Date of Award

December 2013

Degree Type


Degree Name

Doctor of Philosophy



First Advisor

Yaoyu Li

Second Advisor

David Yu

Committee Members

Yaoyu Li, John Seem, David Yu, Tien-Chien Jen, Ron A. Perez


Control, Offshore, Wind Farm, Wind Turbine


Development of advanced control techniques is a critical measure for reducing the cost of energy for wind power generation, in terms of both enhancing energy capture and reducing fatigue load. There are two remarkable trends for wind energy. First, more and more large wind farms are developed in order to reduce the unit-power cost in installation, operation, maintenance and transmission. Second, offshore wind energy has received significant attention when the scarcity of land resource has appeared to be a major bottleneck for next level of wind penetration, especially for Europe and Asia. This dissertation study investigates on several wind turbine control issues in the context of wind farm and offshore operation scenarios.

Traditional wind farm control strategies emphasize the effect of the deficit of average wind speed, i.e. on how to guarantee the power quality from grid integration angle by the control of the electrical systems or maximize the energy capture of the whole wind farm by optimizing the setting points of rotor speed and blade pitch angle, based on the use of simple wake models, such as Jensen wake model. In this study, more complex wake models including detailed wind speed deficit distribution across the rotor plane and wake meandering are used for load reduction control of wind turbine. A periodic control scheme is adopted for individual pitch control including static wake interaction, while for the case with wake meandering considered, both a dual-mode model predictive control and a multiple model predictive control is applied to the corresponding individual pitch control problem, based on the use of the computationally efficient quadratic programming solver qpOASES. Simulation results validated the effectiveness of the proposed control schemes.

Besides, as an innovative nearly model-free strategy, the nested-loop extremum seeking control (NLESC) scheme is designed to maximize energy capture of a wind farm under both steady and turbulent wind. The NLESC scheme is evaluated with a simple wind turbine array consisting of three cascaded variable-speed turbines using the SimWindFarm simulation platform. For each turbine, the torque gain is adjusted to vary/control the corresponding axial induction factor. Simulation under smooth and turbulent winds shows the effectiveness of the proposed scheme. Analysis shows that the optimal torque gain of each turbine in a cascade of turbines is invariant with wind speed if the wind direction does not change, which is supported by simulation results for smooth wind inputs. As changes of upstream turbine operation affects the downstream turbines with significant delays due to wind propagation, a cross-covariance based delay estimate is proposed as adaptive phase compensation between the dither and demodulation signals.

Another subject of investigation in this research is the evaluation of an innovative scheme of actuation for stabilization of offshore floating wind turbines based on actively controlled aerodynamic vane actuators. For offshore floating wind turbines, underactuation has become a major issue and stabilization of tower/platform adds complexity to the control problem in addition to the general power/speed regulation and rotor load reduction controls. However, due to the design constraints and the significant power involved in the wind turbine structure, a unique challenge is presented to achieve low-cost, high-bandwidth and low power consumption design of actuation schemes. A recently proposed concept of vertical and horizontal vanes is evaluated to increase damping in roll motion and pitch motion, respectively. The simulation platform FAST has been modified including vertical and horizontal vane control. Simulation results validated the effectiveness of the proposed vertical and horizontal active vane actuators.