•  
  •  
 

Corresponding Author

Daniel Unger

Abstract

The aim of this project was to ascertain if Pictometry® estimated height could be used in lieu of field-based height estimation. Height of a light pole measured with a telescopic height pole was compared to Pictometry® hyperspatial 4-inch (10.2 centimeters) multispectral imagery estimated light pole height on the campus of Stephen F. Austin State University, Nacogdoches, Texas. Average percent agreement between light pole height and Pictometry® estimated light pole height summarized by Pictometry® image magnification factors at 100%, 125%, 150%, 200%, and 300% magnification were within 98% of light pole height with percent disagreement ranging from 1.37% to 1.90%. RMSE between light pole height and Pictometry® estimated light pole height summarized by Pictometry® image magnification factors at 100%, 125%, 150%, 200%, and 300% magnification ranged from 0.14 meters to 0.17 meters. The results of Kruskal-Wallis test indicated that Pictometry® estimated light pole heights measured at the cardinal directions of north and east were more accurate than the directions of south and west, while increasing the magnification scale did not increase light pole height accuracy significantly. Pictometry® estimated height can be used in lieu of field-based height estimation for vertical features in a landscape and has the potential to revolutionize remotely sensed height measurements. This confirms the precision and accuracy of height measurements previously found for use of Pictometry® for tree, pole and building heights, slope distance, and height measurement by unmanned aerial systems.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.