4 [Kinetic study for the “click” ligation reactions with ODN 4 and ODN 11 in the presence of matched template ODN 12a at room temperature (A); Phosphorimage autoradiogram of denaturing PAGE analysis of the “click” ligation reactions with ODN 4 and ODN 11 at room temperature (B) and 45 °C (C) (lane 1, in the absence of the template; lane 2, in the presence of matched template 12a; lane 3, in the presence of the mismatched template]
12b; and the ligation reaction was carried out in the presence of 80 mM THPTA/4 mM CuSO₄/40 mM Na-ascorbate for 3 h).]

Two sets of probes have been designed, one with 8-nucleotides (ODN 8) and another with 9-nucleotides (ODN 10). The melting temperatures of the DNA duplexes were determined (Table 2-3). Both ODN 8 and ODN 10 formed a stable duplex with a fully matched ODN 14a with a melting temperature of 37.5 °C and 44.1 °C respectively, while their mismatched duplexes showed a melting temperature of lower than room temperature (<15 °C for duplexes ODN 8 • 14b, ODN 8 • 14c, ODN 8 • 14d and < 21.5 °C for duplexes ODN 10 • 14b, ODN 10 • 14c, ODN 10 • 14d). These data indicated that both probes can discriminate matched template (ODN 14a) from mismatched templates (ODN 14b-d) at room temperature with a ΔTₘ of more than 22 °C. Thus, a sequence-specific “click” ligation reaction was expected to achieve by using ODN 8 or ODN 10.

Table 2-3. Duplex melting temperatures (Tₘ) of ODN probes.

<table>
<thead>
<tr>
<th>Duplexes</th>
<th>Tₘ (°C)</th>
<th>Duplexes</th>
<th>Tₘ (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'-dTGAACCGGAG-3' (ODN 14a)</td>
<td>37.5 ± 0.5</td>
<td>5'-dTGAACCGGAG-3' (ODN 14a)</td>
<td>44.1 ± 0.6</td>
</tr>
<tr>
<td>3'-dZCTTGGCCT (ODN 8)</td>
<td></td>
<td>3'-dZCTTGGCCT (ODN 10)</td>
<td></td>
</tr>
<tr>
<td>5'-dTGAACCGAG-3' (ODN 14b)</td>
<td>< 15</td>
<td>5'-dTGAACCGAG-3' (ODN 14b)</td>
<td></td>
</tr>
<tr>
<td>3'-dZCTTGGCCT (ODN 10)</td>
<td></td>
<td>3'-dZCTTGGCCT (ODN 10)</td>
<td>21.5 ± 0.5</td>
</tr>
<tr>
<td>5'-dTGAACCTGAG-3' (ODN 14c)</td>
<td>< 15</td>
<td>5'-dTGAACCTGAG-3' (ODN 14c)</td>
<td>21.2 ± 0.5</td>
</tr>
<tr>
<td>3'-dZCTTGGCCT (ODN 14d)</td>
<td>< 15</td>
<td>3'-dZCTTGGCCT (ODN 10)</td>
<td></td>
</tr>
<tr>
<td>5'-dTGAACCGGAG-3' (ODN 14d)</td>
<td>< 15</td>
<td>5'-dTGAACCGGAG-3' (ODN 14d)</td>
<td>19.9 ± 0.5</td>
</tr>
</tbody>
</table>
a Measured in 0.1 M NaCl, 10 mM potassium phosphate buffer (pH 7.0) with 4 µM + 4 µM single-strand concentration.

Considering the steric hindrance between azide and coumarin moieties, ODN 8 or ODN 10 is designed to be one nucleotide away from ODN 11 (Figure 2-8A). The “click” ligation reaction of ODN 8/ODN 11 or ODN 10/ODN 11 was carried out in the presence of ODNs 12a-d. As we expected, good selectivity was observed for both probes ODN 8 and ODN 10. The matched template 12a resulted in more efficient ligation (Figure 2-8B and 2-8C, lane 2), while almost no ligated products were observed in the presence of mismatched templates 12b-d (Figure 2-8B and 2-8C, lanes 3-5). However, ODN 8 resulted in a lower ligation yield (15%) possibly due to the lower melting temperature leading to the inefficient duplex formation (Figure 2-8B). When ODN 10 was employed, almost quantitative yield (90%) was obtained in the presence of the matched template ODN 12a while the mismatched templates (ODN 12b-d) produced less than 3% ligation products (Figure 2-8C). The ODN 10 is the best probe for single nucleotide discrimination.
Figure 2-8. Sequence-specific fluorogenic “click” ligation reaction for probes ODN 8 and ODN 10 in the presence of templates 12a-d [Fluorogenic “click” ligation reaction for probes ODN 8 and ODN 10 (A); Phosphorimage autoradiogram of denaturing PAGE analysis of the “click” ligation reaction between ODN 8 (B) or ODN 10 (C) and ODN 11 ([ODN 8] = [ODN 10] = 50 nM, [ODN 11] = [ODN 12] = 75 nM). The click reaction was performed at room temperature for 3 h in the presence of 80 mM THPTA/4 mM CuSO$_4$/40 mM Na-ascorbate: lane 1, the reaction was carried out in the absence of the template; lanes 2-4, the reactions were carried out in the presence of templates 12a-d.]

In addition, ODNs 10, 11, and 12a have been used to optimize the reaction conditions for the template-directed “click” ligation reaction by varying the ratio of THPTA/CuSO$_4$ (Figure 2-9A), the concentration of CuSO$_4$ (Figure 2-9B), and the ratio of CuSO$_4$/Na-ascorbate (Figure 2-9C). The ratio of THPTA/CuSO$_4$ greatly affects the ligation efficiency and the optimum ratio is 20:1. The minimum concentration of CuSO$_4$ for an
efficient “click” ligation is 4 mM and that of Na ascorbate is 8 mM. Finally, the optimum conditions (80 mM THPTA/4 mM CuSO₄/40 mM Na-ascorbate, 3 hours, 25-28 °C) have been established, which was used in all following “click” ligation reactions and DNA detections.

Figure 2-9. Optimizations of the “click” ligation reaction conditions [The effect of THPTA (A), CuSO₄ (B), and Na-ascorbate (C). (Phosphorimage autoradiogram of denaturing PAGE analysis of template-directed “click” ligation reactions of ODN 10 and ODN 11 in the presence of matched template ODN 12a were performed at room temperature for 3 h.).]
Figure 2-10. Fluorogenic “click” ligation reaction between ODN 10 and ODN 11 in the presence of template 12a [Kinetic study (A); Fluorescence emission of the gel-purified ligation product (10 µM ODN 16, solid line) and a mixture of unreacted ODN 10 (10 µM) and ODN 11 (10 µM) in water (dashed line) (B, λ_{ex} = 330 nm, slit width = 10 nm; λ_{em} = 410 nm, slit width = 10 nm)].

The rate constant for ligation product formation with ODN 10/ODN 11 (k_L = (2.3 ± 0.3) × 10⁻⁴ s⁻¹) was within experimental error of that measured with ODN 4/ODN 11 where there is no gap existing between two probes (k_L = (2.9 ± 0.4) × 10⁻⁴ s⁻¹) (Figure 2-10A). These data showed that one nucleotide gap between two probes does not affect the ligation reaction. However, the “click” ligation reaction is about four times more slowly than the “click” cross-linking reaction (k<sub.ICL</sub> = (1.1 ± 0.2) × 10⁻³ s⁻¹). The ligation product (ODN 16) was isolated and characterized by MALDI-TOF. The fluorescence of ODN 16 (10 µM) and a mixture of the unreacted ODN 10 (10 µM) and ODN 11 (10 µM) were measured. The fluorescence intensity was enhanced about 11 times (λ_{em} 415 nm) with the formation of ligation product (Figure 2-10B). Therefore, a highly efficient fluorogenic
“click” ligation reaction capable of single nucleotide discrimination at room temperature was achieved by using a 9-mer ODN probe.

2.4.2. Single Nucleotide Discrimination

In cellular application, detecting of a specific mutated gene in a mixture of different DNA templates is important because in most cases not all wild type targets are mutated to an identical gene. Some keep intact and some undergo different mutations. Therefore, the ability to detect a matched template in a mixture of different mismatched templates is important for an ODN probe to be used under cellular conditions. Therefore, the fluorogenic “click” ligation reaction of ODN 10 and 11 was performed in the presence of the mixed templates 12a-d (Figure 2-11A). The efficient ligation reaction (74%) occurred with a template mixture containing ODN 12a and other mismatched templates (Figure 2-11A, lane 2), while only trace amount of ligation product was observed for a mixture of ODNs 12b-d without ODN 12a (Figure 2-11A, lane 3).

Figure 2-11. Detection of tumor’s mutated nucleic acids via fluorogenic ligation reaction [Phosphorimage autoradiogram of denaturing PAGE analysis of the “click” ligation reaction between ODN 10 and ODN 11 in the presence of different templates (A): lane 1,
the reaction was carried out in the absence of templates; lane 2, the reaction was carried out in the presence of a mixture of templates 12a-d ([ODN 10] = 50 nM, [ODN 11] = 200 nM, [ODN 12a] = [ODN 12b] = [ODN 12c] = [ODN 12d] = 50 nM); lane 3, the reaction was carried out in the presence of a mixture of templates 12b-d ([ODN 10] = 50 nM, [ODN 11] = 150 nM, [ODN 12b] = [ODN 12c] = [ODN 12d] = 50 nM). Click ligation reaction was performed at room temperature for 3 h in the presence of 80 mM THPTA, 4 mM CuSO4, and 40 mM Na-ascorbate. Single nucleotide discrimination via fluorescence:

(B) Fluorescence emission spectra of the reaction mixture (about 0.4 µM) in the presence of different templates (ODNs 12a-d) after removal of the catalyst, ligand, and the salts by precipitation and passing through an Illustra G-25 column (λex = 330 nm, slit width = 5 nm; λem = 440 nm, slit width = 15 nm).

Having established a fluorogenic “click” ligation reaction capable of single nucleotide discrimination, the utility of this reaction for detecting single nucleotide polymorphism and tumor’s mutated nucleic acids was demonstrated using a fluorescence assay. The assay conditions were optimized. The templates were hybridized with equal mole of ODN 10 and 11. Following addition of THPTA/CuSO4/Na-ascorbate to initiate the ligation reaction, the samples were incubated at 25 °C for 3 h. After removal of the catalyst, ligand, and the salts by precipitation and passing through an Illustra G-25 column, the DNA was dissolved in water and the concentration was determined by a Varian CARY-100 BIO UV–VIS spectrophotometer at 260 nm. The fluorescence of 0.4 µM DNA was measured on a Perkin-Elmer LS55 Fluorescence Spectrometer. A control reaction was performed under the same conditions in the absence of templates. The reported fluorescence spectra were subtracted by the background signal from the control
sample. The fluorescence was greatly enhanced in the presence of the matched ODN 12a (X = G; tumor’s mutated DNA) due to the occurrence of the fluorogenic “click” ligation reaction (Figure 2-11B). However, almost no fluorescence was detected in the presence of mismatched templates 12b-d. The ODN probes 10 and 11 showed 10-20 fold selectivity for the matched versus mismatched target sequences without removing un-reacted probes. Therefore, the fluorogenic “click” ligation reaction can be used for the detection of tumor’s mutated nucleic acids under mild condition. It is not necessary to wash away unreacted probes.

Moreover, we found the fluorescence intensity of the ICL product ODN 15 is lower than the ligation product ODN 16’s at the same concentration (10 µM) (Figure 2-12). This indicated that the fluorescence quenching slightly occurred with the ICL product. It is highly likely that charge transfer processes occur between nucleobases and the
fluorophore in ODN 15, which decreases the fluorescence intensity. It is well-known that charge transfer processes decrease or quench the fluorescence of fluorophore.41 The cross-linking product existing as a duplex (ODN 15) allows more efficient charge transfer from coumarine moiety to the nucleic acid. However, the ligation product ODN 16 is a single stranded DNA which prohibits DNA charge transfer. Therefore, ODN 16 displayed stronger fluorescence intensity than ODN 15.

2.5. Preparation of PNA Monomers

Peptide nucleic acid (PNA) shows similar biochemical properties with DNA and can hybridize with complementary DNA strands. Different from DNAs that have sugar and phosphate backbone, PNAs contain repeated N-(2-aminoethyl)-glycine units connected by amide bonds. PNA bind with complementary DNA strands more strongly than that of DNA/DNA strands due to a lack of charge repulsion between the PNA and DNA backbones.42 Interestingly, better sequence specificity was observed for PNA. Higher affinity exists for matched PNA/DNA duplex, but the mismatched PNA/DNA duplex is usually more destabilizing than the mismatched DNA/DNA duplex. Due to its unique biochemical and biophysical properties, PNA have been used as antigen agents, molecular probes, and biosensors. We expect that coumarin-based PNA probes will provide an alternative way for DNA mutation detection with better selectivity.
Similar to synthesis of ODN, PNA is usually prepared via automated solid-phase synthesis using 9-fluorenymethyloxycarbonyl (Fmoc) protected monomers. Two major steps, deprotection and coupling, are involved in PNA synthesis (Figure 2-13). First, the 9-fluorenymethyloxycarbonyl (Fmoc) protecting group is removed using a solution of 20% piperidine in dimethylformamide. Then, the formed reactive amino group can couple with the activated PNA monomer to form an amide bond. PNA monomers are activated using a benzotriazole uronium salt, such as O-$(1H$-benzotriazol-1-yl)$-N,N,N',N'$-tetramethyluronium hexafluorophosphate. Elongation of the peptide chain is achieved after each synthesis cycle. To prepare the PNA probes for DNA mutation detection, the monomers containing alkyne-modified coumarin and azide groups (14 and 21) were synthesized using our previously reported procedures (Figure 2-14 and 2-15).
2.6. Future Study: Copper-Free Click Reaction

The fluorogenic click reaction developed in this work requires the bio-toxic catalyst copper (I) and the ligand THPTA which resulted in strong background signal and side products prohibiting direct detection by fluorescence assay and signal amplification which limits its applications in biochemistry. Bertozzi and co-workers developed a strain-promoted \([3 + 2]\) cycloaddition of azides and cyclooctyne, referred as metal-free ‘click’ reaction, which occurs readily under physiological conditions without auxiliary reagents.\(^{43-44}\) Coumarin fusion in biarylazacyclooctynone (29) would undergo metal-free fluorogenic reactions with an azide.\(^{45}\) Therefore, we expect to use a non-fluorescent
coumarin-based biarylazacyclooctynone \((29)\) as the probe for developing a fluorogenic ligation reaction capable of signal amplification which may find application for gene mutation detection (Figure 2-16).

![Synthesis of coumarin-based biarylazacyclooctynone](image)

Figure 2-16. Synthesis of coumarin-based biarylazacyclooctynone.

2.7. Experimental Section

Determination of DNA melting temperature. The thermal stability of DNA duplexes was determined on a Varian CARY-100 BIO UV–VIS spectrophotometer with the Cary Win UV Thermal program using a 1.0 cm path-length cell. All measurements were performed in 10 mM potassium phosphate buffer (pH 7), 100 \(\mu\)M ethylenediaminetetraacetic acid (EDTA), and 100 mM NaCl, with 4 \(\mu\)M + 4 \(\mu\)M single strand concentration. The concentrations of the ODNs were determined by measuring the absorbance at 260 nm. The extinction coefficients at 260 nm of the ODNs were calculated from the sum of the extinction coefficients of the monomeric 2’-deoxyribonucleotides. Samples were heated at 1 °C min\(^{-1}\) from 4 °C to 80 °C and the
absorbance at 260 nm was measured at 1.0 °C steps. Three independent samples have been determined to get the melting temperatures of DNA duplexes.

PAGE analysis of DNA interstrand cross-link formation via “click” reaction and the kinetic study. The 5’-32P-labeled ODN 4 (500 nM) and its complementary strand ODN 5 or ODN 6 (1.5 eq.) were hybridized in 100 mM NaCl and 10 mM potassium phosphate (pH 7). The “click” cross-linking reaction of DNA duplexes (50 nM) was carried out in the optimized conditions (80 mM Tris-(3-hydroxypropyltriazolylmethyl)amine (THPTA), 4 mM CuSO4, and 40 mM Na-ascorbate) at the designed temperature. A control reaction was performed without adding the catalyst and the ligand. Aliquots were taken at the prescribed times and immediately quenched with the equal volumes of 95% formamide loading buffer, and stored at -20°C until subjecting to 20% denaturing PAGE analysis. For kinetics study, three independent samples were studied with the same procedures mentioned above.

PAGE analysis of template-directed “click” ligation reaction and the kinetic study. The 5’-32P-labeled ODN 8 (ODN 10 or ODN 4) (500 nM), ODN 11 (750 nM), and templates (ODN 12a-d, 750 nM) were hybridized in 100 mM NaCl and 10 mM potassium phosphate (pH 7). The “click” ligation of DNA duplexes (50 nM) was performed in the same buffer (10 mM pH 7 potassium phosphate, 100 mM NaCl) under the optimized conditions (80 mM THPTA/4 mM CuSO4/40 mM Na-ascorbate) at the designed temperature. A control reaction was carried out in the absence of templates. Aliquots were taken at the prescribed times and immediately quenched with the equal volume of 95% formamide loading buffer, and stored at -20 °C until subjecting to 20%
denaturing PAGE analysis. For kinetics study, three independent samples were studied with the same procedures mentioned above.

Isolation of the interstrand cross-link product. ODN 4 (20 μM) and its complementary strand ODN 5 (1.5 eq.) were hybridized in 100 mM NaCl and 10 mM potassium phosphate buffer (pH 7). The cross-linking reaction of DNA duplex (10 μM, 200 μL) was carried out in 10 mM potassium phosphate (pH 7) and 100 mM NaCl in the presence of 80 mM THPTA/4 mM CuSO₄/40 mM Na-ascorbate at room temperature for 1 hour. Then, 2 M NaCl solution (200 μL) and cold ethanol (1.2 mL) were added, the mixture was incubated at -80 °C for 30 mins and DNA was precipitated by centrifugation at 15000 g for 6 min at room temperature. ODN 15 was purified by 20% denaturing PAGE. The band containing the cross-linked product was cut, crushed, and eluted with 200 mM NaCl, 20 mM EDTA (2.0 mL). The crude product was further purified by C18 column eluting with H₂O (3 × 1.0 mL) followed by MeOH:H₂O (3:2, 1.0 mL). ODN 15 was characterized by MALDI-TOF and fluorescence spectroscopy. Its fluorescence (10 μM) was measured in water on a Perkin-Elmer LS55 Fluorescence Spectrometer.

Detection of interstrand cross-linking by fluorescence spectroscopy. The “click” reaction of DNA duplexes (0.2 μM, 200 μL) was performed in 10 mM potassium phosphate (pH 7) and 100 mM NaCl in the presence of 80 mM THPTA/4 mM CuSO₄/40 mM Na-ascorbate for 1 hour. The reaction mixture was precipitated by adding 2.0 M NaCl (30 μL), cold ethanol (690 μL), and keeping at -80 °C for 30 min. The DNA precipitates were collected by centrifugation at 15000 g for 6 mins at room temperature. The precipitation procedures were repeated twice. Finally, the DNA precipitates were dissolved in 50 μL H₂O and subjected to gel-filtration on an Illustra G-25 column (GE
Healthcare) to remove the catalyst and salts. The final product was dissolved in 100 μL water for fluorescence measurement.

Isolation of “click” ligation products. ODN 10 (20 μM), ODN 11 (1.5 eq.), and ODN 12a (1.5 eq.) were hybridized in 100 mM NaCl and 10 mM potassium phosphate (pH 7). The “click” ligation of DNA duplexes (10 μM, 170 μL) were carried out in 10 mM potassium phosphate (pH 7) and 100 mM NaCl under the optimized conditions (80 mM THPTA/4 mM CuSO₄/40 mM Na-ascorbate, room temperature, 3 hours). The reaction mixture was precipitated by adding 2.0 M NaCl (30 μL), cold ethanol (600 μL), and keeping at -80 °C for 30 min. The precipitates were dissolved in 50 μL H₂O and 50 μL loading buffer (10 mM EDTA, 95% formamide). The ligation products were purified by 20% denaturing PAGE. The band containing ligated product was cut, crushed, and eluted with 200 mM NaCl, 20 mM EDTA (2.0 mL). The crude product was further purified by C18 column eluting with H₂O (3 × 1.0 mL) followed by MeOH:H₂O (3:2, 1.0 mL). The ligation product was characterized by MALDI-TOF. The fluorescence of ODN 16 (10 μM) was measured in water on a Perkin-Elmer LS55 Fluorescence Spectrometer.

