Date of Award

August 2017

Degree Type


Degree Name

Master of Science



First Advisor

Mohammad Habibur Rahman

Committee Members

Yongjin Sung, Veysi Malkoc


Arm Impairment, Kinect, Kinematics, Nao, Robot Guided Rehabilitation Therapy, Tele-operation


To rehabilitate individuals with impaired upper-limb function, we have designed and developed a robot guided rehabilitation scheme. A humanoid robot, NAO was used for this purpose. NAO has 25 degrees of freedom. With its sensors and actuators, it can walk forward and backward, can sit down and stand up, can wave his hand, can speak to the audience, can feel the touch sensation, and can recognize the person he is meeting. All these qualities have made NAO a perfect coach to guide the subjects to perform rehabilitation exercises. To demonstrate rehabilitation exercises with NAO, a library of recommended rehabilitation exercises involving shoulder (i.e., abduction/adduction, vertical flexion/extension, and internal/external rotation), and elbow (i.e., flexion/extension) joint movements was formed in Choregraphe (graphical programming interface). In experiments, NAO was maneuvered to instruct and demonstrate the exercises from the NRL. A complex ‘touch and play’ game was also developed where NAO plays with the subject that represents a multi-joint movement’s exercise. To develop the proposed tele-rehabilitation scheme, kinematic model of human upper-extremity was developed based modified Denavit-Hartenberg notations. A complete geometric solution was developed to find a unique inverse kinematic solution of human upper-extremity from the Kinect data. In tele-rehabilitation scheme, a therapist can remotely tele-operate the NAO in real-time to instruct and demonstrate subjects different arm movement exercises. Kinect sensor was used in this scheme to get tele-operator’s kinematics data. Experiments results reveals that NAO can be tele-operated successfully to instruct and demonstrate subjects to perform different arm movement exercises. A control algorithm was developed in MATLAB for the proposed robot guided supervised rehabilitation scheme. Experimental results show that the NAO and Kinect sensor can effectively be used to supervise and guide the subjects in performing active rehabilitation exercises for shoulder and elbow joint movements.

Available for download on Saturday, August 31, 2019