Date of Award

May 2018

Degree Type


Degree Name

Doctor of Philosophy


Information Technology Management

First Advisor

Atish Sinha

Second Advisor

Huimin Zhao

Committee Members

Mark Srite, Sanjoy Ghose


Data Mining, Online Trust, Social Network, Text Mining


This dissertation research consists of three essays on studying trust in online social networks. Trust plays a critical role in online social relationships, because of the high levels of risk and uncertainty involved. Guided by relevant social science and computational graph theories, I develop conceptual and predictive models to gain insights into trusting behaviors in online social relationships.

In the first essay, I propose a conceptual model of trust formation in online social networks. This is the first study that integrates the existing graph-based view of trust formation in social networks with socio-psychological theories of trust to provide a richer understanding of trusting behaviors in online social networks. I introduce new behavioral antecedents of trusting behaviors and redefine and integrate existing graph-based concepts to develop the proposed conceptual model. The empirical findings indicate that both socio-psychological and graph-based trust-related factors should be considered in studying trust formation in online social networks.

In the second essay, I propose a theory-based predictive model to predict trust and distrust links in online social networks. Previous trust prediction models used limited network structural data to predict future trust/distrust relationships, ignoring the underlying behavioral trust-inducing factors. I identify a comprehensive set of behavioral and structural predictors of trust/distrust links based on related theories, and then build multiple supervised classification models to predict trust/distrust links in online social networks. The empirical results confirm the superior fit and predictive performance of the proposed model over the baselines.

In the third essay, I propose a lexicon-based text mining model to mine trust related user-generated content (UGC). This is the first theory-based text mining model to examine important factors in online trusting decisions from UGC. I build domain-specific trustworthiness lexicons for online social networks based on related behavioral foundations and text mining techniques. Next, I propose a lexicon-based text mining model that automatically extracts and classifies trustworthiness characteristics from trust reviews. The empirical evaluations show the superior performance of the proposed text mining system over the baselines.