Detection of SNPs in p53 tumor suppressor gene with DNA-templated fluorogenic “click” reaction. ODN 10 (0.4 μM) and ODN 11 (1.5 eq.) were hybridized with DNA templates (ODNs 12a-d, 1.5 eq.) in 100 mM NaCl and 10 mM potassium phosphate (pH 7). The “click” ligation reaction of DNA duplexes (0.2 μM, 200 μL) was carried out in 10 mM potassium phosphate (pH 7) and 100 mM NaCl under the optimized conditions (80 mM THPTA/4 mM CuSO₄/40 mM Na-ascorbate, room temperature, 3 hours). After 3 times’ precipitations (30 μL 2 M NaCl/690 μL ethanol, -80 °C, 30 min), the DNA precipitates were dissolved in 50 μL water and subjected to gel-filtration on an Illustra G-
The DNA was reprecipitated, dissolved in 100 μL water, and the fluorescence was determined.

Ethyl 4-bromoacetoacetate (1). To a mixture of ethyl acetoacetate (2.97 g, 22.9 mmol) and acetic acid (10 mL), Br₂ (3.66 g, 22.9 mmol) in acetic acid (10 mL) was added dropwise. The mixture was stirred for 8 h at room temperature and extracted with methylene chloride (25 mL x 3). The combined organic layer was washed with water (20 mL x 3) and brine (20 mL x 2), then dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (EtOAc:Hexane = 1:10) providing compound 1 as a colorless oil (2.88 g, 14.85 mmol, 65%) *(keto form).*

\[^1 \text{H NMR (300 MHz, CDCl}_3 \text{): } \delta 4.21 - 4.24 (q, J = 7.2 Hz, 2 H), 4.06 (s, 2 H), 3.71 (s, 2 H), 1.28 - 1.33 (t, J = 7.1 Hz, 3 H). \]

(enol form) \[^1 \text{H NMR (300 MHz, CDCl}_3 \text{): } \delta 12.05 (s, 1 H), 5.29 (s, 1 H), 4.21 - 4.24 (q, J = 7.0 Hz, 2 H), 3.86 (s, 2 H), 1.28-1.33 (t, J = 7.0 Hz, 3 H). \]

4-Bromomethyl-7-hydroxychromen-2-one (2). To a mixture of 1, 3-dihydroxybenzene (1.50 g, 13.7 mmol) and 1 (2.88 g, 13.7 mmol) in benzene (10 mL), a catalytic amount of conc. H₂SO₄ was added. The mixture was stirred vigorously at room temperature for 8 h. Then, water (50 mL) was added. The resulting precipitate was filtered off and dried under vacuum. The crude product was purified by flash chromatography on silica gel (EtOAc:Hexane = 1:1) affording compound 2 as a white solid (0.69 g, 2.71 mmol, 20%).

\[^1 \text{H NMR (DMSO-d}_6, \text{ 300 MHz): } \delta 10.70 (s, 1 H), 7.71, 7.74 (d, J = 8.4 Hz, 1 H), 6.84, 6.87 (d, J = 8.4 Hz, 1 H), 6.75 (s, 1 H), 6.48 (s, 1 H), 4.82 (s, 2 H). \]
7-Hydroxy-4-hydroxymethylchromen-2-one (3). A suspension of bromide 2 (600 mg, 2.35 mmol) in 50 mL water was heated under refluxing for 8 h. After cooling to room temperature, the mixture was extracted with EtOAc (25 mL x 3). The combined organic layers were washed with water (20 mL x 2) and brine (20 mL x 2), then dried over anhydrous Na₂SO₄ and evaporated to dryness. The crude product was purified by flash chromatography on silica gel (EtOAc:Hexane = 4:1) yielding 3 as a white solid (408 mg, 2.13 mmol, 90%). ¹H NMR (DMSO-d₆, 300 MHz): δ 4.69, 4.71 (d, J = 5.1 Hz, 2 H), 5.56 - 5.60 (t, J = 5.1 Hz, 1 H), 6.24 (s, 1 H), 6.73 (s, 1 H), 6.76, 6.79 (d, J = 8.7 Hz, 1 H), 7.51, 7.54 (d, J = 8.7 Hz, 1 H), 10.51 (s, 1 H).

4-Hydroxymethyl-2-oxo-2H-chromen-7-yl trifluoromethanesulfonate (4). A reaction mixture of N-phenylbis(trifluoromethanesulfonimide) (200 mg, 0.56 mmol), 3 (360 mg, 1.88 mmol), and N,N-diisopropylethyamine (0.43 mL, 2.5 mmol) in CH₃CN (20 mL) was stirred at room temperature for 3 h. The mixture was extracted with EtOAc (25 mL x 3). The combined organic layers were washed with water (20 mL x 2) and brine (20 mL x 2), then dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (Hexane:EtOAc = 1:1) yielding 4 as a white solid (452 mg, 1.40 mmol, 74%). ¹H NMR (CDCl₃, 300 MHz): δ 4.93 (s, 2 H), 6.71 (s, 1 H), 7.23, 7.26 (d, J = 9.0 Hz, 1 H), 7.33 (s, 1 H), 7.64, 7.67 (d, J = 9.0 Hz, 1 H).

7-(Trimethylsilylthylethylnyl)-4-hydroxycoumarin (5). A mixture containing 4 (370 mg, 1.14 mmol), dichloro(triphenylphosphine)-palladium (42 mg, 0.06 mmol), CuI (11.6 mg, 0.06 mmol), trimethylsilylacetylene (0.54 mL, 3.82 mmol), triethylamine (0.36 mL, 2.7 mmol), and N,N-diisopropylethyamine (0.25 mL, 1.8 mmol) in DMF (15 mL) was
flushed with argon for 10 min and stirred at 40 °C for 3 hours. The mixture was diluted with EtOAc (40 mL), washed with water (30 mL x 2) and brine (30 mL), dried over anhydrous Na$_2$SO$_4$, and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (Hexane:EtOAc = 1:1) providing 5 as a white solid (281 mg, 1.03 mmol, 90%). 1H NMR (CDCl$_3$, 300 MHz): δ 0.30 (s, 9 H), 4.92 - 4.94 (q, J = 8.4 Hz, 2 H), 6.65 (s, 1 H), 7.34 (d, 1 H), 7.34 - 7.46 (m, 2 H).

7-Ethynyl-4-hydroxymethylchromen-2-one (6). To a solution of 5 (163 mg, 0.6 mmol) in methanol (25 mL), 1.0 M tetrabutylammonium fluoride in THF (2 mL) was added. The reaction mixture was stirred at 60 °C for 30 min. After cooling to room temperature, water was added until precipitation occurred. The crude product was filtered off and purified on silica gel (hexane:EtOAc = 1 : 1) yielding 6 as a white solid (90 mg, 0.45 mmol, 75%). 1H NMR (DMSO-d$_6$, 300 MHz): δ 4.51 (s, 1 H), 4.76, 4.78 (d, J = 5.4 Hz, 2 H), 5.68-5.72 (t, J = 5.1 Hz, 1 H), 6.49 (s, 1 H), 7.42, 7.45 (d, J = 8.4 Hz, 1 H), 7.54 (s, 1 H), 7.70, 7.73 (d, J = 8.4 Hz, 1 H).

7-Ethynyl-4-hydroxymethylchromen-2-O-(2-cyanoethyl-N,N-diisopropyl)-Phosphoramidite (7). To a solution of 6 (20 mg, 0.1 mmol) in dichloromethane (2 mL), N,N-diisopropylethylamine (DIPEA) (33.6 µL, 0.18 mmol) and 2-cyanoethyl-N,N-diisopropylchlorophosphoramidite (33.6 µL, 0.15 mmol) were added under an atmosphere of argon. The reaction mixture was stirred at room temperature for 3 h and diluted with EtOAc (30 mL). The organic layer was washed with water (20 mL x 2) and saturated aqueous NaCl (20 mL), and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. The crude product was purified by column chromatography (EtOAc:hexane:Et$_3$N = 66:33:1) yielding 7 as a white solid (28 mg,
70%). 31P (CDCl$_3$, 300 MHz): δ 149.38. 1H NMR (CDCl$_3$, 300 MHz): δ 7.50 (d, J = 8.1 Hz, 1 H), 7.46 (s, 1 H), 7.28 (d, J = 8.1 Hz, 1 H), 6.61 (s, 1 H), 4.87 (t, J = 6.3 Hz, 1 H), 3.66-3.99 (m, 4 H), 3.28 (s, 1 H), 2.67 (t, J = 6.3 Hz, 1 H), 1.25 (d, 12 H). 13C NMR (CDCl$_3$): δ 160.4, 153.2, 151.7, 151.6, 127.9, 125.6, 120.6, 117.8, 117.6, 113.3, 82.0, 61.6, 61.3, 58.5, 58.2, 43.6, 43.4, 24.7, 20.6, 20.5.

Methyl 4-azidobutyrate (8). To a solution of methyl 4-bromobutyrate (2.7 g, 15 mmol) in DMF (4 mL), sodium azide (1.95 g, 30 mmol) was added. The mixture was heated at 80 °C overnight and was diluted with ethyl acetate (50 mL). The organic layer was washed with NaHCO$_3$ (20 mL x 3), water (20 mL x 3), and brine (20 mL), and dried over anhydrous Na$_2$SO$_4$. The solvent was removed under vacuum to yield 8 as a pale yellow liquid (1.32 g, 62%). 1H NMR (CDCl$_3$, 300 MHz): δ 3.66 (s, 3 H), 3.32 (t, J = 7.8 Hz, 3 H), 2.38 (t, J = 7.5 Hz, 2 H), 1.86 (m, 2 H).

5-Azidovaleric acid (9). To a mixture of LiOH (20 mmol in 5 mL water) and MeOH (15 mL), 8 (1.29 g, 9 mmol) was added. The suspension was stirred overnight. MeOH was removed under vacuum. The resulting residue was diluted by ethyl acetate (50 mL) and washed with 1.0 M HCl (20 mL x 3), water (20 mL x 3) and brine (20 mL). The organic layer was dried over anhydrous Na$_2$SO$_4$ and evaporated to dryness under vacuum yielding 9 as a pale yellow liquid (0.89 g, 76%). 1H NMR (CDCl$_3$, 300 MHz): δ 3.38 (t, J = 6.6 Hz, 3 H), 2.48 (t, J = 7.2 Hz, 2 H), 1.90 (m, 2 H).

Succinimidyl 5-azidovalerate (10). To a mixture of 9 (180 mg, 1.40 mmol) and N-hydroxysuccinimide (173 mg, 1.50 mmol) in CH$_2$Cl$_2$ (20 mL), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC; 287 mg, 1.50 mmol) was added. The mixture was stirred at room temperature for 20 h. Then, H$_2$O (20 mL)
was added. The organic layer was washed with \(\text{H}_{2}\text{O} \) (20 mL x 3) and brine (20 mL), dried over \(\text{Na}_2\text{SO}_4 \), and evaporated to afford 10 as a white solid (277 mg, 87%). \(^1\text{H}\) NMR (CDCl\(_3\)): \(\delta \) 3.45 (t, \(J = 6.6\ \text{Hz}, \ 2\ \text{H} \)), 2.87 (s, 4 H), 2.73 (t, \(J = 7.2\ \text{Hz}, \ 2\ \text{H} \)), 2.00 (m, 4 H).

\textit{N-(2-Aminoethyl)glycine} (11). To the cooled ethylenediamine (30 mL) in an ice bath (0 °C), solid chloroacetic acid (5.0 g, 52.9 mmol) was added in ten portions allowing for complete dissolution between each addition. The reaction mixture was then stirred overnight at room temperature. The unreacted ethylenediamine was removed under vacuum. The remaining paste was triturated with DMSO and then filtered, and the solid cake was washed with DMSO and then diethyl ether. The white solid was dried under vacuum affording \(\text{N-(2-Aminoethyl)glycine} \) (11) (1.91 g, 31%). \(^1\text{H}\) NMR (300 MHz, D\(_2\text{O-d2}\)): \(\delta \) 3.12 (s, 2H), 2.90 (t, \(J = 7.8\ \text{Hz}, \ 2\ \text{H} \)), 2.80 (t, \(J = 7.8\ \text{Hz}, \ 2\text{H} \)).

\textit{Methyl N-(2-aminoethylglycinate)dihydrochloride} (12). The mixture containing \(\text{N-(2-Aminoethyl)- glycine} \) (750 mg, 6.36 mmol) methanol (12 mL), HCl (38%, 2.5 mL) and 2.5 mL benzene was refluxed for 12 h. White solid can be obtained by cooling the mother liquor to -20 °C and then washed with diethyl ether (3x20 mL). Removed the remaining solvent in vacuum to yield the salt 12 (1.18 g, 90%) as a white solid. \(^1\text{H}\) NMR (300 MHz, DMSO-\(d_6 \)): \(\delta \) 8.46 (br s, 3H), 4.07 (s, 2H), 3.76 (s, 3H), 3.27 (m, 2H), 3.21 (m, 2H).

\textit{Methyl 2-(2-[[9H-Fluoren-9-yl]methoxy]carbonylamino)ethylamino}-acetate (13). A solution of 12 (410 mg, 2.0 mmol) and Fmoc-OSu (910 mg, 2.4 mmol) in THF was cooled to 0°C. After the addition of DIPEA (1.05 mL), the mixture was stirred at 0°C for 30min and then at room temperature for 4h. The reaction mixture was poured into ethylacetate/NaHCO\(_3\) saturated solution (1:1, 60mL). The organic phase was washed with brine (3 x 25 mL) and dried over anhydrous \(\text{Na}_2\text{SO}_4 \). The solvent was then removed
under reduced pressure. The crude product was purified by flash column chromatography on silica gel using 10:90 hexane:ethylacetate mixture as eluent to obtain 13 as a white solid. Yield: 198 mg, 64%. 1H NMR (300 MHz, DMSO-d_6): δ 7.49 (d, $J = 7.5$, 1H), 7.41 (d, $J = 8.4$, 1H), 7.28 (d, $J = 7.5$, 1H), 6.46 (s, 1H), 4.55 (d, $J = 8.4$, 2 H), 4.21 (s, 2H), 3.95 (s, 1H).

Methyl 2-(2-[(9H-Fluoren-9-yl)methoxy]carbonylamino)ethyl)-5-azidovaleric acetamido acetate (14). The mixture of EDCI (75mg, 0.39 mmol), HOBt (53mg, 0.39mmol), 5-azidovaleric acid (38.7 mg, 0.3 mmol) and DCM (3 mL) was stirred for 30min. The solution of 13 (71 mg, 0.2 mmol in 1 mL DCM) was added. The reaction mixture was stirred at room temperature for 8h. The reaction mixture was poured into ethylacetate (50mL). The organic phase was washed with 10% KH$_2$PO$_4$ (3 × 30 mL), NaHCO$_3$ (20 mL), brine (2x20 mL) and dried over anhydrous Na$_2$SO$_4$. The solvent was then removed under reduced pressure. The crude product was purified by flash column chromatography on silica gel using a 1:2 hexane:ethylacetate mixture as eluent to afford 14 (86 mg, 93 %) as a colorless liquid. 1H NMR (300 MHz, CDCl$_3$-d): δ 7.77 (d, $J = 7.2$ Hz, 2 H), 7.60 (d, $J = 7.2$ Hz, 2 H), 7.40 (t, $J = 7.2$ Hz, 2 H), 7.31 (t, $J = 7.5$ Hz, 2 H), 4.38 (t, $J = 7.5$ Hz, 1 H), 4.23 (d, $J = 6.6$ Hz, 1 H), 4.02 (s, 2 H), 3.80 (s, 3 H), 3.53 (t, $J = 5.7$ Hz, 2 H), 3.37 (t, $J = 6.3$ Hz, 2 H), 3.29 (t, $J = 6.3$ Hz, 2 H), 2.32 (m, 2 H), 1.89 (m, 2 H). 13C NMR (CDCl$_3$): δ 172.6, 171.0, 156.5, 143.9, 143.8, 141.3, 127.7, 127.0, 125.1, 125.0, 120.0, 67.0, 52.7, 52.4, 50.7, 49.3, 49.0, 47.3, 47.2, 39.5, 29.6, 24.2. HRMS (TOF-MS-ESI): calcd. for C$_{24}$H$_{27}$N$_5$O$_5$Na [M+Na]$^+$ 488.1910; found 488.1903.

(7-Hydroxy-2-oxo-2H-chromen-4-yl)-acetic acid 2,2,2-trifluoroethyl ester (15). The mixture containing 7-hydroxycoumarine-4-acetic acid (1.03 g, 4.7 mmol), 2,2,2-trifluoro
ethanol (40 mL) and H$_2$SO$_4$ (4.2 mL) was refluxed overnight. After cooling to room temperature, the methanol was removed under vacuum followed by the addition of ethylacetate (40 mL). The organic layer was washed with NaHCO$_3$ (3 \times 20 mL), brine (3 \times 20 mL) and dried over anhydrous Na$_2$SO$_4$. The solvent was evaporated under vacuum to obtain compound 15 as a white solid. Yield: 1.19 g, 84.2 %. 1H NMR (300 MHz, DMSO-d$_6$): δ 10.62 (s, 1H), 7.51 (d, J = 8.7, 1H), 6.78 (q, J = 2.4, J = 8.7, 1H), 6.74 (d, J = 2.4, 1H), 6.29 (s, 1H), 4.80 (q, J = 9.0, 2 H), 4.13 (s, 2H).

(2-Oxo-7-trifluoromethanesulfonyloxy-2H-chromen-4-yl)-acetic acid 2,2,2-trifluoroethyl ester (16). The solution of 15 (630 mg, 2.1 mmol), N-phenyl-bis(trifluoromethanesulfonimide) (830 mg, 2.3 mmol) and N,N-diisopropylethylamine (0.50 mL, 2.75 mmol) in acetonitrile (30 mL) was stirred at room temperature for 4 h. Then, the reaction mixture was dilute in ethylacetate (30 mL). The organic layer was washed with water (2 \times 15 mL), brine (1 \times 15 mL) and dried over anhydrous Na$_2$SO$_4$. The solvent was removed under reduced pressure. The crude product was purified by column chromatography using a 70:30 hexane:ethylacetate mixture as eluent to afford 16 as a yellowish solid. Yield: 680 mg, 74.4 %. 1H NMR (300 MHz, DMSO-d$_6$): δ 7.91 (d, J = 9.0, 1H), 7.80 (d, J = 2.4, 1H), 6.70 (s, 1H), 7.54 (q, J = 2.4, 1H), 4.78 (q, J = 9.0, 2 H), 4.28 (s, 2H).

(2-Oxo-7-trimethylsilylthynyl-2H-chromen-4-yl)-acetic acid 2,2,2-trifluoroethyl ester (17). Dichlorobis(triphenylphosphine)-palladium (II) (45.5 mg, 0.065 mmol), CuI (12.6 mg, 0.065 mmol), triethylamine (0.39 mL, 2.92 mmol) and (trimethylsilyl)acetylene (0.29 mL, 2.0 mmol) were added to a solution of 16 (587 mg, 1.33 mmol) in dry DMF (18 mL) under argon atmosphere. The reaction mixture was
heated at 40°C for 3 hours. After cooling to room temperature, the mixture was diluted with EtOAc, washed with water (2 × 30 mL) and brine (30 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by flash column chromatography using a 70:30 hexane:ethylacetate mixture as eluent to provide 17 as an orange solid. Yield: 400 mg, 84 %. ¹H NMR (300 MHz, DMSO-d₆): δ 7.75 (d, J = 8.4, 1H), 7.42 (br s, 2H), 6.55 (s, 1H), 4.76 (q, J = 9.0, 2 H), 4.20 (s, 2H), 0.26 (s, 9H).

(7-Ethynyl-2-oxo-2H-chromen-4-yl)-acetic acid 2,2,2-trifluoroethyl ester (18). To a solution of 17 (380 mg, 1.0 mmol) in THF (20 mL) tetrabutylammonium fluoride (3.5 mL 1M in THF, 3.5 mmol) was added. The mixture was heated at 50°C for 2 h. After cooling to room temperature, the mixture was dilute in ethylacetate (30 mL) and washed with water (20 mL) and brine (3 × 20 mL) and dried over anhydrous Na₂SO₄. The solvent was then removed under reduced pressure. The crude product was purified by flash column chromatography using 70:30 hexane:ethylacetate mixture as eluent to yield 18 as a yellow solid. Yield: 198 mg, 64 %. ¹H NMR (300 MHz, DMSO-d₆): δ 7.49 (d, J = 7.5, 1H), 7.41 (d, J = 8.4, 1H), 7.28 (d, J = 7.5, 1H), 6.46 (s, 1H), 4.55 (d, J = 8.4, 2 H), 4.21 (s, 2H), 3.95 (s, 1H).

(7-Ethynyl-2-oxo-2H-chromen-4-yl)-acetic acid (19). To a solution of 18 (150 mg, 0.48 mmol) in the mixture of tetrahydrofuran (20 mL) and water (10 mL), lithium hydroxide monohydrate (338 mg, 14 mmol) was added. The mixture was stirred at 40°C for 20 h. After cooling to the room temperature, water (30 mL) was added. The mixture was acidified to pH 1 and extracted with ethylacetate (3 × 10 mL). The combined organic phases were washed with brine (2 × 15 mL) and dried over anhydrous Na₂SO₄. The
solvent was removed under vacuum to obtain 19 as an orange solid. Yield: 106 mg, 96.1 %. 1H NMR (300 MHz, DMSO-d6): \(\delta \) 12.89 (s, 1H), 7.71 (d, \(J = 8.4 \), 1H), 7.55 (s, 1H), 7.45 (d, \(J = 8.1 \), 1H), 6.56 (s, 1H), 4.53 (s, 1H), 3.94 (s, 2H).

