Date of Award

May 2014

Degree Type


Degree Name

Doctor of Philosophy



First Advisor

Liang Zhang

Committee Members

Liang Zhang, Matthew E H Petering, Vishnuteja Nanduri, Yingchun Yuan, Xiang Fang


Deteriorating Quality, Production Systems, Product Quality, Serial Lines


Manufacturing systems with perishable products are widely seen in practice (e.g., food, metal processing, etc.). In such systems, the quality of a part is highly dependent on its residence time within the system. However, the behavior and properties of these systems have not been studied systematically, and, therefore, is carried out in this dissertation. Specifically, it was assumed that the probability that each unfinished part is of good quality is a decreasing function of its residence time in the preceding buffer. Then, in the framework of serial production lines with machines having Bernoulli and geometric reliability models, closed-form formulas for performance evaluation in the two-machine line case were derived, and develop an aggregation-based procedure to approximate the performance measures in M>2-machine lines. In addition, the monotonicity properties of these production lines using numerical experiments were studied. A case study in an automotive stamping plant is described to illustrate the theoretical results obtained. Also, Bernoulli serial lines with controlled parts released was analyzed for both deterministic and stochastic releases. Finally, bottleneck analysis in Bernoulli serial lines with deteriorating product quality were studied.