Date of Award

August 2015

Degree Type

Thesis

Degree Name

Master of Science

Department

Engineering

First Advisor

Benjamin C. Church

Committee Members

Chris Y. Yuan, Hugo F. Lopez, Benjamin C. Church

Keywords

Dictra, Diffusion, Kinetics, Simulation, Thermo-calc, Thermodynamics

Abstract

ABSTRACT

THERMODYNAMIC AND KINETIC SIMULATION OF TRANSIENT LIQUID-PHASE BONDING

by

Brad Lindner

The University of Wisconsin-Milwaukee, 2015

Under the Supervision of Professor Benjamin C. Church

The use of numeric computational methods for the simulation of materials systems is becoming more prevalent and an understanding of these tools may soon be a necessity for Materials Engineers and Scientists. The applicability of numerical simulation methods to transient liquid-phase (TLP) bonding is evaluated using a type 316L/MBF-51 material system. The comparisons involve the calculation of bulk diffusivities, tracking of interface positions during dissolution, widening, and isothermal solidification stages, as well as comparison of elemental composition profiles. The simulations were performed with Thermo-Calc and DICTRA software packages and the experiments with differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and optical microscopic methods. Analytical methods are also discussed to enhance understanding. The results of the investigation show that while general agreement between simulations and experiments can be obtained, assumptions made with the simulation programs may cause difficulty in interpretation of the results unless the user has sufficient, mathematical, thermodynamic, kinetic, and simulation background.

Share

COinS