Date of Award

May 2015

Degree Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Physics

First Advisor

Jolien Creighton

Second Advisor

Xavier Siemens

Committee Members

David Kaplan, Dawn Erb, Patrick Brady

Abstract

It is widely anticipated that the first direct detections of gravitational waves will be made by advanced gravitational-wave detectors, such as the two Laser Interferometer Gravitational-wave Observatories (LIGO) and the Virgo interferometer. In preparation for the advanced detector era, I have worked on both detection and post-detection efforts involving two gravitational wave sources: isolated rotating neutron stars (NSs) and compact binary coalescences (CBCs). My dissertation includes three main research projects: 1) a population synthesis study assessing the detectability of isolated NSs, 2) a CBC search for intermediate-mass black-hole binaries (IMBHBs), and 3) new methods for directly measuring the neutron-star (NS) equation of state (EOS).

Direct detections of gravitational waves will enrich our current astrophysical knowledge. One such contribution will be through population synthesis of isolated NSs. My collaborators and I show that advanced gravitational-wave detectors can be used to constrain the properties of the Galactic NS population. Gravitational wave detections can also shine light on a currently mysterious astrophysical object: intermediate mass black holes. In developing the IMBHB search, we performed a mock data challenge where signals with total masses up to a few hundred solar masses were injected into recolored data from LIGO’s sixth science run. Since this is the first time a matched filter search has been developed to search for IMBHBs, I discuss what was learned during the mock data challenge and how we plan to improve the search going forward. The final aspect of my dissertation focuses on important post-detection science. I present results for a new method of directly measuring the NS EOS. This is done by estimating the parameters of a 4-piece polytropic EOS model that matches theoretical EOS candidates to a few percent. We show that advanced detectors will be capable of measuring the NS radius to within a kilometer for stars with canonical masses. However, this can only be accomplished with binary NS waveform models that are accurate to the rich EOS physics that happens near merger. We show that the waveforms typically used to model binary NS systems result in unavoidable systematic error that can significantly bias the estimation of the NS EOS.

Share

COinS