Date of Award
May 2016
Degree Type
Dissertation
Degree Name
Doctor of Philosophy
Department
Engineering
First Advisor
Nidal Abu-Zahra
Committee Members
Benjamin Church, Pradeep Rohatgi, Junhong Chen, Wilkistar Otieno
Keywords
Device Physics, Nanoparticles, P3HT/PCBM, Photovoltaics, Polymer Solar Cells, Semiconductors
Abstract
Organic solar cell is a promising technology because of the versatility of organic materials in terms of tunability of their electrical and optical properties. In addition, their relative insensitivity to film imperfections potentially allows for very low-cost high-throughput roll-to-roll processing. However, the power conversion efficiency of organic solar cell is still limited and needs to be improved in order to be competitive with grid parity. This work is focused on the design and characterization of a new organic/inorganic hybrid device to enhance the efficiency factors of bilayer organic solar cells such as: light absorption, exciton diffusion, exciton dissociation, charge transportation and charge collection at the electrodes. In a hybrid solar cell operation, external quantum efficiency is determined by these five factors. The external quantum efficiency has linear relationship to the power conversation efficiency via short circuit current density.
Bulk heterojunction (BHJ) PSCs benefit from a homogeneous donor-acceptor (D-A) contact interface compared to their inorganic counterpart. A homogenous D-A interface offers a longer free path for charge carriers, resulting in a longer diffusional pathway and a larger coulomb interaction between electrons and holes. This is triggered by the low dielectric constant of organic semiconductors. Among various conventional donor-acceptor structures, poly(3-hexylthiophene)/[6,6]-phenyl-C70-butyric acid methyl ester (P3HT/PCBM) mixture is the most promising and ideal donor-acceptor pair due to their unique properties. In order to take benefits from both organic and inorganic materials, inorganic nanoparticles are incorporated in this donor-acceptor polymer structure.
Light trapping enhances light absorption and increases efficiencies with thinner device structure. In this study, copper oxide nanoparticles are used in the P3HT/PC70BM active layer to optimize the optical absorption properties in the blend. In addition, zinc oxide nanoparticles are used for tuning the conjugated polymer films due to their high electron accepting ability and optical absorption properties. In the zinc oxide structure, electrons exhibit higher mobility, which enhances the exciton dissociation efficiency. In addition, metal nanoparticles such as gold are added to the hole transport layer to enhance the overall hole transport ability.
The optimum morphology of P3HT/PCBM films is described by two main features: 1) the molecular ordering within the donor or acceptor phase, which affects the photon absorption and carrier mobility; and 2) the scale of phase separation between the donor and the acceptor, which can directly influence the exciton dissociation and charge transport and/or collection processes. Hence, the molecular ordering and the phase separation between the donor and acceptor phases are crucial for solar cells with high efficiency. Optimization of the morphology of the organic/inorganic hybrid layers will be achieved via thermal annealing.
The main goal of this work is to fabricate inorganic nanoparticles incorporated polymer PV devices with increased power conversion efficiency (PCE). This goal is achieved through four research objectives which are 1) enhancement of exciton generation and morphology by CuO NPs, 2) enhancement of exciton transportation and carrier diffusion by thermal annealing, 3) Improvement of exciton dissociation and electron mobility using ZnO NPs, and 4) improvement of hole collection ability using Au NPs. The key findings in this research can be applied to fabricate solar cells with higher power conversion efficiencies.
Recommended Citation
Wanninayake, Aruna, "Nanostructured Organic/Inorganic Semicondutor Photovoltaics: Investigation on Morphology and Optoelectronics Performance" (2016). Theses and Dissertations. 1225.
https://dc.uwm.edu/etd/1225