Date of Award

December 2015

Degree Type


Degree Name

Master of Science



First Advisor

Hector R. Bravo

Committee Members

Hector R. Bravo, Qian Liao, ChangShan Wu


Circulation, Green Bay, Hydrodynamics, Lake Michigan, Model Validation, Thermal Regime


In this project we created a hydrodynamic model of the Lower Green Bay of Lake Michigan in Wisconsin, United States using the Visual Environmental Fluid Dynamics Code (EFDC). The model includes four tributary rivers to Lower Green Bay as well as the open boundary flow conditions at Chambers Island. This case study is used to: 1) compare the results obtained with a previous study of Lower Green Bay to validate the creation of the model 2) examine the hydrodynamics of the bay, and 3) create a framework for future studies at Lower Green Bay. The Geographic Information used to build the Grid was obtained from the NOAA web site. Meteorological and flow information was obtained from the National Weather Service and USGS web sites, respectively. It was necessary to create a new model grid as a platform for future studies of Lower Green Bay, and the Visual EFDC 1.2 code was a useful tool in the development of the grid. However, some limitations in the code made the creation of the grid a challenge. In this project, we summarize the process used to overcome challenges in creating a correct grid, and analyze the hydrodynamic results of the model simulation for the period between June and October 2011. Overall, we conclude that the model reproduces field data reasonably well, and a correct modeling framework for hydrodynamic modeling of Lower Green Bay was created.