Methyl 2-\(\{[(9H-Fluoren-9-yl)methoxy]carbonylamino\}ethyl)\)- (7-ethynyl-2-oxo-2H-chromen-4-yl) -acetamido acetate (20). The mixture containing EDCI (75 mg, 0.39 mmol), HOBt (53 mg, 0.39 mmol), 19 (68 mg, 0.3 mmol) and DCM (3 mL) was stirred for 30 min. The solution of 13 (71 mg, 0.2 mmol in 1 mL DCM) was added. The reaction mixture was stirred at room temperature for 18 h and then poured into ethylacetate (50 mL). The organic layer was washed with 10% KH\(_2\)PO\(_4\) (2 \times 30 mL), NaHCO\(_3\) (20 mL), brine (2 \times 20 mL) and dried over anhydrous Na\(_2\)SO\(_4\). The solvent was then removed under vacuum. The crude product was purified by flash column chromatography using a 1:2 hexane:ethylacetate mixture as eluent to afford 20 as a yellowish solid. Yield: 110 mg, 98 %. \(^1\)H NMR (300 MHz, CDCl\(_3\)-d): \(\delta \) 7.32-7.80 (m, 11 H), 6.29 (d, \(J = 7.2 \), 1 H), 4.44 (d, \(J = 9.3 \), 2H), 4.08-4.22 (m, 3H), 3.84 (s, 3H), 3.80 (s, 2H), 3.60 (s, 2H), 3.42 (d, \(J = 5.1 \), 2H), 3.26 (s, 1 H). \(^{13}\)C NMR (300 MHz, CDCl\(_3\)-d): \(\delta \) 170.4, 169.9, 168.7, 159.8, 156.7, 153.3, 148.5, 143.8, 141.3, 128.0, 127.1, 125.7, 125.0, 124.6, 120.5, 119.5, 119.5, 117.6, 82.0, 80.6, 67.0, 53.0, 52.6, 49.7, 48.8, 47.2, 39.4, 37.3, 36.4, 29.7. HRMS (TOF-MS-ESI): calcd. for C\(_{33}\)H\(_{28}\)N\(_2\)O\(_7\)Na \([\text{M+Na}^+\]\) 587.1794; found 587.1756.

2-\(\{N-\{[(9H-Fluoren-9-yl)methoxy]carbonylamino\}ethyl\}\)- (7-ethynyl-2-oxo-2H-chromen-4-yl) -acetamido acetic Acid (21). To the solution of ethyl ester 20 (28 mg, 0.05 mmol) in THF (1 mL), NaOH aq. (0.25 M, 2 mL, 10 equiv.) was added. The mixture was stirred at 0 °C for about 40 min. Cold H\(_2\)O (10 mL) was added to the reaction mixture, which was first extracted with Et\(_2\)O (3 \times 10 mL) and then acidified to pH 6 with
KHSO₄ (at 0 °C, the flask was placed in an ice bath). The aqueous solution was extracted with EtOAc (3 × 25 mL), and the combined organic layers were washed with NaHCO₃ (25 mL) and brine (2 × 25 mL), and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum providing the monomer 21 (11 mg, 39.3%) as an off-yellow solid. \(^1\)H NMR (300 MHz, CDCl₃-d): \(\delta\) 7.22-7.69 (m, 11H), 6.29 (s, 1H), 4.22 (d, \(J = 6.3\), 1H), 3.86-4.15 (m, 5H), 3.46 (s, 2H), 3.34 (s, 2H), 3.21 (s, 1H). \(^{13}\)C NMR (300 MHz, CDCl₃-d): \(\delta\) 171.7, 167.5, 161.8, 157.4, 153.3, 144.1, 143.9, 141.6, 141.5, 129.4, 128.0, 127.5, 125.6, 120.3, 118.9, 82.5, 81.0, 67.4, 47.4, 47.3, 42.2, 40.0, 30.0, 14.4. HRMS (TOF-MS-ESI): calcd. for C₃₂H₂₆N₂O₇Na [M+Na]^+ 573.1638; found 573.1617.

8-Methoxy-5,10-dihydroindeno[1,2-b]indole (22). To a suspension of 4-methoxyphenylhydrazine•HCl (9.60 g, 55 mmol) and 1-indanone (7.29 g, 55 mmol) in ethanol (175 mL), acetic acid (0.20 mL) was added to the flask fitted with a condenser and the reaction mixture is heated at 85 °C for overnight. The solution will become red and light tan precipitate was formed. After cooling to 0 °C with ice-bath, the mixture was filtered. The solid precipitate was washed with ice-cold ethanol (10 mL) and hexane (30 mL), and then dried under vacuum to afford product 22 as a light tan solid (10.9 g, 84%), which is pure in NMR and used without further purification.

8-Methoxy-5-methyl-5,10-dihydroindeno[1,2-b]indole (23). Two methods were used for preparation of compound 10. Method A: To a suspension of 22 (1.70 g, 7.2 mmol) in anhydrous aceton (30 mL) immersed in an ice-bath, KOH (2.0 g, 56 mmol) was added. After stirring dark solution for 5 min at 0 °C, CH₂I (1 mL, 36 mmol) was added. The solution was stirred at 0 °C for another 1 h, and then heated to room temperature prior to addition of another 1 mL CH₂I (36 mmol). The reaction was kept stirring at room
temperature for overnight and then 60 mL 1 M HCl and 30 mL water was added. The mixture was extracted with ethyl acetate (50 mL × 3), and collected organic phases were washed with water (30 mL × 2), brine (20 mL), and then dried over by anhydrous sodium sulfate. The solvent was evaporated under reduced pressure. Upon purification by silica gel column chromatography (EtOAc:hexane = 1:5, Rf = 0.62), the product was isolated as a white solid (1.22 g, 67%). Method B: A dried flask charged with a solution of 22 (1.88 g, 8.0 mmol) in anhydrous THF (30 mL) was cooled to 0 °C using an ice-bath, NaH (60% in oil, 0.48 g, 12 mmol) was added slowly at three times. After stirring dark at room temperature for 0.5 h, the solution was cooled to 0 °C. CH3I (2 mL, 72 mmol) was added and reaction solution was heated to room temperature and stirred for overnight. The reaction is carefully quenched by adding saturated NH4Cl (20 mL) and water (40 mL), and mixture was extracted with ethyl acetate (50 mL × 3). The combined organic phases were washed with water (30 mL × 2), brine (20 mL), and then dried over by anhydrous sodium sulfate. Evaporation of the solvents under reduced pressure and purification by flash column chromatography on silica gel yields methylated indole 23 as a white solid (1.50 g, 75%).

10-(Tert-butyldimethylsilyl)-8-methoxy-5-methyl-5,10-dihydroindeno[1,2-b]indole (24). A dried flask charged with a solution of 23 (2.49 g, 10 mmol) in anhydrous THF (30 mL) was cooled to 0 °C via immersing in an ice-bath. The n-BuLi (2.5 M in hexane, 6 mL, 15 mmol) was carefully added by syringe pump over 20 min. The dark red reaction mixture was stirred at 0 °C for another 30 min, and then TMSCl (2.26 g dissolved in 10 mL anhydrous THF, 15 mmol) was slowly added over 40 min. The reaction mixture was warmed to room temperature by removing the ice bath and stirred at room temperature
for 6 h. The reaction is carefully quenched via slowly addition of saturated NH₄Cl (20 mL) and water (40 mL), and mixture was extracted with ethyl acetate (50 mL × 3). The combined organic layers were washed with water (30 mL × 2), brine (20 mL), and then dried over by anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the residue was subjected to column chromatography on silica gel (gradient hexane:EtOAc = 20:1 to 10:1, R_f = 0.70 in EtOAc:hexane = 1:3) yielding compound 24 (decomposition is observed on TLC plate) as a yellowish solid (1.20 g, 33%).

(Z)-11-(tert-butyldimethylsilyl)-2-methoxy-5-methyl-6-oxo-5,6-dihydrodibenzo[b,f]azocin-12-yl trifluoromethanesulfonate (26). Meta-Chloroperoxybenzoic acid (m-CPBA, 77%, 4.5 g, 20 mmol) was added to ice-cold solution of 24 (1.82 g, 5 mmol) in dichloromethane (40 mL) and saturated aqueous NaHCO₃ (8 mL) at three times over 10 min. The dark red mixture was maintained at 0 °C for additional 30 min and then warmed to room temperature. After another 1.5 h, ice cold 1M NaOH (30 mL) was slowly added to quench the reaction. The mixture was extracted with dichloromethane (50 mL × 2), and collected organic phases were washed with water (30 mL × 2), brine (20 mL), and then dried over by anhydrous sodium sulfate. Evaporation of solvent under reduced pressure afford crude intermediate 11-(tert-butyldimethylsilyl)-2-methoxy-5-methyl dibenzo[b,f]azocine-6,12(5H,11H)-dione as a red oil (It will decompose into starting material in dichloromethane upon 12 h), which was immediately brought on to next step.

To the red solution of crude intermediate (5 mmol assuming 100% yield) in anhydrous THF (30 mL) at -78 °C in acetone-dry ice bath, potassium hexamethyldisilazide (0.7 M in toluene, 7.8 mL, 5.5 mmol) was slowly added via syringe yielding a dark red solution.
After stirring for 30 min at -78 °C, triflic anhydride (1 mL, 8 mmol) was added and stirred for additional 30 min at -78 °C. The reaction mixture was diluted with 50 mL anhydrous ether and carefully quenched via slowly addition of saturated NH₄Cl (20 mL) and water (40 mL). The mixture was subsequently extracted with ethyl acetate (50 mL × 2), and collected organic phases were washed with water (30 mL × 2), brine (20 mL), and then dried over by anhydrous sodium sulfate. The solvent was removed by vacuum affording crude product, which was purified by column chromatography on silica gel ($R_f = 0.33$) to yield desired product as a yellowish solid (380 mg, 14%).

Biarylazoacyclooctynone (27). To a solution of 26 (211 mg, 0.4 mmol) in THF (20 mL), TBAF (1 M in THF, 4 mL, 4 mmol) was added. After stirring resulting red solution at room temperature for 6h, reaction mixture was diluted with 50 mL ethyl acetate. The mixture was subsequently extracted with ethyl acetate (40 mL × 2), and collected organic phases were washed with water (30 mL × 2), brine (20 mL), and then dried over by anhydrous sodium sulfate. The solvent was evaporated by vacuum. Upon purification by column chromatography on silica gel (EtOAc:hexane = 1:1, $R_f = 0.55$), the product was isolated as a yellowish solid (68 mg, 65%).
2.8. References

2.9. Appendices A: Characterization of Compounds

1H NMR (300 MHz, D$_2$O-d2) spectra of 11.

1H NMR (300 MHz, DMSO-d6) spectra of 12.
1H NMR (300 MHz, DMSO-d_6) spectra of 13.

1H NMR (300 MHz, CDCl$_3$-d) spectra of 14.
13C NMR (300 MHz, CDCl$_3$-d) spectra of 14.

HRMS (TOF-MS-ESI) spectra of 14.
1H NMR (300 MHz, DMSO-d_6) spectra of 15.

1H NMR (300 MHz, DMSO-d_6) spectra of 16.
1H NMR (300 MHz, DMSO-d_6) spectra of 18.

1H NMR (300 MHz, DMSO-d_6) spectra of 19.
1H NMR (300 MHz, CDCl$_3$-d) spectra of 20.

13C NMR (300 MHz, CDCl$_3$-d) spectra of 20.
HRMS (TOF-MS-ESI) spectra of 20.

1H NMR (300 MHz, CDCl$_3$-d) spectra of 21.
13C NMR (300 MHz, CDCl$_3$-d) spectra of 21.

HRMS (TOF-MS-ESI) spectra of 21.
1H NMR (300 MHz, CDCl$_3$-d) spectra of 22.

1H NMR (300 MHz, DMSO-d_6) spectra of 23.
1H NMR (300 MHz, CDCl$_3$-d) spectra of 24.

1H NMR (300 MHz, CDCl$_3$-d) spectra of 26.
1H NMR (300 MHz, CDCl$_3$-d) spectra of 27.
Chapter 3. Site-Specific Fluorescence Labeling of Natural DNA

3.1. Introduction

Fluorescence-labeled ODNs have been widely utilized in the life sciences, particularly in genetic analysis, genome screening and high-throughput DNA sequencing, because of the simplicity and versatility they provide.1,2 Lots of fluorophores, such as coumarins, phenanthridine derivatives and fluorescein analogues, are commercially available for the construction of fluorescent ODNs via biochemical approaches.3 However, most only allow one ODN to be associated with a single fluorophore, leading to low sensitivity for real-time imaging.

The chemically functionalized ODNs conjugated with multiple fluorescent reporters via post-conjugation methods can yield sufficiently bright signals for sensitive image. For example, the alkyne-modified uridine nucleosides can be incorporated into ODNs at multiple sites to afford ODNs containing alkyne reporters (Chapter 1). After the fluorogenic “click” reactions with 7-hydroxyl-3-azidocoumarin, the resulting ODNs showed highly strong fluorescence (Chapter 1).4 However, preparation of the modified ODNs used in biological study is hard via artificial gene synthesis, due to the low efficiency for synthesizing long ODNs.5 It is well known that the total yield is less than 10% for 200 mers ODN in DNA solid phase synthesis, even though the yield is around 99% for each step. The PCR perceives high efficiency in DNA synthesis, but the modified nucleosides, which can tune the base pairing properties, are hard to be used in PCR.6
Figure 3-1. N3-alkylation of thymidine and uridine.

One strategy to overcome the problem is functionalization of natural DNA using fluorescent reporters. Recently, selective N-3 alkylation of thymidine using alkyl halide was reported (Figure 3-1). And the formed N3-substituted thymidine showed bioactivity in mice, such as potent antinociceptive effects. Moreover, Helm used 7-azido-4-(bromomethyl)coumarin (1) as an alkylation agent to selectively react with the uridine forming 2 in natural RNA, which affords a simple and effective method for introduction of multiple fluorophores in single RNA. We expect that the thymidine (T) in natural DNA with similar structure as uridine can react with 7-hydroxy-4-(bromomethyl)coumarin (3) to afford the highly fluorescent DNA for bioanalysis.

3.2. Synthesis of Fluorescent Tags for DNA Labeling

At first, the coumarin derivative 3 with a bromo-methyl group at the position-4 was designed and synthesized as the alkylation agent (Figure 3-2). It is well known that the coumarin derivatives have wide applications as fluorogenic reporters because their fluorescence intensity can be tuned by varying the electronic properties of the substituents at the aromatic rings. Furthermore, they are easy to prepare and are biocompatible. The coumarin derivative 3 with a bromomethyl group was chosen as the
fluorescent alkylation agent for DNA multiple labeling. The selective bromination of 4 in the presence of acetic acid yielded compound 5. After the Pechmann condensation between resorcinol and 5, the 7-hydroxy-4-(bromomethyl) coumarin (3) was obtained.

![Chemical reaction diagram]

Figure 3-2. Preparation of alkylation agents 3 and 8.

In addition, fluorescein moiety 8 with a bromomethyl group was also designed and synthesized (Figure 3-2). The fluorescein, a highly fluorescent molecule, has better fluorescence properties (strong fluorescence in longer wavelength) and has been used as fluorophores in biological experiments. The fluorescein 6 was prepared via the acid-catalyzed condensation of resorcinol with 4-methylbenzaldehyde. As the hydroxyl group has the ability to destroy radicals or intermediates in radical substitution reaction, fluorescein 7 obtained from methylation of 6 was used for the bromination reaction. Finally, the desired alkylation agent 8 and the byproduct 9 with the additional bromo-group at the benzene ring were obtained at reasonable yields.
3.3. Reactivity of Labeling Agents towards Nucleic Acids

After synthesizing coumarin and fluorescein derivatives with a bromo-methyl group, the selective alkylation ability of compounds 3 and 8 towards thymidine was confirmed in the monomer reactions. The fluorescent reporter 3 with the bromo-methyl group has the potential for electrophilic reactions and was employed in the monomer reactions to study its reactivity towards canonical nucleosides dA, dG, dT, and dC. In the presence of K$_2$CO$_3$, a new compound was observed with dT, while no new compounds were observed for dC, dA, or dG. The N3-alkylation product 10 was isolated and characterized by 1H NMR and 13C NMR. This indicated that coumarin 3 can selectively react with thymidine, other than the other canonical nucleosides (Figure 3-3). The selectivity of the reaction arises from the stability of the negative ion intermediate formed with dT. The existence of two carbonyl groups in T can efficiently stabilize the intermediate via conjugated π system, which results in the selective reaction with T (Figure 3-3). Compound 8 can also selectively react with thymidine under the same conditions, except that DMF was used as the solvent, to afford compound 11 at a yield of 7%. The structure of N3-substituted product 11 was also confirmed by NMR. Both reaction yields were low, but excess alkylation reagents (100-1000 times) improved the labeling efficiency, which is commonly used in bioorthogonal labeling reactions.13
Figure 3-3. N3-alkylation of thymidine with 3 and 8.

More importantly, the alkylation of non-fluorescent thymidine with coumarin 3 can form a highly fluorescent product 10. Compound 10 preserves the thymidine’s absorbance at 260 nm, also shows a new UV absorbance peak at 330 nm arising from the incorporation of coumarin moiety (Figure 3-4). The obvious fluorescence enhancement has been observed for 10 compared with the monomer dT (Figure 3-4). No fluorescence was observed for dT, but the formed alkylation product 10 exhibited similar fluorescent signals as coumarin 3. Interestingly, no fluorescence enhancement was observed for 11, and the fluorescein 8 shows very weak fluorescent signal. The possible reasons for this are: 1) Intermolecular electron transfer in fluorescein 8 or 11 can quench their fluorescence; 2) The fluorescein conjugates sometimes are unstable under intense illumination, leading to a rapid reduce in fluorescent signal. These results established the potential utility of coumarin 3 for selectively N3-labelling of thymidine, which
provides a novel strategy for construction of highly fluorescent DNA in sensitive detection.

Figure 3-4. Excitation and emission spectra of T, 3 and 10.

3.4. Optimization of the Reaction Condition for DNA Labeling

We have optimized the conditions for directly post-labeling DNA using coumarin 3, especially the effects of solvents. As the products are highly fluorescent and starting material dT is non-fluorescent in monomer reactions, fluorescence spectra was employed to detect the reaction. The ODN-T12 containing 12 dT bases has been used for optimizing solvents, such as methanol, ethanol, acetone, and acetonitrile (Figure 3-5). The reaction mixture containing ODN-T12, coumarin 3 and K$_2$CO$_3$ in different anhydrous solvents were heated at 37°C for 2 days. After removing unreacted reporters, the fluorescence of the resulting ODNs, consisting of coumarin-conjugated product (ODN-CT12), was tested. Obvious fluorescence enhancement was observed when menthol was used as the solvent. It indicated methanol is the best solvent for labeling.

This can be explained by two possible factors: the solubility of ODN-T12, coumarin 3 and K$_2$CO$_3$, and the stability of the intermediate in the solvent. The solubility of ODN-T12, coumarin 3 and K$_2$CO$_3$ in methanol is better than in other solvents; therefore the
reaction in methanol is more efficient. In addition, the solubility of ODN-T12 and K$_2$CO$_3$ in water is very good, but water is too acidic to stabilize the intermediate-a Lewis base. It is the reason that the solvent containing water is not good for this reaction.

Figure 3-5. Fluorescence spectra of resulting ODNs under different conditions.

Moreover, the effect of Ag$_2$O on the reaction was studied following the same procedure. Generally, Ag$_2$O is considered to accelerate the reaction and afford higher efficiency, but co-precipitation of Ag$_2$O and ODN-T12 was observed. Therefore, the addition of Ag$_2$O did not increase the yield of the reaction as expected.15

3.5. Sequence-Dependent DNA Labeling

The coumarin 3 is site-specific for labelling DNA containing dT. The ODN-A12, ODN-T12, ODN-G12, and ODN-C12 containing 12 dA, 12 dT, 12 dG, and 12 dC respectively were utilized in the labeling reactions (Figure 3-6). Only ODN-T12 led to the great fluorescence enhancement after treatment with 3, which indicated that the reaction of 3 with dT is a good way for site-specifically post-labelling of DNA. However, the high fluorescence was observed with ODN-G1 without treatment with 3, which arised from formation of G-quadruplex structures.16
Figure 3-6. Fluorescence spectra of resulting ODNs after the labeling for ODN-A12, T12, G12, and T12.

