Date of Award

May 2017

Degree Type


Degree Name

Master of Science



First Advisor

Lingfeng Wang

Committee Members

Lingfeng Wang, David Yu, Xiao Qin


Electric Vehicles, Reliability, Smart Charging


In this thesis, the potential effects of large scale integration of electric vehicles into the power grid are discussed in both the beneficial and detrimental aspects. The literature review gives a comprehensive introduction about the existing smart charging algorithms. According to the system structure and market mechanism, the smart charging algorithms can be divided into centralized and distributed method. With the knowledge of driving patterns and charging characteristics of electric vehicles, both the centralized and decentralized smart charging algorithms are studied in this research.

Based on the smart charging pricing and sequential price update mechanism, a multi-agent based distributed smart charging algorithm is used in this research to flatten the load curve and therefore mitigate the potential detrimental effects caused by uncoordinated charging. Each EV agent has some extent of intelligence to solve its own charging scheduling problem. The optimization method used in this research is the binary hybrid GSA-PSO algorithm, which combines the merits of particle swarm optimization (PSO) and gravitational search algorithm (GSA), and has very good exploration and exploitation abilities. A V2G enabled centralized smart charging algorithm is also introduced in this thesis, each EV can earn revenues by discharging power into the grid. The dominant search matrix is used to resolve the ''curse of dimensionality'' problem existing in the centralized optimization problems. Numerical case studies show both the distributed and V2G enabled smart charging algorithms can effectively transfer the charging load from the peak load period to the load valley hours.

Because of the limited integration ratio of electric vehicles, most power system reliability methods do not evaluate the charging load of EVs separately in their analytical procedures. However, with a fast increasing integration level, the potential effects of large scale integration of EVs on the power system reliability should be comprehensively evaluated. The effects of EV charging on power system reliability in the planning phase is analyzed in this research based on the RBTS. The results show the uncontrolled charging will deteriorate the reliability level while the smart charging can effectively decrease the detrimental effect. The potential application of aggregated EV providing operating reserve to the grid as a kind of ancillary service is also discussed, and the related effects on power system reliability in operating phase are calculated using the modified PJM method. The case study shows the unit commitment risk of the system can decrease to a very low level with the additional operating reserve capacity provided by aggregated EVs, which can not only improve the system's reliability level but also save the cost.