Date of Award
August 2020
Degree Type
Dissertation
Degree Name
Doctor of Philosophy
Department
Mathematics
First Advisor
Richard Stockbridge
Committee Members
Vytaras Brazauskas, Istvan Lauko, Wei Wei, Chao Zhu
Keywords
continuity, probability, stochastic
Abstract
In order to study model uncertainty of an optimal stopping problem of a stochastic process with a given state dependent drift rate and volatility, we analyze the effects of perturbing the parameters of the problem. This is accomplished by translating the original problem into a semi-infinite linear program and its dual. We then approximate this dual linear program by a countably constrained sub-linear program as well as an infinite sequence of finitely constrained linear programs. We find that in this framework the value function will be lower semi-continuous with respect to the parameters. If in addition we restrict ourselves to a compact set of constraints and add smoothness conditions to the gain function, we have full continuity of the value function.
Recommended Citation
Nehls, Samuel Morris, "Analysis of the Continuity of the Value Function of an Optimal Stopping Problem" (2020). Theses and Dissertations. 2569.
https://dc.uwm.edu/etd/2569