3.6. Future Study

Our work has demonstrated the efficiency of post-labelling natural ODN using coumarin 3. Our future study will focus on cellular DNA labeling and functionalization of labeling agents for bio-detection. We expect that the coumarin 3 can selectively react with dT in cellular DNA to afford the highly fluorescent DNA for bio-study. In addition, some functional groups can be introduced in the alkylation agents yielding the functionalized DNA, which can offer possible advantages in water-solubility, cost, and simplicity. For example, excessive H₂O₂ in cells contributes to the development and progression of
cancer and other diseases.17 Many aryl boronates probes have been discovered for H\textsubscript{2}O\textsubscript{2}-responsive image, but most suffer from low solubility in water, leading to low sensitivity.18 We hope that the non-fluorescent boronate-coumarin 16 can be introduced into water-soluble ODNs, and its fluorescence can be restored upon reaction with H\textsubscript{2}O\textsubscript{2}(Figure 3-7).

Figure 3-7. Preparation of alkylation agent 14 for detection of H\textsubscript{2}O\textsubscript{2}.

3.7. Experimental Section

Optimizing solvents for DNA post-labeling reaction. 15 nmol ODN-T12, 0.8 μmol 3 and 0.8 μmol K\textsubscript{2}CO\textsubscript{3} were dissolved in 200 μL different anhydrous solvents. After heating at 37°C for 2 days, solvents were removed under reduced pressure. Precipitated for 3 times using a mixture of ethanol and NaCl solution (1M) at the ratio of 3:1 and went through the G-25 column to remove the unreacted reporters and salts. Finally, the
resulted ODNs solutions with the concentration of 10 μM were prepared for the fluorescence measurement.

Selectivity of post-labeling using coumarin 3. ODNs (20 nmol) were incubated with coumain 3 (2.54 mg, 1.0 μmol) and K₂CO₃ (1.38 mg, 1.0 μmol) in 0.5 mL methanol at 37°C for 2 days. Precipitated for 3 times using the mixture of ethanol and NaCl solution (1M) at the ratio of 3:1 and went through the G-25 column to remove the unreacted reporters and salts. The resulting ODNs were dissolved in pure water at the concentration of 2 μM for the fluorescence test.

6-Hydroxy-9-(p-tolyl)-3H-xanthen-3-one (6). To the suspension of resorcinol (4.4 g, 40 mmol), in methanesulfonic acid (60 mL), 4-methylbenzaldehyde (2.35 mL, 20 mmol) was added. The reaction mixture was stirred at 85°C for 24 h. After cooling to room temperature, the reaction mixture was poured into 3 volumes of saturated sodium acetate solution. A dark-red precipitate was formed and collected by filtration. The crude product was purified by silica gel column chromatography (CH₂Cl₂:MeOH = 9:1) for two times yielding the product as a dark-red solid (907 mg, 15%).

6-Methoxy-9-(p-tolyl)-3H-xanthen-3-one (7). To the suspension of 6-hydroxy-9-(p-tolyl)-3H-xanthen-3-one (6, 604 mg, 2 mmol) and K₂CO₃ (600 mg, 4.34 mmol) in acetone (30 mL), iodemethane (0.825 mL, 12.5 mmol) was added. The reaction mixture was stirred at 50°C for 24h. After cooling to the room temperature, the solvents were removed under reduced pressure. The residue was diluted with ethyl acetate (50 mL), washed with 1 M HCl (30 mL), and brine (20 mL), and then dried over by anhydrous Na₂SO₄. The solvent was removed under vacuum. The crude product was purified by the
silica gel column chromatography (EtOAc) to provide the product 7 as a red solid (632 mg, 80%).

9-(4-(Bromomethyl)phenyl)-6-methoxy-3H-xanthen-3-one (8). *N*-Bromosuccinimide (214 mg, 2 mmol) and azobisisobutyronitrile (8.2 mg, 0.05 mmol) were added to the solution of 6-methoxy-9-(p-tolyl)-3H-xanthen-3-one (7, 316 mg, 1 mmol) in carbon tetrachloride (15 mL). The reaction mixture was refluxed for overnight. After evaporation of the solvent, the residue was diluted with dichloromethane (40 mL), washed with water (30 mL x 2) and brine (20 mL), and then dried over by anhydrous Na$_2$SO$_4$. The solvent was removed under reduced pressure. The crude product was purified by the silica gel column chromatography (EtOAc:Hexane = 1:1) to provide the product 8 as a red solid (283 mg, 82%) and the byproduct 9 as a dark-red solid (26 mg, 5%).

C3T (10). To the solution of 3 (153 mg, 0.60 mmol) in methanol (10 mL), thymine (121 mg, 0.50 mmol) and K$_2$CO$_3$ (69 mg, 0.50 mmol) was added. The mixture was stirred at 45 °C for about 36h. The mixture was filtered, and the filtrate was concentrated in vacuum. The residue was purified by flash column chromatography on silica gel (gradient CH$_2$Cl$_2$:MeOH = 98:2 to 95:1) to afford coumarin-N3-cojugated-thymidine **10** (C3T, 5 mg, 2.4 %) as a yellowish solid. 1H NMR (300 MHz, DMSO-$_d$6): δ. 7.93 (s, 1 H), 7.80, 7.78 (d, J = 8.7, 1 H), 6.88, 6.84(d, J = 8.7, 1 H), 6.77 (s, 1 H), 6.23, 6.21, 6.18 (t, J = 6.6, 1 H), 5.67 (s, 1 H), 5.26 (s, 1 H), 5.16 (s, 2 H), 5.09 (s, 1 H), 4.28 (s, 1 H), 3.80 (s, 1 H), 3.63-3.60 (m, 2 H), 2.22-2.14 (m, 2 H), 1.88 (s, 1 H). 13C NMR (300 MHz, DMSO-$_d$6):δ. 163.0, 161.9, 160.6, 155.4, 151.5, 150.8, 136.2, 126.3, 113.6, 110.2, 108.9, 106.4, 102.9, 87.9, 85.6, 70.6, 61.6, 13.4.
1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3-(4-(6-methoxy-3-oxo-3H-xanthen-9-yl)benzyl)-5-methylpyrimidine-2,4(1H,3H)-dione (11). To a suspension of thymidine (73 mg, 0.3 mmol), K₂CO₃ (50 mg, 0.36 mmol) and KI (60 mg, 0.36 mmol) in DMF (20 mL), fluorescein moiety: 9-(4-(bromomethyl)phenyl)-6-methoxy-3H-xanthen-3-one (8, 120 mg, 0.30 mmol) was added. The reaction mixture was stirred at 50°C for 2d. After cooling to the room temperature, 30 mL water was added. The mixture was extracted with ethyl acetate (30 mL × 3), and collected organic phases were washed with water (30 mL × 2), brine (20 mL), and then dried over by anhydrous sodium sulfate. The solvent was evaporated under reduced pressure. Upon purification by column chromatography on silica gel (DCM:MeOH = 99:1 to 95:5, Rf = 0.25 using DCM:MeOH = 95:5), the product 11 was isolated as a dark-red solid (12 mg, 7.2%). ³¹H NMR (300 MHz, CDCl₃-d): δ. ¹³C NMR (300 MHz, CDCl₃-d):

4-hydroxymethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2H-chromen-2-one (14). 4-Hydroxymethyl-2-oxo-2H-chromen-7-yl trifluoromethanesulfonate (13, 324 mg, 1 mmol), bis(pinacolato)-diboron (508 mg, 2 mmol), Pd(dppf)Cl₂CH₂Cl₂ (82 mg, 0.1 mmol) and potassium acetate (295 mg, 3 mmol) were added to the dried round-bottom flask and flushed with argon. The reaction contents were dissolved in 10 mL 1, 4-dioxane and stirring at 60°C for overnight. After cooling to the room temperature, the reaction mixture was extracted with ethyl acetate (10 mL × 3). The combined organic layer was washed with water (10 mL × 3), and brine (20 mL), then dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (1 : 1 hexane : EtOAc) providing 14 as a white solid (126 mg, 42%). ¹H NMR (300 MHz, DMSO-d6): δ 7.73 (d, J = 7.8, 1 H), 7.60 (d, J = 8.4, 1
H), 7.54 (s, 1 H), 6.52 (s, 1 H), 5.72 (t, $J = 5.4$, 1 H), 4.20 (m, 2 H), 1.32 (s, 12 H). 13C
NMR (300 MHz, DMSO-d_6): δ 160.4, 156.5, 152.8, 130.1, 124.4, 122.2, 120.1, 112.4, 84.8, 59.4, 25.1. HRMS (TOF-MS-ESI): calcd. for C16H21BO5 $[\text{M}+\text{H}]^+$ 303.1398; found 303.1389.

[7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-oxo-2H-chromen-4-yl]methyl
methane –sulfonate (15). 4-Hydroxymethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-
2-yl)-2H-chromen-2-one (14, 121 mg, 0.4 mmol), methanesulfonyl chloride (37 μL, 0.48
mmol), Et$_3$N (84 μL, 0.6 mmol) and 10 mL dichloromethane were added to the dried
round-bottom flask flushed with argon. The reaction mixture was stirring at 0°C for 1h
and then washed with water (10 mL \times 3), and brine (20 mL). The organic phase was
dried (Na$_2$SO$_4$) and concentrated under reduced pressure. The crude product was purified
by flash chromatography on silica gel (hexane : EtOAc = 1 : 1) providing 15 as a white
solid (113 mg, 74%). 1H NMR (300 MHz, CDCl$_3$-d): δ 7.81 (s, 1 H), 7.75 (d, $J = 7.8$, 1
H), 7.60 (d, $J = 7.8$, 1 H), 6.63 (s, 1 H), 5.43 (d, $J = 0.6$, 2 H), 3.17 (s, 3 H), 1.39 (s, 12
H). 13C NMR (300 MHz, CDCl$_3$-d): δ 159.9, 153.0, 146.5, 130.5, 123.5, 122.4, 118.4,
115.4, 84.6, 64.8, 38.3, 31.5, 24.9.

4-Bromomethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2H-chromen-2-one
(16). Lithium bromide (174 mg, 2.0 mmol) was added to the solution of [7-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan -2-yl)-2-oxo-2H-chromen-4-yl]methyl methane-sulfonate
(15, 76 mg, 0.2 mmol) in anhydrous acetone (10 mL) and the reaction mixture was
refluxing for overnight. After cooling to room temperature, the acetone was removed
under reduced pressure. The crude product was purified by flash chromatography on
silica gel (hexane : EtOAc = 1 : 1) providing 16 as a white solid (58 mg, 80%). 1H NMR
(300 MHz, CDCl$_3$-d): δ 7.73-7.79 (3 H), 6.58 (s, 1 H), 4.53 (s, 2 H), 1.39 (s, 12 H). 13C NMR (300 MHz, CDCl$_3$-d): δ 160.2, 153.4, 149.7, 130.2, 123.6, 123.4, 119.2, 117.2, 84.5, 26.6, 24.9. HRMS (TOF-MS-ESI): calcd. for C$_{16}$H$_{20}$BO$_4$Br $[M+H]^+$ 365.0554; found 365.0550.
3.8. References

3.9. Appendices B: Characterization of Compounds

1H NMR (300 MHz, DMSO-d_6) spectra of 6.

13C NMR (300 MHz, DMSO-d_6) spectra of 6.
1H NMR (300 MHz, DMSO-$_d$6) spectra of 7.

13C NMR (300 MHz, DMSO-$_d$6) spectra of 7.
1H NMR (300 MHz, DMSO-d_6) spectra of 8.

13C NMR (300 MHz, DMSO-d_6) spectra of 8.
1H NMR (300 MHz, DMSO-d_6) spectra of 9.

13C NMR (300 MHz, DMSO-d_6) spectra of 9.
1H NMR (300 MHz, DMSO-d_6) spectra of 10.

13C NMR (300 MHz, DMSO-d_6) spectra of 10.
1H NMR (300 MHz, DMSO-d_6) spectra of 11.

13C NMR (300 MHz, DMSO-d_6) spectra of 11.
1H NMR (300 MHz, DMSO-d_6) spectra of 14.

13C NMR (300 MHz, DMSO-d_6) spectra of 14.
HRMS (TOF-MS-ESI) spectra of 14.

1H NMR (300 MHz, CDCl$_3$-d) spectra of 15.
13C NMR (300 MHz, CDCl$_3$-d) spectra of 15.

1H NMR (300 MHz, CDCl$_3$-d) spectra of 16.
13C NMR (300 MHz, CDCl$_3$-d) spectra of 16.

HRMS (TOF-MS-ESI) spectra of 16.
Chapter 4. Photo-Reversible DNA Interstrand Cross-Linking by Coumarin

4.1. Introduction

Unlike the normal Watson-Crick base pair interactions, chemical bonds formed in DNA interstrand cross-link (ICL) reactions can inhibit DNA replication and gene expression by preventing separation of two ODN strands. Therefore, DNA cross-linking agents have been widely applied in cancer therapy, study of DNA repair and gene regulation, and protein-DNA binding. The cross-linking agents and modified DNA constructs are commonly used in DNA ICL reactions. A number of bifunctional chemical reagents have been developed as powerful DNA cross-linking agents including mitomycins, azinomycins, synthetic aziridinomitosenes, bizelesin, nitrogen mustard derivatives, cis-platinum-like organometallics, and psoralens. Recently, H$_2$O$_2$ or photo-induced quinone methide-based cross-linking agents have been reported. In addition to bifunctional reagents capable of reacting with two ODN strands, the modified ODNs containing certain functional groups have also been used for DNA-templated cross-linking reactions. Instead of much excessive chemical reagents (most more than 100 times) used in ICL formation, only equivalent modified DNA constructs are required for efficient DNA ICL formation. ICL formation via modified ODNs can be achieved via click chemistry, photo-generated radicals or carbens, and photo-induced cycloaddition. However, most ICL formation is irreversible. Reversible DNA cross-linking agents offer opportunities for development of anticancer agents with selectivity. For example, the anticancer drug ecteinascidin 743-induced reversible alkylation reactions allow for
migration of the drug to the alkylating sites therefore achieving sequence-selective anticancer activity. More recently, the reversible property of quinone methides afforded a novel strategy for cell-compatible target selective alkylation. It involved strand exchange and cross-link migration leading to dynamic cross-linking.

Many photoresponsive molecules induce reversible photochemical reactions which have wide application in polymer sciences, such as light switchable coatings and drug delivery, and studies of reversible DNA cross-linking and manipulation. For instance, psoralens can form reversible ICLs and have been utilized for DNA damage and repair study, for therapeutic gene modulation, and as photoactive probes of nucleic acid structure and function. Coumarin molecules, with similar structure scaffold as psoralens, enable photoreversible dimerization via a photoinduced [2 + 2] cycloaddition reaction and subsequent photocleavage at a different wavelength. They have been widely applied in polymeric research, such as electroluminescence studies, light and energy harvesting, construction of liquid crystalline polymers and photoactive surfaces, and photoreversible polymerization, chain extension, and cleavage. Besides its polymer applications, coumarin analogues are also used as medicines or as fluorescent tags in the field of biology science and fluoroprobes for labelling protein and nucleic acids. However, to the best of our knowledge, no detailed reports on the photoactivity of coumarin towards biomolecules such as DNA, RNA, and proteins are available.

Recently, we reported a coumarin-modified thymidine allowing for reversible ICL formation with dT upon 350 nm irradiation at a yield of 69%. The fluorescence of coumarin was quenched with formation of ICL, but low efficiency and possible intramolecular reaction limited its application for on-line fluorescence detection of ICL.
116

formation. We propose that the cross-linking efficiency will increase with optimization of suitable linkers between the coumarin moiety and ODNs. Coumarin moieties containing suitable linkers would also allow for direct incorporation into ODNs at any positions instead of conjugating to thymidine in our previous report. Moreover, real-time detection of ICL progress can be achieved if coumarin-containing DNA duplexes generate quantitative ICL formation. Usually, traditional DNA ICL analysis methods involved radiolabeling with 32P, 14C, or 3H, which is considered to be health and safety hazards. In addition, they are offline and time-consuming. The fluorescence-based method allow for a safe real-time monitoring ICL process, which will undoubtedly facilitate its bio-application. The primary focus of this chapter involves investigation of the coumarin-dT reactions and the quantitative, fluorescence-detectable, sequence-dependent, and photo-switchable DNA ICL formation via coumarin moieties.

4.2. Coumarin-Containing ODNs for ICL Study

4.2.1. Synthesis of the Coumarin Derivatives

The substitutions at the position-7 of coumarin have great influence in its photoactivity and the electron donating groups enhance the coumarins’ photoreactivity.42 7-Hydroxy-2H-chromen-2-one (3) with a hydroxyl group at the position-7 was chosen as the basic scaffold to build its derivatives. Seven coumarin analogues 1-7 with modifications at the position-4 (2) or 7 (3-7) were designed and synthesized, which allowed us to investigate the effects of the linkers and the ICL reaction sites of coumarin on DNA cross-linking efficiency (Figure 4-1). Compounds 2 and 3 containing a hydroxyl group at the position-4 and 7 respectively, allow for studying the effects of the phosphorous position on the cross-linking efficiency. Compounds 3-6, bearing different linkers at position-7, are
capable of investigation of the linker-length effect. The coumarin 7 with a linker containing two hydroxyl groups allows for flexible incorporation into DNA at any positions. Synthesis of 1 or 2 involved methylation of 3 or 14 using methyl iodide, and compounds 4, 5, and 7 containing three different linker units at the position-7 were prepared via Williamson ether synthesis starting from coumarin 3 (Figure 4-1). Compound 6 was synthesized by Huisgen 1,3-dipolar cycloaddition between 3-azidopropan-1-ol and 7-ethynyl-4-methyl-2H-chromen-2-one (15) (Figure 4-1D).

Figure 4-1. Preparation of phosphoramidites 8-13.
Compounds 2-6 were converted to the corresponding phosphoramidites 8-12 using standard method. The phosphoramidite 12 was prepared with light-protection due to its photo-sensitivity. Compound 7 was converted to the phosphoramidite 13 under standard conditions after introduction of DMT residue. The phosphoramidites 8-13 were directly incorporated into ODNs via automated DNA solid-phase synthesis with > 98% coupling yields.

4.2.2. Preparation of the ODNs

The ODNs were prepared via standard automated DNA synthesis techniques in a 1.0 μmole scale using commercial 1000Å CPG-succinyl-nucleoside supports. The 1Pr-Pac-dA and 1Pr-Pac-dG phosphoramidites were used for synthesis of coumarin-containing ODNs. The commercially available β-cyanoethyl phosphoramidites with phenoxyacetyl (Pac) protecting groups on the exocyclic amines of dA and dG allowed for a very mild deprotection condition minimizing decomposition of the functionalized ODNs 2b-10b, 11, and 13b (Table 4-1).

Table 4-1. List of coumarin-containing ODNs.

<table>
<thead>
<tr>
<th>Entry</th>
<th>ODN sequence</th>
<th>Mass (Calcd.)</th>
<th>Mass (Found)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODN 2b</td>
<td>3'- dACC CGC CGT AT2</td>
<td>3546.2</td>
<td>3546</td>
</tr>
<tr>
<td>ODN 3b</td>
<td>3'- dACC CGC CGT AT3</td>
<td>3516.2</td>
<td>3516</td>
</tr>
<tr>
<td>ODN 4b</td>
<td>3'- dACC CGC CGT AT4</td>
<td>3560.2</td>
<td>3560</td>
</tr>
<tr>
<td>ODN 5b</td>
<td>3'- dACC CGC CGT AT5</td>
<td>3574.2</td>
<td>3574</td>
</tr>
<tr>
<td>ODN 6b</td>
<td>3'- dACC CGC CGT AT6</td>
<td>3625.3</td>
<td>3625</td>
</tr>
<tr>
<td>ODN 7a</td>
<td>3'- dACC CGC CGT AA4</td>
<td>3569.2</td>
<td>3569</td>
</tr>
</tbody>
</table>
Deprotection of the nucleobases and phosphate moieties as well as cleavage of the linker for normal ODNs were performed with a mixture containing 40% aq. MeNH₂ and 28% aq. NH₃ (1:1) at room temperature for 2 h. Coumarin-containing ODNs were deprotected and cleaved using 28% aq. NH₃ at room temperature for 2 h. All crude ODNs were purified by 20% denaturing polyacrylamide gel electrophoresis and identified by MALDI-TOF-MS after treatment with C₁₈ column. The quantification of ODNs in water was achieved using UV–VIS spectrophotometer at 260 nm.

