Date of Award
May 2017
Degree Type
Dissertation
Degree Name
Doctor of Philosophy
Department
Physics
First Advisor
Valerica Raicu
Committee Members
Valerica Raicu, Dilano Saldin, Marius Schmidt, Julie Oliver, Peter Schwander
Keywords
Fluroscence, Forester Resonance Energy Transfer (FRET), In Vivo, Membrane Protien, Quaternary Structure, Rhodopsin
Abstract
Investigating quaternary structure (oligomerization) of macromolecules (such as proteins and nucleic acids) in living systems (in vivo) has been a great challenge in biophysics, due to molecular diffusion, fluctuations in several biochemical parameters such as pH, quenching of fluorescence by oxygen (when fluorescence methods are used), etc.
We studied oligomerization of membrane receptors in living cells by means of Fluorescence (Förster) Resonance Energy Transfer (FRET) using fluorescent markers and two photon excitation fluorescence micro-spectroscopy. Using suitable FRET models, we determined the stoichiometry and quaternary structure of various macromolecular complexes. The proteins of interest for this work are : (1) sigma-1 receptor and (2) rhodopsin, are described as below.
(1) Sigma-1 receptors are molecular chaperone proteins, which also regulate ion channels. S1R seems to be involved in substance abuse, as well as several diseases such as Alzheimer’s. We studied S1R in the presence and absence of its ligands haloperidol (an antagonist) and pentazocine +/- (an agonist), and found that at low concentration they reside as a mixture of monomers and dimers and that they may form higher order oligomers at higher concentrations.
(2) Rhodopsin is a prototypical G protein coupled receptor (GPCR) and is directly involved in vision. GPCRs form a large family of receptors that participate in cell signaling by responding to external stimuli such as drugs, thus being a major drug target (more than 40% drugs target GPCRs). Their oligomerization has been largely controversial. Understanding this may help to understand the functional role of GPCRs oligomerization, and may lead to the discovery of more drugs targeting GPCR oligomers. It may also contribute toward finding a cure for Retinitis Pigmentosa, which is caused by a mutation (G188R) in rhodopsin, a disease which causes blindness and has no cure so far. Comparing healthy rhodopsin’s oligomeric structure with that of the mutant may give clues to find the cure.
Recommended Citation
Mishra, Ashish K., "Investigation of Membrane Receptors’ Oligomers Using Fluorescence Resonance Energy Transfer and Multiphoton Microscopy in Living Cells" (2017). Theses and Dissertations. 1513.
https://dc.uwm.edu/etd/1513