4.2.3. Thermal Stability Study

After successfully incorporating coumarin analogues into ODNs, we investigated the effect of coumarin on duplex thermal stability by measuring the UV-melting temperatures (T_M) of ds DNAs containing coumarins 2-6 (Table 4-2). Introduction of coumarin moieties enhanced the stability of the duplexes with a ΔT_M of 1.1 - 3.1 °C relative to when natural 2′-deoxyadenosine (dA) was present. This is possibly due to increased π-π stacking and/or increased lipophilicity (Chapter 2). In addition, the linkers and their position play an important role in this. More obvious T_M increase was observed when coumarin was conjugated with ODNs via position-4 (ds DNA-2, $\Delta T_M = 2.0$ °C) than via position-7 (ds DNA-3, $\Delta T_M = 1.1$ °C). The flexible linker unit at the position-7 further

<table>
<thead>
<tr>
<th>ODN</th>
<th>Sequence 3’- 5’</th>
<th>Mass (m/z)</th>
<th>Molar Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>8a</td>
<td>dACC CGC CGT AG</td>
<td>3585.2</td>
<td>3585</td>
</tr>
<tr>
<td>9a</td>
<td>dACC CGC CGT AC</td>
<td>3545.2</td>
<td>3545</td>
</tr>
<tr>
<td>10b</td>
<td>dGGCTAA7AACGC</td>
<td>3663.4</td>
<td>3663.4</td>
</tr>
<tr>
<td>11</td>
<td>dCCG CCG TAC TT</td>
<td>3551.2</td>
<td>3551</td>
</tr>
<tr>
<td>13b</td>
<td>dACCCGCGGTAA7AA</td>
<td>4225.8</td>
<td>4225.4</td>
</tr>
</tbody>
</table>
enhances the duplex stability by about 3.0 °C (ds DNA-4, $\Delta T_M = 2.9$ °C; ds DNA-5, $\Delta T_M = 3.1$ °C), but the triazole moiety in 6 with less flexibility in stacking and decreased lipophilicity seems less favorable for duplex stability (ds DNA-6) than an alkyl chain (ds DNA-5).

Table 4-2. Melting Temperatures of ds DNA-1-6.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Duplex</th>
<th>T_m (°C)</th>
<th>ΔT_m (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ds DNA-1</td>
<td>5’-d(TGG GCG GCA TAT) (ODN 1a)</td>
<td>57.8 ± 0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3’-d(ACC CGC CGT ATA) (ODN 1b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ds DNA-2</td>
<td>5’-d(TGG GCG GCA TAT) (ODN 1a)</td>
<td>59.8 ± 0.1</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>3’-d(ACC CGC CGT AT2) (ODN 2b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ds DNA-3</td>
<td>5’-d(TGG GCG GCA TAT) (ODN 1a)</td>
<td>58.9 ± 0.7</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>3’-d(ACC CGC CGT AT3) (ODN 3b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ds DNA-4</td>
<td>5’-d(TGG GCG GCA TAT) (ODN 1a)</td>
<td>60.7 ± 1.0</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>3’-d(ACC CGC CGT AT4) (ODN 4b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ds DNA-5</td>
<td>5’-d(TGG GCG GCA TAT) (ODN 1a)</td>
<td>60.9 ± 0.8</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>3’-d(ACC CGC CGT AT5) (ODN 5b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ds DNA-6</td>
<td>5’-d(TGG GCG GCA TAT) (ODN 1a)</td>
<td>59.2 ± 1.2</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>3’-d(ACC CGC CGT AT6) (ODN 6b)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Measured in a buffer containing 0.1 M NaCl, 10 mM potassium phosphate (pH 7), and 4 μM of each single-stranded ODN.

4.3. Structure Determination of Coumarin-dT Adducts

4.3.1. LC-MS Analysis for Monomer Reaction
Initially, we studied the photoreactivity of coumarin 1 towards canonical nucleosides dA, dG, dT, and dC. As the hydroxyl group has the ability to destroy radicals or intermediates in photo-induced cycloaddition reaction, coumarin 1 obtained by methylation of 3 was used for the monomer reaction. The 350 nm UV light is chosen for the reaction, because it is compatible with living cells and inert to biological components. LC-MS was used to detect the reaction products. A new compound with a molecular ion peak at 455.4 (corresponding to syn- and anti-cyclobutane 1-dT dimmers 17 and 18) was observed in the presence of dT after 350 nm irradiation for 2 days. However, coumarin-nucleoside adducts were not formed when 1 reacted with dC, dA, or dG, while only a coumarin-coumarin dimmer was detected in LC-MS mass spectrum (Figure 4-2). This indicated that coumarin has good photo reactivity toward thymidine but not with dA, dC, and dG.
Figure 4-2. LC-MS analysis of photochemical reaction of 1 and nucleosides.

4.3.2. [2+2] Cycloaddition between 1 and dT

The [2+2] cycloaddition reaction occurred between dT and 1 upon 350 nm irradiation yielding the products 17, 18, and a coumarin dimmer 19, which were isolated and
characterized by 1H NMR, 13C NMR, and HRMS. The structure of the isomers 17 and 18 was determined by two-dimensional nuclear magnetic resonance spectroscopy (H-H COSY). They were formed by a [2+2] cycloaddition reaction between 3, 4 double bond of 1 and 5, 6 double bond of dT, while the syn-adduct 17 was the predominant product (yield: 15% for 17 and 9% for 18) (Figure 4-3). Compound 19 was also isolated. Formation of cyclobutane products 17-19 quenches the fluorescence of coumarin due to the disruption of conjugated π system of coumarin (Figure 4-3). Almost no fluorescence for products 17 and 18 was observed. In DNA-templated reaction, only non-fluorescent 17 and 18 would be generated as cycloaddition products and all observed fluorescence would result from unreacted coumarin. This allows us to real-time detect the dT-I cycloaddition reaction process using fluorescence spectra.

Figure 4-3. Cycloaddition between 1 and dT, and Fluorescence emission spectra of 1 and Products (Coumarin 1 and dimmers 17-19, 10 µM in water with < 1% menthol, $\lambda_{ex} = 325$ nm, slit width = 15 nm; $\lambda_{em} = 385$ nm, slit width = 2.5 nm).

4.4. The Effect of the Linker and Flanking Sequences on ICL

4.4.1. Linker Effect on Cross-Linking Efficiency
Six double stranded (ds) DNAs (1-6) were designed to investigate the coumarin’s photoreactivity towards dT (Table 4-2). The ds DNA-2-6 contain coumarin analogues opposing dT, while ds DNA-1 with a natural A:T base pair serves as a control. Upon photo-irradiation at 350 nm, ds DNA-2-6 generated a new band with lower migration than the original ODNs. The resulting products were verified as the ICL adducts by HRMS (Figure 4-4). No ICL band was observed for ds DNA-1 and higher ICL yield was obtained with ds DNA-3 (86%, lane 3) than ds DNA-2 (3%, lane 2). This result indicated that the coumarin’s photoactivity in DNA depends on the linker’s position. The coumarins attached to ODN by position-7, allowed a favorable conformation for formation of a highly efficient transition state between 3, 4 double bond of coumarin and dT, while coumarin incorporated into ODN via position-4 induces steric hindrance. This is further confirmed by the result that better reactivity was observed for ds DNA-3-6 with coumarins conjugated with ODNs at the position-7 (Figure 4-4).

Figure 4-4. PAGE analysis of ICL formation for ds DNA-1-6 (100 nM ds DNA-1-6 was irradiated at 350 nm for 2 h; ODN 1a was 5’-[32P]-labeled).

Moreover, the length and flexibility of linkers also played an important role in the ICL formation. Almost quantitative ICL was formed for ds DNA-4 and 5 with an adaptable chain between the phosphate group and coumarin. The ds DNA-3 showed less ICL
efficiency due to the lack of linker. Installation of a triazole ring in 6 reduced its photoactivity in ds DNA-3, possibly due to the electron transfer in the excitation state of coumarin. In addition, duplexes containing coumarin with a flexible linker at the 7-position proceeded at a faster rate for ICL formation. The photo-induced cycloaddition reaction in DNA followed first-order kinetics. ICL generation with ds DNA-4 (50.4 ± 3.8×10⁻⁴ s⁻¹) and DNA-5 (53.9 ± 4.1 ×10⁻⁴ s⁻¹) is about 5 times faster than those for ds DNA-3 (9.5 ± 1.6 ×10⁻⁴ s⁻¹) and 6 (9.8 ± 1.1×10⁻⁴ s⁻¹) (Table 4-3). Finally, coumarin 4 with high efficiency was employed for further study.

Table 4-3. ICL formation rates for ds DNA-1-6.

<table>
<thead>
<tr>
<th>Entry</th>
<th>k (10⁻⁴ s⁻¹)</th>
<th>t₁/₂ (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ds DNA-2</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>ds DNA-3</td>
<td>9.5 ± 1.6</td>
<td>12.4 ± 2.0</td>
</tr>
<tr>
<td>ds DNA-4</td>
<td>50.4 ± 3.8</td>
<td>2.3 ± 0.2</td>
</tr>
<tr>
<td>ds DNA-5</td>
<td>53.9 ± 4.1</td>
<td>2.3 ± 0.2</td>
</tr>
<tr>
<td>ds DNA-6</td>
<td>9.8 ± 1.1</td>
<td>11.9 ± 1.2</td>
</tr>
</tbody>
</table>

n.d.: not determined.

4.4.2. Flanking Sequence-Dependent Cross-Link Formation

As electron transfer in photochemical reactions affects the reactivity of photoactive compounds, the flanking bases play the most important role in the electron transfer, which affects ICL efficiency. The ds DNA-7, 4, 8, and 9 with coumarin 4 flanked by dA, dT, dG, and dC respectively, were designed for this study (Figure 4-5). The efficient electron transfer would lead to nucleobase-specific fluorescence quenching, which can be directly observed from fluorescence emission spectra.
Figure 4-5. List of ds DNAs used in the study.

ds DNA-7
ODN 7a: 3'-dTTTACGGCGG
ODN 7b: 5'-d4ATGCGCC

ds DNA-8
ODN 8a: 3'-dCTCTACCGG
ODN 8b: 5'-d4GATGCGCC

ds DNA-4
ODN 1a: 3'-dTATACCGCGG
ODN 4b: 5'-d4TATGCGCC

ds DNA-9
ODN 9a: 3'-dTCTACGCGG
ODN 9b: 5'-d4CATGCGCC

ds DNA-10
ODN 10a: 3'-dCGTTTTAGCC
ODN 10b: 5'-dCGCAATATCGG

ds DNA-11a-d
ODN 11a-d: 3'-dXAGTACCGCGG
a: X = T;
b: X = C;
c: X = A;
d: X = G

ds DNA-12
ODN 12a: 3'-dTTTACCGCGGTTACCGG
ODN 7b: 5'-d4AATGCGCC

ds DNA-13
ODN 12a: 3'-dTTTACCGCGG
ODN 13b: 5'-dAAATGCGCC

Figure 4-6. Fluorescence intensity of 4 when flanked by different bases: (a) fluorescence emission spectra of 10 µM single stranded ODNs; (b) fluorescence emission spectra of 10 µM duplexes (measured in 100 mM NaCl and 10 mM pH 7 phosphate buffer solution with λ_{ex} = 350 nm, slit width = 10 nm; λ_{em} = 390 nm, slit width = 10 nm).

The ODNs (7b and 8b) containing 4 adjacent to a purine nucleoside (A and G) showed a greatly reduced fluorescence intensity compared to those (4b and 9b) with 4 flanking to a
pyrimidine nucleoside (T and C) (Figure 4-6a). Interestingly, hybridization of DNAs enhances the fluorescence of ds DNA-4 and 7 with an A:T base pair adjacent to 4:T, and quenches the fluorescence of ds DNA-9 and 8 with a G:C pair next to 4:T (Figure 4-6b). This can be explained by the large excited state reduction potential of coumarin 4 (2.10 V, Figure 4-7), which is capable of oxidizing the adjacent nucleobase.48 The sequence of the fluorescence quenching efficiency is in the order of dG > dA > dC ≈ dT, which is consistent with the order of nucleobase oxidation potentials (\(E_{O,CV}\): G (1.25), A (1.72), C (1.87), and T (1.90)).49 Therefore, more efficient photo-induced electron transfer occurred when 4:T base pair was next to G:C base pairs than next to A:T pair. The efficiency of cross-link formation is consistent with this trend.

Figure 4-7. Cyclic voltammogram of coumarin 4 (0.1 M TBA PF\textsubscript{6} in acetonitrile). The scan was initiated at 0.20 V vs NCE with a scan rate of 100 mV s-1.
Although DNA ICLs were efficiently generated when 4 was flanked by all four bases, lower ICL yields were observed when 4 was flanked by dG or dC than by dA, or dT (ds DNA-8: 97%, 9: 88% vs ds DNA-4: 98%, 7: 100%) (Figure 4-8). Moreover, the ICL formation reaction for ds DNA-8 or 9 with 4/dT flanked by G:C, proceeded ~ 10 times slower than when 4/dT was flanked by a T:A pair (ds DNA-4 and 7) (Table 4-4). Photo-induced cross-linking reaction for ds DNA-4 and ds DNA-7 was complete within 10 min at a yield of more than 95%, while 120 min was needed for ds DNA-8 and 9.

4.5. ICL Detection via Fluorescence Assay

4.5.1. Design Principle

Moreover, there is a promising demand for methods to on-line monitor cross-linking reactions.\(^1\)\(^2\) Even HPLC, \(^{32}\)P-labelled approach, and MS-associated techniques are among the most used strategies, but they do not allow real-time detection of the ICL progress. Fluorescence assay relies on sensitive fluorescence change during the process and can serve as a promising way for real-time detection of the cross-linking process, which will efficiently reduce the costs and time associated with ICL determination. A
successful fluorescence-based detection requires no substantial background fluorescence before or after the reaction, due to the fact that it is hard to determine the source of background emission. Our monomer reaction proved that formation of cycloaddition products efficiently quenches the fluorescence of coumarin producing no background emission. In addition, coumarin 4 induces quantitative ICL generation which makes it possible for ICL detection using fluorescence assay. The fluorescence intensity of ds DNA-4 before and after photoirradiation at 350 nm for 1h was determined. Almost no fluorescence emission was observed after efficient formation of cyclobutane adducts (98%) 20 (Figure 4-9).

![Fluorescence spectra of ds DNA-4 before and after photoirradiation (10 µM, measured in 100 mM NaCl and 10 mM pH 7 phosphate buffer solution with λ_{ex} = 325 nm, slit width = 15 nm; λ_{em} = 390 nm, slit width = 10 nm).](image)

In addition, the fluorescence intensity was linearly correlated with the fluorophore concentration at the µM level (Self-quenching can occur at high concentration of mM
As the ICL product is non-fluorescent, the fluorescence intensity observed in the reaction mixture arises from the unreacted DNA duplexes. Based on these facts, a reasonable equation ICL yield = \(\frac{I_0-I}{I_0-I_60} \)*Y was proposed, where \(I_0 \) is the fluorescence intensity of the unreacted ds DNA at 0 min, \(I \) is the fluorescence intensity of ds DNA upon photoirradiation for the designed time, \(I_{60} \) is the fluorescence intensity of ds DNA after 60 min irradiation, and \(Y \) is the ICL yield after 60 min irradiation. The \(I_0-I \) stands for the reduced fluorescence intensity after desired time, and \(I_0-I_{60} \) means decreased fluorescence intensity when the ICL yield is \(Y \) after irradiation for 60 min.

4.5.2. Fluorescence Assay for Monitoring ICL Formation

The fluorescence of ds DNA-4 reduced steadily upon ICL generation (Figure 4-10a). Almost no fluorescence emission was observed when 98% ICL was yielded with 10 µM ds DNA-4 upon 60 min photoirradiation at 350 nm. The equation showed in Figure 4-10a was used to calculate the ICL yield at the designed time. The rate constants measured by fluorescence assay (\(k_{cal.-4} = 4.66 \pm 0.27 \times 10^{-3} \) s\(^{-1}\)) were within the experimental error of those measured using traditional \(^{32}\)P-labelling method (\(5.04 \pm 0.38 \times 10^{-3} \) s\(^{-1}\)) (Table 4-4).
Figure 4-10. ICL formation rate of ds DNA-4 via fluorescence assay: (a) fluorescence emission spectra of two independent samples containing 10 µM ds DNA-4 which were irradiated at 350 nm for the desired time ($\lambda_{ex} = 325$ nm, slit width = 15 nm; $\lambda_{em} = 385$ nm, slit width = 10 nm); (b) rate of DNA cross-linking formation.

Table 4-4. Rate of ICL formation or cleavage for ds DNA-4, and 7-9.

(ds DNA-4 and 7-9: 3'-dYTACGGCGGGT • 5'-d4XATGCCGCCCCA)

<table>
<thead>
<tr>
<th>Entry</th>
<th>X:Y</th>
<th>k (ICL Formation, 10^3 s$^{-1}$)</th>
<th>$t_{1/2}$ (min)</th>
<th>k_c (Cleavage, 10^3 s$^{-1}$)</th>
<th>$t_{1/2}$ (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ds DNA-7</td>
<td>A:T</td>
<td>42.0 ± 4.0</td>
<td>31.7 ± 0.4</td>
<td>2.7 ± 0.2</td>
<td>3.6 ± 0.1</td>
</tr>
<tr>
<td>ds DNA-4</td>
<td>T:A</td>
<td>50.4 ± 3.8</td>
<td>46.6 ± 2.7</td>
<td>2.3 ± 0.2</td>
<td>2.5 ± 0.2</td>
</tr>
<tr>
<td>ds DNA-8</td>
<td>G:C</td>
<td>5.8 ± 0.2</td>
<td>6.8 ± 0.2</td>
<td>20.0 ± 0.8</td>
<td>16.9 ± 0.6</td>
</tr>
<tr>
<td>ds DNA-9</td>
<td>C:G</td>
<td>4.1 ± 0.1</td>
<td>5.1 ± 1.2</td>
<td>28.1 ± 1.0</td>
<td>22.8 ± 5.5</td>
</tr>
</tbody>
</table>

The reliability of this approach was further verified by applying this method to calculate the rate constants of cross-linking generation for ds DNA-7-9 (Figures 4-10, 4-10 and 4-12). The results obtained by the fluorescence assay are consistent with those measured by 32P-labelling method (Table 4-5). This is the first example allowing rapid, direct, and
efficient real-time monitoring of the DNA cross-linking progress by a non-invasive method other than traditionally-used harmful 32P-labelling techniques in biochemical research. The novel method can serve as an effective way in biology for DNA cross-linking study and afford real-time detection without disrupting native cell environment.

Figure 4-11. ICL formation rate of ds DNA-7 via fluorescence assay: (a) fluorescence emission spectra of two independent samples containing 10 µM ds DNA-7 which were irradiated at 350 nm for the desired time (measurement was carried out in a mixture of 100 mM NaCl and 10 mM pH 7 phosphate buffer solution with $\lambda_{ex} = 325$ nm, slit width = 15 nm; $\lambda_{em} = 385$ nm, slit width = 10 nm); (b) rate of DNA cross-linking formation (fluorescence intensities at 385 nm were used for calculating ICL yield).
Figure 4-12. ICL formation rate of ds DNA-8 via fluorescence assay: (a) fluorescence emission spectra of two independent samples containing 10 µM ds DNA-8 upon irradiation at 350 nm at the desired time (measurement was carried out in a mixture of 100 mM NaCl and 10 mM pH 7 phosphate buffer solution; λ_{ex} = 325 nm, slit width = 5 nm; λ_{em} = 390 nm, slit width = 15 nm) and (b) rate of DNA cross-linking formation (fluorescence intensities at 390 nm were used for calculating ICL yield).

Figure 4-13. ICL formation rate of ds DNA-9 via fluorescence assay: (a) fluorescence emission spectra of two independent samples containing 10 µM ds DNA-9 upon irradiation at 350 nm at the desired time (measurement was carried out in a mixture of 100 mM NaCl and 10 mM pH 7 phosphate buffer solution; λ_{ex} = 325 nm, slit width = 10
nm; $\lambda_{em} = 390$ nm, slit width = 10 nm) and (b) rate of DNA cross-linking formation (fluorescence intensities at 387 nm were used for calculating ICL yield).

4.6. Photoreversible DNA Cross-linking

The coumarin-induced cross-linking in polymers can be cleaved into the original strands upon photoirradiation at a short wavelength. The dT-coumarin cyclobutane products were also decomposed into coumarin 1 and thymidine during HRMS mass measurement due to the use of high voltage electrons. Similar cleavage reaction was observed when [2+2] cycloaddition products were irradiated at 254 nm for 2 days, which was confirmed by NMR. Photocleavage reaction was also observed for DNA cross-linked products formed with ds DNA-4 and 7-9 upon irradiation at 254 nm. Due to the electron transfer, the cleavage of the cross-linking proceeded at a very fast rate and is sequence-dependent. The reaction followed first-order kinetics and was finished within 15 min. The G:C base pair next to the cross-linking site facilitated the cleavage reaction possibly due to more efficient electron transfer. The cleavage reaction rate for the ICL products formed with ds DNA-8 and 9 is larger than that of ds DNA-4 and 7 (Table 4-4). The ODN strands obtained from the cleavage reaction of the ICL products efficiently form the ICL products again upon photo irradiation at 350 nm. This reversible behavior was still observed after three cycles of 350 nm/254 nm irradiation and ds DNA-4 can still generate cross-linking at a yield of 80% (Figure 4-14a). Similarly, this process was detected via fluorescence spectra. Formation of DNA cross-linking products quenches the fluorescence but cleavage of the cross-linked product regenerate the fluorescence due to generation of the original single stranded ODNs. The results measured by fluorescence spectra were consistent with results using 32P-labelling method (Figure 4-14b). Similar
study was performed with ds DNA-7 which showed similar result. This further proved
generality of this phenomenon (Figure 4-15).

Figure 4-14. Photoreversible process for ds DNA-4 over three cycles (photoirradiation at
350 nm for 50 min (UV1) and 254 nm for 15 min (UV2)): (a) ICL yields obtained from
phosphorimage autoradiogram of denaturing PAGE analysis of 100 nM ds DNA-4 (ODN
1a was 5'-[^32P]-labeled); (b) fluorescence intensity at 390 nm of 10 μM ds DNA-4 (λex =
325 nm, slit width = 15 nm; λem = 390 nm, slit width = 10 nm).

Figure 4-15. Photoreversible process for ds DNA-7 over three cycles (photoirradiation at
350 nm for 50 min (UV1) and 254 nm for 15 min (UV2)): (a) ICL yields obtained from
phosphorimage autoradiogram of denaturing PAGE analysis of 100 nM ds DNA-7 (ODN
7a was 5'-[^32]P-labeled) and (b) fluorescence intensity at 390 nm of 10 µM ds DNA-7 (λ_ex = 325 nm, slit width = 10 nm; λ_em = 390 nm, slit width = 10 nm).

4.7. Mutation Detection

The coumarin-induced ICL formation quenches the fluorescence of coumarin, which can be directly detected. Different reactivity of coumarin towards dA, dT, dG, and dC makes it useful for detecting single nucleotide polymorphisms (SNPs) via fluorescence assay. The probe ODN 11 containing the coumarin moiety 4 and the templates ODN 11a-d were designed for this study. Templates ODN 11a-d contain sequences of codon 248 in exon 7 of the p53 gene, which always mutates in human cancers and a T to C nucleotide transition is frequently observed.44 ODN 11a contains the wild-type genetic sequence with the nucleotide T at the 3’-terminus, while ODN 11b associating with cancer contains the mutated C nucleotide at the 3’-terminus. ODN 11c and 11d were other minor transition types in p53 gene with A and G respectively. Upon photoirradiation at 350 nm for 1 h, DNA ICL was observed for ds DNA-11a-d with varied efficiency (92% for ds DNA-11a, 81% for ds DNA-11b, 10% for ds DNA-11c, and 7% for ds DNA-11d) (Figure 4-16).

Figure 4-16. PAGE analysis of ICL formation for ds DNA-11a-d (ODNs without coumarin was 5'-[^32]P-labeled, and lane 1 is the control reaction without photo irradiation.).
Varied DNA cross-linking efficiency obtained with different DNA duplexes was also detected via fluorescence assay. The greatly decreased fluorescence was observed for DNA-11a and DNA-11b after UV irritation at 350 nm for 1 h, and much less decrease was observed for DNA-11c and DNA-11d. The difference of fluorescence intensity before and after UV irritation at 350 nm for 1 h was shown in figure 4-17. The ds DNA-11b showed the highest difference of the fluorescence intensity at 385 nm before and after cross-linking reaction, while less difference was observed for ds DNA-11a and very little difference for DNA-11c-d. In this way, coumarin-containing ODNs are potentially useful for detecting single nucleotide polymorphisms via fluorescence assay.

Figure 4-17. Decreased fluorescence intensity at 385 nm for ds DNA-11a-d (after UV irritation at 350 nm for 1 h with 10 µM ds DNA-11a-d; \(\lambda_{ex} = 325 \text{ nm, slit width} = 6 \text{ nm; } \lambda_{em} = 385 \text{ nm, slit width} = 14 \text{ nm} \)).

In addition, ICL formation for ds DNA-11a (9.17 ± 1.01×10^{-4} s^{-1}) and 11b (7.50 ± 0.56 ×10^{-4} s^{-1}) is much faster and more efficient than that for ds DNA-11c (8.3 ± 0.9 ×10^{-5} s^{-1}) and 11d (9.7 ± 0.8 ×10^{-5} s^{-1}) (Table 4-6). The ICL products formed from ds DNA-11a and 11b can be quickly reversed into the single strands with a rate constant of 6.6 ±
0.3×10^{-3} \text{ s}^{-1} and 4.35 \pm 0.65×10^{-2} \text{ s}^{-1} respectively upon photoirradiation at 254 nm, while the ICL products generated from ds DNA-11c and 11d were not cleaved into the single strands upon photoirradiation for 1h.

Table 4-5. Rate of ICL formation or cleavage for ds DNA-11a-d.

<table>
<thead>
<tr>
<th>Entry</th>
<th>X</th>
<th>k (ICL, 10^{-3} \text{ s}^{-1})</th>
<th>t_{1/2} (min)</th>
<th>k_c (Cleavage, 10^{-7} \text{ s}^{-1})</th>
<th>t_{1/2} (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ds DNA-11a</td>
<td>T</td>
<td>91.7 \pm 10.1</td>
<td>12.6 \pm 1.6</td>
<td>6.6 \pm 0.3</td>
<td>105.0 \pm 4.2</td>
</tr>
<tr>
<td>ds DNA-11b</td>
<td>C</td>
<td>75.0 \pm 5.6</td>
<td>15.5 \pm 1.2</td>
<td>43.5 \pm 6.5</td>
<td>16.3 \pm 2.4</td>
</tr>
<tr>
<td>ds DNA-11c</td>
<td>A</td>
<td>8.3 \pm 0.9</td>
<td>141.2 \pm 15.7</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>ds DNA-11d</td>
<td>G</td>
<td>9.7 \pm 0.8</td>
<td>120.4 \pm 10.3</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

\textit{n.d.} : not determined.

4.8. The Effect of Incorporation Site on ICL Formation

DNA duplexes containing coumarins at the 5’-terminal site showed perfect photoreversibility. In order to know the generality of this property and demonstrate the versatility of coumarin analogues in biochemical applications, we investigated the photoproperties of the coumarins incorporated at the internal positions of ODNs. To address this issue, the diol-based coumarin 7 was designed and prepared. After introduction of DMTr group in 16, the phorsphoramidite 13 was synthesized via standard method. The ODN-10b and 13b containing compound 7 at the internal sites were prepared in a similar way as the other modified ODNs by using 13. Compound 7 at the internal site (ds DNA-10) induced almost quantitative ICL generation (97%) upon 350
nm irradiation (Figure 4-18, lane 2). In addition, the ICL products generated with ds DNA-10 were split into the original single-stranded ODNs after photoirradiation at 254 nm with good efficiency (cleavage percentage 84%) (Figure 4-18, lane 3). Kinetic study showed that both cross-link formation and cleavage were very effective and fast, and were complete within 15 min (Table 4-6).

<table>
<thead>
<tr>
<th></th>
<th>ds DNA-10</th>
<th>ds DNA-12</th>
<th>ds DNA-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 nm (15 min)</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>254 nm (10 min)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

After having established the chemistry and generality of coumarin-induced photo-reversible DNA cross-linking, we studied the photoactivity of coumarins toward a longer DNA template. This provided a more realistic illustration of how coumarin analogues might be applied in cellular DNA. The ODN-7b with terminal coumarin 4 and a 50-mer matched template ODN-12a were employed. Almost quantitative DNA cross-link was formed for the terminal coumarin 4 in ds DNA-12 (98%, Figure 4-18, lane 5) upon photoirradiation at 350 nm, and a reasonable ICL yield (84%, Figure 4-18, lane 8) was achieved for ds DNA-13 with the internal coumarin 7. Lower ICL yield for compound 7 may result from less flexibility in ds DNA-13 than 4 in ds DNA-12. The formed ICL products for ds DNA-12 and 13 can be efficiently reverted to the original single-stranded
ODNs upon 254 nm irradiation. Moreover, both ICL formation and cleavage reactions for ds DNA-12 and 13 are fast and efficient. The steric hindrance arising from the long ODN template ODN-12a promoted the cleavage reaction rate for ds DNA-12 and 13 than when a shorter DNA template was used, such as ds DNA-10 (Table 4-6). The generality and versatility of coumarin-induced cross-linking proved its potential as a powerful and versatile tool in biochemical research.

Table 4-6. Rate of ICL formation or cleavage for ds DNA-10, 12, and 13.

<table>
<thead>
<tr>
<th>Entry</th>
<th>k (ICL Formation, 10^{-3} s$^{-1}$)</th>
<th>$t_{1/2}$ (min)</th>
<th>k_c (Cleavage, 10^{-2} s$^{-1}$)</th>
<th>$t_{1/2}$ (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ds DNA-10</td>
<td>3.99 ± 0.32</td>
<td>2.91 ± 0.23</td>
<td>0.57 ± 0.04</td>
<td>2.02 ± 0.13</td>
</tr>
<tr>
<td>ds DNA-12</td>
<td>6.27 ± 0.62</td>
<td>1.86 ± 0.18</td>
<td>1.67 ± 0.19</td>
<td>0.70 ± 0.08</td>
</tr>
<tr>
<td>ds DNA-13</td>
<td>1.55 ± 0.14</td>
<td>7.51 ± 0.66</td>
<td>1.42 ± 0.03</td>
<td>0.82 ± 0.02</td>
</tr>
</tbody>
</table>

4.9. Experimental Section

LC-MS analysis of photoinduced reaction between coumarin 1 and canonical nucleosides. The reaction mixtures containing 30 nmol deoxyribonucleosides (dA: 7.5 mg, dT: 7.2 mg, dG: 8.0 mg, or dC: 6.8 mg) and coumarin 1 (5.7 mg, 30 nmol) in methanol (1-6 mL, depending on solubility) were placed in four vials, respectively. After UV irradiation at 350 nm for two days, the mixtures were diluted to the desired concentration for LC-MS analysis.

Preparation of DNA cross-linked products for MALDI-TOF-MS analysis. Interstrand cross-linking reactions were performed using 10 μM coumarin-containing oligonucleotides, which were annealed with 1.0 equiv. of the complementary strands by
heating to 80 °C for 3 min in a buffer containing 10 mM pH 7 potassium phosphate buffer and 100 mM NaCl, followed by slowly cooling to room temperature overnight. The DNA duplexes were irradiated with the UV light at 350 nm for the desired time to make sure that the reactions were complete. Then 2 M NaCl solution (200 μL) and cold ethanol (1.2 mL) were added to the reaction mixture which was incubated at -80 °C for 30 mins. ODNs were precipitated by centrifugation at 15000 g for 6 min at room temperature. The crude DNA was further purified via C18 column eluting with H2O (3 × 1.0 mL) followed by MeOH:H2O (3:2, 1.0 mL) to remove salts. The afforded ODNs were dried and characterized by MALDI-TOF-MS at the University of California-Riverside Mass Spectrometry Lab.

Determination of DNA duplexes’ thermal stability. All measurements were carried out in 10 mM potassium phosphate buffer (pH 7), 100 μM ethylenediaminetetraacetic acid (EDTA), and 100 mM NaCl, with 4 μM + 4 μM single strand concentration. Samples were heated at 1 °C min⁻¹ from 20 °C to 80 °C and the absorbance of DNA at 260 nm was measured at 1.0 °C steps. At least two independent samples have been tested to get the melting temperatures of DNA duplexes.

PAGE analysis of interstrand cross-link formation and kinetic study using ³²P-labelling method. ODNs (0.1 μM) without coumarin were 5'-³²P-labeled and hybridized with 1.5 equiv. of the complementary strands in 100 mM NaCl and 10 mM potassium phosphate (pH 7). The DNA duplexes were irradiated at 350 nm to form ICLs (a control reaction was carried out without photoirradiation). Aliquots were taken at the prescribed time and immediately quenched with the equal volume of 95% formamide loading buffer,
and stored at -20 °C until subjecting to 20% denaturing PAGE analysis. For kinetics study, three independent samples were used with the same procedures mentioned above.

Kinetic study of DNA interstrand cross-link formation using fluorescence assay. Coumarin-modified ODNs (10 μM) were hybridized with 1.0 equiv. of the complementary strands in 100 mM NaCl and 10 mM potassium phosphate (pH 7). The DNA duplexes were irradiated at 350 nm and the fluorescence was measured at the prescribed time. The equations used for calculation of the ICL yields were shown in each figure. For kinetics study, two independent samples were used.

PAGE analysis of photo-induced (254 nm) cleavage reactions of DNA ICL products and kinetic study. The reactions were carried out with photoirradiation at 254 nm using two or three independent samples. Aliquots were taken at the prescribed time and immediately quenched with the equal volume of 95% formamide loading buffer, and stored at -20 °C until subjecting to 20% denaturing PAGE analysis.

7-Hydroxy-4-methyl-2H-chromen-2-O-(2-cyanoethyl-N,N-diisopropyl)-phosphoramidite (8). To a solution of 7-hydroxy-4-methyl-2H-chromen-2-one (3, 88 mg, 0.5 mmol) in dichloromethane (10 mL), N,N-diisopropylethylamine (DIPEA) (156 μL, 0.9 mmol), and 2-cyanoethyl-N,N-diisopropylchlorophosphoramidite (167 μL, 0.75 mmol) were added under an atmosphere of argon. The reaction mixture was stirred at room temperature for 3 h and diluted with dichloromethane (50 mL). The organic layer was washed with NaHCO₃ (20 mL) and saturated aqueous NaCl (20 mL), and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. Upon purification by column chromatography (EtOAc:hexane:E₃N = 59:40:1), the product was isolated as a white solid (8, 170 mg, 90%). \(^{31}\)P NMR (300 MHz, CDCl₃-d): δ 147.48. \(^1\)H
NMR (300 MHz, CDCl$_3$-d): δ 7.50-7.53 (m, 1H), 7.00-7.02 (dd, $J = 1.5$ Hz, 2H), 6.18 (s, 1H), 3.93-4.01 (m, 2H), 3.71-3.79 (m, 2H), 2.69-2.73 (t, $J = 6.3$ Hz, 3H), 1.18-1.27 (dd, $J = 6.6$ Hz, 1H). 13C NMR (300 MHz, CDCl$_3$-d): δ 161.1, 157.7, 157.6, 154.8, 152.4, 125.5, 117.3, 116.5, 116.4, 115.0, 112.7, 107.5, 107.3, 59.3, 59.0, 44.0, 43.8, 24.7, 24.6, 24.5, 24.4, 20.4, 20.3, 18.7. HRMS-ESI (+) (m/z): [M+H]$^+$ calcd. for C$_{19}$H$_{26}$N$_2$O$_4$P, 377.1625; found: 377.1633.

4-Methyl-7-methoxy-2H-chromen-2-one (1). Iodomethane (1.3 mL, 20 mmol) was added to a suspension of 7-hydroxy-4-methyl-2H-chromen-2-one (3, 704 mg, 4 mmol) and K$_2$CO$_3$ (600 mg, 3.34 mmol) in acetone (50 mL). The reaction mixture was stirred at 50°C overnight. After cooling to the room temperature, the solvent was removed under reduced pressure. The residue was diluted with ethyl acetate (50 mL), washed with 1 M HCl (30 mL), H$_2$O (30 mL) and brine (20 mL), and then dried over anhydrous sodium sulfate. The solvent was removed under vacuum providing the product 1 as a white solid (699 mg, 92%). 1H NMR (300 MHz, CDCl$_3$-d): δ 7.60-7.65 (m, 1H), 7.01-7.02 (t, $J = 1.8$ Hz, 1H), 6.93-6.98 (m, 2H), 6.256.28 (t, $J = 1.8$ Hz, 1H), 3.86 (s, 3H), 2.37 (s, 3H).

4-(Hydroxymethyl)-7-methoxy-2H-chromen-2-one (2). To a suspension of 7-hydroxy-4-(hydroxymethyl)-2H-chromen-2-one (14, 384 mg, 2 mmol) and K$_2$CO$_3$ (300 mg, 2.17 mmol) in acetone (30 mL), iodomethane (0.65 mL, 10 mmol) was added. The reaction mixture was stirred at 50°C overnight. After cooling to the room temperature, the solvent was removed under reduced pressure. The residue was diluted with ethyl acetate (50 mL), washed with 1 M HCl (30 mL), and brine (20 mL), and then dried over anhydrous sodium sulfate. The solvent was removed under vacuum providing 2 as a white solid (394 mg, 96%). 1H NMR (300 MHz, CDCl$_3$-d): δ 7.61-7.64 (m, 1H), 7.01-7.02 (t, $J = 1.8$ Hz,
1H), 6.92-6.97 (m, 1H), 6.30-6.31 (t, J = 1.5 Hz, 1H), 5.60-5.64 (m, 1H), 4.73-4.75 (t, J = 1.5 Hz, 2H), 3.85, 3.86 (d, J = 1.8 Hz, 3H).

4-(Hydroxymethyl)-7-methoxy-2H-chromen-2-O-(2-cyanoethyl-N, N-diisopropyl)-phosphor-amidite (9). Compound 2 (103 mg, 0.5 mmol) was dissolved in dichloromethane (8 mL) under an atmosphere of argon. N, N-diisopropylethylamine (DIPEA) (156 µL, 0.9 mmol) was then added dropwise, followed by 2-cyanoethyl-N, N-diisopropylchlorophosphoramidite (167 µL, 0.75 mmol). The reaction mixture was stirred at room temperature for 3 h, then diluted by dichloromethane (30 mL), washed with NaHCO₃ (20 mL), and brine (20 mL), and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. Upon purification by column chromatography (EtOAc:hexane:Et₃N = 40:59:1), the product 9 was isolated as a white solid (148 mg, 73%).³¹P NMR (300 MHz, CDCl₃-d): δ 149.96. ¹H NMR (300 MHz, CDCl₃-d): δ 7.44-7.47 (m, 1H), 6.84-6.88 (dd, J = 3.0 Hz, 2H), 6.44-6.45 (d, J = 1.5 Hz, 1H), 4.84-4.90 (m, 2H), 3.85-3.95 (m, 5H), 3.68-3.71 (dd, J = 3.6 Hz, 2H), 2.66-2.71 (t, J = 6.3 Hz, 2H), 1.22-1.25 (dd, J = 2.4 Hz, 12H). ¹³C NMR (300 MHz, CDCl₃-d): δ 162.6, 161.5, 155.4, 152.5, 152.4, 124.5, 117.6, 112.4, 110.9, 109.5, 101.1, 61.7, 61.5, 58.5, 58.2, 55.8, 43.5, 43.3, 24.8, 24.7, 24.6, 20.5, 20.4. HRMS-ESI (+) (m/z): [M+H]⁺ calcd. for C₂₀H₂₈N₂O₃P, 407.1730; found: 407.1745.

7-(2-Hydroxyethoxy)-4-methyl-2H-chromen-2-one (4). To a suspension of 7-hydroxy-4-methyl-2H-chromen-2-one (3, 704 mg, 4 mmol), KI (1.65 g, 10 mmol) and K₂CO₃ (900 mg, 6.51 mmol) in acetone (60 mL), 2-bromoethanol (1.42 mL, 20 mmol) was added. The reaction mixture was stirred at 50°C for 48 h. After cooling to the room temperature, the solvents were removed under reduced pressure. The residue was diluted with ethyl
acetate (80 mL), washed with 1 M HCl (40 mL), and brine (20 mL), and then dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure. The crude product was purified by column chromatography (EtOAc) yielding 4 as a white solid (642 mg, 73%). ¹H NMR (300 MHz, CDCl₃-d): δ 7.67, 7.70 (d, J = 9.3 Hz, 1H), 6.96, 6.99 (d, J = 6.6 Hz, 2H), 6.21 (s, 1H), 4.90-4.93 (t, J = 5.4 Hz, 1H), 4.09-4.12 (t, J = 5.4 Hz, 2H), 3.72-3.77 (dd, J = 5.1 Hz, 2H), 2.40 (s, 3H).

7-(3-Hydroxypropyloxy)-4-methyl-2H-chromen-2-one (5). To a suspension of 3 (704 mg, 4 mmol), KI (1.65 g, 10 mmol) and K₂CO₃ (900 mg, 6.51 mmol) in acetone (60 mL), 3-bromo-1-propanol (0.54 mL, 6 mmol) was added. The reaction mixture was stirred at 50°C for 36 h. After cooling to the room temperature, the solvent was removed under reduced pressure. The residue was diluted with ethyl acetate (80 mL), washed with 1 M HCl (40 mL), and brine (20 mL), and then dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to afford 5 as a white solid (760 mg, 81%). ¹H NMR (300 MHz, CDCl₃-d): δ 7.49, 7.52 (d, J = 8.7 Hz, 1H), 6.83-6.90 (m, 2H), 6.14 (s, 1H), 4.18-4.22 (t, J = 6.0 Hz, 2H), 3.87-3.92 (dd, J = 5.4 Hz, 2H), 2.41 (s, 3H), 2.06-2.14 (m, 2H).

7-(2-Hydroxyethoxy)-4-methyl-2H-chromen-2-O-(2-cyanoethyl-N, N-diisopropyl)-phosphoramidite (10). To a solution of 4 (110 mg, 0.5 mmol) in dichloromethane (10 mL), N, N-diisopropylethylamine (DIPEA) (156 μL, 0.9 mmol) and 2-cyanoethyl-N, N-diisopropylchlorophosphoramidite (167 μL, 0.75 mmol) were added under an atmosphere of argon. The reaction mixture was stirred at room temperature for 3 h and diluted with EtOAc (50 mL). The organic layer was washed with NaHCO₃ (20 mL) and saturated aqueous NaCl (20 mL), and dried over anhydrous sodium sulfate. The solvent was
removed under reduced pressure. The crude product was purified by column chromatography (EtOAc:hexane:Et$_3$N = 49:50:1) yielding 10 as a white solid (162 mg, 77%). 31P (CDCl$_3$-d, 300 MHz): δ 149.28. 1H NMR (CDCl$_3$-d, 300 MHz): δ 7.41, 7.44 (d, $J = 8.7$ Hz, 1H), 6.75-6.82 (t, $J = 8.7$ Hz, 2H), 6.06 (s, 1H), 4.12-4.15 (t, $J = 4.5$ Hz, 2H), 3.88-4.00 (m, 2H), 3.75-3.80 (m, 2H), 3.52-3.60 (m, 2H), 2.55-2.59 (t, $J = 6.3$ Hz, 2H), 2.32 (s, 3H), 1.11, 1.13 (d, $J = 6.6$ Hz, 12H). 13C NMR (300 MHz, CDCl$_3$-d): δ 161.8, 161.2, 155.2, 152.6, 125.6, 117.6, 113.7, 112.6, 112.0, 101.6, 68.6, 68.5, 61.9, 61.6, 58.6, 43.2, 43.1, 24.7, 24.6, 20.4, 20.3, 18.7. HRMS-ESI (+) (m/z): [M+H]$^+$ calcd. for C$_{21}$H$_{30}$N$_2$O$_5$P, 421.1887; found: 421.1899.

7-(3-Hydroxypropoxy)-4-methyl-2H-chromen-2-O-(2-cyanoethyl-N, N-diisopropyl)-phosphoramidite (11). To a solution of 5 (117 mg, 0.5 mmol) in dichloromethane (10 mL), N, N-diisopropylethylamine (DIPEA) (156 μL, 0.9 mmol) and 2-cyanoethyl-N, N-diisopropylchlorophosphoramidite (167 μL, 0.75 mmol) were added under an atmosphere of argon. The reaction mixture was stirred at room temperature for 3 h and diluted with dichloromethane (30 mL). The organic layer was washed with NaHCO$_3$ (20 mL) and saturated aqueous NaCl (20 mL), and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. The residue was purified by column chromatography (EtOAc:hexane:Et$_3$N = 49:50:1) providing 11 as a white solid (120 mg, 55%). 31P (CDCl$_3$-d, 300 MHz): δ 147.89. 1H NMR (CDCl$_3$-d, 300 MHz): δ 7.40, 7.43 (d, $J = 8.7$ Hz, 1H), 6.75-6.81 (m, 2H), 6.06 (s, 1H), 4.06-4.10 (t, $J = 6.0$ Hz, 2H), 3.72-3.80 (m, 2H), 3.49-3.57 (m, 2H), 2.33 (s, 3H), 2.03-2.07 (t, $J = 6.0$ Hz, 2H), 1.10, 1.11 (t, $J = 2.1$ Hz, 12H). 13C NMR (300 MHz, CDCl$_3$-d): δ 162.1, 161.3, 155.3, 152.5, 125.5, 117.6, 113.6, 112.6, 111.9, 101.5, 65.1, 60.0, 59.8, 58.4, 58.2, 43.2, 43.0, 30.8, 30.7, 24.7, 24.6,
20.4, 20.3, 18.7. HRMS-ESI (+) \((m/z) \): [M+H]\(^+\) calcd. for C\(_{22}\)H\(_{32}\)N\(_2\)O\(_5\)P, 435.2043; found: 435.2055.

7-(1-(3-Hydroxypropyl)-1H,1,2,3-triazol-5-yl)-4-methyl-2H-chromen-2-one (6). To a suspension of 7-ethynyl-4-methyl-2H-chromen-2-one (15, 184 mg, 1 mmol), 3-azidopropan-1-ol (152 mg, 1.5 mmol) and Copper(II) sulfate (pentahydrate) (50 mg, 0.2 mmol) in a mixture of water (10 mL) and tert-butyl alcohol (10 mL), sodium ascorbate (119 mg, 0.6 mmol) was added and stirred at room temperature overnight. After addition of water (20 mL) to mixture, extract with ethyl acetate (20 mL \(\times \) 3). The organic phases were collected, washed with water (20 mL \(\times \) 2) and brine (20 mL), and then dried over anhydrous Na\(_2\)SO\(_4\). The solvent was removed under reduced pressure and the white residue was purified by column chromatography (EtOAc) to afford 6 as a white solid (186 mg, 65\%). \(^1\)H NMR (300 MHz, CDCl\(_3\)-d): \(\delta \) 8.79 (s, 1H), 7.81-7.86 (m, 3H), 6.39 (s, 1H), 4.70-4.73 (t, \(J = 5.1 \) Hz, 1H), 4.47-4.52 (t, \(J = 6.9 \) Hz, 2H), 3.43-3.49 (dd, \(J = 6.0 \) Hz, 2H), 2.45 (s, 3H), 2.00-2.08 (m, 2H). \(^{13}\)C NMR (300 MHz, CDCl\(_3\)-d): \(\delta \) 160.2, 154.0, 153.5, 145.3, 134.8, 126.6, 123.4, 121.4, 119.4, 114.5, 57.9, 47.5, 33.2, 18.5. HRMS-ESI (+) \((m/z) \): [M+H]\(^+\) calcd. for C\(_{15}\)H\(_{16}\)N\(_3\)O\(_3\), 286.1192; found: 286.1186.

2-Cyanoethyl (3-(4-(4-methyl-2-oxo-2H-chromen-7-yl)-1H-1,2,3-triazol-1-yl)propyl) diisopropyl- phosphoramidite (12). To a suspension of 6 (143 mg, 0.5 mmol) in dichloromethane (10 mL), \(N, N \)-diisopropylethylamine (DIPEA) (156 \(\mu \)L, 0.9 mmol) and 2-cyanoethyl-\(N, N \)-diisopropylchlorophosphoramidite (167 \(\mu \)L, 0.75 mmol) were added under an atmosphere of argon. The reaction mixture was protected from light by aluminum foil, stirred at room temperature for 3 h, and diluted with dichloromethane (30 mL). The organic layer was washed with 1M NaHCO\(_3\) (20 mL) and saturated aqueous
NaCl (20 mL), and dried over anhydrous sodium sulfate in the dark room. The solvent was removed under reduced pressure. The crude product was purified by column chromatography (EtOAc:hexane:Et₃N = 49:50:1) in the dark room yielding 12 as a white solid (73 mg, 30%). ³¹P (CDCl₃-d, 300 MHz): δ 148.06. ¹H NMR (CDCl₃-d, 300 MHz): δ 7.92 (s, 1H), 7.76-7.78 (d, \(J = 8.1\) Hz, 1H), 7.63 (s, 1H), 7.56-7.58 (d, \(J = 8.4\) Hz, 1H), 6.19 (s, 1H), 4.49-4.54 (t, \(J = 6.9\) Hz, 2H), 3.48-3.86 (m, 6H), 2.57-2.61 (t, \(J = 6.0\) Hz, 2H), 2.38 (s, 3H), 2.20-2.24 (t, \(J = 6.0\) Hz, 2H), 1.09-1.13 (dd, \(J = 4.2\) Hz, 12H). ¹³C NMR (300 MHz, CDCl₃-d): δ 159.8, 152.9, 151.2, 144.9, 133.4, 124.2, 120.5, 118.5, 116.8, 113.8, 112.5, 59.0, 58.8, 57.4, 57.1, 46.3, 42.2, 42.0, 30.6, 30.5, 23.7, 23.6, 19.6, 19.5, 17.6. HRMS-ESI (+) (m/z): [M+H]⁺ calcd. for C₂₄H₃₃N₅O₄P, 486.2278; found: 486.2285.

7-(2,3-Dihydroxypropoxy)-4-methyl-2H-chromen-2-one (7). To a suspension of 7-hydroxy-4-methyl-2H-chromen-2-one (3, 1.76 g, 10 mmol) and KOH (1.12 g, 20 mmol) in ethanol (50 mL), epichlorohydrin (8.0 mL, 102 mmol) and KI (166 mg, 1 mmol) was added. The reaction mixture was stirred at 70°C for overnight. After cooling to the room temperature, the solvent was removed under vacuum. The residue was submitted to flash chromatography (CH₂Cl₂:MeOH = 98:2, the product has similar Rf value with starting material and is hard to be separated using EtOAc and hexane) to afford 4-methyl-7-(oxiran-2-ylmethoxy)-2H-chromen-2-one as a white solid (1.83 g, 79%). ¹H NMR (300 MHz, CDCl₃-d): δ 7.42-7.45 (d, \(J = 9.0\) Hz, 1H), 6.81-6.85 (dd, \(J = 2.4\) Hz, 1H), 6.76 (d, \(J = 2.4\) Hz, 1H), 6.08 (s, 1H), 4.25-4.29 (d, \(J = 2.7\) Hz, 1H), 3.88-3.93 (q, \(J = 6.0\) Hz, 1H), 3.30-3.35 (m, 1H), 2.86-2.89 (t, \(J = 4.5\) Hz, 1H), 2.71-2.74 (q, \(J = 2.7\) Hz, 1H), 2.33 (s, 3H). The solution of 4-methyl-7-(oxiran-2-ylmethoxy)-2H-chromen-2-one (1.16 g, 5
mmol) in 6% perchloric acid (40 ml) was stirred at room temperature for overnight. Then, the pH of the solution was adjusted to 8 via addition of Na₂CO₃. After stirring for 2 h, ethyl acetate (80 mL) was added and stirred for 20 h. The organic layer was washed with water (20 mL) and saturated aqueous NaCl (20 mL), and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure to afford 7-(2,3-Dihydroxypropoxy)-4-methyl-2H-chromen-2-one 7 (1.05 g, 84%) as a viscous liquid which was solidified into a white solid upon standing. \(^1H \) NMR (DMSO-\(d_6 \)): \(\delta \) 7.66-7.68 (d, \(J = 8.4 \) Hz, 1H), 6.95-6.99 (m, 2H), 6.20 (s, 1H), 5.04-5.06 (d, \(J = 5.1 \) Hz, 1H), 4.72-4.76 (t, \(J = 5.4 \) Hz, 1H), 4.10-4.14 (dd, \(J = 3.9 \) Hz, 1H), 3.96-4.01 (m, 1H), 3.80-3.85 (m, 1H), 3.44-3.48 (t, \(J = 5.4 \) Hz, 2H), 3.04 (s, 3H).

7-(3-(Bis(4-methoxyphenyl)(phenyl)methoxy)-2-hydroxypropoxy)-4-methyl-2H-chromen-2-one (16). To the solution of compound 7 (0.50 g, 2.0 mmol) in pyridine (8 mL), 4, 4'-dimethoxytriphenylmethyl chloride (0.81 g, 2.4 mmol) was added. The mixture was stirred at room temperature for overnight. The reaction mixture was quenched with MeOH (5 mL) and concentrated under reduced pressure. Upon purification by column chromatography (EtOAc:Et₃N = 99:1), 7-(3-(bis(4-methoxyphenyl)(phenyl)methoxy)-2-hydroxypropoxy)-4-methyl-2H-chromen-2-one 16 was isolated as a white foam (0.76 g, 69%). \(^1H \) NMR (DMSO-\(d_6 \)): \(\delta \) 7.67-7.70 (d, \(J = 8.7 \) Hz, 1H), 7.39-7.41 (d, \(J = 7.5 \) Hz, 2H), 7.19-7.32 (m, 7H), 6.85-6.96 (m, 6H), 6.22 (s, 1H), 5.24-5.26 (d, \(J = 5.4 \) Hz, 1H), 4.00-4.19 (m, 3H), 3.73 (s, 6H), 3.08-3.10 (d, \(J = 5.7 \) Hz, 2H), 2.4 (s, 3H). \(^{13}C \) NMR (300 MHz, CDCl₃-\(d_3 \)): \(\delta \) 162.2, 160.7, 158.5, 155.2, 153.9, 145.4, 136.2, 130.2, 128.2, 127.1, 126.9, 113.6, 113.0, 111.6, 101.7, 85.8, 70.6, 68.4,
64.6, 55.5, 18.6. HRMS-ESI (+) (m/z): [M+H]+ calcd. for C_{34}H_{33}O_7, 553.2226; found: 553.2216.

1-(Bis(4-methoxyphenyl)(phenyl)methoxy)-3-((4-methyl-2-oxo-2H-chromen-7-yl)oxy)-propan-2-yl (2-cyanoethyl) diisopropylphosphoramidite (13). To a solution of compound 16 (226 mg, 0.50 mmol) in anhydrous CH_2Cl_2 (5 mL) under argon atmosphere, N, N-diisopropylethylamine (DIPEA) (156 µL, 0.9 mmol) was then added dropwise, followed by 2-cyanoethyl-N, N-diisopropylchlorophosphoramidite (167 µL, 0.75 mmol). The reaction mixture was stirred at room temperature for 3 h, then diluted by dichloromethane (30 mL), washed with NaHCO_3 (20 mL), and brine (20 mL), and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. Upon purification by column chromatography (EtOAc:hexane:Et_3N = 40:59:1), the product 13 was isolated as a white foam (266 mg, 71%). ^{31}P (CDCl_3-d, 300 MHz): δ 149.99, 149.67. ^1H NMR (DMSO-d_6): δ 7.12-7.43 (m, 10H), 6.71-6.80 (m, 6H), 6.06 (s, 1H), 4.02-4.26 (m, 3H), 3.42-3.75 3.16-3.31 (m, 2H), 2.49-2.60 (m, 1H), 2.37-2.41 (m, 1H), 2.32 (s, 3H), 1.07-1.13 (m, 9H), 0.96-0.98 (d, J = 6.6 Hz, 3H). ^13C NMR (300 MHz, CDCl_3-d): δ 160.8, 160.2, 157.5, 154.2, 151.5, 143.6, 134.9, 129.1, 127.2, 126.8, 125.8, 124.6, 116.6, 112.7, 112.1, 111.5, 111.4, 111.0, 100.7, 85.2, 70.9, 70.7, 70.5, 70.3, 68.3, 68.1, 62.4, 57.5, 57.2, 54.2, 42.3, 42.1, 29.7, 23.4, 19.3, 19.1, 17.7. HRMS-ESI (+) (m/z): [M+H]+ calcd. for C_{43}H_{50}N_2O_8P, 753.3305; found: 753.3295.

Synthesis of coumarin-dT and coumarin-coumarin dimers. A solution of 4-methyl-7-methoxy-2H-chromen-2-one (1, 38 mg, 0.2 mmol) and dT (146 mg, 0.6 mmol) in methanol (200 mL) was irritated with UV light at 350 nm for 3 days at room temperature.
After removing solvent under reduced pressure, products were isolated upon purification by column chromatography.

7-(4-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3-methoxy-10a,10b-dimethyl-6b,7,10a,10b-tetrahydro-6H-chromeno[4',3':3,4]cyclobuta[1,2-d]pyrimidine-6,8,10(6aH,9H)-trione (17). (CH$_2$Cl$_2$:MeOH = 95:5, a yellowish oil, 13 mg, 15%). 1H NMR (300 MHz, DMSO-d_6): δ 7.18, 7.21 (d, $J = 8.7$ Hz, 1H), 6.70-6.73 (m, 1H), 6.51-6.53 (t, $J = 2.4$ Hz, 1H), 5.88 (m, 1H), 4.78, 4.82 (d, $J = 9.3$ Hz, 1H), 4.19-4.21 (t, $J = 2.4$ Hz, 1H), 4.04 (s, 3H), 3.64 (s, 2H), 3.28, 3.31 (d, $J = 9.3$ Hz, 1H), 1.99-2.06 (m, 2H), 1.56 (s, 3H), 1.27 (s, 3H). 13C NMR (300 MHz, DMSO-d_6): δ 172.4, 164.7, 159.8, 151.5, 151.3, 128.7, 116.5, 111.2, 101.7, 87.3, 85.7, 83.3, 70.8, 62.0, 55.8, 52.3, 52.4, 46.9, 22.8, 22.6, 18.3, 17.9. HRMS-ESI (+) (m/z): [M+H]$^+$ calcd. for C$_{21}$H$_{25}$N$_2$O$_8$, 433.1605; found: 433.1612.

10-(4-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3-methoxy-6b,10b-dimethyl-8,10a,10b-tetrahydro-6H-chromeno[3',4':3,4]cyclobuta[1,2-d]pyrimidine-6,7,9(6aH,6bH)-trione (18). (CH$_2$Cl$_2$:MeOH = 95:5, a yellowish oil, 8 mg, 9.2%). 1H NMR (300 MHz, DMSO-d_6): δ 10.65 (s, 1H), 7.20, 7.23 (d, $J = 8.7$ Hz, 1H), 6.79-6.82 (m, 1H), 6.65, 6.66 (d, $J = 2.4$ Hz, 1H), 5.97-6.02 (m, 1H), 5.06, 5.08 (d, $J = 3.6$ Hz, 1H), 4.50 (s, 1H), 4.03-4.10 (m, 3H), 3.78 (s, 3H), 3.16-3.18 (m, 3H), 1.77 (m, 2H), 1.36 (s, 3H), 1.01 (s, 3H). 13C NMR (300 MHz, DMSO-d_6): δ 172.5, 163.8, 160.0, 151.7, 130.9, 114.3, 111.2, 102.6, 87.3, 84.1, 71.7, 62.1, 55.9, 52.7, 52.2, 50.3, 49.1, 42.7, 42.0, 37.9, 27.1, 20.4. HRMS-ESI (+) (m/z): [M+H]$^+$ calcd. for C$_{21}$H$_{25}$N$_2$O$_8$, 433.1605; found: 433.1615.
3,9-Dimethoxy-6b,12b-dimethyl-12a,12b-dihydrocyclobuta[1,2-c:3,4-c']dichromene-6,12(6aH,6bH)-dione (19). (CH$_2$Cl$_2$:MeOH = 99:1, a white solid, 5.6 mg, 15%). 1H NMR (300 MHz, CDCl$_3$-d): δ 6.97-7.04 (m, 2H), 6.70-6.73, 5.98-5.99 (m, 2H), 6.56-6.00 (m, 2H), 3.76, 3.60 (s, 6H), 3.35, 3.31(s, 2H), 1.60, 1.18 (s, 6H). 13C NMR (300 MHz, CDCl$_3$-d): δ 165.0, 163.7, 159.3, 150.7, 149.3, 127.0, 126.5, 114.0, 112.8, 111.0, 110.7, 101.4, 100.8, 54.6, 54.2, 45.6, 44.0, 40.0, 30.7, 25.4. HRMS-ESI (+) (m/z): [M+H]$^+$ calcd. for C$_{22}$H$_{21}$O$_6$, 381.1338; found: 381.1346.
4.10. References

Chapter 5. Rearrangement of Coumarin-Induced DNA Intrastrand Cross-Linking to Interstrand Cross-Linking

5.1. Introduction

The coumarin-containing ODNs are capable of cross-linking dT or dC in the complementary ODN strands upon 350 nm irradiation and the coumarin-induced cross-linking is photoreversible upon 254/350 nm irradiation.\(^1\) Moreover, the fluorescence of coumarins is quenched upon ICL formation, which provides a novel method for fast, easy, and real-time detection of DNA cross-linking via fluorescence spectroscopy.\(^2\) This approach can be used in DNA bioanalysis. However, it is not clear whether the intrastrand photocycloaddition reactions compete for interstrand cross-linking. Addressing this important issue will expand its biological application.

Psoralens, with similar structure as coumarins, generate DNA ICLs but also side products such as monoadducts. Monoadducts formation is three times that of interstrand cross-links formation.\(^3\) Coumarins also can induce interstrand and interstrand cross-links in DNA-templated reaction. This prompted us to undertake a systematic study to establish a perfect model for studying competition between ICL reaction and ligation reaction. The relation of interstrand and intrastrand photocycloaddition reactions was experimentally studied, but more chemistry was discovered in photoreversible reactions.

5.2. Synthesis of ODNs Containing Coumarin Moieties

Preparation of coumarin analogues 1-3 followed the procedures described in our previous reports.\(^2\) Compound 1 was synthesized from compound 2 via Williamson ether synthesis, and coumarin 2 and 3 were prepared with Pechmann Condensation between resorcinol
and ethyl acetoacetate or Malic acid. Compounds 1 and 2 allowed us to study the effects of dT position and linker on the cross-linking efficiency, while 2 and 3 were used to investigate the effect of methyl group at position-4 on coumarin’s photoactivity. Compounds 1-3 with a hydroxyl group were converted to the corresponding phosphoramidites 4-6 used for solid-phase DNA synthesis (Figure 5-1). All new compounds were confirmed by NMR and HRMS.

![Synthesis of the phosphoramidites 4-6.](image)

Figure 5-1. Synthesis of the phosphoramidites 4-6.

ODNs containing 1-3 were synthesized using commercially available β-cyanoethyl phosphoramidites with phenoxyacetyl protecting groups on the exocyclic amines of dA and dG, which allows for a very mild deprotection condition avoiding decomposition of the functionalized ODNs 7b, 8b, 11b, 12b, 13c, and 14c (Figure 5-2). Purification of all ODNs was performed by 20% denaturing polyacrylamide gel electrophoresis.
Figure 5-2. Double stranded DNAs used in this study.

5.3. The Effects of dT Position and Linker on the ICL Efficiency

To obtain suitable ligation product for the study, ICL with high efficiency (ICL yield > 90%) should be well controlled in the process. Our previous report verified that the linker of coumarin and flanking sequences played an important role in the ICL formation.\(^2\) Quantitative DNA interstrand cross-link was generated using coumarin moieties with a flexible two-carbon or longer linker, and ICL reaction showed a kinetic preference when
the coumarin was flanked by an A:T base pair as opposed to a G:C pair, due to the
efficient photoinduced electron transfer between coumarin and dG. In addition, no
cycloaddition reaction was observed between coumarin and dG. Thus, ds DNA 7-12
containing coumarin analogues were designed for studying the effect of dT position and
linker on ICL efficiency (Figure 5-2). Because coumarins cannot cross-link dG in DNA,
duplexes ds DNA-7, ds DNA-9, and ds DNA-11 with increasing distance between
coumarin 1 and dT in the opposite strand enables the study of the effect of the dT
position on ICL formation. While 2 without the linker was introduced in ds DNA-8, ds
DNA-10, and ds DNA-12 which allow investigation of the linker’s effect on ICL
formation.

Upon photo-irradiation at 350 nm, ICL products were obtained for all DNA duplexes
with different efficiency and rates (Figure 5-3). Almost quantitative DNA ICL formation
was observed for ds DNA-7 (98%) and ds DNA-9 (97%) containing coumarin 1 with a
two-carbon linker, and a slightly lower ICL yield was observed for ds DNA-11 (78%)
resulting from the increased distance between coumarin and dT. However, formation of
ICL adducts was less efficient for ds DNA-8 (89%), ds DNA-10 (66%), and ds DNA-12
(50%) bearing coumarin 2. In addition, decreased ICL yields were observed with
increasing distance between dT and 2 (Figure 5-3). The ICL yield ratio for ds DNA-
8/10/12 is 1/0.74/0.56, while that is 1/0.99/0.80 for ds DNA-7/9/11. This showed that
ICL formation induced by 2 is more dependent on the distance/position than 1. Thus, 2
induced ICL reaction process can be easily handled via careful design of DNA sequences.

Kinetic study showed that installation of dG next to coumarin:dT base pair greatly
decreased the ICL reaction rate. Introduction of dG in ds DNA-9 (6.1 ± 0.5 \times 10^{-4} \text{ s}^{-1}) and
10 (6.3 ± 0.3 $\times 10^{-5}$ s$^{-1}$) led to 7 times lower reaction rate than that for ds DNA-7 (4.2 ± 0.4 $\times 10^{-3}$ s$^{-1}$) and 8 (4.8 ± 0.4 $\times 10^{-4}$ s$^{-1}$) (Table 5-1). Further rate reduce was observed for ds DNA-11 (1.6 ± 0.1 $\times 10^{-4}$ s$^{-1}$) and 12 (8.4 ± 0.4 $\times 10^{-5}$ s$^{-1}$), due to longer distance between the coumarin and dT. In order to perform well-controlled ICL formation with suitable efficiency and reactivity, coumarins without linker, such as 2 with methyl group and 3 bearing no methyl group at position-4, were chosen for ICL and ligation reaction study, as well as investigation of substitution effect on the reactivity of coumarin.

Figure 5-3. PAGE analysis of distance-dependent ICL formation (100 nM ds DNA-7-12 was irradiated at 350 nm; ODNs without coumarins were 5'-[32P]-labeled.).

Table 5-1. ICL reaction rates for ds DNA-7-12.

<table>
<thead>
<tr>
<th>Entry</th>
<th>$k \times 10^{-5}$ s$^{-1}$</th>
<th>$t_{1/2}$ (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ds DNA-7</td>
<td>420 ± 40</td>
<td>3 ± 0</td>
</tr>
<tr>
<td>ds DNA-8</td>
<td>47.8 ± 4.0</td>
<td>24 ± 2</td>
</tr>
<tr>
<td>ds DNA-9</td>
<td>61.4 ± 5.3</td>
<td>19 ± 2</td>
</tr>
<tr>
<td>ds DNA-10</td>
<td>6.3 ± 0.3</td>
<td>184 ± 9</td>
</tr>
<tr>
<td></td>
<td>ds DNA-11</td>
<td>16.2 ± 0.7</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>ds DNA-12</td>
<td>8.4 ± 0.4</td>
</tr>
</tbody>
</table>

5.4. Coumarin-Induced ICL and Ligation Reaction

A model was established for the study of coumarin-induced intrastrand and interstrand cross-links. As the intrastrand cycloaddition (cross-links) does not change the length and mass of the ODN strands, it cannot be characterized via commonly used PAGE analysis and mass spectrometry.\(^4\)\(^5\) We designed the DNA duplexes that enable the ligation reaction used for analysing the intrastrand cross-links. DNA sequences with less dG near coumarins were designed to ensure the proper reactivity, such as the ds DNA-13 and 14 which contain d(AT/T2A) and d(AT/T3A), respectively. Cycloaddition between coumarin 2 and dT in the opposing strand ODN-13a can produce ICL adducts, while the reaction with dT in ODN-13b yields the ligation products. Thus, it can be used to study competition between intrastrand cross-linking and interstrand cross-linking reaction. The ICL products and ligation products can be detected via labelling different ODNs with \(^{32}\)P. The 5'-\(^{32}\)P-labelled ODN-13a was used for ICL analysis and 5'-\(^{32}\)P-labelled ODN-13b was employed for ligation reaction study.

As expected, both ICL and ligation products were observed for ds DNA-13 and 14 upon irradiation at 350 nm. Formation of the ICL and ligation products corresponding to top band in denaturing gel increased with extended reaction time which can be seen from the increased intensity of the top band. The quantitative analysis showed that the ICL and ligation yields after 6 h photoirradiation were 36.7% and 29.3% respectively for ds DNA-13 containing 2 with methyl group at the position-4, and 34.2% and 34.7% for ds
DNA-14 bearing 3 without methyl group. No big difference was observed for the total reaction yields, which suggested substitution of methyl group at the position-4 of coumarin has no obvious effect on its cycloaddition reactivity (Figure 5-4). Kinetic study indicated that the ligation reaction proceeded faster than that of ICL reaction with ds DNA-13((1.21 ± 0.13) × 10^{-4} s^{-1} for ligation vs. (0.96 ± 0.06) × 10^{-4} for ICL). Similar result was obtained for ds DNA-14, which suggested the photoligation was kinetic-controlled (Table 5-2).

Figure 5-4. PAGE analysis of ICL and ligation reactions for ds DNA-13 (a,b)/14 (c,d) [ODN 13a was 5’-[^32]P]-labeled for ICL reactions (a) and (c). ODN 13b was 5’-[^32]P]-labeled for ligation reactions (b) and (d). 100 nM ds DNA were irradiated at 350 nm.].
Figure 5-5. PAGE analysis of ICL and ligation reactions for ds DNA-15 (a,b)/16 (c,d) [ODN 15a was 5’-[³²P]-labeled for ICL reactions (a) and (c). ODN 15b was 5’-[³²P]-labeled for ligation reactions (b) and (d). 100 nM ds DNA were irradiated at 350 nm.].

In addition to a cycloaddition between coumarin and dT, dC also forms cross-linking adducts with the coumarin in DNA. The ds DNA-15/16 containing d(CT/G2A) and d(CT/G3A) at central sites respectively were designed to study competition reaction between dT/coumarin ICL reaction and dC/coumarin ligation reaction. The coumarin 3 was more reactive than 2 in this sequence. Lower yields for ICL and ligation products were observed for ds DNA-15 (ICL: 17.0% and ligation: 15.4%) than ds DNA-16 (35.6% for ICL and 16.2% for ligation) after photoirradiation for 10 h (Figure 5-5). Compound 3 has higher absorption coefficient at 350 nm in water (3144 mole⁻¹.cm⁻¹) than 2 (1722 mole⁻¹.cm⁻¹) which may lead to better photoreactivity. Compounds with higher absorption coefficients are more easily to absorb photons forming the excited states for photocycloaddition reactions. On the other hand, lower reaction rate was also observed for ds DNA-15 than ds DNA-16 possibly due to electron transfer between
coumarin and dG. The ICL and ligation reactions carried on at a rate of \((3.08 \pm 0.27) \times 10^{-5}\) s\(^{-1}\) and \((5.48 \pm 0.46) \times 10^{-5}\) respectively for ds DNA-15, and that were \((5.76 \pm 0.60) \times 10^{-5}\) s\(^{-1}\) and \((4.20 \pm 0.40) \times 10^{-5}\) respectively for ds DNA-16 (Table 5-2).

Table 5-2. Rates of cross-link formation or cleavage for ds DNA-13-16.

<table>
<thead>
<tr>
<th>Entry</th>
<th>(k) (ICL Formation, (10^5) s(^{-1}))</th>
<th>(t_{1/2}) (h)</th>
<th>(k_c) (ICL Cleavage, (10^3) s(^{-1}))</th>
<th>(t_{1/2}) (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ds DNA-13</td>
<td>9.6 ± 0.6</td>
<td>2.01 ± 0.12</td>
<td>5.12 ± 0.27</td>
<td>2.26 ± 0.12</td>
</tr>
<tr>
<td>ds DNA-14</td>
<td>15.7 ± 0.6</td>
<td>1.22 ± 0.04</td>
<td>4.75 ± 0.34</td>
<td>2.44 ± 0.17</td>
</tr>
<tr>
<td>ds DNA-15</td>
<td>3.08 ± 0.27</td>
<td>6.30 ± 0.55</td>
<td>8.79 ± 0.71</td>
<td>1.32 ± 0.11</td>
</tr>
<tr>
<td>ds DNA-16</td>
<td>5.76 ± 0.60</td>
<td>3.37 ± 0.35</td>
<td>3.98 ± 0.33</td>
<td>2.92 ± 0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entry</th>
<th>(K) (Ligation Formation, (10^5) s(^{-1}))</th>
<th>(t_{1/2}) (h)</th>
<th>(k_c) (Ligation Cleavage, (10^3) s(^{-1}))</th>
<th>(t_{1/2}) (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ds DNA-13</td>
<td>12.1 ± 1.3</td>
<td>1.61 ± 0.17</td>
<td>5.94 ± 0.45</td>
<td>1.96 ± 0.15</td>
</tr>
<tr>
<td>ds DNA-14</td>
<td>16.7 ± 1.6</td>
<td>1.16 ± 0.11</td>
<td>9.78 ± 0.43</td>
<td>1.18 ± 0.05</td>
</tr>
<tr>
<td>ds DNA-15</td>
<td>5.48 ± 0.46</td>
<td>3.54 ± 0.30</td>
<td>6.58 ± 0.79</td>
<td>1.78 ± 0.21</td>
</tr>
<tr>
<td>ds DNA-16</td>
<td>4.20 ± 0.40</td>
<td>2.70 ± 0.25</td>
<td>6.24 ± 0.66</td>
<td>1.87 ± 0.20</td>
</tr>
</tbody>
</table>

5.5. Rearrangement and Photorelease of the Coumarin Moiety

5.5.1. Rearrangement during Photoswitchable Process

The coumarin-induced photocycloadditions with dT and dC are photoreversible. The irradiation at 254 nm of photocycloaddition products gave corresponding single strands
in more than 70% yield. The cleavage reactions followed first-order kinetics and completed within 10 min. The cleavage reactions were much faster than the cross-link reactions (Table 5-2). For example, all cleavage reactions rates are around 5×10^{-4} s$^{-1}$ that is about 30-200 times larger than that for cross-link formation reactions. In addition, cleavage of ligation products proceeded faster than that of ICL products. For instance, the cleavage reaction rate of ligation product formed with ds DNA-14 is $(9.78 \pm 0.43) \times 10^{-4}$ s$^{-1}$ which is two times that the cleavage rate for ICL products $(4.75 \pm 0.34) \times 10^{-4}$ s$^{-1}$). It possibly arises from steric hinder, promoting cleavage reaction, in the ligation products, which contain one more coumarin moiety than matched template.

Moreover, rearrangement of the ligation products to the ICL products was observed during the photoswitchable processes. The photoreversible behaviors were observed within three cycles of photoirradiation at 350 nm for 20 h and 254 nm for 10 min (Figure 5-6). Unlike our previous reports that ICL decreased a little after each cycle, the ICL yields increased but the ligation yield decreased upon photoirradiation at 350 nm during each cycle. For example, the ICL yield for ds DNA-13 increased from 43% in the first cycle to 50% after three cycles of 350 nm/254 nm irradiation, while the ligation yield decreased from 31% to 9% in this process (Figure 5-6a). Similar results were observed for ds DNA-14 and ds DNA-15 indicating the rearrangement from kinetic-controlled ligation products to thermo-controlled ICL products. After each cleavage reaction, the free coumarin prefers to react with dT in the complementary strand to form the stable ICL product resulting in the rearrangement. In addition, the ligation cross-linkings containing extra coumarin than complementary strands are unstable in DNA hybridization, which also promoted the migration.
Figure 5-6. Cross-link yields during photoreversible process for ds DNA-13 (a), ds DNA-14 (b), ds DNA-15 (c), and ds DNA-16 (d) (photoirradiation at 350 nm for 20 h and 254 nm for 10 min for each cycle).

However, the rearrangement between thermo-dependent cross-links and kinetic-controlled ligation products for ds DNA-16 was not observed, and both ICL and ligation yields reduced after each cycle (Figure 5-6d). ICL yield for ds DNA-16 reduced from 41% in the first circle to 35% after three cycles of 350 nm/254 nm irradiation, while the ligation yield decreased from 14% to 3% in this process (Figure 5-6d). One new band migrating faster than the original single strand ODN-14c was observed after 3 cycles’
photoreversible reactions. The new band ss DNA* may result from photorelease of coumarin 3 in ODN-14c.

5.5.2. Photorelease Reaction

Further study showed that the photorelease of the coumarin moiety only occurred for ODNs containing 3 which was sequence-specific and light-dependent. No obvious photorelease products were observed for coumarin 2-containing DNA duplexes. The ds DNA-15 and 16 containing 3 were used to study the photorelease reactions. The ds DNA-15 and 16 were treated with UV lights at different wavelength for designed time. We found the cycloaddition reaction between dT and coumarin 3 in ds DNA-15 did not show clear photorelease reaction (Figure 5-7, lanes 2-5). In ds DNA-16, the ligation products between 3 and dC produce obvious ss DNA* band upon 254 nm irradiation only after treatment with photoirradiation at 350 nm (Figure 5-7, lanes 6, 7 and 9). This suggests the photorelease reaction only occurs for coumarin 3-containing DNA duplexes with G:C base pair next to coumarins. No ss DNA* band clearly appear without 350 nm photoirradiation in DNA-16 (Figure 5-7, lane 8). This indicated that substitution of methyl group of coumarin affect the photorelease reaction in DNA, and G:C base pair and irradiation at 350 nm played an important role in this process. Similar results were observed for coumarin-caged compounds at position-4 and 7, but this is the first example for DNA sequence-specific photorelease reaction.8-10
Figure 5-7. Photorelease reaction of 3 for ds DNA-15/16 (they were treated with irradiations at different wavelength for desired time, and ODN 14c was 3'-[32P]-labelled.).

5.6. Experimental Section

PAGE analysis of DNA ICL and ligation reactions and the kinetic study. The 5'-32P-labeled ODNs (500 nM) and its complementary strands (1.5 eq.) were hybridized in 100 mM NaCl and 10 mM potassium phosphate (pH 7). The DNA duplexes were photoirradiated at 350 nm for desired time. A control reaction was performed without 350 nm photoirradiation. Aliquots were taken at the prescribed times and immediately quenched with the equal volumes of 95% formamide loading buffer, and stored at -20°C until subjecting to 20% denaturing PAGE analysis. For kinetics study, three independent samples were studied with the same procedures mentioned above.
PAGE analysis of photo-induced (254 nm) cleavage reactions of DNA ICL products and kinetic study. The reactions were carried out with photoirradiation at 254 nm using two or three independent samples. Aliquots were taken at the prescribed time and immediately quenched with the equal volume of 95% formamide loading buffer, and stored at -20 °C until subjecting to 20% denaturing PAGE analysis.

Photoirradiation at 350 nm was conducted in Rayonet Photochemical Chamber Reactor (Model RPR-100), and photoirradiation at 254 nm was carried out using Compact UV Lamp (UVGL-25). Fluorescence spectra were recorded on a Perkin-Elmer LS55 Fluorescence Spectrometer using the quartz cell with 10 mm path lengths at room temperature. 1H NMR, 13C NMR, and 31P NMR analysis were performed on a Bruker DRX 300 MHz spectrophotometer. Chemical shifts are reported in ppm relative to Me$_4$Si (1H and 13C) or H$_3$PO$_4$ (31P). Coupling constants (J) are reported in Hz.

7-Hydroxy-2H-chromen-2-O-(2-cyanoethyl-N,N-diisopropyl)-phosphoramidite (4). To the solution of 7-hydroxy-2H-chromen-2-one (81 mg, 0.5 mmol) in dichloromethane (10 mL), N,N-diisopropylethylamine (DIPEA) (156 μL, 0.9 mmol) and 2-cyanoethyl-N,N-diisopropyl- chlorophosphoramidite (167 μL, 0.75 mmol) were added under an atmosphere of argon. After stirring at room temperature, the reaction mixture was diluted with dichloromethane (50 mL), washed with NaHCO$_3$ (20 mL) and saturated aqueous NaCl (20 mL). The organic layer was dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. Upon purification by column chromatography (EtOAc:hexane:Et$_3$N = 49:50:1, R$_f$ = 0.70), the product was isolated as a white solid (136 mg, 75%). 1H NMR (300 MHz, CDCl$_3$-d): δ. 7.56, 7.59 (d, J = 9.6 Hz, 1H), 7.30, 7.33 (d, J = 8.4 Hz, 1H), 6.90-6.94 (m, 2H), 6.20, 6.24 (d, J = 9.6 Hz, 1H),
3.87-3.90 (m, 2H), 3.63-3.71 (m, 2H), 2.61-2.85 (t, J = 6.3 Hz, 2H), 1.10-1.19 (d, J = 6.9 Hz, 12H). 13C NMR (300 MHz, CDCl$_3$-d): δ. 160.00, 158.90, 156.80, 154.34, 142.28, 127.74, 116.25, 115.82, 115.70, 112.96, 106.42, 106.27, 58.25, 58.00, 43.04, 42.86, 23.63, 23.54, 23.45, 23.35, 19.40, 19.30. 31P NMR (300 MHz, CDCl$_3$-d): δ. 147.59.
5.7. References

5.8. Appendices C: Characterization of Compounds

1H NMR spectra of compound 4 (300 MHz, CDCl$_3$-d).

13C NMR spectra of compound 4 (300 MHz, CDCl$_3$-d).
31P NMR spectra of compound 4 (300 MHz, CDCl$_3$-d).

<table>
<thead>
<tr>
<th>Entry</th>
<th>λ_{ex} (nm)</th>
<th>Abs at λ_{max}</th>
<th>ε (mole$^{-1}.cm^{-1}$)</th>
<th>Abs at 350 nm</th>
<th>ε (mole$^{-1}.cm^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>320</td>
<td>0.6402</td>
<td>12804</td>
<td>0.0861</td>
<td>1722</td>
</tr>
<tr>
<td>3</td>
<td>323</td>
<td>0.565</td>
<td>11300</td>
<td>0.1572</td>
<td>3144</td>
</tr>
</tbody>
</table>

Absorption properties of coumarin 2 and 3.
CURRICULUM VITAE

Huabing Sun

Place of birth: Yanggu, Shandong, China

Education:

Ph.D, University of Wisconsin-Milwaukee, January 2015

M.S, Nankai University (China), June 2010

Major: Organic Chemistry, (Advisor: Prof. Jing Li)

B.S, Tianjin University of Science & Technology (China), June 2007

Major: Applied Chemistry, (Advisor: Prof. Fuzhen Tian)

Publications:

Awards:

Sosnovsky Award for Excellence in Graduate Research, UW-Milwaukee, 2014.4.

Distinguished Graduate Student Fellowship, UW-Milwaukee, 2013-2014.

UW-Milwaukee Chancellor's Graduate Fellowship, UW-Milwaukee, 2010.9-Present.

Tianjin Distinguished Students Award, Tianjin, China, 2005.